| //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the CodeGenDAGPatterns class, which is used to read and |
| // represent the patterns present in a .td file for instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H |
| #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H |
| |
| #include "CodeGenHwModes.h" |
| #include "CodeGenIntrinsics.h" |
| #include "CodeGenTarget.h" |
| #include "SDNodeProperties.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <array> |
| #include <functional> |
| #include <map> |
| #include <set> |
| #include <vector> |
| |
| namespace llvm { |
| |
| class Record; |
| class Init; |
| class ListInit; |
| class DagInit; |
| class SDNodeInfo; |
| class TreePattern; |
| class TreePatternNode; |
| class CodeGenDAGPatterns; |
| class ComplexPattern; |
| |
| /// Shared pointer for TreePatternNode. |
| using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; |
| |
| /// This represents a set of MVTs. Since the underlying type for the MVT |
| /// is uint8_t, there are at most 256 values. To reduce the number of memory |
| /// allocations and deallocations, represent the set as a sequence of bits. |
| /// To reduce the allocations even further, make MachineValueTypeSet own |
| /// the storage and use std::array as the bit container. |
| struct MachineValueTypeSet { |
| static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, |
| uint8_t>::value, |
| "Change uint8_t here to the SimpleValueType's type"); |
| static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; |
| using WordType = uint64_t; |
| static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); |
| static unsigned constexpr NumWords = Capacity/WordWidth; |
| static_assert(NumWords*WordWidth == Capacity, |
| "Capacity should be a multiple of WordWidth"); |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| MachineValueTypeSet() { |
| clear(); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| unsigned size() const { |
| unsigned Count = 0; |
| for (WordType W : Words) |
| Count += countPopulation(W); |
| return Count; |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| void clear() { |
| std::memset(Words.data(), 0, NumWords*sizeof(WordType)); |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool empty() const { |
| for (WordType W : Words) |
| if (W != 0) |
| return false; |
| return true; |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| unsigned count(MVT T) const { |
| return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; |
| } |
| std::pair<MachineValueTypeSet&,bool> insert(MVT T) { |
| bool V = count(T.SimpleTy); |
| Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); |
| return {*this, V}; |
| } |
| MachineValueTypeSet &insert(const MachineValueTypeSet &S) { |
| for (unsigned i = 0; i != NumWords; ++i) |
| Words[i] |= S.Words[i]; |
| return *this; |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| void erase(MVT T) { |
| Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); |
| } |
| |
| struct const_iterator { |
| // Some implementations of the C++ library require these traits to be |
| // defined. |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = MVT; |
| using difference_type = ptrdiff_t; |
| using pointer = const MVT*; |
| using reference = const MVT&; |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| MVT operator*() const { |
| assert(Pos != Capacity); |
| return MVT::SimpleValueType(Pos); |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { |
| Pos = End ? Capacity : find_from_pos(0); |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| const_iterator &operator++() { |
| assert(Pos != Capacity); |
| Pos = find_from_pos(Pos+1); |
| return *this; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool operator==(const const_iterator &It) const { |
| return Set == It.Set && Pos == It.Pos; |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool operator!=(const const_iterator &It) const { |
| return !operator==(It); |
| } |
| |
| private: |
| unsigned find_from_pos(unsigned P) const { |
| unsigned SkipWords = P / WordWidth; |
| unsigned SkipBits = P % WordWidth; |
| unsigned Count = SkipWords * WordWidth; |
| |
| // If P is in the middle of a word, process it manually here, because |
| // the trailing bits need to be masked off to use findFirstSet. |
| if (SkipBits != 0) { |
| WordType W = Set->Words[SkipWords]; |
| W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); |
| if (W != 0) |
| return Count + findFirstSet(W); |
| Count += WordWidth; |
| SkipWords++; |
| } |
| |
| for (unsigned i = SkipWords; i != NumWords; ++i) { |
| WordType W = Set->Words[i]; |
| if (W != 0) |
| return Count + findFirstSet(W); |
| Count += WordWidth; |
| } |
| return Capacity; |
| } |
| |
| const MachineValueTypeSet *Set; |
| unsigned Pos; |
| }; |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| const_iterator begin() const { return const_iterator(this, false); } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| const_iterator end() const { return const_iterator(this, true); } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool operator==(const MachineValueTypeSet &S) const { |
| return Words == S.Words; |
| } |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool operator!=(const MachineValueTypeSet &S) const { |
| return !operator==(S); |
| } |
| |
| private: |
| friend struct const_iterator; |
| std::array<WordType,NumWords> Words; |
| }; |
| |
| struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { |
| using SetType = MachineValueTypeSet; |
| |
| TypeSetByHwMode() = default; |
| TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; |
| TypeSetByHwMode(MVT::SimpleValueType VT) |
| : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} |
| TypeSetByHwMode(ValueTypeByHwMode VT) |
| : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} |
| TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); |
| |
| SetType &getOrCreate(unsigned Mode) { |
| if (hasMode(Mode)) |
| return get(Mode); |
| return Map.insert({Mode,SetType()}).first->second; |
| } |
| |
| bool isValueTypeByHwMode(bool AllowEmpty) const; |
| ValueTypeByHwMode getValueTypeByHwMode() const; |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool isMachineValueType() const { |
| return isDefaultOnly() && Map.begin()->second.size() == 1; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| MVT getMachineValueType() const { |
| assert(isMachineValueType()); |
| return *Map.begin()->second.begin(); |
| } |
| |
| bool isPossible() const; |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE |
| bool isDefaultOnly() const { |
| return Map.size() == 1 && Map.begin()->first == DefaultMode; |
| } |
| |
| bool insert(const ValueTypeByHwMode &VVT); |
| bool constrain(const TypeSetByHwMode &VTS); |
| template <typename Predicate> bool constrain(Predicate P); |
| template <typename Predicate> |
| bool assign_if(const TypeSetByHwMode &VTS, Predicate P); |
| |
| void writeToStream(raw_ostream &OS) const; |
| static void writeToStream(const SetType &S, raw_ostream &OS); |
| |
| bool operator==(const TypeSetByHwMode &VTS) const; |
| bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } |
| |
| void dump() const; |
| bool validate() const; |
| |
| private: |
| /// Intersect two sets. Return true if anything has changed. |
| bool intersect(SetType &Out, const SetType &In); |
| }; |
| |
| raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); |
| |
| struct TypeInfer { |
| TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} |
| |
| bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { |
| return VTS.isValueTypeByHwMode(AllowEmpty); |
| } |
| ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, |
| bool AllowEmpty) const { |
| assert(VTS.isValueTypeByHwMode(AllowEmpty)); |
| return VTS.getValueTypeByHwMode(); |
| } |
| |
| /// The protocol in the following functions (Merge*, force*, Enforce*, |
| /// expand*) is to return "true" if a change has been made, "false" |
| /// otherwise. |
| |
| bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); |
| bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { |
| return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); |
| } |
| bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { |
| return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); |
| } |
| |
| /// Reduce the set \p Out to have at most one element for each mode. |
| bool forceArbitrary(TypeSetByHwMode &Out); |
| |
| /// The following four functions ensure that upon return the set \p Out |
| /// will only contain types of the specified kind: integer, floating-point, |
| /// scalar, or vector. |
| /// If \p Out is empty, all legal types of the specified kind will be added |
| /// to it. Otherwise, all types that are not of the specified kind will be |
| /// removed from \p Out. |
| bool EnforceInteger(TypeSetByHwMode &Out); |
| bool EnforceFloatingPoint(TypeSetByHwMode &Out); |
| bool EnforceScalar(TypeSetByHwMode &Out); |
| bool EnforceVector(TypeSetByHwMode &Out); |
| |
| /// If \p Out is empty, fill it with all legal types. Otherwise, leave it |
| /// unchanged. |
| bool EnforceAny(TypeSetByHwMode &Out); |
| /// Make sure that for each type in \p Small, there exists a larger type |
| /// in \p Big. |
| bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); |
| /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that |
| /// for each type U in \p Elem, U is a scalar type. |
| /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a |
| /// (vector) type T in \p Vec, such that U is the element type of T. |
| bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); |
| bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, |
| const ValueTypeByHwMode &VVT); |
| /// Ensure that for each type T in \p Sub, T is a vector type, and there |
| /// exists a type U in \p Vec such that U is a vector type with the same |
| /// element type as T and at least as many elements as T. |
| bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, |
| TypeSetByHwMode &Sub); |
| /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. |
| /// 2. Ensure that for each vector type T in \p V, there exists a vector |
| /// type U in \p W, such that T and U have the same number of elements. |
| /// 3. Ensure that for each vector type U in \p W, there exists a vector |
| /// type T in \p V, such that T and U have the same number of elements |
| /// (reverse of 2). |
| bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); |
| /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, |
| /// such that T and U have equal size in bits. |
| /// 2. Ensure that for each type U in \p B, there exists a type T in \p A |
| /// such that T and U have equal size in bits (reverse of 1). |
| bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); |
| |
| /// For each overloaded type (i.e. of form *Any), replace it with the |
| /// corresponding subset of legal, specific types. |
| void expandOverloads(TypeSetByHwMode &VTS); |
| void expandOverloads(TypeSetByHwMode::SetType &Out, |
| const TypeSetByHwMode::SetType &Legal); |
| |
| struct ValidateOnExit { |
| ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} |
| #ifndef NDEBUG |
| ~ValidateOnExit(); |
| #else |
| ~ValidateOnExit() {} // Empty destructor with NDEBUG. |
| #endif |
| TypeInfer &Infer; |
| TypeSetByHwMode &VTS; |
| }; |
| |
| struct SuppressValidation { |
| SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { |
| Infer.Validate = false; |
| } |
| ~SuppressValidation() { |
| Infer.Validate = SavedValidate; |
| } |
| TypeInfer &Infer; |
| bool SavedValidate; |
| }; |
| |
| TreePattern &TP; |
| unsigned ForceMode; // Mode to use when set. |
| bool CodeGen = false; // Set during generation of matcher code. |
| bool Validate = true; // Indicate whether to validate types. |
| |
| private: |
| TypeSetByHwMode getLegalTypes(); |
| |
| /// Cached legal types. |
| bool LegalTypesCached = false; |
| TypeSetByHwMode::SetType LegalCache = {}; |
| }; |
| |
| /// Set type used to track multiply used variables in patterns |
| typedef StringSet<> MultipleUseVarSet; |
| |
| /// SDTypeConstraint - This is a discriminated union of constraints, |
| /// corresponding to the SDTypeConstraint tablegen class in Target.td. |
| struct SDTypeConstraint { |
| SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); |
| |
| unsigned OperandNo; // The operand # this constraint applies to. |
| enum { |
| SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, |
| SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, |
| SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs |
| } ConstraintType; |
| |
| union { // The discriminated union. |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisSameAs_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisVTSmallerThanOp_Info; |
| struct { |
| unsigned BigOperandNum; |
| } SDTCisOpSmallerThanOp_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisEltOfVec_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisSubVecOfVec_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisSameNumEltsAs_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisSameSizeAs_Info; |
| } x; |
| |
| // The VT for SDTCisVT and SDTCVecEltisVT. |
| // Must not be in the union because it has a non-trivial destructor. |
| ValueTypeByHwMode VVT; |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, an error |
| /// is flagged. |
| bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const; |
| }; |
| |
| /// SDNodeInfo - One of these records is created for each SDNode instance in |
| /// the target .td file. This represents the various dag nodes we will be |
| /// processing. |
| class SDNodeInfo { |
| Record *Def; |
| StringRef EnumName; |
| StringRef SDClassName; |
| unsigned Properties; |
| unsigned NumResults; |
| int NumOperands; |
| std::vector<SDTypeConstraint> TypeConstraints; |
| public: |
| // Parse the specified record. |
| SDNodeInfo(Record *R, const CodeGenHwModes &CGH); |
| |
| unsigned getNumResults() const { return NumResults; } |
| |
| /// getNumOperands - This is the number of operands required or -1 if |
| /// variadic. |
| int getNumOperands() const { return NumOperands; } |
| Record *getRecord() const { return Def; } |
| StringRef getEnumName() const { return EnumName; } |
| StringRef getSDClassName() const { return SDClassName; } |
| |
| const std::vector<SDTypeConstraint> &getTypeConstraints() const { |
| return TypeConstraints; |
| } |
| |
| /// getKnownType - If the type constraints on this node imply a fixed type |
| /// (e.g. all stores return void, etc), then return it as an |
| /// MVT::SimpleValueType. Otherwise, return MVT::Other. |
| MVT::SimpleValueType getKnownType(unsigned ResNo) const; |
| |
| /// hasProperty - Return true if this node has the specified property. |
| /// |
| bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } |
| |
| /// ApplyTypeConstraints - Given a node in a pattern, apply the type |
| /// constraints for this node to the operands of the node. This returns |
| /// true if it makes a change, false otherwise. If a type contradiction is |
| /// found, an error is flagged. |
| bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; |
| }; |
| |
| /// TreePredicateFn - This is an abstraction that represents the predicates on |
| /// a PatFrag node. This is a simple one-word wrapper around a pointer to |
| /// provide nice accessors. |
| class TreePredicateFn { |
| /// PatFragRec - This is the TreePattern for the PatFrag that we |
| /// originally came from. |
| TreePattern *PatFragRec; |
| public: |
| /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. |
| TreePredicateFn(TreePattern *N); |
| |
| |
| TreePattern *getOrigPatFragRecord() const { return PatFragRec; } |
| |
| /// isAlwaysTrue - Return true if this is a noop predicate. |
| bool isAlwaysTrue() const; |
| |
| bool isImmediatePattern() const { return hasImmCode(); } |
| |
| /// getImmediatePredicateCode - Return the code that evaluates this pattern if |
| /// this is an immediate predicate. It is an error to call this on a |
| /// non-immediate pattern. |
| std::string getImmediatePredicateCode() const { |
| std::string Result = getImmCode(); |
| assert(!Result.empty() && "Isn't an immediate pattern!"); |
| return Result; |
| } |
| |
| bool operator==(const TreePredicateFn &RHS) const { |
| return PatFragRec == RHS.PatFragRec; |
| } |
| |
| bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } |
| |
| /// Return the name to use in the generated code to reference this, this is |
| /// "Predicate_foo" if from a pattern fragment "foo". |
| std::string getFnName() const; |
| |
| /// getCodeToRunOnSDNode - Return the code for the function body that |
| /// evaluates this predicate. The argument is expected to be in "Node", |
| /// not N. This handles casting and conversion to a concrete node type as |
| /// appropriate. |
| std::string getCodeToRunOnSDNode() const; |
| |
| /// Get the data type of the argument to getImmediatePredicateCode(). |
| StringRef getImmType() const; |
| |
| /// Get a string that describes the type returned by getImmType() but is |
| /// usable as part of an identifier. |
| StringRef getImmTypeIdentifier() const; |
| |
| // Is the desired predefined predicate for a load? |
| bool isLoad() const; |
| // Is the desired predefined predicate for a store? |
| bool isStore() const; |
| // Is the desired predefined predicate for an atomic? |
| bool isAtomic() const; |
| |
| /// Is this predicate the predefined unindexed load predicate? |
| /// Is this predicate the predefined unindexed store predicate? |
| bool isUnindexed() const; |
| /// Is this predicate the predefined non-extending load predicate? |
| bool isNonExtLoad() const; |
| /// Is this predicate the predefined any-extend load predicate? |
| bool isAnyExtLoad() const; |
| /// Is this predicate the predefined sign-extend load predicate? |
| bool isSignExtLoad() const; |
| /// Is this predicate the predefined zero-extend load predicate? |
| bool isZeroExtLoad() const; |
| /// Is this predicate the predefined non-truncating store predicate? |
| bool isNonTruncStore() const; |
| /// Is this predicate the predefined truncating store predicate? |
| bool isTruncStore() const; |
| |
| /// Is this predicate the predefined monotonic atomic predicate? |
| bool isAtomicOrderingMonotonic() const; |
| /// Is this predicate the predefined acquire atomic predicate? |
| bool isAtomicOrderingAcquire() const; |
| /// Is this predicate the predefined release atomic predicate? |
| bool isAtomicOrderingRelease() const; |
| /// Is this predicate the predefined acquire-release atomic predicate? |
| bool isAtomicOrderingAcquireRelease() const; |
| /// Is this predicate the predefined sequentially consistent atomic predicate? |
| bool isAtomicOrderingSequentiallyConsistent() const; |
| |
| /// Is this predicate the predefined acquire-or-stronger atomic predicate? |
| bool isAtomicOrderingAcquireOrStronger() const; |
| /// Is this predicate the predefined weaker-than-acquire atomic predicate? |
| bool isAtomicOrderingWeakerThanAcquire() const; |
| |
| /// Is this predicate the predefined release-or-stronger atomic predicate? |
| bool isAtomicOrderingReleaseOrStronger() const; |
| /// Is this predicate the predefined weaker-than-release atomic predicate? |
| bool isAtomicOrderingWeakerThanRelease() const; |
| |
| /// If non-null, indicates that this predicate is a predefined memory VT |
| /// predicate for a load/store and returns the ValueType record for the memory VT. |
| Record *getMemoryVT() const; |
| /// If non-null, indicates that this predicate is a predefined memory VT |
| /// predicate (checking only the scalar type) for load/store and returns the |
| /// ValueType record for the memory VT. |
| Record *getScalarMemoryVT() const; |
| |
| // If true, indicates that GlobalISel-based C++ code was supplied. |
| bool hasGISelPredicateCode() const; |
| std::string getGISelPredicateCode() const; |
| |
| private: |
| bool hasPredCode() const; |
| bool hasImmCode() const; |
| std::string getPredCode() const; |
| std::string getImmCode() const; |
| bool immCodeUsesAPInt() const; |
| bool immCodeUsesAPFloat() const; |
| |
| bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; |
| }; |
| |
| |
| class TreePatternNode { |
| /// The type of each node result. Before and during type inference, each |
| /// result may be a set of possible types. After (successful) type inference, |
| /// each is a single concrete type. |
| std::vector<TypeSetByHwMode> Types; |
| |
| /// Operator - The Record for the operator if this is an interior node (not |
| /// a leaf). |
| Record *Operator; |
| |
| /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. |
| /// |
| Init *Val; |
| |
| /// Name - The name given to this node with the :$foo notation. |
| /// |
| std::string Name; |
| |
| /// PredicateFns - The predicate functions to execute on this node to check |
| /// for a match. If this list is empty, no predicate is involved. |
| std::vector<TreePredicateFn> PredicateFns; |
| |
| /// TransformFn - The transformation function to execute on this node before |
| /// it can be substituted into the resulting instruction on a pattern match. |
| Record *TransformFn; |
| |
| std::vector<TreePatternNodePtr> Children; |
| |
| public: |
| TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, |
| unsigned NumResults) |
| : Operator(Op), Val(nullptr), TransformFn(nullptr), |
| Children(std::move(Ch)) { |
| Types.resize(NumResults); |
| } |
| TreePatternNode(Init *val, unsigned NumResults) // leaf ctor |
| : Operator(nullptr), Val(val), TransformFn(nullptr) { |
| Types.resize(NumResults); |
| } |
| |
| bool hasName() const { return !Name.empty(); } |
| const std::string &getName() const { return Name; } |
| void setName(StringRef N) { Name.assign(N.begin(), N.end()); } |
| |
| bool isLeaf() const { return Val != nullptr; } |
| |
| // Type accessors. |
| unsigned getNumTypes() const { return Types.size(); } |
| ValueTypeByHwMode getType(unsigned ResNo) const { |
| return Types[ResNo].getValueTypeByHwMode(); |
| } |
| const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } |
| const TypeSetByHwMode &getExtType(unsigned ResNo) const { |
| return Types[ResNo]; |
| } |
| TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } |
| void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } |
| MVT::SimpleValueType getSimpleType(unsigned ResNo) const { |
| return Types[ResNo].getMachineValueType().SimpleTy; |
| } |
| |
| bool hasConcreteType(unsigned ResNo) const { |
| return Types[ResNo].isValueTypeByHwMode(false); |
| } |
| bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { |
| return Types[ResNo].empty(); |
| } |
| |
| Init *getLeafValue() const { assert(isLeaf()); return Val; } |
| Record *getOperator() const { assert(!isLeaf()); return Operator; } |
| |
| unsigned getNumChildren() const { return Children.size(); } |
| TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } |
| const TreePatternNodePtr &getChildShared(unsigned N) const { |
| return Children[N]; |
| } |
| void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } |
| |
| /// hasChild - Return true if N is any of our children. |
| bool hasChild(const TreePatternNode *N) const { |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| if (Children[i].get() == N) |
| return true; |
| return false; |
| } |
| |
| bool hasProperTypeByHwMode() const; |
| bool hasPossibleType() const; |
| bool setDefaultMode(unsigned Mode); |
| |
| bool hasAnyPredicate() const { return !PredicateFns.empty(); } |
| |
| const std::vector<TreePredicateFn> &getPredicateFns() const { |
| return PredicateFns; |
| } |
| void clearPredicateFns() { PredicateFns.clear(); } |
| void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { |
| assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); |
| PredicateFns = Fns; |
| } |
| void addPredicateFn(const TreePredicateFn &Fn) { |
| assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); |
| if (!is_contained(PredicateFns, Fn)) |
| PredicateFns.push_back(Fn); |
| } |
| |
| Record *getTransformFn() const { return TransformFn; } |
| void setTransformFn(Record *Fn) { TransformFn = Fn; } |
| |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer. |
| const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; |
| |
| /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, |
| /// return the ComplexPattern information, otherwise return null. |
| const ComplexPattern * |
| getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; |
| |
| /// Returns the number of MachineInstr operands that would be produced by this |
| /// node if it mapped directly to an output Instruction's |
| /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it |
| /// for Operands; otherwise 1. |
| unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; |
| |
| /// NodeHasProperty - Return true if this node has the specified property. |
| bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; |
| |
| /// TreeHasProperty - Return true if any node in this tree has the specified |
| /// property. |
| bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; |
| |
| /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is |
| /// marked isCommutative. |
| bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| public: // Higher level manipulation routines. |
| |
| /// clone - Return a new copy of this tree. |
| /// |
| TreePatternNodePtr clone() const; |
| |
| /// RemoveAllTypes - Recursively strip all the types of this tree. |
| void RemoveAllTypes(); |
| |
| /// isIsomorphicTo - Return true if this node is recursively isomorphic to |
| /// the specified node. For this comparison, all of the state of the node |
| /// is considered, except for the assigned name. Nodes with differing names |
| /// that are otherwise identical are considered isomorphic. |
| bool isIsomorphicTo(const TreePatternNode *N, |
| const MultipleUseVarSet &DepVars) const; |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void |
| SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, return the set of inlined versions (this can be more than |
| /// one if a PatFrags record has multiple alternatives). |
| void InlinePatternFragments(TreePatternNodePtr T, |
| TreePattern &TP, |
| std::vector<TreePatternNodePtr> &OutAlternatives); |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, flag an error. |
| bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); |
| |
| /// UpdateNodeType - Set the node type of N to VT if VT contains |
| /// information. If N already contains a conflicting type, then flag an |
| /// error. This returns true if any information was updated. |
| /// |
| bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, |
| TreePattern &TP); |
| bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, |
| TreePattern &TP); |
| bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, |
| TreePattern &TP); |
| |
| // Update node type with types inferred from an instruction operand or result |
| // def from the ins/outs lists. |
| // Return true if the type changed. |
| bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); |
| |
| /// ContainsUnresolvedType - Return true if this tree contains any |
| /// unresolved types. |
| bool ContainsUnresolvedType(TreePattern &TP) const; |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. |
| bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { |
| TPN.print(OS); |
| return OS; |
| } |
| |
| |
| /// TreePattern - Represent a pattern, used for instructions, pattern |
| /// fragments, etc. |
| /// |
| class TreePattern { |
| /// Trees - The list of pattern trees which corresponds to this pattern. |
| /// Note that PatFrag's only have a single tree. |
| /// |
| std::vector<TreePatternNodePtr> Trees; |
| |
| /// NamedNodes - This is all of the nodes that have names in the trees in this |
| /// pattern. |
| StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; |
| |
| /// TheRecord - The actual TableGen record corresponding to this pattern. |
| /// |
| Record *TheRecord; |
| |
| /// Args - This is a list of all of the arguments to this pattern (for |
| /// PatFrag patterns), which are the 'node' markers in this pattern. |
| std::vector<std::string> Args; |
| |
| /// CDP - the top-level object coordinating this madness. |
| /// |
| CodeGenDAGPatterns &CDP; |
| |
| /// isInputPattern - True if this is an input pattern, something to match. |
| /// False if this is an output pattern, something to emit. |
| bool isInputPattern; |
| |
| /// hasError - True if the currently processed nodes have unresolvable types |
| /// or other non-fatal errors |
| bool HasError; |
| |
| /// It's important that the usage of operands in ComplexPatterns is |
| /// consistent: each named operand can be defined by at most one |
| /// ComplexPattern. This records the ComplexPattern instance and the operand |
| /// number for each operand encountered in a ComplexPattern to aid in that |
| /// check. |
| StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; |
| |
| TypeInfer Infer; |
| |
| public: |
| |
| /// TreePattern constructor - Parse the specified DagInits into the |
| /// current record. |
| TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| CodeGenDAGPatterns &ise); |
| TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| CodeGenDAGPatterns &ise); |
| TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, |
| CodeGenDAGPatterns &ise); |
| |
| /// getTrees - Return the tree patterns which corresponds to this pattern. |
| /// |
| const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } |
| unsigned getNumTrees() const { return Trees.size(); } |
| const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } |
| void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } |
| const TreePatternNodePtr &getOnlyTree() const { |
| assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); |
| return Trees[0]; |
| } |
| |
| const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { |
| if (NamedNodes.empty()) |
| ComputeNamedNodes(); |
| return NamedNodes; |
| } |
| |
| /// getRecord - Return the actual TableGen record corresponding to this |
| /// pattern. |
| /// |
| Record *getRecord() const { return TheRecord; } |
| |
| unsigned getNumArgs() const { return Args.size(); } |
| const std::string &getArgName(unsigned i) const { |
| assert(i < Args.size() && "Argument reference out of range!"); |
| return Args[i]; |
| } |
| std::vector<std::string> &getArgList() { return Args; } |
| |
| CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrags references. This may increase the number of trees in the |
| /// pattern if a PatFrags has multiple alternatives. |
| void InlinePatternFragments() { |
| std::vector<TreePatternNodePtr> Copy = Trees; |
| Trees.clear(); |
| for (unsigned i = 0, e = Copy.size(); i != e; ++i) |
| Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); |
| } |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are inferred, false |
| /// otherwise. Bail out if a type contradiction is found. |
| bool InferAllTypes( |
| const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); |
| |
| /// error - If this is the first error in the current resolution step, |
| /// print it and set the error flag. Otherwise, continue silently. |
| void error(const Twine &Msg); |
| bool hasError() const { |
| return HasError; |
| } |
| void resetError() { |
| HasError = false; |
| } |
| |
| TypeInfer &getInfer() { return Infer; } |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| private: |
| TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); |
| void ComputeNamedNodes(); |
| void ComputeNamedNodes(TreePatternNode *N); |
| }; |
| |
| |
| inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, |
| const TypeSetByHwMode &InTy, |
| TreePattern &TP) { |
| TypeSetByHwMode VTS(InTy); |
| TP.getInfer().expandOverloads(VTS); |
| return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); |
| } |
| |
| inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, |
| MVT::SimpleValueType InTy, |
| TreePattern &TP) { |
| TypeSetByHwMode VTS(InTy); |
| TP.getInfer().expandOverloads(VTS); |
| return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); |
| } |
| |
| inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, |
| ValueTypeByHwMode InTy, |
| TreePattern &TP) { |
| TypeSetByHwMode VTS(InTy); |
| TP.getInfer().expandOverloads(VTS); |
| return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); |
| } |
| |
| |
| /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps |
| /// that has a set ExecuteAlways / DefaultOps field. |
| struct DAGDefaultOperand { |
| std::vector<TreePatternNodePtr> DefaultOps; |
| }; |
| |
| class DAGInstruction { |
| std::vector<Record*> Results; |
| std::vector<Record*> Operands; |
| std::vector<Record*> ImpResults; |
| TreePatternNodePtr SrcPattern; |
| TreePatternNodePtr ResultPattern; |
| |
| public: |
| DAGInstruction(const std::vector<Record*> &results, |
| const std::vector<Record*> &operands, |
| const std::vector<Record*> &impresults, |
| TreePatternNodePtr srcpattern = nullptr, |
| TreePatternNodePtr resultpattern = nullptr) |
| : Results(results), Operands(operands), ImpResults(impresults), |
| SrcPattern(srcpattern), ResultPattern(resultpattern) {} |
| |
| unsigned getNumResults() const { return Results.size(); } |
| unsigned getNumOperands() const { return Operands.size(); } |
| unsigned getNumImpResults() const { return ImpResults.size(); } |
| const std::vector<Record*>& getImpResults() const { return ImpResults; } |
| |
| Record *getResult(unsigned RN) const { |
| assert(RN < Results.size()); |
| return Results[RN]; |
| } |
| |
| Record *getOperand(unsigned ON) const { |
| assert(ON < Operands.size()); |
| return Operands[ON]; |
| } |
| |
| Record *getImpResult(unsigned RN) const { |
| assert(RN < ImpResults.size()); |
| return ImpResults[RN]; |
| } |
| |
| TreePatternNodePtr getSrcPattern() const { return SrcPattern; } |
| TreePatternNodePtr getResultPattern() const { return ResultPattern; } |
| }; |
| |
| /// This class represents a condition that has to be satisfied for a pattern |
| /// to be tried. It is a generalization of a class "Pattern" from Target.td: |
| /// in addition to the Target.td's predicates, this class can also represent |
| /// conditions associated with HW modes. Both types will eventually become |
| /// strings containing C++ code to be executed, the difference is in how |
| /// these strings are generated. |
| class Predicate { |
| public: |
| Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { |
| assert(R->isSubClassOf("Predicate") && |
| "Predicate objects should only be created for records derived" |
| "from Predicate class"); |
| } |
| Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), |
| IfCond(C), IsHwMode(true) {} |
| |
| /// Return a string which contains the C++ condition code that will serve |
| /// as a predicate during instruction selection. |
| std::string getCondString() const { |
| // The string will excute in a subclass of SelectionDAGISel. |
| // Cast to std::string explicitly to avoid ambiguity with StringRef. |
| std::string C = IsHwMode |
| ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")") |
| : std::string(Def->getValueAsString("CondString")); |
| return IfCond ? C : "!("+C+')'; |
| } |
| bool operator==(const Predicate &P) const { |
| return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; |
| } |
| bool operator<(const Predicate &P) const { |
| if (IsHwMode != P.IsHwMode) |
| return IsHwMode < P.IsHwMode; |
| assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); |
| if (IfCond != P.IfCond) |
| return IfCond < P.IfCond; |
| if (Def) |
| return LessRecord()(Def, P.Def); |
| return Features < P.Features; |
| } |
| Record *Def; ///< Predicate definition from .td file, null for |
| ///< HW modes. |
| std::string Features; ///< Feature string for HW mode. |
| bool IfCond; ///< The boolean value that the condition has to |
| ///< evaluate to for this predicate to be true. |
| bool IsHwMode; ///< Does this predicate correspond to a HW mode? |
| }; |
| |
| /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns |
| /// processed to produce isel. |
| class PatternToMatch { |
| public: |
| PatternToMatch(Record *srcrecord, std::vector<Predicate> preds, |
| TreePatternNodePtr src, TreePatternNodePtr dst, |
| std::vector<Record *> dstregs, int complexity, |
| unsigned uid, unsigned setmode = 0) |
| : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), |
| Predicates(std::move(preds)), Dstregs(std::move(dstregs)), |
| AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} |
| |
| Record *SrcRecord; // Originating Record for the pattern. |
| TreePatternNodePtr SrcPattern; // Source pattern to match. |
| TreePatternNodePtr DstPattern; // Resulting pattern. |
| std::vector<Predicate> Predicates; // Top level predicate conditions |
| // to match. |
| std::vector<Record*> Dstregs; // Physical register defs being matched. |
| int AddedComplexity; // Add to matching pattern complexity. |
| unsigned ID; // Unique ID for the record. |
| unsigned ForceMode; // Force this mode in type inference when set. |
| |
| Record *getSrcRecord() const { return SrcRecord; } |
| TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } |
| TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } |
| TreePatternNode *getDstPattern() const { return DstPattern.get(); } |
| TreePatternNodePtr getDstPatternShared() const { return DstPattern; } |
| const std::vector<Record*> &getDstRegs() const { return Dstregs; } |
| int getAddedComplexity() const { return AddedComplexity; } |
| const std::vector<Predicate> &getPredicates() const { return Predicates; } |
| |
| std::string getPredicateCheck() const; |
| |
| /// Compute the complexity metric for the input pattern. This roughly |
| /// corresponds to the number of nodes that are covered. |
| int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; |
| }; |
| |
| class CodeGenDAGPatterns { |
| RecordKeeper &Records; |
| CodeGenTarget Target; |
| CodeGenIntrinsicTable Intrinsics; |
| CodeGenIntrinsicTable TgtIntrinsics; |
| |
| std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; |
| std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> |
| SDNodeXForms; |
| std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; |
| std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> |
| PatternFragments; |
| std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; |
| std::map<Record*, DAGInstruction, LessRecordByID> Instructions; |
| |
| // Specific SDNode definitions: |
| Record *intrinsic_void_sdnode; |
| Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; |
| |
| /// PatternsToMatch - All of the things we are matching on the DAG. The first |
| /// value is the pattern to match, the second pattern is the result to |
| /// emit. |
| std::vector<PatternToMatch> PatternsToMatch; |
| |
| TypeSetByHwMode LegalVTS; |
| |
| using PatternRewriterFn = std::function<void (TreePattern *)>; |
| PatternRewriterFn PatternRewriter; |
| |
| public: |
| CodeGenDAGPatterns(RecordKeeper &R, |
| PatternRewriterFn PatternRewriter = nullptr); |
| |
| CodeGenTarget &getTargetInfo() { return Target; } |
| const CodeGenTarget &getTargetInfo() const { return Target; } |
| const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } |
| |
| Record *getSDNodeNamed(const std::string &Name) const; |
| |
| const SDNodeInfo &getSDNodeInfo(Record *R) const { |
| auto F = SDNodes.find(R); |
| assert(F != SDNodes.end() && "Unknown node!"); |
| return F->second; |
| } |
| |
| // Node transformation lookups. |
| typedef std::pair<Record*, std::string> NodeXForm; |
| const NodeXForm &getSDNodeTransform(Record *R) const { |
| auto F = SDNodeXForms.find(R); |
| assert(F != SDNodeXForms.end() && "Invalid transform!"); |
| return F->second; |
| } |
| |
| typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator |
| nx_iterator; |
| nx_iterator nx_begin() const { return SDNodeXForms.begin(); } |
| nx_iterator nx_end() const { return SDNodeXForms.end(); } |
| |
| |
| const ComplexPattern &getComplexPattern(Record *R) const { |
| auto F = ComplexPatterns.find(R); |
| assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); |
| return F->second; |
| } |
| |
| const CodeGenIntrinsic &getIntrinsic(Record *R) const { |
| for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) |
| if (Intrinsics[i].TheDef == R) return Intrinsics[i]; |
| for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) |
| if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; |
| llvm_unreachable("Unknown intrinsic!"); |
| } |
| |
| const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { |
| if (IID-1 < Intrinsics.size()) |
| return Intrinsics[IID-1]; |
| if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) |
| return TgtIntrinsics[IID-Intrinsics.size()-1]; |
| llvm_unreachable("Bad intrinsic ID!"); |
| } |
| |
| unsigned getIntrinsicID(Record *R) const { |
| for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) |
| if (Intrinsics[i].TheDef == R) return i; |
| for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) |
| if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); |
| llvm_unreachable("Unknown intrinsic!"); |
| } |
| |
| const DAGDefaultOperand &getDefaultOperand(Record *R) const { |
| auto F = DefaultOperands.find(R); |
| assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); |
| return F->second; |
| } |
| |
| // Pattern Fragment information. |
| TreePattern *getPatternFragment(Record *R) const { |
| auto F = PatternFragments.find(R); |
| assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); |
| return F->second.get(); |
| } |
| TreePattern *getPatternFragmentIfRead(Record *R) const { |
| auto F = PatternFragments.find(R); |
| if (F == PatternFragments.end()) |
| return nullptr; |
| return F->second.get(); |
| } |
| |
| typedef std::map<Record *, std::unique_ptr<TreePattern>, |
| LessRecordByID>::const_iterator pf_iterator; |
| pf_iterator pf_begin() const { return PatternFragments.begin(); } |
| pf_iterator pf_end() const { return PatternFragments.end(); } |
| iterator_range<pf_iterator> ptfs() const { return PatternFragments; } |
| |
| // Patterns to match information. |
| typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; |
| ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } |
| ptm_iterator ptm_end() const { return PatternsToMatch.end(); } |
| iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } |
| |
| /// Parse the Pattern for an instruction, and insert the result in DAGInsts. |
| typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; |
| void parseInstructionPattern( |
| CodeGenInstruction &CGI, ListInit *Pattern, |
| DAGInstMap &DAGInsts); |
| |
| const DAGInstruction &getInstruction(Record *R) const { |
| auto F = Instructions.find(R); |
| assert(F != Instructions.end() && "Unknown instruction!"); |
| return F->second; |
| } |
| |
| Record *get_intrinsic_void_sdnode() const { |
| return intrinsic_void_sdnode; |
| } |
| Record *get_intrinsic_w_chain_sdnode() const { |
| return intrinsic_w_chain_sdnode; |
| } |
| Record *get_intrinsic_wo_chain_sdnode() const { |
| return intrinsic_wo_chain_sdnode; |
| } |
| |
| bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } |
| |
| private: |
| void ParseNodeInfo(); |
| void ParseNodeTransforms(); |
| void ParseComplexPatterns(); |
| void ParsePatternFragments(bool OutFrags = false); |
| void ParseDefaultOperands(); |
| void ParseInstructions(); |
| void ParsePatterns(); |
| void ExpandHwModeBasedTypes(); |
| void InferInstructionFlags(); |
| void GenerateVariants(); |
| void VerifyInstructionFlags(); |
| |
| std::vector<Predicate> makePredList(ListInit *L); |
| |
| void ParseOnePattern(Record *TheDef, |
| TreePattern &Pattern, TreePattern &Result, |
| const std::vector<Record *> &InstImpResults); |
| void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); |
| void FindPatternInputsAndOutputs( |
| TreePattern &I, TreePatternNodePtr Pat, |
| std::map<std::string, TreePatternNodePtr> &InstInputs, |
| std::map<std::string, TreePatternNodePtr> &InstResults, |
| std::vector<Record *> &InstImpResults); |
| }; |
| |
| |
| inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, |
| TreePattern &TP) const { |
| bool MadeChange = false; |
| for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) |
| MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); |
| return MadeChange; |
| } |
| |
| } // end namespace llvm |
| |
| #endif |