| // Copyright (c) 2015-2020 The Khronos Group Inc. |
| // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights |
| // reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "source/binary.h" |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstring> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <unordered_map> |
| #include <vector> |
| |
| #include "source/assembly_grammar.h" |
| #include "source/diagnostic.h" |
| #include "source/ext_inst.h" |
| #include "source/latest_version_spirv_header.h" |
| #include "source/opcode.h" |
| #include "source/operand.h" |
| #include "source/spirv_constant.h" |
| #include "source/spirv_endian.h" |
| |
| spv_result_t spvBinaryHeaderGet(const spv_const_binary binary, |
| const spv_endianness_t endian, |
| spv_header_t* pHeader) { |
| if (!binary->code) return SPV_ERROR_INVALID_BINARY; |
| if (binary->wordCount < SPV_INDEX_INSTRUCTION) |
| return SPV_ERROR_INVALID_BINARY; |
| if (!pHeader) return SPV_ERROR_INVALID_POINTER; |
| |
| // TODO: Validation checking? |
| pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian); |
| pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian); |
| // Per 2.3.1 version's high and low bytes are 0 |
| if ((pHeader->version & 0x000000ff) || pHeader->version & 0xff000000) |
| return SPV_ERROR_INVALID_BINARY; |
| // Minimum version was 1.0 and max version is defined by SPV_VERSION. |
| if (pHeader->version < SPV_SPIRV_VERSION_WORD(1, 0) || |
| pHeader->version > SPV_VERSION) |
| return SPV_ERROR_INVALID_BINARY; |
| |
| pHeader->generator = |
| spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian); |
| pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian); |
| pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian); |
| pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION]; |
| |
| return SPV_SUCCESS; |
| } |
| |
| namespace { |
| |
| // A SPIR-V binary parser. A parser instance communicates detailed parse |
| // results via callbacks. |
| class Parser { |
| public: |
| // The user_data value is provided to the callbacks as context. |
| Parser(const spv_const_context context, void* user_data, |
| spv_parsed_header_fn_t parsed_header_fn, |
| spv_parsed_instruction_fn_t parsed_instruction_fn) |
| : grammar_(context), |
| consumer_(context->consumer), |
| user_data_(user_data), |
| parsed_header_fn_(parsed_header_fn), |
| parsed_instruction_fn_(parsed_instruction_fn) {} |
| |
| // Parses the specified binary SPIR-V module, issuing callbacks on a parsed |
| // header and for each parsed instruction. Returns SPV_SUCCESS on success. |
| // Otherwise returns an error code and issues a diagnostic. |
| spv_result_t parse(const uint32_t* words, size_t num_words, |
| spv_diagnostic* diagnostic); |
| |
| private: |
| // All remaining methods work on the current module parse state. |
| |
| // Like the parse method, but works on the current module parse state. |
| spv_result_t parseModule(); |
| |
| // Parses an instruction at the current position of the binary. Assumes |
| // the header has been parsed, the endian has been set, and the word index is |
| // still in range. Advances the parsing position past the instruction, and |
| // updates other parsing state for the current module. |
| // On success, returns SPV_SUCCESS and issues the parsed-instruction callback. |
| // On failure, returns an error code and issues a diagnostic. |
| spv_result_t parseInstruction(); |
| |
| // Parses an instruction operand with the given type, for an instruction |
| // starting at inst_offset words into the SPIR-V binary. |
| // If the SPIR-V binary is the same endianness as the host, then the |
| // endian_converted_inst_words parameter is ignored. Otherwise, this method |
| // appends the words for this operand, converted to host native endianness, |
| // to the end of endian_converted_inst_words. This method also updates the |
| // expected_operands parameter, and the scalar members of the inst parameter. |
| // On success, returns SPV_SUCCESS, advances past the operand, and pushes a |
| // new entry on to the operands vector. Otherwise returns an error code and |
| // issues a diagnostic. |
| spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst, |
| const spv_operand_type_t type, |
| std::vector<uint32_t>* endian_converted_inst_words, |
| std::vector<spv_parsed_operand_t>* operands, |
| spv_operand_pattern_t* expected_operands); |
| |
| // Records the numeric type for an operand according to the type information |
| // associated with the given non-zero type Id. This can fail if the type Id |
| // is not a type Id, or if the type Id does not reference a scalar numeric |
| // type. On success, return SPV_SUCCESS and populates the num_words, |
| // number_kind, and number_bit_width fields of parsed_operand. |
| spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand, |
| uint32_t type_id); |
| |
| // Records the number type for an instruction at the given offset, if that |
| // instruction generates a type. For types that aren't scalar numbers, |
| // record something with number kind SPV_NUMBER_NONE. |
| void recordNumberType(size_t inst_offset, |
| const spv_parsed_instruction_t* inst); |
| |
| // Returns a diagnostic stream object initialized with current position in |
| // the input stream, and for the given error code. Any data written to the |
| // returned object will be propagated to the current parse's diagnostic |
| // object. |
| spvtools::DiagnosticStream diagnostic(spv_result_t error) { |
| return spvtools::DiagnosticStream({0, 0, _.instruction_count}, consumer_, |
| "", error); |
| } |
| |
| // Returns a diagnostic stream object with the default parse error code. |
| spvtools::DiagnosticStream diagnostic() { |
| // The default failure for parsing is invalid binary. |
| return diagnostic(SPV_ERROR_INVALID_BINARY); |
| } |
| |
| // Issues a diagnostic describing an exhaustion of input condition when |
| // trying to decode an instruction operand, and returns |
| // SPV_ERROR_INVALID_BINARY. |
| spv_result_t exhaustedInputDiagnostic(size_t inst_offset, SpvOp opcode, |
| spv_operand_type_t type) { |
| return diagnostic() << "End of input reached while decoding Op" |
| << spvOpcodeString(opcode) << " starting at word " |
| << inst_offset |
| << ((_.word_index < _.num_words) ? ": truncated " |
| : ": missing ") |
| << spvOperandTypeStr(type) << " operand at word offset " |
| << _.word_index - inst_offset << "."; |
| } |
| |
| // Returns the endian-corrected word at the current position. |
| uint32_t peek() const { return peekAt(_.word_index); } |
| |
| // Returns the endian-corrected word at the given position. |
| uint32_t peekAt(size_t index) const { |
| assert(index < _.num_words); |
| return spvFixWord(_.words[index], _.endian); |
| } |
| |
| // Data members |
| |
| const spvtools::AssemblyGrammar grammar_; // SPIR-V syntax utility. |
| const spvtools::MessageConsumer& consumer_; // Message consumer callback. |
| void* const user_data_; // Context for the callbacks |
| const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback |
| const spv_parsed_instruction_fn_t |
| parsed_instruction_fn_; // Parsed instruction callback |
| |
| // Describes the format of a typed literal number. |
| struct NumberType { |
| spv_number_kind_t type; |
| uint32_t bit_width; |
| }; |
| |
| // The state used to parse a single SPIR-V binary module. |
| struct State { |
| State(const uint32_t* words_arg, size_t num_words_arg, |
| spv_diagnostic* diagnostic_arg) |
| : words(words_arg), |
| num_words(num_words_arg), |
| diagnostic(diagnostic_arg), |
| word_index(0), |
| instruction_count(0), |
| endian(), |
| requires_endian_conversion(false) { |
| // Temporary storage for parser state within a single instruction. |
| // Most instructions require fewer than 25 words or operands. |
| operands.reserve(25); |
| endian_converted_words.reserve(25); |
| expected_operands.reserve(25); |
| } |
| State() : State(0, 0, nullptr) {} |
| const uint32_t* words; // Words in the binary SPIR-V module. |
| size_t num_words; // Number of words in the module. |
| spv_diagnostic* diagnostic; // Where diagnostics go. |
| size_t word_index; // The current position in words. |
| size_t instruction_count; // The count of processed instructions |
| spv_endianness_t endian; // The endianness of the binary. |
| // Is the SPIR-V binary in a different endiannes from the host native |
| // endianness? |
| bool requires_endian_conversion; |
| |
| // Maps a result ID to its type ID. By convention: |
| // - a result ID that is a type definition maps to itself. |
| // - a result ID without a type maps to 0. (E.g. for OpLabel) |
| std::unordered_map<uint32_t, uint32_t> id_to_type_id; |
| // Maps a type ID to its number type description. |
| std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info; |
| // Maps an ExtInstImport id to the extended instruction type. |
| std::unordered_map<uint32_t, spv_ext_inst_type_t> |
| import_id_to_ext_inst_type; |
| |
| // Used by parseOperand |
| std::vector<spv_parsed_operand_t> operands; |
| std::vector<uint32_t> endian_converted_words; |
| spv_operand_pattern_t expected_operands; |
| } _; |
| }; |
| |
| spv_result_t Parser::parse(const uint32_t* words, size_t num_words, |
| spv_diagnostic* diagnostic_arg) { |
| _ = State(words, num_words, diagnostic_arg); |
| |
| const spv_result_t result = parseModule(); |
| |
| // Clear the module state. The tables might be big. |
| _ = State(); |
| |
| return result; |
| } |
| |
| spv_result_t Parser::parseModule() { |
| if (!_.words) return diagnostic() << "Missing module."; |
| |
| if (_.num_words < SPV_INDEX_INSTRUCTION) |
| return diagnostic() << "Module has incomplete header: only " << _.num_words |
| << " words instead of " << SPV_INDEX_INSTRUCTION; |
| |
| // Check the magic number and detect the module's endianness. |
| spv_const_binary_t binary{_.words, _.num_words}; |
| if (spvBinaryEndianness(&binary, &_.endian)) { |
| return diagnostic() << "Invalid SPIR-V magic number '" << std::hex |
| << _.words[0] << "'."; |
| } |
| _.requires_endian_conversion = !spvIsHostEndian(_.endian); |
| |
| // Process the header. |
| spv_header_t header; |
| if (spvBinaryHeaderGet(&binary, _.endian, &header)) { |
| // It turns out there is no way to trigger this error since the only |
| // failure cases are already handled above, with better messages. |
| return diagnostic(SPV_ERROR_INTERNAL) |
| << "Internal error: unhandled header parse failure"; |
| } |
| if (parsed_header_fn_) { |
| if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic, |
| header.version, header.generator, |
| header.bound, header.schema)) { |
| return error; |
| } |
| } |
| |
| // Process the instructions. |
| _.word_index = SPV_INDEX_INSTRUCTION; |
| while (_.word_index < _.num_words) |
| if (auto error = parseInstruction()) return error; |
| |
| // Running off the end should already have been reported earlier. |
| assert(_.word_index == _.num_words); |
| |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t Parser::parseInstruction() { |
| _.instruction_count++; |
| |
| // The zero values for all members except for opcode are the |
| // correct initial values. |
| spv_parsed_instruction_t inst = {}; |
| |
| const uint32_t first_word = peek(); |
| |
| // If the module's endianness is different from the host native endianness, |
| // then converted_words contains the the endian-translated words in the |
| // instruction. |
| _.endian_converted_words.clear(); |
| _.endian_converted_words.push_back(first_word); |
| |
| // After a successful parse of the instruction, the inst.operands member |
| // will point to this vector's storage. |
| _.operands.clear(); |
| |
| assert(_.word_index < _.num_words); |
| // Decompose and check the first word. |
| uint16_t inst_word_count = 0; |
| spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode); |
| if (inst_word_count < 1) { |
| return diagnostic() << "Invalid instruction word count: " |
| << inst_word_count; |
| } |
| spv_opcode_desc opcode_desc; |
| if (grammar_.lookupOpcode(static_cast<SpvOp>(inst.opcode), &opcode_desc)) |
| return diagnostic() << "Invalid opcode: " << inst.opcode; |
| |
| // Advance past the opcode word. But remember the of the start |
| // of the instruction. |
| const size_t inst_offset = _.word_index; |
| _.word_index++; |
| |
| // Maintains the ordered list of expected operand types. |
| // For many instructions we only need the {numTypes, operandTypes} |
| // entries in opcode_desc. However, sometimes we need to modify |
| // the list as we parse the operands. This occurs when an operand |
| // has its own logical operands (such as the LocalSize operand for |
| // ExecutionMode), or for extended instructions that may have their |
| // own operands depending on the selected extended instruction. |
| _.expected_operands.clear(); |
| for (auto i = 0; i < opcode_desc->numTypes; i++) |
| _.expected_operands.push_back( |
| opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]); |
| |
| while (_.word_index < inst_offset + inst_word_count) { |
| const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset); |
| if (_.expected_operands.empty()) { |
| return diagnostic() << "Invalid instruction Op" << opcode_desc->name |
| << " starting at word " << inst_offset |
| << ": expected no more operands after " |
| << inst_word_index |
| << " words, but stated word count is " |
| << inst_word_count << "."; |
| } |
| |
| spv_operand_type_t type = |
| spvTakeFirstMatchableOperand(&_.expected_operands); |
| |
| if (auto error = |
| parseOperand(inst_offset, &inst, type, &_.endian_converted_words, |
| &_.operands, &_.expected_operands)) { |
| return error; |
| } |
| } |
| |
| if (!_.expected_operands.empty() && |
| !spvOperandIsOptional(_.expected_operands.back())) { |
| return diagnostic() << "End of input reached while decoding Op" |
| << opcode_desc->name << " starting at word " |
| << inst_offset << ": expected more operands after " |
| << inst_word_count << " words."; |
| } |
| |
| if ((inst_offset + inst_word_count) != _.word_index) { |
| return diagnostic() << "Invalid word count: Op" << opcode_desc->name |
| << " starting at word " << inst_offset |
| << " says it has " << inst_word_count |
| << " words, but found " << _.word_index - inst_offset |
| << " words instead."; |
| } |
| |
| // Check the computed length of the endian-converted words vector against |
| // the declared number of words in the instruction. If endian conversion |
| // is required, then they should match. If no endian conversion was |
| // performed, then the vector only contains the initial opcode/word-count |
| // word. |
| assert(!_.requires_endian_conversion || |
| (inst_word_count == _.endian_converted_words.size())); |
| assert(_.requires_endian_conversion || |
| (_.endian_converted_words.size() == 1)); |
| |
| recordNumberType(inst_offset, &inst); |
| |
| if (_.requires_endian_conversion) { |
| // We must wait until here to set this pointer, because the vector might |
| // have been be resized while we accumulated its elements. |
| inst.words = _.endian_converted_words.data(); |
| } else { |
| // If no conversion is required, then just point to the underlying binary. |
| // This saves time and space. |
| inst.words = _.words + inst_offset; |
| } |
| inst.num_words = inst_word_count; |
| |
| // We must wait until here to set this pointer, because the vector might |
| // have been be resized while we accumulated its elements. |
| inst.operands = _.operands.data(); |
| inst.num_operands = uint16_t(_.operands.size()); |
| |
| // Issue the callback. The callee should know that all the storage in inst |
| // is transient, and will disappear immediately afterward. |
| if (parsed_instruction_fn_) { |
| if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error; |
| } |
| |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t Parser::parseOperand(size_t inst_offset, |
| spv_parsed_instruction_t* inst, |
| const spv_operand_type_t type, |
| std::vector<uint32_t>* words, |
| std::vector<spv_parsed_operand_t>* operands, |
| spv_operand_pattern_t* expected_operands) { |
| const SpvOp opcode = static_cast<SpvOp>(inst->opcode); |
| // We'll fill in this result as we go along. |
| spv_parsed_operand_t parsed_operand; |
| parsed_operand.offset = uint16_t(_.word_index - inst_offset); |
| // Most operands occupy one word. This might be be adjusted later. |
| parsed_operand.num_words = 1; |
| // The type argument is the one used by the grammar to parse the instruction. |
| // But it can exposes internal parser details such as whether an operand is |
| // optional or actually represents a variable-length sequence of operands. |
| // The resulting type should be adjusted to avoid those internal details. |
| // In most cases, the resulting operand type is the same as the grammar type. |
| parsed_operand.type = type; |
| |
| // Assume non-numeric values. This will be updated for literal numbers. |
| parsed_operand.number_kind = SPV_NUMBER_NONE; |
| parsed_operand.number_bit_width = 0; |
| |
| if (_.word_index >= _.num_words) |
| return exhaustedInputDiagnostic(inst_offset, opcode, type); |
| |
| const uint32_t word = peek(); |
| |
| // Do the words in this operand have to be converted to native endianness? |
| // True for all but literal strings. |
| bool convert_operand_endianness = true; |
| |
| switch (type) { |
| case SPV_OPERAND_TYPE_TYPE_ID: |
| if (!word) |
| return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0"; |
| inst->type_id = word; |
| break; |
| |
| case SPV_OPERAND_TYPE_RESULT_ID: |
| if (!word) |
| return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0"; |
| inst->result_id = word; |
| // Save the result ID to type ID mapping. |
| // In the grammar, type ID always appears before result ID. |
| if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end()) |
| return diagnostic(SPV_ERROR_INVALID_ID) |
| << "Id " << inst->result_id << " is defined more than once"; |
| // Record it. |
| // A regular value maps to its type. Some instructions (e.g. OpLabel) |
| // have no type Id, and will map to 0. The result Id for a |
| // type-generating instruction (e.g. OpTypeInt) maps to itself. |
| _.id_to_type_id[inst->result_id] = |
| spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id; |
| break; |
| |
| case SPV_OPERAND_TYPE_ID: |
| case SPV_OPERAND_TYPE_OPTIONAL_ID: |
| if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0"; |
| parsed_operand.type = SPV_OPERAND_TYPE_ID; |
| |
| if (opcode == SpvOpExtInst && parsed_operand.offset == 3) { |
| // The current word is the extended instruction set Id. |
| // Set the extended instruction set type for the current instruction. |
| auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word); |
| if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) { |
| return diagnostic(SPV_ERROR_INVALID_ID) |
| << "OpExtInst set Id " << word |
| << " does not reference an OpExtInstImport result Id"; |
| } |
| inst->ext_inst_type = ext_inst_type_iter->second; |
| } |
| break; |
| |
| case SPV_OPERAND_TYPE_SCOPE_ID: |
| case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID: |
| // Check for trivially invalid values. The operand descriptions already |
| // have the word "ID" in them. |
| if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0"; |
| break; |
| |
| case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: { |
| assert(SpvOpExtInst == opcode); |
| assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE); |
| spv_ext_inst_desc ext_inst; |
| if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst) == |
| SPV_SUCCESS) { |
| // if we know about this ext inst, push the expected operands |
| spvPushOperandTypes(ext_inst->operandTypes, expected_operands); |
| } else { |
| // if we don't know this extended instruction and the set isn't |
| // non-semantic, we cannot process further |
| if (!spvExtInstIsNonSemantic(inst->ext_inst_type)) { |
| return diagnostic() |
| << "Invalid extended instruction number: " << word; |
| } else { |
| // for non-semantic instruction sets, we know the form of all such |
| // extended instructions contains a series of IDs as parameters |
| expected_operands->push_back(SPV_OPERAND_TYPE_VARIABLE_ID); |
| } |
| } |
| } break; |
| |
| case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: { |
| assert(SpvOpSpecConstantOp == opcode); |
| if (grammar_.lookupSpecConstantOpcode(SpvOp(word))) { |
| return diagnostic() |
| << "Invalid " << spvOperandTypeStr(type) << ": " << word; |
| } |
| spv_opcode_desc opcode_entry = nullptr; |
| if (grammar_.lookupOpcode(SpvOp(word), &opcode_entry)) { |
| return diagnostic(SPV_ERROR_INTERNAL) |
| << "OpSpecConstant opcode table out of sync"; |
| } |
| // OpSpecConstant opcodes must have a type and result. We've already |
| // processed them, so skip them when preparing to parse the other |
| // operants for the opcode. |
| assert(opcode_entry->hasType); |
| assert(opcode_entry->hasResult); |
| assert(opcode_entry->numTypes >= 2); |
| spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands); |
| } break; |
| |
| case SPV_OPERAND_TYPE_LITERAL_INTEGER: |
| case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER: |
| // These are regular single-word literal integer operands. |
| // Post-parsing validation should check the range of the parsed value. |
| parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER; |
| // It turns out they are always unsigned integers! |
| parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT; |
| parsed_operand.number_bit_width = 32; |
| break; |
| |
| case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: |
| case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER: |
| parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER; |
| if (opcode == SpvOpSwitch) { |
| // The literal operands have the same type as the value |
| // referenced by the selector Id. |
| const uint32_t selector_id = peekAt(inst_offset + 1); |
| const auto type_id_iter = _.id_to_type_id.find(selector_id); |
| if (type_id_iter == _.id_to_type_id.end() || |
| type_id_iter->second == 0) { |
| return diagnostic() << "Invalid OpSwitch: selector id " << selector_id |
| << " has no type"; |
| } |
| uint32_t type_id = type_id_iter->second; |
| |
| if (selector_id == type_id) { |
| // Recall that by convention, a result ID that is a type definition |
| // maps to itself. |
| return diagnostic() << "Invalid OpSwitch: selector id " << selector_id |
| << " is a type, not a value"; |
| } |
| if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id)) |
| return error; |
| if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT && |
| parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) { |
| return diagnostic() << "Invalid OpSwitch: selector id " << selector_id |
| << " is not a scalar integer"; |
| } |
| } else { |
| assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant); |
| // The literal number type is determined by the type Id for the |
| // constant. |
| assert(inst->type_id); |
| if (auto error = |
| setNumericTypeInfoForType(&parsed_operand, inst->type_id)) |
| return error; |
| } |
| break; |
| |
| case SPV_OPERAND_TYPE_LITERAL_STRING: |
| case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: { |
| convert_operand_endianness = false; |
| const char* string = |
| reinterpret_cast<const char*>(_.words + _.word_index); |
| // Compute the length of the string, but make sure we don't run off the |
| // end of the input. |
| const size_t remaining_input_bytes = |
| sizeof(uint32_t) * (_.num_words - _.word_index); |
| const size_t string_num_content_bytes = |
| spv_strnlen_s(string, remaining_input_bytes); |
| // If there was no terminating null byte, then that's an end-of-input |
| // error. |
| if (string_num_content_bytes == remaining_input_bytes) |
| return exhaustedInputDiagnostic(inst_offset, opcode, type); |
| // Account for null in the word length, so add 1 for null, then add 3 to |
| // make sure we round up. The following is equivalent to: |
| // (string_num_content_bytes + 1 + 3) / 4 |
| const size_t string_num_words = string_num_content_bytes / 4 + 1; |
| // Make sure we can record the word count without overflow. |
| // |
| // This error can't currently be triggered because of validity |
| // checks elsewhere. |
| if (string_num_words > std::numeric_limits<uint16_t>::max()) { |
| return diagnostic() << "Literal string is longer than " |
| << std::numeric_limits<uint16_t>::max() |
| << " words: " << string_num_words << " words long"; |
| } |
| parsed_operand.num_words = uint16_t(string_num_words); |
| parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING; |
| |
| if (SpvOpExtInstImport == opcode) { |
| // Record the extended instruction type for the ID for this import. |
| // There is only one string literal argument to OpExtInstImport, |
| // so it's sufficient to guard this just on the opcode. |
| const spv_ext_inst_type_t ext_inst_type = |
| spvExtInstImportTypeGet(string); |
| if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) { |
| return diagnostic() |
| << "Invalid extended instruction import '" << string << "'"; |
| } |
| // We must have parsed a valid result ID. It's a condition |
| // of the grammar, and we only accept non-zero result Ids. |
| assert(inst->result_id); |
| _.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type; |
| } |
| } break; |
| |
| case SPV_OPERAND_TYPE_CAPABILITY: |
| case SPV_OPERAND_TYPE_SOURCE_LANGUAGE: |
| case SPV_OPERAND_TYPE_EXECUTION_MODEL: |
| case SPV_OPERAND_TYPE_ADDRESSING_MODEL: |
| case SPV_OPERAND_TYPE_MEMORY_MODEL: |
| case SPV_OPERAND_TYPE_EXECUTION_MODE: |
| case SPV_OPERAND_TYPE_STORAGE_CLASS: |
| case SPV_OPERAND_TYPE_DIMENSIONALITY: |
| case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE: |
| case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE: |
| case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT: |
| case SPV_OPERAND_TYPE_FP_ROUNDING_MODE: |
| case SPV_OPERAND_TYPE_LINKAGE_TYPE: |
| case SPV_OPERAND_TYPE_ACCESS_QUALIFIER: |
| case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER: |
| case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE: |
| case SPV_OPERAND_TYPE_DECORATION: |
| case SPV_OPERAND_TYPE_BUILT_IN: |
| case SPV_OPERAND_TYPE_GROUP_OPERATION: |
| case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS: |
| case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: |
| case SPV_OPERAND_TYPE_RAY_FLAGS: |
| case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION: |
| case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE: |
| case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE: |
| case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING: |
| case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE: |
| case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER: |
| case SPV_OPERAND_TYPE_DEBUG_OPERATION: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY: |
| case SPV_OPERAND_TYPE_FPDENORM_MODE: |
| case SPV_OPERAND_TYPE_FPOPERATION_MODE: { |
| // A single word that is a plain enum value. |
| |
| // Map an optional operand type to its corresponding concrete type. |
| if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER) |
| parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER; |
| |
| spv_operand_desc entry; |
| if (grammar_.lookupOperand(type, word, &entry)) { |
| return diagnostic() |
| << "Invalid " << spvOperandTypeStr(parsed_operand.type) |
| << " operand: " << word; |
| } |
| // Prepare to accept operands to this operand, if needed. |
| spvPushOperandTypes(entry->operandTypes, expected_operands); |
| } break; |
| |
| case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE: |
| case SPV_OPERAND_TYPE_FUNCTION_CONTROL: |
| case SPV_OPERAND_TYPE_LOOP_CONTROL: |
| case SPV_OPERAND_TYPE_IMAGE: |
| case SPV_OPERAND_TYPE_OPTIONAL_IMAGE: |
| case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS: |
| case SPV_OPERAND_TYPE_SELECTION_CONTROL: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS: |
| case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: { |
| // This operand is a mask. |
| |
| // Map an optional operand type to its corresponding concrete type. |
| if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE) |
| parsed_operand.type = SPV_OPERAND_TYPE_IMAGE; |
| else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS) |
| parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS; |
| |
| // Check validity of set mask bits. Also prepare for operands for those |
| // masks if they have any. To get operand order correct, scan from |
| // MSB to LSB since we can only prepend operands to a pattern. |
| // The only case in the grammar where you have more than one mask bit |
| // having an operand is for image operands. See SPIR-V 3.14 Image |
| // Operands. |
| uint32_t remaining_word = word; |
| for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) { |
| if (remaining_word & mask) { |
| spv_operand_desc entry; |
| if (grammar_.lookupOperand(type, mask, &entry)) { |
| return diagnostic() |
| << "Invalid " << spvOperandTypeStr(parsed_operand.type) |
| << " operand: " << word << " has invalid mask component " |
| << mask; |
| } |
| remaining_word ^= mask; |
| spvPushOperandTypes(entry->operandTypes, expected_operands); |
| } |
| } |
| if (word == 0) { |
| // An all-zeroes mask *might* also be valid. |
| spv_operand_desc entry; |
| if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) { |
| // Prepare for its operands, if any. |
| spvPushOperandTypes(entry->operandTypes, expected_operands); |
| } |
| } |
| } break; |
| default: |
| return diagnostic() << "Internal error: Unhandled operand type: " << type; |
| } |
| |
| assert(spvOperandIsConcrete(parsed_operand.type)); |
| |
| operands->push_back(parsed_operand); |
| |
| const size_t index_after_operand = _.word_index + parsed_operand.num_words; |
| |
| // Avoid buffer overrun for the cases where the operand has more than one |
| // word, and where it isn't a string. (Those other cases have already been |
| // handled earlier.) For example, this error can occur for a multi-word |
| // argument to OpConstant, or a multi-word case literal operand for OpSwitch. |
| if (_.num_words < index_after_operand) |
| return exhaustedInputDiagnostic(inst_offset, opcode, type); |
| |
| if (_.requires_endian_conversion) { |
| // Copy instruction words. Translate to native endianness as needed. |
| if (convert_operand_endianness) { |
| const spv_endianness_t endianness = _.endian; |
| std::transform(_.words + _.word_index, _.words + index_after_operand, |
| std::back_inserter(*words), |
| [endianness](const uint32_t raw_word) { |
| return spvFixWord(raw_word, endianness); |
| }); |
| } else { |
| words->insert(words->end(), _.words + _.word_index, |
| _.words + index_after_operand); |
| } |
| } |
| |
| // Advance past the operand. |
| _.word_index = index_after_operand; |
| |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t Parser::setNumericTypeInfoForType( |
| spv_parsed_operand_t* parsed_operand, uint32_t type_id) { |
| assert(type_id != 0); |
| auto type_info_iter = _.type_id_to_number_type_info.find(type_id); |
| if (type_info_iter == _.type_id_to_number_type_info.end()) { |
| return diagnostic() << "Type Id " << type_id << " is not a type"; |
| } |
| const NumberType& info = type_info_iter->second; |
| if (info.type == SPV_NUMBER_NONE) { |
| // This is a valid type, but for something other than a scalar number. |
| return diagnostic() << "Type Id " << type_id |
| << " is not a scalar numeric type"; |
| } |
| |
| parsed_operand->number_kind = info.type; |
| parsed_operand->number_bit_width = info.bit_width; |
| // Round up the word count. |
| parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32); |
| return SPV_SUCCESS; |
| } |
| |
| void Parser::recordNumberType(size_t inst_offset, |
| const spv_parsed_instruction_t* inst) { |
| const SpvOp opcode = static_cast<SpvOp>(inst->opcode); |
| if (spvOpcodeGeneratesType(opcode)) { |
| NumberType info = {SPV_NUMBER_NONE, 0}; |
| if (SpvOpTypeInt == opcode) { |
| const bool is_signed = peekAt(inst_offset + 3) != 0; |
| info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT; |
| info.bit_width = peekAt(inst_offset + 2); |
| } else if (SpvOpTypeFloat == opcode) { |
| info.type = SPV_NUMBER_FLOATING; |
| info.bit_width = peekAt(inst_offset + 2); |
| } |
| // The *result* Id of a type generating instruction is the type Id. |
| _.type_id_to_number_type_info[inst->result_id] = info; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| spv_result_t spvBinaryParse(const spv_const_context context, void* user_data, |
| const uint32_t* code, const size_t num_words, |
| spv_parsed_header_fn_t parsed_header, |
| spv_parsed_instruction_fn_t parsed_instruction, |
| spv_diagnostic* diagnostic) { |
| spv_context_t hijack_context = *context; |
| if (diagnostic) { |
| *diagnostic = nullptr; |
| spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic); |
| } |
| Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction); |
| return parser.parse(code, num_words, diagnostic); |
| } |
| |
| // TODO(dneto): This probably belongs in text.cpp since that's the only place |
| // that a spv_binary_t value is created. |
| void spvBinaryDestroy(spv_binary binary) { |
| if (binary) { |
| if (binary->code) delete[] binary->code; |
| delete binary; |
| } |
| } |
| |
| size_t spv_strnlen_s(const char* str, size_t strsz) { |
| if (!str) return 0; |
| for (size_t i = 0; i < strsz; i++) { |
| if (!str[i]) return i; |
| } |
| return strsz; |
| } |