| //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/AssemblyAnnotationWriter.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| /// Computes loop safety information, checks loop body & header |
| /// for the possibility of may throw exception. |
| /// |
| void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { |
| assert(CurLoop != nullptr && "CurLoop can't be null"); |
| BasicBlock *Header = CurLoop->getHeader(); |
| // Setting default safety values. |
| SafetyInfo->MayThrow = false; |
| SafetyInfo->HeaderMayThrow = false; |
| // Iterate over header and compute safety info. |
| SafetyInfo->HeaderMayThrow = |
| !isGuaranteedToTransferExecutionToSuccessor(Header); |
| |
| SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow; |
| // Iterate over loop instructions and compute safety info. |
| // Skip header as it has been computed and stored in HeaderMayThrow. |
| // The first block in loopinfo.Blocks is guaranteed to be the header. |
| assert(Header == *CurLoop->getBlocks().begin() && |
| "First block must be header"); |
| for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), |
| BBE = CurLoop->block_end(); |
| (BB != BBE) && !SafetyInfo->MayThrow; ++BB) |
| SafetyInfo->MayThrow |= |
| !isGuaranteedToTransferExecutionToSuccessor(*BB); |
| |
| // Compute funclet colors if we might sink/hoist in a function with a funclet |
| // personality routine. |
| Function *Fn = CurLoop->getHeader()->getParent(); |
| if (Fn->hasPersonalityFn()) |
| if (Constant *PersonalityFn = Fn->getPersonalityFn()) |
| if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) |
| SafetyInfo->BlockColors = colorEHFunclets(*Fn); |
| } |
| |
| /// Return true if we can prove that the given ExitBlock is not reached on the |
| /// first iteration of the given loop. That is, the backedge of the loop must |
| /// be executed before the ExitBlock is executed in any dynamic execution trace. |
| static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, |
| const DominatorTree *DT, |
| const Loop *CurLoop) { |
| auto *CondExitBlock = ExitBlock->getSinglePredecessor(); |
| if (!CondExitBlock) |
| // expect unique exits |
| return false; |
| assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); |
| auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); |
| if (!BI || !BI->isConditional()) |
| return false; |
| // If condition is constant and false leads to ExitBlock then we always |
| // execute the true branch. |
| if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) |
| return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; |
| auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); |
| if (!Cond) |
| return false; |
| // todo: this would be a lot more powerful if we used scev, but all the |
| // plumbing is currently missing to pass a pointer in from the pass |
| // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known |
| auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); |
| auto *RHS = Cond->getOperand(1); |
| if (!LHS || LHS->getParent() != CurLoop->getHeader()) |
| return false; |
| auto DL = ExitBlock->getModule()->getDataLayout(); |
| auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); |
| auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), |
| IVStart, RHS, |
| {DL, /*TLI*/ nullptr, |
| DT, /*AC*/ nullptr, BI}); |
| auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); |
| if (!SimpleCst) |
| return false; |
| if (ExitBlock == BI->getSuccessor(0)) |
| return SimpleCst->isZeroValue(); |
| assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); |
| return SimpleCst->isAllOnesValue(); |
| } |
| |
| /// Returns true if the instruction in a loop is guaranteed to execute at least |
| /// once. |
| bool llvm::isGuaranteedToExecute(const Instruction &Inst, |
| const DominatorTree *DT, const Loop *CurLoop, |
| const LoopSafetyInfo *SafetyInfo) { |
| // We have to check to make sure that the instruction dominates all |
| // of the exit blocks. If it doesn't, then there is a path out of the loop |
| // which does not execute this instruction, so we can't hoist it. |
| |
| // If the instruction is in the header block for the loop (which is very |
| // common), it is always guaranteed to dominate the exit blocks. Since this |
| // is a common case, and can save some work, check it now. |
| if (Inst.getParent() == CurLoop->getHeader()) |
| // If there's a throw in the header block, we can't guarantee we'll reach |
| // Inst unless we can prove that Inst comes before the potential implicit |
| // exit. At the moment, we use a (cheap) hack for the common case where |
| // the instruction of interest is the first one in the block. |
| return !SafetyInfo->HeaderMayThrow || |
| Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; |
| |
| // Somewhere in this loop there is an instruction which may throw and make us |
| // exit the loop. |
| if (SafetyInfo->MayThrow) |
| return false; |
| |
| // Note: There are two styles of reasoning intermixed below for |
| // implementation efficiency reasons. They are: |
| // 1) If we can prove that the instruction dominates all exit blocks, then we |
| // know the instruction must have executed on *some* iteration before we |
| // exit. We do not prove *which* iteration the instruction must execute on. |
| // 2) If we can prove that the instruction dominates the latch and all exits |
| // which might be taken on the first iteration, we know the instruction must |
| // execute on the first iteration. This second style allows a conditional |
| // exit before the instruction of interest which is provably not taken on the |
| // first iteration. This is a quite common case for range check like |
| // patterns. TODO: support loops with multiple latches. |
| |
| const bool InstDominatesLatch = |
| CurLoop->getLoopLatch() != nullptr && |
| DT->dominates(Inst.getParent(), CurLoop->getLoopLatch()); |
| |
| // Get the exit blocks for the current loop. |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| CurLoop->getExitBlocks(ExitBlocks); |
| |
| // Verify that the block dominates each of the exit blocks of the loop. |
| for (BasicBlock *ExitBlock : ExitBlocks) |
| if (!DT->dominates(Inst.getParent(), ExitBlock)) |
| if (!InstDominatesLatch || |
| !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop)) |
| return false; |
| |
| // As a degenerate case, if the loop is statically infinite then we haven't |
| // proven anything since there are no exit blocks. |
| if (ExitBlocks.empty()) |
| return false; |
| |
| // FIXME: In general, we have to prove that the loop isn't an infinite loop. |
| // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is |
| // just a special case of this.) |
| return true; |
| } |
| |
| |
| namespace { |
| struct MustExecutePrinter : public FunctionPass { |
| |
| static char ID; // Pass identification, replacement for typeid |
| MustExecutePrinter() : FunctionPass(ID) { |
| initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); |
| } |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| } |
| bool runOnFunction(Function &F) override; |
| }; |
| } |
| |
| char MustExecutePrinter::ID = 0; |
| INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", |
| "Instructions which execute on loop entry", false, true) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", |
| "Instructions which execute on loop entry", false, true) |
| |
| FunctionPass *llvm::createMustExecutePrinter() { |
| return new MustExecutePrinter(); |
| } |
| |
| static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { |
| // TODO: merge these two routines. For the moment, we display the best |
| // result obtained by *either* implementation. This is a bit unfair since no |
| // caller actually gets the full power at the moment. |
| LoopSafetyInfo LSI; |
| computeLoopSafetyInfo(&LSI, L); |
| return isGuaranteedToExecute(I, DT, L, &LSI) || |
| isGuaranteedToExecuteForEveryIteration(&I, L); |
| } |
| |
| namespace { |
| /// An assembly annotator class to print must execute information in |
| /// comments. |
| class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { |
| DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; |
| |
| public: |
| MustExecuteAnnotatedWriter(const Function &F, |
| DominatorTree &DT, LoopInfo &LI) { |
| for (auto &I: instructions(F)) { |
| Loop *L = LI.getLoopFor(I.getParent()); |
| while (L) { |
| if (isMustExecuteIn(I, L, &DT)) { |
| MustExec[&I].push_back(L); |
| } |
| L = L->getParentLoop(); |
| }; |
| } |
| } |
| MustExecuteAnnotatedWriter(const Module &M, |
| DominatorTree &DT, LoopInfo &LI) { |
| for (auto &F : M) |
| for (auto &I: instructions(F)) { |
| Loop *L = LI.getLoopFor(I.getParent()); |
| while (L) { |
| if (isMustExecuteIn(I, L, &DT)) { |
| MustExec[&I].push_back(L); |
| } |
| L = L->getParentLoop(); |
| }; |
| } |
| } |
| |
| |
| void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { |
| if (!MustExec.count(&V)) |
| return; |
| |
| const auto &Loops = MustExec.lookup(&V); |
| const auto NumLoops = Loops.size(); |
| if (NumLoops > 1) |
| OS << " ; (mustexec in " << NumLoops << " loops: "; |
| else |
| OS << " ; (mustexec in: "; |
| |
| bool first = true; |
| for (const Loop *L : Loops) { |
| if (!first) |
| OS << ", "; |
| first = false; |
| OS << L->getHeader()->getName(); |
| } |
| OS << ")"; |
| } |
| }; |
| } // namespace |
| |
| bool MustExecutePrinter::runOnFunction(Function &F) { |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| |
| MustExecuteAnnotatedWriter Writer(F, DT, LI); |
| F.print(dbgs(), &Writer); |
| |
| return false; |
| } |