| //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the MemorySSA class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/AssemblyAnnotationWriter.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <memory> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "memoryssa" |
| |
| INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, |
| true) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, |
| true) |
| |
| INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", |
| "Memory SSA Printer", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", |
| "Memory SSA Printer", false, false) |
| |
| static cl::opt<unsigned> MaxCheckLimit( |
| "memssa-check-limit", cl::Hidden, cl::init(100), |
| cl::desc("The maximum number of stores/phis MemorySSA" |
| "will consider trying to walk past (default = 100)")); |
| |
| static cl::opt<bool> |
| VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, |
| cl::desc("Verify MemorySSA in legacy printer pass.")); |
| |
| namespace llvm { |
| |
| /// An assembly annotator class to print Memory SSA information in |
| /// comments. |
| class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { |
| friend class MemorySSA; |
| |
| const MemorySSA *MSSA; |
| |
| public: |
| MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} |
| |
| void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| formatted_raw_ostream &OS) override { |
| if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) |
| OS << "; " << *MA << "\n"; |
| } |
| |
| void emitInstructionAnnot(const Instruction *I, |
| formatted_raw_ostream &OS) override { |
| if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) |
| OS << "; " << *MA << "\n"; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| /// Our current alias analysis API differentiates heavily between calls and |
| /// non-calls, and functions called on one usually assert on the other. |
| /// This class encapsulates the distinction to simplify other code that wants |
| /// "Memory affecting instructions and related data" to use as a key. |
| /// For example, this class is used as a densemap key in the use optimizer. |
| class MemoryLocOrCall { |
| public: |
| bool IsCall = false; |
| |
| MemoryLocOrCall(MemoryUseOrDef *MUD) |
| : MemoryLocOrCall(MUD->getMemoryInst()) {} |
| MemoryLocOrCall(const MemoryUseOrDef *MUD) |
| : MemoryLocOrCall(MUD->getMemoryInst()) {} |
| |
| MemoryLocOrCall(Instruction *Inst) { |
| if (ImmutableCallSite(Inst)) { |
| IsCall = true; |
| CS = ImmutableCallSite(Inst); |
| } else { |
| IsCall = false; |
| // There is no such thing as a memorylocation for a fence inst, and it is |
| // unique in that regard. |
| if (!isa<FenceInst>(Inst)) |
| Loc = MemoryLocation::get(Inst); |
| } |
| } |
| |
| explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} |
| |
| ImmutableCallSite getCS() const { |
| assert(IsCall); |
| return CS; |
| } |
| |
| MemoryLocation getLoc() const { |
| assert(!IsCall); |
| return Loc; |
| } |
| |
| bool operator==(const MemoryLocOrCall &Other) const { |
| if (IsCall != Other.IsCall) |
| return false; |
| |
| if (!IsCall) |
| return Loc == Other.Loc; |
| |
| if (CS.getCalledValue() != Other.CS.getCalledValue()) |
| return false; |
| |
| return CS.arg_size() == Other.CS.arg_size() && |
| std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin()); |
| } |
| |
| private: |
| union { |
| ImmutableCallSite CS; |
| MemoryLocation Loc; |
| }; |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| template <> struct DenseMapInfo<MemoryLocOrCall> { |
| static inline MemoryLocOrCall getEmptyKey() { |
| return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); |
| } |
| |
| static inline MemoryLocOrCall getTombstoneKey() { |
| return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); |
| } |
| |
| static unsigned getHashValue(const MemoryLocOrCall &MLOC) { |
| if (!MLOC.IsCall) |
| return hash_combine( |
| MLOC.IsCall, |
| DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); |
| |
| hash_code hash = |
| hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( |
| MLOC.getCS().getCalledValue())); |
| |
| for (const Value *Arg : MLOC.getCS().args()) |
| hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); |
| return hash; |
| } |
| |
| static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| /// This does one-way checks to see if Use could theoretically be hoisted above |
| /// MayClobber. This will not check the other way around. |
| /// |
| /// This assumes that, for the purposes of MemorySSA, Use comes directly after |
| /// MayClobber, with no potentially clobbering operations in between them. |
| /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) |
| static bool areLoadsReorderable(const LoadInst *Use, |
| const LoadInst *MayClobber) { |
| bool VolatileUse = Use->isVolatile(); |
| bool VolatileClobber = MayClobber->isVolatile(); |
| // Volatile operations may never be reordered with other volatile operations. |
| if (VolatileUse && VolatileClobber) |
| return false; |
| // Otherwise, volatile doesn't matter here. From the language reference: |
| // 'optimizers may change the order of volatile operations relative to |
| // non-volatile operations.'" |
| |
| // If a load is seq_cst, it cannot be moved above other loads. If its ordering |
| // is weaker, it can be moved above other loads. We just need to be sure that |
| // MayClobber isn't an acquire load, because loads can't be moved above |
| // acquire loads. |
| // |
| // Note that this explicitly *does* allow the free reordering of monotonic (or |
| // weaker) loads of the same address. |
| bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; |
| bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), |
| AtomicOrdering::Acquire); |
| return !(SeqCstUse || MayClobberIsAcquire); |
| } |
| |
| namespace { |
| |
| struct ClobberAlias { |
| bool IsClobber; |
| Optional<AliasResult> AR; |
| }; |
| |
| } // end anonymous namespace |
| |
| // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being |
| // ignored if IsClobber = false. |
| static ClobberAlias instructionClobbersQuery(MemoryDef *MD, |
| const MemoryLocation &UseLoc, |
| const Instruction *UseInst, |
| AliasAnalysis &AA) { |
| Instruction *DefInst = MD->getMemoryInst(); |
| assert(DefInst && "Defining instruction not actually an instruction"); |
| ImmutableCallSite UseCS(UseInst); |
| Optional<AliasResult> AR; |
| |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { |
| // These intrinsics will show up as affecting memory, but they are just |
| // markers, mostly. |
| // |
| // FIXME: We probably don't actually want MemorySSA to model these at all |
| // (including creating MemoryAccesses for them): we just end up inventing |
| // clobbers where they don't really exist at all. Please see D43269 for |
| // context. |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::lifetime_start: |
| if (UseCS) |
| return {false, NoAlias}; |
| AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); |
| return {AR != NoAlias, AR}; |
| case Intrinsic::lifetime_end: |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::assume: |
| return {false, NoAlias}; |
| default: |
| break; |
| } |
| } |
| |
| if (UseCS) { |
| ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); |
| AR = isMustSet(I) ? MustAlias : MayAlias; |
| return {isModOrRefSet(I), AR}; |
| } |
| |
| if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) |
| if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) |
| return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; |
| |
| ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); |
| AR = isMustSet(I) ? MustAlias : MayAlias; |
| return {isModSet(I), AR}; |
| } |
| |
| static ClobberAlias instructionClobbersQuery(MemoryDef *MD, |
| const MemoryUseOrDef *MU, |
| const MemoryLocOrCall &UseMLOC, |
| AliasAnalysis &AA) { |
| // FIXME: This is a temporary hack to allow a single instructionClobbersQuery |
| // to exist while MemoryLocOrCall is pushed through places. |
| if (UseMLOC.IsCall) |
| return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), |
| AA); |
| return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), |
| AA); |
| } |
| |
| // Return true when MD may alias MU, return false otherwise. |
| bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, |
| AliasAnalysis &AA) { |
| return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; |
| } |
| |
| namespace { |
| |
| struct UpwardsMemoryQuery { |
| // True if our original query started off as a call |
| bool IsCall = false; |
| // The pointer location we started the query with. This will be empty if |
| // IsCall is true. |
| MemoryLocation StartingLoc; |
| // This is the instruction we were querying about. |
| const Instruction *Inst = nullptr; |
| // The MemoryAccess we actually got called with, used to test local domination |
| const MemoryAccess *OriginalAccess = nullptr; |
| Optional<AliasResult> AR = MayAlias; |
| |
| UpwardsMemoryQuery() = default; |
| |
| UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) |
| : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { |
| if (!IsCall) |
| StartingLoc = MemoryLocation::get(Inst); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, |
| AliasAnalysis &AA) { |
| Instruction *Inst = MD->getMemoryInst(); |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::lifetime_end: |
| return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); |
| default: |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, |
| const Instruction *I) { |
| // If the memory can't be changed, then loads of the memory can't be |
| // clobbered. |
| return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || |
| AA.pointsToConstantMemory(cast<LoadInst>(I)-> |
| getPointerOperand())); |
| } |
| |
| /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing |
| /// inbetween `Start` and `ClobberAt` can clobbers `Start`. |
| /// |
| /// This is meant to be as simple and self-contained as possible. Because it |
| /// uses no cache, etc., it can be relatively expensive. |
| /// |
| /// \param Start The MemoryAccess that we want to walk from. |
| /// \param ClobberAt A clobber for Start. |
| /// \param StartLoc The MemoryLocation for Start. |
| /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. |
| /// \param Query The UpwardsMemoryQuery we used for our search. |
| /// \param AA The AliasAnalysis we used for our search. |
| static void LLVM_ATTRIBUTE_UNUSED |
| checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, |
| const MemoryLocation &StartLoc, const MemorySSA &MSSA, |
| const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { |
| assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); |
| |
| if (MSSA.isLiveOnEntryDef(Start)) { |
| assert(MSSA.isLiveOnEntryDef(ClobberAt) && |
| "liveOnEntry must clobber itself"); |
| return; |
| } |
| |
| bool FoundClobber = false; |
| DenseSet<MemoryAccessPair> VisitedPhis; |
| SmallVector<MemoryAccessPair, 8> Worklist; |
| Worklist.emplace_back(Start, StartLoc); |
| // Walk all paths from Start to ClobberAt, while looking for clobbers. If one |
| // is found, complain. |
| while (!Worklist.empty()) { |
| MemoryAccessPair MAP = Worklist.pop_back_val(); |
| // All we care about is that nothing from Start to ClobberAt clobbers Start. |
| // We learn nothing from revisiting nodes. |
| if (!VisitedPhis.insert(MAP).second) |
| continue; |
| |
| for (MemoryAccess *MA : def_chain(MAP.first)) { |
| if (MA == ClobberAt) { |
| if (auto *MD = dyn_cast<MemoryDef>(MA)) { |
| // instructionClobbersQuery isn't essentially free, so don't use `|=`, |
| // since it won't let us short-circuit. |
| // |
| // Also, note that this can't be hoisted out of the `Worklist` loop, |
| // since MD may only act as a clobber for 1 of N MemoryLocations. |
| FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); |
| if (!FoundClobber) { |
| ClobberAlias CA = |
| instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); |
| if (CA.IsClobber) { |
| FoundClobber = true; |
| // Not used: CA.AR; |
| } |
| } |
| } |
| break; |
| } |
| |
| // We should never hit liveOnEntry, unless it's the clobber. |
| assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); |
| |
| if (auto *MD = dyn_cast<MemoryDef>(MA)) { |
| (void)MD; |
| assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) |
| .IsClobber && |
| "Found clobber before reaching ClobberAt!"); |
| continue; |
| } |
| |
| assert(isa<MemoryPhi>(MA)); |
| Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); |
| } |
| } |
| |
| // If ClobberAt is a MemoryPhi, we can assume something above it acted as a |
| // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. |
| assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && |
| "ClobberAt never acted as a clobber"); |
| } |
| |
| namespace { |
| |
| /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up |
| /// in one class. |
| class ClobberWalker { |
| /// Save a few bytes by using unsigned instead of size_t. |
| using ListIndex = unsigned; |
| |
| /// Represents a span of contiguous MemoryDefs, potentially ending in a |
| /// MemoryPhi. |
| struct DefPath { |
| MemoryLocation Loc; |
| // Note that, because we always walk in reverse, Last will always dominate |
| // First. Also note that First and Last are inclusive. |
| MemoryAccess *First; |
| MemoryAccess *Last; |
| Optional<ListIndex> Previous; |
| |
| DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, |
| Optional<ListIndex> Previous) |
| : Loc(Loc), First(First), Last(Last), Previous(Previous) {} |
| |
| DefPath(const MemoryLocation &Loc, MemoryAccess *Init, |
| Optional<ListIndex> Previous) |
| : DefPath(Loc, Init, Init, Previous) {} |
| }; |
| |
| const MemorySSA &MSSA; |
| AliasAnalysis &AA; |
| DominatorTree &DT; |
| UpwardsMemoryQuery *Query; |
| |
| // Phi optimization bookkeeping |
| SmallVector<DefPath, 32> Paths; |
| DenseSet<ConstMemoryAccessPair> VisitedPhis; |
| |
| /// Find the nearest def or phi that `From` can legally be optimized to. |
| const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { |
| assert(From->getNumOperands() && "Phi with no operands?"); |
| |
| BasicBlock *BB = From->getBlock(); |
| MemoryAccess *Result = MSSA.getLiveOnEntryDef(); |
| DomTreeNode *Node = DT.getNode(BB); |
| while ((Node = Node->getIDom())) { |
| auto *Defs = MSSA.getBlockDefs(Node->getBlock()); |
| if (Defs) |
| return &*Defs->rbegin(); |
| } |
| return Result; |
| } |
| |
| /// Result of calling walkToPhiOrClobber. |
| struct UpwardsWalkResult { |
| /// The "Result" of the walk. Either a clobber, the last thing we walked, or |
| /// both. Include alias info when clobber found. |
| MemoryAccess *Result; |
| bool IsKnownClobber; |
| Optional<AliasResult> AR; |
| }; |
| |
| /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. |
| /// This will update Desc.Last as it walks. It will (optionally) also stop at |
| /// StopAt. |
| /// |
| /// This does not test for whether StopAt is a clobber |
| UpwardsWalkResult |
| walkToPhiOrClobber(DefPath &Desc, |
| const MemoryAccess *StopAt = nullptr) const { |
| assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); |
| |
| for (MemoryAccess *Current : def_chain(Desc.Last)) { |
| Desc.Last = Current; |
| if (Current == StopAt) |
| return {Current, false, MayAlias}; |
| |
| if (auto *MD = dyn_cast<MemoryDef>(Current)) { |
| if (MSSA.isLiveOnEntryDef(MD)) |
| return {MD, true, MustAlias}; |
| ClobberAlias CA = |
| instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); |
| if (CA.IsClobber) |
| return {MD, true, CA.AR}; |
| } |
| } |
| |
| assert(isa<MemoryPhi>(Desc.Last) && |
| "Ended at a non-clobber that's not a phi?"); |
| return {Desc.Last, false, MayAlias}; |
| } |
| |
| void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, |
| ListIndex PriorNode) { |
| auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), |
| upward_defs_end()); |
| for (const MemoryAccessPair &P : UpwardDefs) { |
| PausedSearches.push_back(Paths.size()); |
| Paths.emplace_back(P.second, P.first, PriorNode); |
| } |
| } |
| |
| /// Represents a search that terminated after finding a clobber. This clobber |
| /// may or may not be present in the path of defs from LastNode..SearchStart, |
| /// since it may have been retrieved from cache. |
| struct TerminatedPath { |
| MemoryAccess *Clobber; |
| ListIndex LastNode; |
| }; |
| |
| /// Get an access that keeps us from optimizing to the given phi. |
| /// |
| /// PausedSearches is an array of indices into the Paths array. Its incoming |
| /// value is the indices of searches that stopped at the last phi optimization |
| /// target. It's left in an unspecified state. |
| /// |
| /// If this returns None, NewPaused is a vector of searches that terminated |
| /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. |
| Optional<TerminatedPath> |
| getBlockingAccess(const MemoryAccess *StopWhere, |
| SmallVectorImpl<ListIndex> &PausedSearches, |
| SmallVectorImpl<ListIndex> &NewPaused, |
| SmallVectorImpl<TerminatedPath> &Terminated) { |
| assert(!PausedSearches.empty() && "No searches to continue?"); |
| |
| // BFS vs DFS really doesn't make a difference here, so just do a DFS with |
| // PausedSearches as our stack. |
| while (!PausedSearches.empty()) { |
| ListIndex PathIndex = PausedSearches.pop_back_val(); |
| DefPath &Node = Paths[PathIndex]; |
| |
| // If we've already visited this path with this MemoryLocation, we don't |
| // need to do so again. |
| // |
| // NOTE: That we just drop these paths on the ground makes caching |
| // behavior sporadic. e.g. given a diamond: |
| // A |
| // B C |
| // D |
| // |
| // ...If we walk D, B, A, C, we'll only cache the result of phi |
| // optimization for A, B, and D; C will be skipped because it dies here. |
| // This arguably isn't the worst thing ever, since: |
| // - We generally query things in a top-down order, so if we got below D |
| // without needing cache entries for {C, MemLoc}, then chances are |
| // that those cache entries would end up ultimately unused. |
| // - We still cache things for A, so C only needs to walk up a bit. |
| // If this behavior becomes problematic, we can fix without a ton of extra |
| // work. |
| if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) |
| continue; |
| |
| UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); |
| if (Res.IsKnownClobber) { |
| assert(Res.Result != StopWhere); |
| // If this wasn't a cache hit, we hit a clobber when walking. That's a |
| // failure. |
| TerminatedPath Term{Res.Result, PathIndex}; |
| if (!MSSA.dominates(Res.Result, StopWhere)) |
| return Term; |
| |
| // Otherwise, it's a valid thing to potentially optimize to. |
| Terminated.push_back(Term); |
| continue; |
| } |
| |
| if (Res.Result == StopWhere) { |
| // We've hit our target. Save this path off for if we want to continue |
| // walking. |
| NewPaused.push_back(PathIndex); |
| continue; |
| } |
| |
| assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); |
| addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); |
| } |
| |
| return None; |
| } |
| |
| template <typename T, typename Walker> |
| struct generic_def_path_iterator |
| : public iterator_facade_base<generic_def_path_iterator<T, Walker>, |
| std::forward_iterator_tag, T *> { |
| generic_def_path_iterator() = default; |
| generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} |
| |
| T &operator*() const { return curNode(); } |
| |
| generic_def_path_iterator &operator++() { |
| N = curNode().Previous; |
| return *this; |
| } |
| |
| bool operator==(const generic_def_path_iterator &O) const { |
| if (N.hasValue() != O.N.hasValue()) |
| return false; |
| return !N.hasValue() || *N == *O.N; |
| } |
| |
| private: |
| T &curNode() const { return W->Paths[*N]; } |
| |
| Walker *W = nullptr; |
| Optional<ListIndex> N = None; |
| }; |
| |
| using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; |
| using const_def_path_iterator = |
| generic_def_path_iterator<const DefPath, const ClobberWalker>; |
| |
| iterator_range<def_path_iterator> def_path(ListIndex From) { |
| return make_range(def_path_iterator(this, From), def_path_iterator()); |
| } |
| |
| iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { |
| return make_range(const_def_path_iterator(this, From), |
| const_def_path_iterator()); |
| } |
| |
| struct OptznResult { |
| /// The path that contains our result. |
| TerminatedPath PrimaryClobber; |
| /// The paths that we can legally cache back from, but that aren't |
| /// necessarily the result of the Phi optimization. |
| SmallVector<TerminatedPath, 4> OtherClobbers; |
| }; |
| |
| ListIndex defPathIndex(const DefPath &N) const { |
| // The assert looks nicer if we don't need to do &N |
| const DefPath *NP = &N; |
| assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && |
| "Out of bounds DefPath!"); |
| return NP - &Paths.front(); |
| } |
| |
| /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths |
| /// that act as legal clobbers. Note that this won't return *all* clobbers. |
| /// |
| /// Phi optimization algorithm tl;dr: |
| /// - Find the earliest def/phi, A, we can optimize to |
| /// - Find if all paths from the starting memory access ultimately reach A |
| /// - If not, optimization isn't possible. |
| /// - Otherwise, walk from A to another clobber or phi, A'. |
| /// - If A' is a def, we're done. |
| /// - If A' is a phi, try to optimize it. |
| /// |
| /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path |
| /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. |
| OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, |
| const MemoryLocation &Loc) { |
| assert(Paths.empty() && VisitedPhis.empty() && |
| "Reset the optimization state."); |
| |
| Paths.emplace_back(Loc, Start, Phi, None); |
| // Stores how many "valid" optimization nodes we had prior to calling |
| // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. |
| auto PriorPathsSize = Paths.size(); |
| |
| SmallVector<ListIndex, 16> PausedSearches; |
| SmallVector<ListIndex, 8> NewPaused; |
| SmallVector<TerminatedPath, 4> TerminatedPaths; |
| |
| addSearches(Phi, PausedSearches, 0); |
| |
| // Moves the TerminatedPath with the "most dominated" Clobber to the end of |
| // Paths. |
| auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { |
| assert(!Paths.empty() && "Need a path to move"); |
| auto Dom = Paths.begin(); |
| for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) |
| if (!MSSA.dominates(I->Clobber, Dom->Clobber)) |
| Dom = I; |
| auto Last = Paths.end() - 1; |
| if (Last != Dom) |
| std::iter_swap(Last, Dom); |
| }; |
| |
| MemoryPhi *Current = Phi; |
| while (true) { |
| assert(!MSSA.isLiveOnEntryDef(Current) && |
| "liveOnEntry wasn't treated as a clobber?"); |
| |
| const auto *Target = getWalkTarget(Current); |
| // If a TerminatedPath doesn't dominate Target, then it wasn't a legal |
| // optimization for the prior phi. |
| assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { |
| return MSSA.dominates(P.Clobber, Target); |
| })); |
| |
| // FIXME: This is broken, because the Blocker may be reported to be |
| // liveOnEntry, and we'll happily wait for that to disappear (read: never) |
| // For the moment, this is fine, since we do nothing with blocker info. |
| if (Optional<TerminatedPath> Blocker = getBlockingAccess( |
| Target, PausedSearches, NewPaused, TerminatedPaths)) { |
| |
| // Find the node we started at. We can't search based on N->Last, since |
| // we may have gone around a loop with a different MemoryLocation. |
| auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { |
| return defPathIndex(N) < PriorPathsSize; |
| }); |
| assert(Iter != def_path_iterator()); |
| |
| DefPath &CurNode = *Iter; |
| assert(CurNode.Last == Current); |
| |
| // Two things: |
| // A. We can't reliably cache all of NewPaused back. Consider a case |
| // where we have two paths in NewPaused; one of which can't optimize |
| // above this phi, whereas the other can. If we cache the second path |
| // back, we'll end up with suboptimal cache entries. We can handle |
| // cases like this a bit better when we either try to find all |
| // clobbers that block phi optimization, or when our cache starts |
| // supporting unfinished searches. |
| // B. We can't reliably cache TerminatedPaths back here without doing |
| // extra checks; consider a case like: |
| // T |
| // / \ |
| // D C |
| // \ / |
| // S |
| // Where T is our target, C is a node with a clobber on it, D is a |
| // diamond (with a clobber *only* on the left or right node, N), and |
| // S is our start. Say we walk to D, through the node opposite N |
| // (read: ignoring the clobber), and see a cache entry in the top |
| // node of D. That cache entry gets put into TerminatedPaths. We then |
| // walk up to C (N is later in our worklist), find the clobber, and |
| // quit. If we append TerminatedPaths to OtherClobbers, we'll cache |
| // the bottom part of D to the cached clobber, ignoring the clobber |
| // in N. Again, this problem goes away if we start tracking all |
| // blockers for a given phi optimization. |
| TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; |
| return {Result, {}}; |
| } |
| |
| // If there's nothing left to search, then all paths led to valid clobbers |
| // that we got from our cache; pick the nearest to the start, and allow |
| // the rest to be cached back. |
| if (NewPaused.empty()) { |
| MoveDominatedPathToEnd(TerminatedPaths); |
| TerminatedPath Result = TerminatedPaths.pop_back_val(); |
| return {Result, std::move(TerminatedPaths)}; |
| } |
| |
| MemoryAccess *DefChainEnd = nullptr; |
| SmallVector<TerminatedPath, 4> Clobbers; |
| for (ListIndex Paused : NewPaused) { |
| UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); |
| if (WR.IsKnownClobber) |
| Clobbers.push_back({WR.Result, Paused}); |
| else |
| // Micro-opt: If we hit the end of the chain, save it. |
| DefChainEnd = WR.Result; |
| } |
| |
| if (!TerminatedPaths.empty()) { |
| // If we couldn't find the dominating phi/liveOnEntry in the above loop, |
| // do it now. |
| if (!DefChainEnd) |
| for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) |
| DefChainEnd = MA; |
| |
| // If any of the terminated paths don't dominate the phi we'll try to |
| // optimize, we need to figure out what they are and quit. |
| const BasicBlock *ChainBB = DefChainEnd->getBlock(); |
| for (const TerminatedPath &TP : TerminatedPaths) { |
| // Because we know that DefChainEnd is as "high" as we can go, we |
| // don't need local dominance checks; BB dominance is sufficient. |
| if (DT.dominates(ChainBB, TP.Clobber->getBlock())) |
| Clobbers.push_back(TP); |
| } |
| } |
| |
| // If we have clobbers in the def chain, find the one closest to Current |
| // and quit. |
| if (!Clobbers.empty()) { |
| MoveDominatedPathToEnd(Clobbers); |
| TerminatedPath Result = Clobbers.pop_back_val(); |
| return {Result, std::move(Clobbers)}; |
| } |
| |
| assert(all_of(NewPaused, |
| [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); |
| |
| // Because liveOnEntry is a clobber, this must be a phi. |
| auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); |
| |
| PriorPathsSize = Paths.size(); |
| PausedSearches.clear(); |
| for (ListIndex I : NewPaused) |
| addSearches(DefChainPhi, PausedSearches, I); |
| NewPaused.clear(); |
| |
| Current = DefChainPhi; |
| } |
| } |
| |
| void verifyOptResult(const OptznResult &R) const { |
| assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { |
| return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); |
| })); |
| } |
| |
| void resetPhiOptznState() { |
| Paths.clear(); |
| VisitedPhis.clear(); |
| } |
| |
| public: |
| ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) |
| : MSSA(MSSA), AA(AA), DT(DT) {} |
| |
| /// Finds the nearest clobber for the given query, optimizing phis if |
| /// possible. |
| MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { |
| Query = &Q; |
| |
| MemoryAccess *Current = Start; |
| // This walker pretends uses don't exist. If we're handed one, silently grab |
| // its def. (This has the nice side-effect of ensuring we never cache uses) |
| if (auto *MU = dyn_cast<MemoryUse>(Start)) |
| Current = MU->getDefiningAccess(); |
| |
| DefPath FirstDesc(Q.StartingLoc, Current, Current, None); |
| // Fast path for the overly-common case (no crazy phi optimization |
| // necessary) |
| UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); |
| MemoryAccess *Result; |
| if (WalkResult.IsKnownClobber) { |
| Result = WalkResult.Result; |
| Q.AR = WalkResult.AR; |
| } else { |
| OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), |
| Current, Q.StartingLoc); |
| verifyOptResult(OptRes); |
| resetPhiOptznState(); |
| Result = OptRes.PrimaryClobber.Clobber; |
| } |
| |
| #ifdef EXPENSIVE_CHECKS |
| checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); |
| #endif |
| return Result; |
| } |
| |
| void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } |
| }; |
| |
| struct RenamePassData { |
| DomTreeNode *DTN; |
| DomTreeNode::const_iterator ChildIt; |
| MemoryAccess *IncomingVal; |
| |
| RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, |
| MemoryAccess *M) |
| : DTN(D), ChildIt(It), IncomingVal(M) {} |
| |
| void swap(RenamePassData &RHS) { |
| std::swap(DTN, RHS.DTN); |
| std::swap(ChildIt, RHS.ChildIt); |
| std::swap(IncomingVal, RHS.IncomingVal); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no |
| /// longer does caching on its own, but the name has been retained for the |
| /// moment. |
| class MemorySSA::CachingWalker final : public MemorySSAWalker { |
| ClobberWalker Walker; |
| |
| MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); |
| |
| public: |
| CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); |
| ~CachingWalker() override = default; |
| |
| using MemorySSAWalker::getClobberingMemoryAccess; |
| |
| MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; |
| MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
| const MemoryLocation &) override; |
| void invalidateInfo(MemoryAccess *) override; |
| |
| void verify(const MemorySSA *MSSA) override { |
| MemorySSAWalker::verify(MSSA); |
| Walker.verify(MSSA); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, |
| bool RenameAllUses) { |
| // Pass through values to our successors |
| for (const BasicBlock *S : successors(BB)) { |
| auto It = PerBlockAccesses.find(S); |
| // Rename the phi nodes in our successor block |
| if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) |
| continue; |
| AccessList *Accesses = It->second.get(); |
| auto *Phi = cast<MemoryPhi>(&Accesses->front()); |
| if (RenameAllUses) { |
| int PhiIndex = Phi->getBasicBlockIndex(BB); |
| assert(PhiIndex != -1 && "Incomplete phi during partial rename"); |
| Phi->setIncomingValue(PhiIndex, IncomingVal); |
| } else |
| Phi->addIncoming(IncomingVal, BB); |
| } |
| } |
| |
| /// Rename a single basic block into MemorySSA form. |
| /// Uses the standard SSA renaming algorithm. |
| /// \returns The new incoming value. |
| MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, |
| bool RenameAllUses) { |
| auto It = PerBlockAccesses.find(BB); |
| // Skip most processing if the list is empty. |
| if (It != PerBlockAccesses.end()) { |
| AccessList *Accesses = It->second.get(); |
| for (MemoryAccess &L : *Accesses) { |
| if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { |
| if (MUD->getDefiningAccess() == nullptr || RenameAllUses) |
| MUD->setDefiningAccess(IncomingVal); |
| if (isa<MemoryDef>(&L)) |
| IncomingVal = &L; |
| } else { |
| IncomingVal = &L; |
| } |
| } |
| } |
| return IncomingVal; |
| } |
| |
| /// This is the standard SSA renaming algorithm. |
| /// |
| /// We walk the dominator tree in preorder, renaming accesses, and then filling |
| /// in phi nodes in our successors. |
| void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, |
| SmallPtrSetImpl<BasicBlock *> &Visited, |
| bool SkipVisited, bool RenameAllUses) { |
| SmallVector<RenamePassData, 32> WorkStack; |
| // Skip everything if we already renamed this block and we are skipping. |
| // Note: You can't sink this into the if, because we need it to occur |
| // regardless of whether we skip blocks or not. |
| bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; |
| if (SkipVisited && AlreadyVisited) |
| return; |
| |
| IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); |
| renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); |
| WorkStack.push_back({Root, Root->begin(), IncomingVal}); |
| |
| while (!WorkStack.empty()) { |
| DomTreeNode *Node = WorkStack.back().DTN; |
| DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; |
| IncomingVal = WorkStack.back().IncomingVal; |
| |
| if (ChildIt == Node->end()) { |
| WorkStack.pop_back(); |
| } else { |
| DomTreeNode *Child = *ChildIt; |
| ++WorkStack.back().ChildIt; |
| BasicBlock *BB = Child->getBlock(); |
| // Note: You can't sink this into the if, because we need it to occur |
| // regardless of whether we skip blocks or not. |
| AlreadyVisited = !Visited.insert(BB).second; |
| if (SkipVisited && AlreadyVisited) { |
| // We already visited this during our renaming, which can happen when |
| // being asked to rename multiple blocks. Figure out the incoming val, |
| // which is the last def. |
| // Incoming value can only change if there is a block def, and in that |
| // case, it's the last block def in the list. |
| if (auto *BlockDefs = getWritableBlockDefs(BB)) |
| IncomingVal = &*BlockDefs->rbegin(); |
| } else |
| IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); |
| renameSuccessorPhis(BB, IncomingVal, RenameAllUses); |
| WorkStack.push_back({Child, Child->begin(), IncomingVal}); |
| } |
| } |
| } |
| |
| /// This handles unreachable block accesses by deleting phi nodes in |
| /// unreachable blocks, and marking all other unreachable MemoryAccess's as |
| /// being uses of the live on entry definition. |
| void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { |
| assert(!DT->isReachableFromEntry(BB) && |
| "Reachable block found while handling unreachable blocks"); |
| |
| // Make sure phi nodes in our reachable successors end up with a |
| // LiveOnEntryDef for our incoming edge, even though our block is forward |
| // unreachable. We could just disconnect these blocks from the CFG fully, |
| // but we do not right now. |
| for (const BasicBlock *S : successors(BB)) { |
| if (!DT->isReachableFromEntry(S)) |
| continue; |
| auto It = PerBlockAccesses.find(S); |
| // Rename the phi nodes in our successor block |
| if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) |
| continue; |
| AccessList *Accesses = It->second.get(); |
| auto *Phi = cast<MemoryPhi>(&Accesses->front()); |
| Phi->addIncoming(LiveOnEntryDef.get(), BB); |
| } |
| |
| auto It = PerBlockAccesses.find(BB); |
| if (It == PerBlockAccesses.end()) |
| return; |
| |
| auto &Accesses = It->second; |
| for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { |
| auto Next = std::next(AI); |
| // If we have a phi, just remove it. We are going to replace all |
| // users with live on entry. |
| if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) |
| UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); |
| else |
| Accesses->erase(AI); |
| AI = Next; |
| } |
| } |
| |
| MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) |
| : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), |
| NextID(0) { |
| buildMemorySSA(); |
| } |
| |
| MemorySSA::~MemorySSA() { |
| // Drop all our references |
| for (const auto &Pair : PerBlockAccesses) |
| for (MemoryAccess &MA : *Pair.second) |
| MA.dropAllReferences(); |
| } |
| |
| MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { |
| auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); |
| |
| if (Res.second) |
| Res.first->second = llvm::make_unique<AccessList>(); |
| return Res.first->second.get(); |
| } |
| |
| MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { |
| auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); |
| |
| if (Res.second) |
| Res.first->second = llvm::make_unique<DefsList>(); |
| return Res.first->second.get(); |
| } |
| |
| namespace llvm { |
| |
| /// This class is a batch walker of all MemoryUse's in the program, and points |
| /// their defining access at the thing that actually clobbers them. Because it |
| /// is a batch walker that touches everything, it does not operate like the |
| /// other walkers. This walker is basically performing a top-down SSA renaming |
| /// pass, where the version stack is used as the cache. This enables it to be |
| /// significantly more time and memory efficient than using the regular walker, |
| /// which is walking bottom-up. |
| class MemorySSA::OptimizeUses { |
| public: |
| OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, |
| DominatorTree *DT) |
| : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { |
| Walker = MSSA->getWalker(); |
| } |
| |
| void optimizeUses(); |
| |
| private: |
| /// This represents where a given memorylocation is in the stack. |
| struct MemlocStackInfo { |
| // This essentially is keeping track of versions of the stack. Whenever |
| // the stack changes due to pushes or pops, these versions increase. |
| unsigned long StackEpoch; |
| unsigned long PopEpoch; |
| // This is the lower bound of places on the stack to check. It is equal to |
| // the place the last stack walk ended. |
| // Note: Correctness depends on this being initialized to 0, which densemap |
| // does |
| unsigned long LowerBound; |
| const BasicBlock *LowerBoundBlock; |
| // This is where the last walk for this memory location ended. |
| unsigned long LastKill; |
| bool LastKillValid; |
| Optional<AliasResult> AR; |
| }; |
| |
| void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, |
| SmallVectorImpl<MemoryAccess *> &, |
| DenseMap<MemoryLocOrCall, MemlocStackInfo> &); |
| |
| MemorySSA *MSSA; |
| MemorySSAWalker *Walker; |
| AliasAnalysis *AA; |
| DominatorTree *DT; |
| }; |
| |
| } // end namespace llvm |
| |
| /// Optimize the uses in a given block This is basically the SSA renaming |
| /// algorithm, with one caveat: We are able to use a single stack for all |
| /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is |
| /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just |
| /// going to be some position in that stack of possible ones. |
| /// |
| /// We track the stack positions that each MemoryLocation needs |
| /// to check, and last ended at. This is because we only want to check the |
| /// things that changed since last time. The same MemoryLocation should |
| /// get clobbered by the same store (getModRefInfo does not use invariantness or |
| /// things like this, and if they start, we can modify MemoryLocOrCall to |
| /// include relevant data) |
| void MemorySSA::OptimizeUses::optimizeUsesInBlock( |
| const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, |
| SmallVectorImpl<MemoryAccess *> &VersionStack, |
| DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { |
| |
| /// If no accesses, nothing to do. |
| MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); |
| if (Accesses == nullptr) |
| return; |
| |
| // Pop everything that doesn't dominate the current block off the stack, |
| // increment the PopEpoch to account for this. |
| while (true) { |
| assert( |
| !VersionStack.empty() && |
| "Version stack should have liveOnEntry sentinel dominating everything"); |
| BasicBlock *BackBlock = VersionStack.back()->getBlock(); |
| if (DT->dominates(BackBlock, BB)) |
| break; |
| while (VersionStack.back()->getBlock() == BackBlock) |
| VersionStack.pop_back(); |
| ++PopEpoch; |
| } |
| |
| for (MemoryAccess &MA : *Accesses) { |
| auto *MU = dyn_cast<MemoryUse>(&MA); |
| if (!MU) { |
| VersionStack.push_back(&MA); |
| ++StackEpoch; |
| continue; |
| } |
| |
| if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { |
| MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); |
| continue; |
| } |
| |
| MemoryLocOrCall UseMLOC(MU); |
| auto &LocInfo = LocStackInfo[UseMLOC]; |
| // If the pop epoch changed, it means we've removed stuff from top of |
| // stack due to changing blocks. We may have to reset the lower bound or |
| // last kill info. |
| if (LocInfo.PopEpoch != PopEpoch) { |
| LocInfo.PopEpoch = PopEpoch; |
| LocInfo.StackEpoch = StackEpoch; |
| // If the lower bound was in something that no longer dominates us, we |
| // have to reset it. |
| // We can't simply track stack size, because the stack may have had |
| // pushes/pops in the meantime. |
| // XXX: This is non-optimal, but only is slower cases with heavily |
| // branching dominator trees. To get the optimal number of queries would |
| // be to make lowerbound and lastkill a per-loc stack, and pop it until |
| // the top of that stack dominates us. This does not seem worth it ATM. |
| // A much cheaper optimization would be to always explore the deepest |
| // branch of the dominator tree first. This will guarantee this resets on |
| // the smallest set of blocks. |
| if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && |
| !DT->dominates(LocInfo.LowerBoundBlock, BB)) { |
| // Reset the lower bound of things to check. |
| // TODO: Some day we should be able to reset to last kill, rather than |
| // 0. |
| LocInfo.LowerBound = 0; |
| LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); |
| LocInfo.LastKillValid = false; |
| } |
| } else if (LocInfo.StackEpoch != StackEpoch) { |
| // If all that has changed is the StackEpoch, we only have to check the |
| // new things on the stack, because we've checked everything before. In |
| // this case, the lower bound of things to check remains the same. |
| LocInfo.PopEpoch = PopEpoch; |
| LocInfo.StackEpoch = StackEpoch; |
| } |
| if (!LocInfo.LastKillValid) { |
| LocInfo.LastKill = VersionStack.size() - 1; |
| LocInfo.LastKillValid = true; |
| LocInfo.AR = MayAlias; |
| } |
| |
| // At this point, we should have corrected last kill and LowerBound to be |
| // in bounds. |
| assert(LocInfo.LowerBound < VersionStack.size() && |
| "Lower bound out of range"); |
| assert(LocInfo.LastKill < VersionStack.size() && |
| "Last kill info out of range"); |
| // In any case, the new upper bound is the top of the stack. |
| unsigned long UpperBound = VersionStack.size() - 1; |
| |
| if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { |
| LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" |
| << *(MU->getMemoryInst()) << ")" |
| << " because there are " |
| << UpperBound - LocInfo.LowerBound |
| << " stores to disambiguate\n"); |
| // Because we did not walk, LastKill is no longer valid, as this may |
| // have been a kill. |
| LocInfo.LastKillValid = false; |
| continue; |
| } |
| bool FoundClobberResult = false; |
| while (UpperBound > LocInfo.LowerBound) { |
| if (isa<MemoryPhi>(VersionStack[UpperBound])) { |
| // For phis, use the walker, see where we ended up, go there |
| Instruction *UseInst = MU->getMemoryInst(); |
| MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); |
| // We are guaranteed to find it or something is wrong |
| while (VersionStack[UpperBound] != Result) { |
| assert(UpperBound != 0); |
| --UpperBound; |
| } |
| FoundClobberResult = true; |
| break; |
| } |
| |
| MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); |
| // If the lifetime of the pointer ends at this instruction, it's live on |
| // entry. |
| if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { |
| // Reset UpperBound to liveOnEntryDef's place in the stack |
| UpperBound = 0; |
| FoundClobberResult = true; |
| LocInfo.AR = MustAlias; |
| break; |
| } |
| ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); |
| if (CA.IsClobber) { |
| FoundClobberResult = true; |
| LocInfo.AR = CA.AR; |
| break; |
| } |
| --UpperBound; |
| } |
| |
| // Note: Phis always have AliasResult AR set to MayAlias ATM. |
| |
| // At the end of this loop, UpperBound is either a clobber, or lower bound |
| // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. |
| if (FoundClobberResult || UpperBound < LocInfo.LastKill) { |
| // We were last killed now by where we got to |
| if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) |
| LocInfo.AR = None; |
| MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); |
| LocInfo.LastKill = UpperBound; |
| } else { |
| // Otherwise, we checked all the new ones, and now we know we can get to |
| // LastKill. |
| MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); |
| } |
| LocInfo.LowerBound = VersionStack.size() - 1; |
| LocInfo.LowerBoundBlock = BB; |
| } |
| } |
| |
| /// Optimize uses to point to their actual clobbering definitions. |
| void MemorySSA::OptimizeUses::optimizeUses() { |
| SmallVector<MemoryAccess *, 16> VersionStack; |
| DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; |
| VersionStack.push_back(MSSA->getLiveOnEntryDef()); |
| |
| unsigned long StackEpoch = 1; |
| unsigned long PopEpoch = 1; |
| // We perform a non-recursive top-down dominator tree walk. |
| for (const auto *DomNode : depth_first(DT->getRootNode())) |
| optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, |
| LocStackInfo); |
| } |
| |
| void MemorySSA::placePHINodes( |
| const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { |
| // Determine where our MemoryPhi's should go |
| ForwardIDFCalculator IDFs(*DT); |
| IDFs.setDefiningBlocks(DefiningBlocks); |
| SmallVector<BasicBlock *, 32> IDFBlocks; |
| IDFs.calculate(IDFBlocks); |
| |
| // Now place MemoryPhi nodes. |
| for (auto &BB : IDFBlocks) |
| createMemoryPhi(BB); |
| } |
| |
| void MemorySSA::buildMemorySSA() { |
| // We create an access to represent "live on entry", for things like |
| // arguments or users of globals, where the memory they use is defined before |
| // the beginning of the function. We do not actually insert it into the IR. |
| // We do not define a live on exit for the immediate uses, and thus our |
| // semantics do *not* imply that something with no immediate uses can simply |
| // be removed. |
| BasicBlock &StartingPoint = F.getEntryBlock(); |
| LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, |
| &StartingPoint, NextID++)); |
| |
| // We maintain lists of memory accesses per-block, trading memory for time. We |
| // could just look up the memory access for every possible instruction in the |
| // stream. |
| SmallPtrSet<BasicBlock *, 32> DefiningBlocks; |
| // Go through each block, figure out where defs occur, and chain together all |
| // the accesses. |
| for (BasicBlock &B : F) { |
| bool InsertIntoDef = false; |
| AccessList *Accesses = nullptr; |
| DefsList *Defs = nullptr; |
| for (Instruction &I : B) { |
| MemoryUseOrDef *MUD = createNewAccess(&I); |
| if (!MUD) |
| continue; |
| |
| if (!Accesses) |
| Accesses = getOrCreateAccessList(&B); |
| Accesses->push_back(MUD); |
| if (isa<MemoryDef>(MUD)) { |
| InsertIntoDef = true; |
| if (!Defs) |
| Defs = getOrCreateDefsList(&B); |
| Defs->push_back(*MUD); |
| } |
| } |
| if (InsertIntoDef) |
| DefiningBlocks.insert(&B); |
| } |
| placePHINodes(DefiningBlocks); |
| |
| // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get |
| // filled in with all blocks. |
| SmallPtrSet<BasicBlock *, 16> Visited; |
| renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); |
| |
| CachingWalker *Walker = getWalkerImpl(); |
| |
| OptimizeUses(this, Walker, AA, DT).optimizeUses(); |
| |
| // Mark the uses in unreachable blocks as live on entry, so that they go |
| // somewhere. |
| for (auto &BB : F) |
| if (!Visited.count(&BB)) |
| markUnreachableAsLiveOnEntry(&BB); |
| } |
| |
| MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } |
| |
| MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { |
| if (Walker) |
| return Walker.get(); |
| |
| Walker = llvm::make_unique<CachingWalker>(this, AA, DT); |
| return Walker.get(); |
| } |
| |
| // This is a helper function used by the creation routines. It places NewAccess |
| // into the access and defs lists for a given basic block, at the given |
| // insertion point. |
| void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, |
| const BasicBlock *BB, |
| InsertionPlace Point) { |
| auto *Accesses = getOrCreateAccessList(BB); |
| if (Point == Beginning) { |
| // If it's a phi node, it goes first, otherwise, it goes after any phi |
| // nodes. |
| if (isa<MemoryPhi>(NewAccess)) { |
| Accesses->push_front(NewAccess); |
| auto *Defs = getOrCreateDefsList(BB); |
| Defs->push_front(*NewAccess); |
| } else { |
| auto AI = find_if_not( |
| *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); |
| Accesses->insert(AI, NewAccess); |
| if (!isa<MemoryUse>(NewAccess)) { |
| auto *Defs = getOrCreateDefsList(BB); |
| auto DI = find_if_not( |
| *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); |
| Defs->insert(DI, *NewAccess); |
| } |
| } |
| } else { |
| Accesses->push_back(NewAccess); |
| if (!isa<MemoryUse>(NewAccess)) { |
| auto *Defs = getOrCreateDefsList(BB); |
| Defs->push_back(*NewAccess); |
| } |
| } |
| BlockNumberingValid.erase(BB); |
| } |
| |
| void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, |
| AccessList::iterator InsertPt) { |
| auto *Accesses = getWritableBlockAccesses(BB); |
| bool WasEnd = InsertPt == Accesses->end(); |
| Accesses->insert(AccessList::iterator(InsertPt), What); |
| if (!isa<MemoryUse>(What)) { |
| auto *Defs = getOrCreateDefsList(BB); |
| // If we got asked to insert at the end, we have an easy job, just shove it |
| // at the end. If we got asked to insert before an existing def, we also get |
| // an iterator. If we got asked to insert before a use, we have to hunt for |
| // the next def. |
| if (WasEnd) { |
| Defs->push_back(*What); |
| } else if (isa<MemoryDef>(InsertPt)) { |
| Defs->insert(InsertPt->getDefsIterator(), *What); |
| } else { |
| while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) |
| ++InsertPt; |
| // Either we found a def, or we are inserting at the end |
| if (InsertPt == Accesses->end()) |
| Defs->push_back(*What); |
| else |
| Defs->insert(InsertPt->getDefsIterator(), *What); |
| } |
| } |
| BlockNumberingValid.erase(BB); |
| } |
| |
| // Move What before Where in the IR. The end result is that What will belong to |
| // the right lists and have the right Block set, but will not otherwise be |
| // correct. It will not have the right defining access, and if it is a def, |
| // things below it will not properly be updated. |
| void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, |
| AccessList::iterator Where) { |
| // Keep it in the lookup tables, remove from the lists |
| removeFromLists(What, false); |
| What->setBlock(BB); |
| insertIntoListsBefore(What, BB, Where); |
| } |
| |
| void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, |
| InsertionPlace Point) { |
| if (isa<MemoryPhi>(What)) { |
| assert(Point == Beginning && |
| "Can only move a Phi at the beginning of the block"); |
| // Update lookup table entry |
| ValueToMemoryAccess.erase(What->getBlock()); |
| bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; |
| (void)Inserted; |
| assert(Inserted && "Cannot move a Phi to a block that already has one"); |
| } |
| |
| removeFromLists(What, false); |
| What->setBlock(BB); |
| insertIntoListsForBlock(What, BB, Point); |
| } |
| |
| MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { |
| assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); |
| MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); |
| // Phi's always are placed at the front of the block. |
| insertIntoListsForBlock(Phi, BB, Beginning); |
| ValueToMemoryAccess[BB] = Phi; |
| return Phi; |
| } |
| |
| MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, |
| MemoryAccess *Definition) { |
| assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); |
| MemoryUseOrDef *NewAccess = createNewAccess(I); |
| assert( |
| NewAccess != nullptr && |
| "Tried to create a memory access for a non-memory touching instruction"); |
| NewAccess->setDefiningAccess(Definition); |
| return NewAccess; |
| } |
| |
| // Return true if the instruction has ordering constraints. |
| // Note specifically that this only considers stores and loads |
| // because others are still considered ModRef by getModRefInfo. |
| static inline bool isOrdered(const Instruction *I) { |
| if (auto *SI = dyn_cast<StoreInst>(I)) { |
| if (!SI->isUnordered()) |
| return true; |
| } else if (auto *LI = dyn_cast<LoadInst>(I)) { |
| if (!LI->isUnordered()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Helper function to create new memory accesses |
| MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { |
| // The assume intrinsic has a control dependency which we model by claiming |
| // that it writes arbitrarily. Ignore that fake memory dependency here. |
| // FIXME: Replace this special casing with a more accurate modelling of |
| // assume's control dependency. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| if (II->getIntrinsicID() == Intrinsic::assume) |
| return nullptr; |
| |
| // Find out what affect this instruction has on memory. |
| ModRefInfo ModRef = AA->getModRefInfo(I, None); |
| // The isOrdered check is used to ensure that volatiles end up as defs |
| // (atomics end up as ModRef right now anyway). Until we separate the |
| // ordering chain from the memory chain, this enables people to see at least |
| // some relative ordering to volatiles. Note that getClobberingMemoryAccess |
| // will still give an answer that bypasses other volatile loads. TODO: |
| // Separate memory aliasing and ordering into two different chains so that we |
| // can precisely represent both "what memory will this read/write/is clobbered |
| // by" and "what instructions can I move this past". |
| bool Def = isModSet(ModRef) || isOrdered(I); |
| bool Use = isRefSet(ModRef); |
| |
| // It's possible for an instruction to not modify memory at all. During |
| // construction, we ignore them. |
| if (!Def && !Use) |
| return nullptr; |
| |
| MemoryUseOrDef *MUD; |
| if (Def) |
| MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); |
| else |
| MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); |
| ValueToMemoryAccess[I] = MUD; |
| return MUD; |
| } |
| |
| /// Returns true if \p Replacer dominates \p Replacee . |
| bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, |
| const MemoryAccess *Replacee) const { |
| if (isa<MemoryUseOrDef>(Replacee)) |
| return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); |
| const auto *MP = cast<MemoryPhi>(Replacee); |
| // For a phi node, the use occurs in the predecessor block of the phi node. |
| // Since we may occur multiple times in the phi node, we have to check each |
| // operand to ensure Replacer dominates each operand where Replacee occurs. |
| for (const Use &Arg : MP->operands()) { |
| if (Arg.get() != Replacee && |
| !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Properly remove \p MA from all of MemorySSA's lookup tables. |
| void MemorySSA::removeFromLookups(MemoryAccess *MA) { |
| assert(MA->use_empty() && |
| "Trying to remove memory access that still has uses"); |
| BlockNumbering.erase(MA); |
| if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) |
| MUD->setDefiningAccess(nullptr); |
| // Invalidate our walker's cache if necessary |
| if (!isa<MemoryUse>(MA)) |
| Walker->invalidateInfo(MA); |
| |
| Value *MemoryInst; |
| if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) |
| MemoryInst = MUD->getMemoryInst(); |
| else |
| MemoryInst = MA->getBlock(); |
| |
| auto VMA = ValueToMemoryAccess.find(MemoryInst); |
| if (VMA->second == MA) |
| ValueToMemoryAccess.erase(VMA); |
| } |
| |
| /// Properly remove \p MA from all of MemorySSA's lists. |
| /// |
| /// Because of the way the intrusive list and use lists work, it is important to |
| /// do removal in the right order. |
| /// ShouldDelete defaults to true, and will cause the memory access to also be |
| /// deleted, not just removed. |
| void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { |
| BasicBlock *BB = MA->getBlock(); |
| // The access list owns the reference, so we erase it from the non-owning list |
| // first. |
| if (!isa<MemoryUse>(MA)) { |
| auto DefsIt = PerBlockDefs.find(BB); |
| std::unique_ptr<DefsList> &Defs = DefsIt->second; |
| Defs->remove(*MA); |
| if (Defs->empty()) |
| PerBlockDefs.erase(DefsIt); |
| } |
| |
| // The erase call here will delete it. If we don't want it deleted, we call |
| // remove instead. |
| auto AccessIt = PerBlockAccesses.find(BB); |
| std::unique_ptr<AccessList> &Accesses = AccessIt->second; |
| if (ShouldDelete) |
| Accesses->erase(MA); |
| else |
| Accesses->remove(MA); |
| |
| if (Accesses->empty()) { |
| PerBlockAccesses.erase(AccessIt); |
| BlockNumberingValid.erase(BB); |
| } |
| } |
| |
| void MemorySSA::print(raw_ostream &OS) const { |
| MemorySSAAnnotatedWriter Writer(this); |
| F.print(OS, &Writer); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } |
| #endif |
| |
| void MemorySSA::verifyMemorySSA() const { |
| verifyDefUses(F); |
| verifyDomination(F); |
| verifyOrdering(F); |
| verifyDominationNumbers(F); |
| Walker->verify(this); |
| } |
| |
| /// Verify that all of the blocks we believe to have valid domination numbers |
| /// actually have valid domination numbers. |
| void MemorySSA::verifyDominationNumbers(const Function &F) const { |
| #ifndef NDEBUG |
| if (BlockNumberingValid.empty()) |
| return; |
| |
| SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; |
| for (const BasicBlock &BB : F) { |
| if (!ValidBlocks.count(&BB)) |
| continue; |
| |
| ValidBlocks.erase(&BB); |
| |
| const AccessList *Accesses = getBlockAccesses(&BB); |
| // It's correct to say an empty block has valid numbering. |
| if (!Accesses) |
| continue; |
| |
| // Block numbering starts at 1. |
| unsigned long LastNumber = 0; |
| for (const MemoryAccess &MA : *Accesses) { |
| auto ThisNumberIter = BlockNumbering.find(&MA); |
| assert(ThisNumberIter != BlockNumbering.end() && |
| "MemoryAccess has no domination number in a valid block!"); |
| |
| unsigned long ThisNumber = ThisNumberIter->second; |
| assert(ThisNumber > LastNumber && |
| "Domination numbers should be strictly increasing!"); |
| LastNumber = ThisNumber; |
| } |
| } |
| |
| assert(ValidBlocks.empty() && |
| "All valid BasicBlocks should exist in F -- dangling pointers?"); |
| #endif |
| } |
| |
| /// Verify that the order and existence of MemoryAccesses matches the |
| /// order and existence of memory affecting instructions. |
| void MemorySSA::verifyOrdering(Function &F) const { |
| // Walk all the blocks, comparing what the lookups think and what the access |
| // lists think, as well as the order in the blocks vs the order in the access |
| // lists. |
| SmallVector<MemoryAccess *, 32> ActualAccesses; |
| SmallVector<MemoryAccess *, 32> ActualDefs; |
| for (BasicBlock &B : F) { |
| const AccessList *AL = getBlockAccesses(&B); |
| const auto *DL = getBlockDefs(&B); |
| MemoryAccess *Phi = getMemoryAccess(&B); |
| if (Phi) { |
| ActualAccesses.push_back(Phi); |
| ActualDefs.push_back(Phi); |
| } |
| |
| for (Instruction &I : B) { |
| MemoryAccess *MA = getMemoryAccess(&I); |
| assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && |
| "We have memory affecting instructions " |
| "in this block but they are not in the " |
| "access list or defs list"); |
| if (MA) { |
| ActualAccesses.push_back(MA); |
| if (isa<MemoryDef>(MA)) |
| ActualDefs.push_back(MA); |
| } |
| } |
| // Either we hit the assert, really have no accesses, or we have both |
| // accesses and an access list. |
| // Same with defs. |
| if (!AL && !DL) |
| continue; |
| assert(AL->size() == ActualAccesses.size() && |
| "We don't have the same number of accesses in the block as on the " |
| "access list"); |
| assert((DL || ActualDefs.size() == 0) && |
| "Either we should have a defs list, or we should have no defs"); |
| assert((!DL || DL->size() == ActualDefs.size()) && |
| "We don't have the same number of defs in the block as on the " |
| "def list"); |
| auto ALI = AL->begin(); |
| auto AAI = ActualAccesses.begin(); |
| while (ALI != AL->end() && AAI != ActualAccesses.end()) { |
| assert(&*ALI == *AAI && "Not the same accesses in the same order"); |
| ++ALI; |
| ++AAI; |
| } |
| ActualAccesses.clear(); |
| if (DL) { |
| auto DLI = DL->begin(); |
| auto ADI = ActualDefs.begin(); |
| while (DLI != DL->end() && ADI != ActualDefs.end()) { |
| assert(&*DLI == *ADI && "Not the same defs in the same order"); |
| ++DLI; |
| ++ADI; |
| } |
| } |
| ActualDefs.clear(); |
| } |
| } |
| |
| /// Verify the domination properties of MemorySSA by checking that each |
| /// definition dominates all of its uses. |
| void MemorySSA::verifyDomination(Function &F) const { |
| #ifndef NDEBUG |
| for (BasicBlock &B : F) { |
| // Phi nodes are attached to basic blocks |
| if (MemoryPhi *MP = getMemoryAccess(&B)) |
| for (const Use &U : MP->uses()) |
| assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); |
| |
| for (Instruction &I : B) { |
| MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); |
| if (!MD) |
| continue; |
| |
| for (const Use &U : MD->uses()) |
| assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); |
| } |
| } |
| #endif |
| } |
| |
| /// Verify the def-use lists in MemorySSA, by verifying that \p Use |
| /// appears in the use list of \p Def. |
| void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { |
| #ifndef NDEBUG |
| // The live on entry use may cause us to get a NULL def here |
| if (!Def) |
| assert(isLiveOnEntryDef(Use) && |
| "Null def but use not point to live on entry def"); |
| else |
| assert(is_contained(Def->users(), Use) && |
| "Did not find use in def's use list"); |
| #endif |
| } |
| |
| /// Verify the immediate use information, by walking all the memory |
| /// accesses and verifying that, for each use, it appears in the |
| /// appropriate def's use list |
| void MemorySSA::verifyDefUses(Function &F) const { |
| for (BasicBlock &B : F) { |
| // Phi nodes are attached to basic blocks |
| if (MemoryPhi *Phi = getMemoryAccess(&B)) { |
| assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( |
| pred_begin(&B), pred_end(&B))) && |
| "Incomplete MemoryPhi Node"); |
| for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { |
| verifyUseInDefs(Phi->getIncomingValue(I), Phi); |
| assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != |
| pred_end(&B) && |
| "Incoming phi block not a block predecessor"); |
| } |
| } |
| |
| for (Instruction &I : B) { |
| if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { |
| verifyUseInDefs(MA->getDefiningAccess(), MA); |
| } |
| } |
| } |
| } |
| |
| MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { |
| return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); |
| } |
| |
| MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { |
| return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); |
| } |
| |
| /// Perform a local numbering on blocks so that instruction ordering can be |
| /// determined in constant time. |
| /// TODO: We currently just number in order. If we numbered by N, we could |
| /// allow at least N-1 sequences of insertBefore or insertAfter (and at least |
| /// log2(N) sequences of mixed before and after) without needing to invalidate |
| /// the numbering. |
| void MemorySSA::renumberBlock(const BasicBlock *B) const { |
| // The pre-increment ensures the numbers really start at 1. |
| unsigned long CurrentNumber = 0; |
| const AccessList *AL = getBlockAccesses(B); |
| assert(AL != nullptr && "Asking to renumber an empty block"); |
| for (const auto &I : *AL) |
| BlockNumbering[&I] = ++CurrentNumber; |
| BlockNumberingValid.insert(B); |
| } |
| |
| /// Determine, for two memory accesses in the same block, |
| /// whether \p Dominator dominates \p Dominatee. |
| /// \returns True if \p Dominator dominates \p Dominatee. |
| bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, |
| const MemoryAccess *Dominatee) const { |
| const BasicBlock *DominatorBlock = Dominator->getBlock(); |
| |
| assert((DominatorBlock == Dominatee->getBlock()) && |
| "Asking for local domination when accesses are in different blocks!"); |
| // A node dominates itself. |
| if (Dominatee == Dominator) |
| return true; |
| |
| // When Dominatee is defined on function entry, it is not dominated by another |
| // memory access. |
| if (isLiveOnEntryDef(Dominatee)) |
| return false; |
| |
| // When Dominator is defined on function entry, it dominates the other memory |
| // access. |
| if (isLiveOnEntryDef(Dominator)) |
| return true; |
| |
| if (!BlockNumberingValid.count(DominatorBlock)) |
| renumberBlock(DominatorBlock); |
| |
| unsigned long DominatorNum = BlockNumbering.lookup(Dominator); |
| // All numbers start with 1 |
| assert(DominatorNum != 0 && "Block was not numbered properly"); |
| unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); |
| assert(DominateeNum != 0 && "Block was not numbered properly"); |
| return DominatorNum < DominateeNum; |
| } |
| |
| bool MemorySSA::dominates(const MemoryAccess *Dominator, |
| const MemoryAccess *Dominatee) const { |
| if (Dominator == Dominatee) |
| return true; |
| |
| if (isLiveOnEntryDef(Dominatee)) |
| return false; |
| |
| if (Dominator->getBlock() != Dominatee->getBlock()) |
| return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); |
| return locallyDominates(Dominator, Dominatee); |
| } |
| |
| bool MemorySSA::dominates(const MemoryAccess *Dominator, |
| const Use &Dominatee) const { |
| if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { |
| BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); |
| // The def must dominate the incoming block of the phi. |
| if (UseBB != Dominator->getBlock()) |
| return DT->dominates(Dominator->getBlock(), UseBB); |
| // If the UseBB and the DefBB are the same, compare locally. |
| return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); |
| } |
| // If it's not a PHI node use, the normal dominates can already handle it. |
| return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); |
| } |
| |
| const static char LiveOnEntryStr[] = "liveOnEntry"; |
| |
| void MemoryAccess::print(raw_ostream &OS) const { |
| switch (getValueID()) { |
| case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); |
| case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); |
| case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); |
| } |
| llvm_unreachable("invalid value id"); |
| } |
| |
| void MemoryDef::print(raw_ostream &OS) const { |
| MemoryAccess *UO = getDefiningAccess(); |
| |
| auto printID = [&OS](MemoryAccess *A) { |
| if (A && A->getID()) |
| OS << A->getID(); |
| else |
| OS << LiveOnEntryStr; |
| }; |
| |
| OS << getID() << " = MemoryDef("; |
| printID(UO); |
| OS << ")"; |
| |
| if (isOptimized()) { |
| OS << "->"; |
| printID(getOptimized()); |
| |
| if (Optional<AliasResult> AR = getOptimizedAccessType()) |
| OS << " " << *AR; |
| } |
| } |
| |
| void MemoryPhi::print(raw_ostream &OS) const { |
| bool First = true; |
| OS << getID() << " = MemoryPhi("; |
| for (const auto &Op : operands()) { |
| BasicBlock *BB = getIncomingBlock(Op); |
| MemoryAccess *MA = cast<MemoryAccess>(Op); |
| if (!First) |
| OS << ','; |
| else |
| First = false; |
| |
| OS << '{'; |
| if (BB->hasName()) |
| OS << BB->getName(); |
| else |
| BB->printAsOperand(OS, false); |
| OS << ','; |
| if (unsigned ID = MA->getID()) |
| OS << ID; |
| else |
| OS << LiveOnEntryStr; |
| OS << '}'; |
| } |
| OS << ')'; |
| } |
| |
| void MemoryUse::print(raw_ostream &OS) const { |
| MemoryAccess *UO = getDefiningAccess(); |
| OS << "MemoryUse("; |
| if (UO && UO->getID()) |
| OS << UO->getID(); |
| else |
| OS << LiveOnEntryStr; |
| OS << ')'; |
| |
| if (Optional<AliasResult> AR = getOptimizedAccessType()) |
| OS << " " << *AR; |
| } |
| |
| void MemoryAccess::dump() const { |
| // Cannot completely remove virtual function even in release mode. |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| print(dbgs()); |
| dbgs() << "\n"; |
| #endif |
| } |
| |
| char MemorySSAPrinterLegacyPass::ID = 0; |
| |
| MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { |
| initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<MemorySSAWrapperPass>(); |
| } |
| |
| bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { |
| auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); |
| MSSA.print(dbgs()); |
| if (VerifyMemorySSA) |
| MSSA.verifyMemorySSA(); |
| return false; |
| } |
| |
| AnalysisKey MemorySSAAnalysis::Key; |
| |
| MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto &AA = AM.getResult<AAManager>(F); |
| return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); |
| } |
| |
| PreservedAnalyses MemorySSAPrinterPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| OS << "MemorySSA for function: " << F.getName() << "\n"; |
| AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); |
| |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses MemorySSAVerifierPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); |
| |
| return PreservedAnalyses::all(); |
| } |
| |
| char MemorySSAWrapperPass::ID = 0; |
| |
| MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { |
| initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } |
| |
| void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
| AU.addRequiredTransitive<AAResultsWrapperPass>(); |
| } |
| |
| bool MemorySSAWrapperPass::runOnFunction(Function &F) { |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| MSSA.reset(new MemorySSA(F, &AA, &DT)); |
| return false; |
| } |
| |
| void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } |
| |
| void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { |
| MSSA->print(OS); |
| } |
| |
| MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} |
| |
| MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, |
| DominatorTree *D) |
| : MemorySSAWalker(M), Walker(*M, *A, *D) {} |
| |
| void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { |
| if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) |
| MUD->resetOptimized(); |
| } |
| |
| /// Walk the use-def chains starting at \p MA and find |
| /// the MemoryAccess that actually clobbers Loc. |
| /// |
| /// \returns our clobbering memory access |
| MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( |
| MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { |
| return Walker.findClobber(StartingAccess, Q); |
| } |
| |
| MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( |
| MemoryAccess *StartingAccess, const MemoryLocation &Loc) { |
| if (isa<MemoryPhi>(StartingAccess)) |
| return StartingAccess; |
| |
| auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); |
| if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) |
| return StartingUseOrDef; |
| |
| Instruction *I = StartingUseOrDef->getMemoryInst(); |
| |
| // Conservatively, fences are always clobbers, so don't perform the walk if we |
| // hit a fence. |
| if (!ImmutableCallSite(I) && I->isFenceLike()) |
| return StartingUseOrDef; |
| |
| UpwardsMemoryQuery Q; |
| Q.OriginalAccess = StartingUseOrDef; |
| Q.StartingLoc = Loc; |
| Q.Inst = I; |
| Q.IsCall = false; |
| |
| // Unlike the other function, do not walk to the def of a def, because we are |
| // handed something we already believe is the clobbering access. |
| MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) |
| ? StartingUseOrDef->getDefiningAccess() |
| : StartingUseOrDef; |
| |
| MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); |
| LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); |
| LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); |
| LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); |
| LLVM_DEBUG(dbgs() << *Clobber << "\n"); |
| return Clobber; |
| } |
| |
| MemoryAccess * |
| MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { |
| auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); |
| // If this is a MemoryPhi, we can't do anything. |
| if (!StartingAccess) |
| return MA; |
| |
| // If this is an already optimized use or def, return the optimized result. |
| // Note: Currently, we store the optimized def result in a separate field, |
| // since we can't use the defining access. |
| if (StartingAccess->isOptimized()) |
| return StartingAccess->getOptimized(); |
| |
| const Instruction *I = StartingAccess->getMemoryInst(); |
| UpwardsMemoryQuery Q(I, StartingAccess); |
| // We can't sanely do anything with a fence, since they conservatively clobber |
| // all memory, and have no locations to get pointers from to try to |
| // disambiguate. |
| if (!Q.IsCall && I->isFenceLike()) |
| return StartingAccess; |
| |
| if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { |
| MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); |
| StartingAccess->setOptimized(LiveOnEntry); |
| StartingAccess->setOptimizedAccessType(None); |
| return LiveOnEntry; |
| } |
| |
| // Start with the thing we already think clobbers this location |
| MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); |
| |
| // At this point, DefiningAccess may be the live on entry def. |
| // If it is, we will not get a better result. |
| if (MSSA->isLiveOnEntryDef(DefiningAccess)) { |
| StartingAccess->setOptimized(DefiningAccess); |
| StartingAccess->setOptimizedAccessType(None); |
| return DefiningAccess; |
| } |
| |
| MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); |
| LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); |
| LLVM_DEBUG(dbgs() << *DefiningAccess << "\n"); |
| LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); |
| LLVM_DEBUG(dbgs() << *Result << "\n"); |
| |
| StartingAccess->setOptimized(Result); |
| if (MSSA->isLiveOnEntryDef(Result)) |
| StartingAccess->setOptimizedAccessType(None); |
| else if (Q.AR == MustAlias) |
| StartingAccess->setOptimizedAccessType(MustAlias); |
| |
| return Result; |
| } |
| |
| MemoryAccess * |
| DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { |
| if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) |
| return Use->getDefiningAccess(); |
| return MA; |
| } |
| |
| MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( |
| MemoryAccess *StartingAccess, const MemoryLocation &) { |
| if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) |
| return Use->getDefiningAccess(); |
| return StartingAccess; |
| } |
| |
| void MemoryPhi::deleteMe(DerivedUser *Self) { |
| delete static_cast<MemoryPhi *>(Self); |
| } |
| |
| void MemoryDef::deleteMe(DerivedUser *Self) { |
| delete static_cast<MemoryDef *>(Self); |
| } |
| |
| void MemoryUse::deleteMe(DerivedUser *Self) { |
| delete static_cast<MemoryUse *>(Self); |
| } |