| //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/PhiValues.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/IR/Instructions.h" |
| |
| using namespace llvm; |
| |
| bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, |
| FunctionAnalysisManager::Invalidator &) { |
| // PhiValues is invalidated if it isn't preserved. |
| auto PAC = PA.getChecker<PhiValuesAnalysis>(); |
| return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); |
| } |
| |
| // The goal here is to find all of the non-phi values reachable from this phi, |
| // and to do the same for all of the phis reachable from this phi, as doing so |
| // is necessary anyway in order to get the values for this phi. We do this using |
| // Tarjan's algorithm with Nuutila's improvements to find the strongly connected |
| // components of the phi graph rooted in this phi: |
| // * All phis in a strongly connected component will have the same reachable |
| // non-phi values. The SCC may not be the maximal subgraph for that set of |
| // reachable values, but finding out that isn't really necessary (it would |
| // only reduce the amount of memory needed to store the values). |
| // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it |
| // never completes a component before the components reachable from it have |
| // been completed. This means that when we complete a component we have |
| // everything we need to collect the values reachable from that component. |
| // * We collect both the non-phi values reachable from each SCC, as that's what |
| // we're ultimately interested in, and all of the reachable values, i.e. |
| // including phis, as that makes invalidateValue easier. |
| void PhiValues::processPhi(const PHINode *Phi, |
| SmallVector<const PHINode *, 8> &Stack) { |
| // Initialize the phi with the next depth number. |
| assert(DepthMap.lookup(Phi) == 0); |
| assert(NextDepthNumber != UINT_MAX); |
| unsigned int DepthNumber = ++NextDepthNumber; |
| DepthMap[Phi] = DepthNumber; |
| |
| // Recursively process the incoming phis of this phi. |
| for (Value *PhiOp : Phi->incoming_values()) { |
| if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) { |
| // Recurse if the phi has not yet been visited. |
| if (DepthMap.lookup(PhiPhiOp) == 0) |
| processPhi(PhiPhiOp, Stack); |
| assert(DepthMap.lookup(PhiPhiOp) != 0); |
| // If the phi did not become part of a component then this phi and that |
| // phi are part of the same component, so adjust the depth number. |
| if (!ReachableMap.count(DepthMap[PhiPhiOp])) |
| DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]); |
| } |
| } |
| |
| // Now that incoming phis have been handled, push this phi to the stack. |
| Stack.push_back(Phi); |
| |
| // If the depth number has not changed then we've finished collecting the phis |
| // of a strongly connected component. |
| if (DepthMap[Phi] == DepthNumber) { |
| // Collect the reachable values for this component. The phis of this |
| // component will be those on top of the depth stach with the same or |
| // greater depth number. |
| ConstValueSet Reachable; |
| while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) { |
| const PHINode *ComponentPhi = Stack.pop_back_val(); |
| Reachable.insert(ComponentPhi); |
| DepthMap[ComponentPhi] = DepthNumber; |
| for (Value *Op : ComponentPhi->incoming_values()) { |
| if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) { |
| // If this phi is not part of the same component then that component |
| // is guaranteed to have been completed before this one. Therefore we |
| // can just add its reachable values to the reachable values of this |
| // component. |
| auto It = ReachableMap.find(DepthMap[PhiOp]); |
| if (It != ReachableMap.end()) |
| Reachable.insert(It->second.begin(), It->second.end()); |
| } else { |
| Reachable.insert(Op); |
| } |
| } |
| } |
| ReachableMap.insert({DepthNumber,Reachable}); |
| |
| // Filter out phis to get the non-phi reachable values. |
| ValueSet NonPhi; |
| for (const Value *V : Reachable) |
| if (!isa<PHINode>(V)) |
| NonPhi.insert(const_cast<Value*>(V)); |
| NonPhiReachableMap.insert({DepthNumber,NonPhi}); |
| } |
| } |
| |
| const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { |
| if (DepthMap.count(PN) == 0) { |
| SmallVector<const PHINode *, 8> Stack; |
| processPhi(PN, Stack); |
| assert(Stack.empty()); |
| } |
| assert(DepthMap.lookup(PN) != 0); |
| return NonPhiReachableMap[DepthMap[PN]]; |
| } |
| |
| void PhiValues::invalidateValue(const Value *V) { |
| // Components that can reach V are invalid. |
| SmallVector<unsigned int, 8> InvalidComponents; |
| for (auto &Pair : ReachableMap) |
| if (Pair.second.count(V)) |
| InvalidComponents.push_back(Pair.first); |
| |
| for (unsigned int N : InvalidComponents) { |
| for (const Value *V : ReachableMap[N]) |
| if (const PHINode *PN = dyn_cast<PHINode>(V)) |
| DepthMap.erase(PN); |
| NonPhiReachableMap.erase(N); |
| ReachableMap.erase(N); |
| } |
| } |
| |
| void PhiValues::releaseMemory() { |
| DepthMap.clear(); |
| NonPhiReachableMap.clear(); |
| ReachableMap.clear(); |
| } |
| |
| void PhiValues::print(raw_ostream &OS) const { |
| // Iterate through the phi nodes of the function rather than iterating through |
| // DepthMap in order to get predictable ordering. |
| for (const BasicBlock &BB : F) { |
| for (const PHINode &PN : BB.phis()) { |
| OS << "PHI "; |
| PN.printAsOperand(OS, false); |
| OS << " has values:\n"; |
| unsigned int N = DepthMap.lookup(&PN); |
| auto It = NonPhiReachableMap.find(N); |
| if (It == NonPhiReachableMap.end()) |
| OS << " UNKNOWN\n"; |
| else if (It->second.empty()) |
| OS << " NONE\n"; |
| else |
| for (Value *V : It->second) |
| // Printing of an instruction prints two spaces at the start, so |
| // handle instructions and everything else slightly differently in |
| // order to get consistent indenting. |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| OS << *I << "\n"; |
| else |
| OS << " " << *V << "\n"; |
| } |
| } |
| } |
| |
| AnalysisKey PhiValuesAnalysis::Key; |
| PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { |
| return PhiValues(F); |
| } |
| |
| PreservedAnalyses PhiValuesPrinterPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| OS << "PHI Values for function: " << F.getName() << "\n"; |
| PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F); |
| for (const BasicBlock &BB : F) |
| for (const PHINode &PN : BB.phis()) |
| PI.getValuesForPhi(&PN); |
| PI.print(OS); |
| return PreservedAnalyses::all(); |
| } |
| |
| PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { |
| initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool PhiValuesWrapperPass::runOnFunction(Function &F) { |
| Result.reset(new PhiValues(F)); |
| return false; |
| } |
| |
| void PhiValuesWrapperPass::releaseMemory() { |
| Result->releaseMemory(); |
| } |
| |
| void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| } |
| |
| char PhiValuesWrapperPass::ID = 0; |
| |
| INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false, |
| true) |