| //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interface for lazy computation of value constraint |
| // information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/ValueLattice.h" |
| #include "llvm/IR/AssemblyAnnotationWriter.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <map> |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "lazy-value-info" |
| |
| // This is the number of worklist items we will process to try to discover an |
| // answer for a given value. |
| static const unsigned MaxProcessedPerValue = 500; |
| |
| char LazyValueInfoWrapperPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", |
| "Lazy Value Information Analysis", false, true) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", |
| "Lazy Value Information Analysis", false, true) |
| |
| namespace llvm { |
| FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } |
| } |
| |
| AnalysisKey LazyValueAnalysis::Key; |
| |
| /// Returns true if this lattice value represents at most one possible value. |
| /// This is as precise as any lattice value can get while still representing |
| /// reachable code. |
| static bool hasSingleValue(const ValueLatticeElement &Val) { |
| if (Val.isConstantRange() && |
| Val.getConstantRange().isSingleElement()) |
| // Integer constants are single element ranges |
| return true; |
| if (Val.isConstant()) |
| // Non integer constants |
| return true; |
| return false; |
| } |
| |
| /// Combine two sets of facts about the same value into a single set of |
| /// facts. Note that this method is not suitable for merging facts along |
| /// different paths in a CFG; that's what the mergeIn function is for. This |
| /// is for merging facts gathered about the same value at the same location |
| /// through two independent means. |
| /// Notes: |
| /// * This method does not promise to return the most precise possible lattice |
| /// value implied by A and B. It is allowed to return any lattice element |
| /// which is at least as strong as *either* A or B (unless our facts |
| /// conflict, see below). |
| /// * Due to unreachable code, the intersection of two lattice values could be |
| /// contradictory. If this happens, we return some valid lattice value so as |
| /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but |
| /// we do not make this guarantee. TODO: This would be a useful enhancement. |
| static ValueLatticeElement intersect(const ValueLatticeElement &A, |
| const ValueLatticeElement &B) { |
| // Undefined is the strongest state. It means the value is known to be along |
| // an unreachable path. |
| if (A.isUndefined()) |
| return A; |
| if (B.isUndefined()) |
| return B; |
| |
| // If we gave up for one, but got a useable fact from the other, use it. |
| if (A.isOverdefined()) |
| return B; |
| if (B.isOverdefined()) |
| return A; |
| |
| // Can't get any more precise than constants. |
| if (hasSingleValue(A)) |
| return A; |
| if (hasSingleValue(B)) |
| return B; |
| |
| // Could be either constant range or not constant here. |
| if (!A.isConstantRange() || !B.isConstantRange()) { |
| // TODO: Arbitrary choice, could be improved |
| return A; |
| } |
| |
| // Intersect two constant ranges |
| ConstantRange Range = |
| A.getConstantRange().intersectWith(B.getConstantRange()); |
| // Note: An empty range is implicitly converted to overdefined internally. |
| // TODO: We could instead use Undefined here since we've proven a conflict |
| // and thus know this path must be unreachable. |
| return ValueLatticeElement::getRange(std::move(Range)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfoCache Decl |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// A callback value handle updates the cache when values are erased. |
| class LazyValueInfoCache; |
| struct LVIValueHandle final : public CallbackVH { |
| // Needs to access getValPtr(), which is protected. |
| friend struct DenseMapInfo<LVIValueHandle>; |
| |
| LazyValueInfoCache *Parent; |
| |
| LVIValueHandle(Value *V, LazyValueInfoCache *P) |
| : CallbackVH(V), Parent(P) { } |
| |
| void deleted() override; |
| void allUsesReplacedWith(Value *V) override { |
| deleted(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| /// This is the cache kept by LazyValueInfo which |
| /// maintains information about queries across the clients' queries. |
| class LazyValueInfoCache { |
| /// This is all of the cached block information for exactly one Value*. |
| /// The entries are sorted by the BasicBlock* of the |
| /// entries, allowing us to do a lookup with a binary search. |
| /// Over-defined lattice values are recorded in OverDefinedCache to reduce |
| /// memory overhead. |
| struct ValueCacheEntryTy { |
| ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} |
| LVIValueHandle Handle; |
| SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; |
| }; |
| |
| /// This tracks, on a per-block basis, the set of values that are |
| /// over-defined at the end of that block. |
| typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> |
| OverDefinedCacheTy; |
| /// Keep track of all blocks that we have ever seen, so we |
| /// don't spend time removing unused blocks from our caches. |
| DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; |
| |
| /// This is all of the cached information for all values, |
| /// mapped from Value* to key information. |
| DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; |
| OverDefinedCacheTy OverDefinedCache; |
| |
| |
| public: |
| void insertResult(Value *Val, BasicBlock *BB, |
| const ValueLatticeElement &Result) { |
| SeenBlocks.insert(BB); |
| |
| // Insert over-defined values into their own cache to reduce memory |
| // overhead. |
| if (Result.isOverdefined()) |
| OverDefinedCache[BB].insert(Val); |
| else { |
| auto It = ValueCache.find_as(Val); |
| if (It == ValueCache.end()) { |
| ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this); |
| It = ValueCache.find_as(Val); |
| assert(It != ValueCache.end() && "Val was just added to the map!"); |
| } |
| It->second->BlockVals[BB] = Result; |
| } |
| } |
| |
| bool isOverdefined(Value *V, BasicBlock *BB) const { |
| auto ODI = OverDefinedCache.find(BB); |
| |
| if (ODI == OverDefinedCache.end()) |
| return false; |
| |
| return ODI->second.count(V); |
| } |
| |
| bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { |
| if (isOverdefined(V, BB)) |
| return true; |
| |
| auto I = ValueCache.find_as(V); |
| if (I == ValueCache.end()) |
| return false; |
| |
| return I->second->BlockVals.count(BB); |
| } |
| |
| ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { |
| if (isOverdefined(V, BB)) |
| return ValueLatticeElement::getOverdefined(); |
| |
| auto I = ValueCache.find_as(V); |
| if (I == ValueCache.end()) |
| return ValueLatticeElement(); |
| auto BBI = I->second->BlockVals.find(BB); |
| if (BBI == I->second->BlockVals.end()) |
| return ValueLatticeElement(); |
| return BBI->second; |
| } |
| |
| /// clear - Empty the cache. |
| void clear() { |
| SeenBlocks.clear(); |
| ValueCache.clear(); |
| OverDefinedCache.clear(); |
| } |
| |
| /// Inform the cache that a given value has been deleted. |
| void eraseValue(Value *V); |
| |
| /// This is part of the update interface to inform the cache |
| /// that a block has been deleted. |
| void eraseBlock(BasicBlock *BB); |
| |
| /// Updates the cache to remove any influence an overdefined value in |
| /// OldSucc might have (unless also overdefined in NewSucc). This just |
| /// flushes elements from the cache and does not add any. |
| void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); |
| |
| friend struct LVIValueHandle; |
| }; |
| } |
| |
| void LazyValueInfoCache::eraseValue(Value *V) { |
| for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { |
| // Copy and increment the iterator immediately so we can erase behind |
| // ourselves. |
| auto Iter = I++; |
| SmallPtrSetImpl<Value *> &ValueSet = Iter->second; |
| ValueSet.erase(V); |
| if (ValueSet.empty()) |
| OverDefinedCache.erase(Iter); |
| } |
| |
| ValueCache.erase(V); |
| } |
| |
| void LVIValueHandle::deleted() { |
| // This erasure deallocates *this, so it MUST happen after we're done |
| // using any and all members of *this. |
| Parent->eraseValue(*this); |
| } |
| |
| void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { |
| // Shortcut if we have never seen this block. |
| DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); |
| if (I == SeenBlocks.end()) |
| return; |
| SeenBlocks.erase(I); |
| |
| auto ODI = OverDefinedCache.find(BB); |
| if (ODI != OverDefinedCache.end()) |
| OverDefinedCache.erase(ODI); |
| |
| for (auto &I : ValueCache) |
| I.second->BlockVals.erase(BB); |
| } |
| |
| void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, |
| BasicBlock *NewSucc) { |
| // When an edge in the graph has been threaded, values that we could not |
| // determine a value for before (i.e. were marked overdefined) may be |
| // possible to solve now. We do NOT try to proactively update these values. |
| // Instead, we clear their entries from the cache, and allow lazy updating to |
| // recompute them when needed. |
| |
| // The updating process is fairly simple: we need to drop cached info |
| // for all values that were marked overdefined in OldSucc, and for those same |
| // values in any successor of OldSucc (except NewSucc) in which they were |
| // also marked overdefined. |
| std::vector<BasicBlock*> worklist; |
| worklist.push_back(OldSucc); |
| |
| auto I = OverDefinedCache.find(OldSucc); |
| if (I == OverDefinedCache.end()) |
| return; // Nothing to process here. |
| SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); |
| |
| // Use a worklist to perform a depth-first search of OldSucc's successors. |
| // NOTE: We do not need a visited list since any blocks we have already |
| // visited will have had their overdefined markers cleared already, and we |
| // thus won't loop to their successors. |
| while (!worklist.empty()) { |
| BasicBlock *ToUpdate = worklist.back(); |
| worklist.pop_back(); |
| |
| // Skip blocks only accessible through NewSucc. |
| if (ToUpdate == NewSucc) continue; |
| |
| // If a value was marked overdefined in OldSucc, and is here too... |
| auto OI = OverDefinedCache.find(ToUpdate); |
| if (OI == OverDefinedCache.end()) |
| continue; |
| SmallPtrSetImpl<Value *> &ValueSet = OI->second; |
| |
| bool changed = false; |
| for (Value *V : ValsToClear) { |
| if (!ValueSet.erase(V)) |
| continue; |
| |
| // If we removed anything, then we potentially need to update |
| // blocks successors too. |
| changed = true; |
| |
| if (ValueSet.empty()) { |
| OverDefinedCache.erase(OI); |
| break; |
| } |
| } |
| |
| if (!changed) continue; |
| |
| worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); |
| } |
| } |
| |
| |
| namespace { |
| /// An assembly annotator class to print LazyValueCache information in |
| /// comments. |
| class LazyValueInfoImpl; |
| class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { |
| LazyValueInfoImpl *LVIImpl; |
| // While analyzing which blocks we can solve values for, we need the dominator |
| // information. Since this is an optional parameter in LVI, we require this |
| // DomTreeAnalysis pass in the printer pass, and pass the dominator |
| // tree to the LazyValueInfoAnnotatedWriter. |
| DominatorTree &DT; |
| |
| public: |
| LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) |
| : LVIImpl(L), DT(DTree) {} |
| |
| virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| formatted_raw_ostream &OS); |
| |
| virtual void emitInstructionAnnot(const Instruction *I, |
| formatted_raw_ostream &OS); |
| }; |
| } |
| namespace { |
| // The actual implementation of the lazy analysis and update. Note that the |
| // inheritance from LazyValueInfoCache is intended to be temporary while |
| // splitting the code and then transitioning to a has-a relationship. |
| class LazyValueInfoImpl { |
| |
| /// Cached results from previous queries |
| LazyValueInfoCache TheCache; |
| |
| /// This stack holds the state of the value solver during a query. |
| /// It basically emulates the callstack of the naive |
| /// recursive value lookup process. |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; |
| |
| /// Keeps track of which block-value pairs are in BlockValueStack. |
| DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; |
| |
| /// Push BV onto BlockValueStack unless it's already in there. |
| /// Returns true on success. |
| bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { |
| if (!BlockValueSet.insert(BV).second) |
| return false; // It's already in the stack. |
| |
| LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " |
| << BV.first->getName() << "\n"); |
| BlockValueStack.push_back(BV); |
| return true; |
| } |
| |
| AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. |
| const DataLayout &DL; ///< A mandatory DataLayout |
| DominatorTree *DT; ///< An optional DT pointer. |
| DominatorTree *DisabledDT; ///< Stores DT if it's disabled. |
| |
| ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); |
| bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, |
| ValueLatticeElement &Result, Instruction *CxtI = nullptr); |
| bool hasBlockValue(Value *Val, BasicBlock *BB); |
| |
| // These methods process one work item and may add more. A false value |
| // returned means that the work item was not completely processed and must |
| // be revisited after going through the new items. |
| bool solveBlockValue(Value *Val, BasicBlock *BB); |
| bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, |
| BasicBlock *BB); |
| bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, |
| BasicBlock *BB); |
| bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, |
| BasicBlock *BB); |
| bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, |
| BasicBlock *BB); |
| bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, |
| BasicBlock *BB); |
| bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, |
| BasicBlock *BB); |
| void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, |
| ValueLatticeElement &BBLV, |
| Instruction *BBI); |
| |
| void solve(); |
| |
| public: |
| /// This is the query interface to determine the lattice |
| /// value for the specified Value* at the end of the specified block. |
| ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, |
| Instruction *CxtI = nullptr); |
| |
| /// This is the query interface to determine the lattice |
| /// value for the specified Value* at the specified instruction (generally |
| /// from an assume intrinsic). |
| ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); |
| |
| /// This is the query interface to determine the lattice |
| /// value for the specified Value* that is true on the specified edge. |
| ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, |
| BasicBlock *ToBB, |
| Instruction *CxtI = nullptr); |
| |
| /// Complete flush all previously computed values |
| void clear() { |
| TheCache.clear(); |
| } |
| |
| /// Printing the LazyValueInfo Analysis. |
| void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { |
| LazyValueInfoAnnotatedWriter Writer(this, DTree); |
| F.print(OS, &Writer); |
| } |
| |
| /// This is part of the update interface to inform the cache |
| /// that a block has been deleted. |
| void eraseBlock(BasicBlock *BB) { |
| TheCache.eraseBlock(BB); |
| } |
| |
| /// Disables use of the DominatorTree within LVI. |
| void disableDT() { |
| if (DT) { |
| assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!"); |
| std::swap(DT, DisabledDT); |
| } |
| } |
| |
| /// Enables use of the DominatorTree within LVI. Does nothing if the class |
| /// instance was initialized without a DT pointer. |
| void enableDT() { |
| if (DisabledDT) { |
| assert(!DT && "Both DT and DisabledDT are not nullptr!"); |
| std::swap(DT, DisabledDT); |
| } |
| } |
| |
| /// This is the update interface to inform the cache that an edge from |
| /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. |
| void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); |
| |
| LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, |
| DominatorTree *DT = nullptr) |
| : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} |
| }; |
| } // end anonymous namespace |
| |
| |
| void LazyValueInfoImpl::solve() { |
| SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( |
| BlockValueStack.begin(), BlockValueStack.end()); |
| |
| unsigned processedCount = 0; |
| while (!BlockValueStack.empty()) { |
| processedCount++; |
| // Abort if we have to process too many values to get a result for this one. |
| // Because of the design of the overdefined cache currently being per-block |
| // to avoid naming-related issues (IE it wants to try to give different |
| // results for the same name in different blocks), overdefined results don't |
| // get cached globally, which in turn means we will often try to rediscover |
| // the same overdefined result again and again. Once something like |
| // PredicateInfo is used in LVI or CVP, we should be able to make the |
| // overdefined cache global, and remove this throttle. |
| if (processedCount > MaxProcessedPerValue) { |
| LLVM_DEBUG( |
| dbgs() << "Giving up on stack because we are getting too deep\n"); |
| // Fill in the original values |
| while (!StartingStack.empty()) { |
| std::pair<BasicBlock *, Value *> &e = StartingStack.back(); |
| TheCache.insertResult(e.second, e.first, |
| ValueLatticeElement::getOverdefined()); |
| StartingStack.pop_back(); |
| } |
| BlockValueSet.clear(); |
| BlockValueStack.clear(); |
| return; |
| } |
| std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); |
| assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); |
| |
| if (solveBlockValue(e.second, e.first)) { |
| // The work item was completely processed. |
| assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); |
| assert(TheCache.hasCachedValueInfo(e.second, e.first) && |
| "Result should be in cache!"); |
| |
| LLVM_DEBUG( |
| dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " |
| << TheCache.getCachedValueInfo(e.second, e.first) << "\n"); |
| |
| BlockValueStack.pop_back(); |
| BlockValueSet.erase(e); |
| } else { |
| // More work needs to be done before revisiting. |
| assert(BlockValueStack.back() != e && "Stack should have been pushed!"); |
| } |
| } |
| } |
| |
| bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { |
| // If already a constant, there is nothing to compute. |
| if (isa<Constant>(Val)) |
| return true; |
| |
| return TheCache.hasCachedValueInfo(Val, BB); |
| } |
| |
| ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, |
| BasicBlock *BB) { |
| // If already a constant, there is nothing to compute. |
| if (Constant *VC = dyn_cast<Constant>(Val)) |
| return ValueLatticeElement::get(VC); |
| |
| return TheCache.getCachedValueInfo(Val, BB); |
| } |
| |
| static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { |
| switch (BBI->getOpcode()) { |
| default: break; |
| case Instruction::Load: |
| case Instruction::Call: |
| case Instruction::Invoke: |
| if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) |
| if (isa<IntegerType>(BBI->getType())) { |
| return ValueLatticeElement::getRange( |
| getConstantRangeFromMetadata(*Ranges)); |
| } |
| break; |
| }; |
| // Nothing known - will be intersected with other facts |
| return ValueLatticeElement::getOverdefined(); |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { |
| if (isa<Constant>(Val)) |
| return true; |
| |
| if (TheCache.hasCachedValueInfo(Val, BB)) { |
| // If we have a cached value, use that. |
| LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" |
| << TheCache.getCachedValueInfo(Val, BB) << '\n'); |
| |
| // Since we're reusing a cached value, we don't need to update the |
| // OverDefinedCache. The cache will have been properly updated whenever the |
| // cached value was inserted. |
| return true; |
| } |
| |
| // Hold off inserting this value into the Cache in case we have to return |
| // false and come back later. |
| ValueLatticeElement Res; |
| if (!solveBlockValueImpl(Res, Val, BB)) |
| // Work pushed, will revisit |
| return false; |
| |
| TheCache.insertResult(Val, BB, Res); |
| return true; |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, |
| Value *Val, BasicBlock *BB) { |
| |
| Instruction *BBI = dyn_cast<Instruction>(Val); |
| if (!BBI || BBI->getParent() != BB) |
| return solveBlockValueNonLocal(Res, Val, BB); |
| |
| if (PHINode *PN = dyn_cast<PHINode>(BBI)) |
| return solveBlockValuePHINode(Res, PN, BB); |
| |
| if (auto *SI = dyn_cast<SelectInst>(BBI)) |
| return solveBlockValueSelect(Res, SI, BB); |
| |
| // If this value is a nonnull pointer, record it's range and bailout. Note |
| // that for all other pointer typed values, we terminate the search at the |
| // definition. We could easily extend this to look through geps, bitcasts, |
| // and the like to prove non-nullness, but it's not clear that's worth it |
| // compile time wise. The context-insensitive value walk done inside |
| // isKnownNonZero gets most of the profitable cases at much less expense. |
| // This does mean that we have a sensativity to where the defining |
| // instruction is placed, even if it could legally be hoisted much higher. |
| // That is unfortunate. |
| PointerType *PT = dyn_cast<PointerType>(BBI->getType()); |
| if (PT && isKnownNonZero(BBI, DL)) { |
| Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); |
| return true; |
| } |
| if (BBI->getType()->isIntegerTy()) { |
| if (auto *CI = dyn_cast<CastInst>(BBI)) |
| return solveBlockValueCast(Res, CI, BB); |
| |
| BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); |
| if (BO && isa<ConstantInt>(BO->getOperand(1))) |
| return solveBlockValueBinaryOp(Res, BO, BB); |
| } |
| |
| LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - unknown inst def found.\n"); |
| Res = getFromRangeMetadata(BBI); |
| return true; |
| } |
| |
| static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { |
| if (LoadInst *L = dyn_cast<LoadInst>(I)) { |
| return L->getPointerAddressSpace() == 0 && |
| GetUnderlyingObject(L->getPointerOperand(), |
| L->getModule()->getDataLayout()) == Ptr; |
| } |
| if (StoreInst *S = dyn_cast<StoreInst>(I)) { |
| return S->getPointerAddressSpace() == 0 && |
| GetUnderlyingObject(S->getPointerOperand(), |
| S->getModule()->getDataLayout()) == Ptr; |
| } |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { |
| if (MI->isVolatile()) return false; |
| |
| // FIXME: check whether it has a valuerange that excludes zero? |
| ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); |
| if (!Len || Len->isZero()) return false; |
| |
| if (MI->getDestAddressSpace() == 0) |
| if (GetUnderlyingObject(MI->getRawDest(), |
| MI->getModule()->getDataLayout()) == Ptr) |
| return true; |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) |
| if (MTI->getSourceAddressSpace() == 0) |
| if (GetUnderlyingObject(MTI->getRawSource(), |
| MTI->getModule()->getDataLayout()) == Ptr) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Return true if the allocation associated with Val is ever dereferenced |
| /// within the given basic block. This establishes the fact Val is not null, |
| /// but does not imply that the memory at Val is dereferenceable. (Val may |
| /// point off the end of the dereferenceable part of the object.) |
| static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { |
| assert(Val->getType()->isPointerTy()); |
| |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| Value *UnderlyingVal = GetUnderlyingObject(Val, DL); |
| // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge |
| // inside InstructionDereferencesPointer either. |
| if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) |
| for (Instruction &I : *BB) |
| if (InstructionDereferencesPointer(&I, UnderlyingVal)) |
| return true; |
| return false; |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, |
| Value *Val, BasicBlock *BB) { |
| ValueLatticeElement Result; // Start Undefined. |
| |
| // If this is the entry block, we must be asking about an argument. The |
| // value is overdefined. |
| if (BB == &BB->getParent()->getEntryBlock()) { |
| assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); |
| // Before giving up, see if we can prove the pointer non-null local to |
| // this particular block. |
| PointerType *PTy = dyn_cast<PointerType>(Val->getType()); |
| if (PTy && |
| (isKnownNonZero(Val, DL) || |
| (isObjectDereferencedInBlock(Val, BB) && |
| !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) { |
| Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); |
| } else { |
| Result = ValueLatticeElement::getOverdefined(); |
| } |
| BBLV = Result; |
| return true; |
| } |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. If we encounter an unexplored predecessor, we eagerly explore it |
| // in a depth first manner. In practice, this has the effect of discovering |
| // paths we can't analyze eagerly without spending compile times analyzing |
| // other paths. This heuristic benefits from the fact that predecessors are |
| // frequently arranged such that dominating ones come first and we quickly |
| // find a path to function entry. TODO: We should consider explicitly |
| // canonicalizing to make this true rather than relying on this happy |
| // accident. |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| ValueLatticeElement EdgeResult; |
| if (!getEdgeValue(Val, *PI, BB, EdgeResult)) |
| // Explore that input, then return here |
| return false; |
| |
| Result.mergeIn(EdgeResult, DL); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) { |
| LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because of pred (non local).\n"); |
| // Before giving up, see if we can prove the pointer non-null local to |
| // this particular block. |
| PointerType *PTy = dyn_cast<PointerType>(Val->getType()); |
| if (PTy && isObjectDereferencedInBlock(Val, BB) && |
| !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { |
| Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); |
| } |
| |
| BBLV = Result; |
| return true; |
| } |
| } |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined()); |
| BBLV = Result; |
| return true; |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, |
| PHINode *PN, BasicBlock *BB) { |
| ValueLatticeElement Result; // Start Undefined. |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. See the comment about the chosen traversal order in |
| // solveBlockValueNonLocal; the same reasoning applies here. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PhiBB = PN->getIncomingBlock(i); |
| Value *PhiVal = PN->getIncomingValue(i); |
| ValueLatticeElement EdgeResult; |
| // Note that we can provide PN as the context value to getEdgeValue, even |
| // though the results will be cached, because PN is the value being used as |
| // the cache key in the caller. |
| if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) |
| // Explore that input, then return here |
| return false; |
| |
| Result.mergeIn(EdgeResult, DL); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) { |
| LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because of pred (local).\n"); |
| |
| BBLV = Result; |
| return true; |
| } |
| } |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined() && "Possible PHI in entry block?"); |
| BBLV = Result; |
| return true; |
| } |
| |
| static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, |
| bool isTrueDest = true); |
| |
| // If we can determine a constraint on the value given conditions assumed by |
| // the program, intersect those constraints with BBLV |
| void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( |
| Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { |
| BBI = BBI ? BBI : dyn_cast<Instruction>(Val); |
| if (!BBI) |
| return; |
| |
| for (auto &AssumeVH : AC->assumptionsFor(Val)) { |
| if (!AssumeVH) |
| continue; |
| auto *I = cast<CallInst>(AssumeVH); |
| if (!isValidAssumeForContext(I, BBI, DT)) |
| continue; |
| |
| BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); |
| } |
| |
| // If guards are not used in the module, don't spend time looking for them |
| auto *GuardDecl = BBI->getModule()->getFunction( |
| Intrinsic::getName(Intrinsic::experimental_guard)); |
| if (!GuardDecl || GuardDecl->use_empty()) |
| return; |
| |
| for (Instruction &I : make_range(BBI->getIterator().getReverse(), |
| BBI->getParent()->rend())) { |
| Value *Cond = nullptr; |
| if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) |
| BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); |
| } |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, |
| SelectInst *SI, BasicBlock *BB) { |
| |
| // Recurse on our inputs if needed |
| if (!hasBlockValue(SI->getTrueValue(), BB)) { |
| if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) |
| return false; |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| } |
| ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); |
| // If we hit overdefined, don't ask more queries. We want to avoid poisoning |
| // extra slots in the table if we can. |
| if (TrueVal.isOverdefined()) { |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| } |
| |
| if (!hasBlockValue(SI->getFalseValue(), BB)) { |
| if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) |
| return false; |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| } |
| ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); |
| // If we hit overdefined, don't ask more queries. We want to avoid poisoning |
| // extra slots in the table if we can. |
| if (FalseVal.isOverdefined()) { |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| } |
| |
| if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { |
| const ConstantRange &TrueCR = TrueVal.getConstantRange(); |
| const ConstantRange &FalseCR = FalseVal.getConstantRange(); |
| Value *LHS = nullptr; |
| Value *RHS = nullptr; |
| SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); |
| // Is this a min specifically of our two inputs? (Avoid the risk of |
| // ValueTracking getting smarter looking back past our immediate inputs.) |
| if (SelectPatternResult::isMinOrMax(SPR.Flavor) && |
| LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { |
| ConstantRange ResultCR = [&]() { |
| switch (SPR.Flavor) { |
| default: |
| llvm_unreachable("unexpected minmax type!"); |
| case SPF_SMIN: /// Signed minimum |
| return TrueCR.smin(FalseCR); |
| case SPF_UMIN: /// Unsigned minimum |
| return TrueCR.umin(FalseCR); |
| case SPF_SMAX: /// Signed maximum |
| return TrueCR.smax(FalseCR); |
| case SPF_UMAX: /// Unsigned maximum |
| return TrueCR.umax(FalseCR); |
| }; |
| }(); |
| BBLV = ValueLatticeElement::getRange(ResultCR); |
| return true; |
| } |
| |
| // TODO: ABS, NABS from the SelectPatternResult |
| } |
| |
| // Can we constrain the facts about the true and false values by using the |
| // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). |
| // TODO: We could potentially refine an overdefined true value above. |
| Value *Cond = SI->getCondition(); |
| TrueVal = intersect(TrueVal, |
| getValueFromCondition(SI->getTrueValue(), Cond, true)); |
| FalseVal = intersect(FalseVal, |
| getValueFromCondition(SI->getFalseValue(), Cond, false)); |
| |
| // Handle clamp idioms such as: |
| // %24 = constantrange<0, 17> |
| // %39 = icmp eq i32 %24, 0 |
| // %40 = add i32 %24, -1 |
| // %siv.next = select i1 %39, i32 16, i32 %40 |
| // %siv.next = constantrange<0, 17> not <-1, 17> |
| // In general, this can handle any clamp idiom which tests the edge |
| // condition via an equality or inequality. |
| if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| Value *A = ICI->getOperand(0); |
| if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { |
| auto addConstants = [](ConstantInt *A, ConstantInt *B) { |
| assert(A->getType() == B->getType()); |
| return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); |
| }; |
| // See if either input is A + C2, subject to the constraint from the |
| // condition that A != C when that input is used. We can assume that |
| // that input doesn't include C + C2. |
| ConstantInt *CIAdded; |
| switch (Pred) { |
| default: break; |
| case ICmpInst::ICMP_EQ: |
| if (match(SI->getFalseValue(), m_Add(m_Specific(A), |
| m_ConstantInt(CIAdded)))) { |
| auto ResNot = addConstants(CIBase, CIAdded); |
| FalseVal = intersect(FalseVal, |
| ValueLatticeElement::getNot(ResNot)); |
| } |
| break; |
| case ICmpInst::ICMP_NE: |
| if (match(SI->getTrueValue(), m_Add(m_Specific(A), |
| m_ConstantInt(CIAdded)))) { |
| auto ResNot = addConstants(CIBase, CIAdded); |
| TrueVal = intersect(TrueVal, |
| ValueLatticeElement::getNot(ResNot)); |
| } |
| break; |
| }; |
| } |
| } |
| |
| ValueLatticeElement Result; // Start Undefined. |
| Result.mergeIn(TrueVal, DL); |
| Result.mergeIn(FalseVal, DL); |
| BBLV = Result; |
| return true; |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, |
| CastInst *CI, |
| BasicBlock *BB) { |
| if (!CI->getOperand(0)->getType()->isSized()) { |
| // Without knowing how wide the input is, we can't analyze it in any useful |
| // way. |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| } |
| |
| // Filter out casts we don't know how to reason about before attempting to |
| // recurse on our operand. This can cut a long search short if we know we're |
| // not going to be able to get any useful information anways. |
| switch (CI->getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::SExt: |
| case Instruction::ZExt: |
| case Instruction::BitCast: |
| break; |
| default: |
| // Unhandled instructions are overdefined. |
| LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined (unknown cast).\n"); |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| } |
| |
| // Figure out the range of the LHS. If that fails, we still apply the |
| // transfer rule on the full set since we may be able to locally infer |
| // interesting facts. |
| if (!hasBlockValue(CI->getOperand(0), BB)) |
| if (pushBlockValue(std::make_pair(BB, CI->getOperand(0)))) |
| // More work to do before applying this transfer rule. |
| return false; |
| |
| const unsigned OperandBitWidth = |
| DL.getTypeSizeInBits(CI->getOperand(0)->getType()); |
| ConstantRange LHSRange = ConstantRange(OperandBitWidth); |
| if (hasBlockValue(CI->getOperand(0), BB)) { |
| ValueLatticeElement LHSVal = getBlockValue(CI->getOperand(0), BB); |
| intersectAssumeOrGuardBlockValueConstantRange(CI->getOperand(0), LHSVal, |
| CI); |
| if (LHSVal.isConstantRange()) |
| LHSRange = LHSVal.getConstantRange(); |
| } |
| |
| const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); |
| |
| // NOTE: We're currently limited by the set of operations that ConstantRange |
| // can evaluate symbolically. Enhancing that set will allows us to analyze |
| // more definitions. |
| BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), |
| ResultBitWidth)); |
| return true; |
| } |
| |
| bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, |
| BinaryOperator *BO, |
| BasicBlock *BB) { |
| |
| assert(BO->getOperand(0)->getType()->isSized() && |
| "all operands to binary operators are sized"); |
| |
| // Filter out operators we don't know how to reason about before attempting to |
| // recurse on our operand(s). This can cut a long search short if we know |
| // we're not going to be able to get any useful information anyways. |
| switch (BO->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::UDiv: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| // continue into the code below |
| break; |
| default: |
| // Unhandled instructions are overdefined. |
| LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined (unknown binary operator).\n"); |
| BBLV = ValueLatticeElement::getOverdefined(); |
| return true; |
| }; |
| |
| // Figure out the range of the LHS. If that fails, use a conservative range, |
| // but apply the transfer rule anyways. This lets us pick up facts from |
| // expressions like "and i32 (call i32 @foo()), 32" |
| if (!hasBlockValue(BO->getOperand(0), BB)) |
| if (pushBlockValue(std::make_pair(BB, BO->getOperand(0)))) |
| // More work to do before applying this transfer rule. |
| return false; |
| |
| const unsigned OperandBitWidth = |
| DL.getTypeSizeInBits(BO->getOperand(0)->getType()); |
| ConstantRange LHSRange = ConstantRange(OperandBitWidth); |
| if (hasBlockValue(BO->getOperand(0), BB)) { |
| ValueLatticeElement LHSVal = getBlockValue(BO->getOperand(0), BB); |
| intersectAssumeOrGuardBlockValueConstantRange(BO->getOperand(0), LHSVal, |
| BO); |
| if (LHSVal.isConstantRange()) |
| LHSRange = LHSVal.getConstantRange(); |
| } |
| |
| ConstantInt *RHS = cast<ConstantInt>(BO->getOperand(1)); |
| ConstantRange RHSRange = ConstantRange(RHS->getValue()); |
| |
| // NOTE: We're currently limited by the set of operations that ConstantRange |
| // can evaluate symbolically. Enhancing that set will allows us to analyze |
| // more definitions. |
| Instruction::BinaryOps BinOp = BO->getOpcode(); |
| BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange)); |
| return true; |
| } |
| |
| static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, |
| bool isTrueDest) { |
| Value *LHS = ICI->getOperand(0); |
| Value *RHS = ICI->getOperand(1); |
| CmpInst::Predicate Predicate = ICI->getPredicate(); |
| |
| if (isa<Constant>(RHS)) { |
| if (ICI->isEquality() && LHS == Val) { |
| // We know that V has the RHS constant if this is a true SETEQ or |
| // false SETNE. |
| if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) |
| return ValueLatticeElement::get(cast<Constant>(RHS)); |
| else |
| return ValueLatticeElement::getNot(cast<Constant>(RHS)); |
| } |
| } |
| |
| if (!Val->getType()->isIntegerTy()) |
| return ValueLatticeElement::getOverdefined(); |
| |
| // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible |
| // range of Val guaranteed by the condition. Recognize comparisons in the from |
| // of: |
| // icmp <pred> Val, ... |
| // icmp <pred> (add Val, Offset), ... |
| // The latter is the range checking idiom that InstCombine produces. Subtract |
| // the offset from the allowed range for RHS in this case. |
| |
| // Val or (add Val, Offset) can be on either hand of the comparison |
| if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { |
| std::swap(LHS, RHS); |
| Predicate = CmpInst::getSwappedPredicate(Predicate); |
| } |
| |
| ConstantInt *Offset = nullptr; |
| if (LHS != Val) |
| match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); |
| |
| if (LHS == Val || Offset) { |
| // Calculate the range of values that are allowed by the comparison |
| ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), |
| /*isFullSet=*/true); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) |
| RHSRange = ConstantRange(CI->getValue()); |
| else if (Instruction *I = dyn_cast<Instruction>(RHS)) |
| if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) |
| RHSRange = getConstantRangeFromMetadata(*Ranges); |
| |
| // If we're interested in the false dest, invert the condition |
| CmpInst::Predicate Pred = |
| isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); |
| ConstantRange TrueValues = |
| ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); |
| |
| if (Offset) // Apply the offset from above. |
| TrueValues = TrueValues.subtract(Offset->getValue()); |
| |
| return ValueLatticeElement::getRange(std::move(TrueValues)); |
| } |
| |
| return ValueLatticeElement::getOverdefined(); |
| } |
| |
| static ValueLatticeElement |
| getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, |
| DenseMap<Value*, ValueLatticeElement> &Visited); |
| |
| static ValueLatticeElement |
| getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, |
| DenseMap<Value*, ValueLatticeElement> &Visited) { |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) |
| return getValueFromICmpCondition(Val, ICI, isTrueDest); |
| |
| // Handle conditions in the form of (cond1 && cond2), we know that on the |
| // true dest path both of the conditions hold. Similarly for conditions of |
| // the form (cond1 || cond2), we know that on the false dest path neither |
| // condition holds. |
| BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); |
| if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || |
| (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) |
| return ValueLatticeElement::getOverdefined(); |
| |
| // Prevent infinite recursion if Cond references itself as in this example: |
| // Cond: "%tmp4 = and i1 %tmp4, undef" |
| // BL: "%tmp4 = and i1 %tmp4, undef" |
| // BR: "i1 undef" |
| Value *BL = BO->getOperand(0); |
| Value *BR = BO->getOperand(1); |
| if (BL == Cond || BR == Cond) |
| return ValueLatticeElement::getOverdefined(); |
| |
| return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), |
| getValueFromCondition(Val, BR, isTrueDest, Visited)); |
| } |
| |
| static ValueLatticeElement |
| getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, |
| DenseMap<Value*, ValueLatticeElement> &Visited) { |
| auto I = Visited.find(Cond); |
| if (I != Visited.end()) |
| return I->second; |
| |
| auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); |
| Visited[Cond] = Result; |
| return Result; |
| } |
| |
| ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, |
| bool isTrueDest) { |
| assert(Cond && "precondition"); |
| DenseMap<Value*, ValueLatticeElement> Visited; |
| return getValueFromCondition(Val, Cond, isTrueDest, Visited); |
| } |
| |
| // Return true if Usr has Op as an operand, otherwise false. |
| static bool usesOperand(User *Usr, Value *Op) { |
| return find(Usr->operands(), Op) != Usr->op_end(); |
| } |
| |
| // Return true if the instruction type of Val is supported by |
| // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this |
| // before calling constantFoldUser() to find out if it's even worth attempting |
| // to call it. |
| static bool isOperationFoldable(User *Usr) { |
| return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); |
| } |
| |
| // Check if Usr can be simplified to an integer constant when the value of one |
| // of its operands Op is an integer constant OpConstVal. If so, return it as an |
| // lattice value range with a single element or otherwise return an overdefined |
| // lattice value. |
| static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, |
| const APInt &OpConstVal, |
| const DataLayout &DL) { |
| assert(isOperationFoldable(Usr) && "Precondition"); |
| Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); |
| // Check if Usr can be simplified to a constant. |
| if (auto *CI = dyn_cast<CastInst>(Usr)) { |
| assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); |
| if (auto *C = dyn_cast_or_null<ConstantInt>( |
| SimplifyCastInst(CI->getOpcode(), OpConst, |
| CI->getDestTy(), DL))) { |
| return ValueLatticeElement::getRange(ConstantRange(C->getValue())); |
| } |
| } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { |
| bool Op0Match = BO->getOperand(0) == Op; |
| bool Op1Match = BO->getOperand(1) == Op; |
| assert((Op0Match || Op1Match) && |
| "Operand 0 nor Operand 1 isn't a match"); |
| Value *LHS = Op0Match ? OpConst : BO->getOperand(0); |
| Value *RHS = Op1Match ? OpConst : BO->getOperand(1); |
| if (auto *C = dyn_cast_or_null<ConstantInt>( |
| SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { |
| return ValueLatticeElement::getRange(ConstantRange(C->getValue())); |
| } |
| } |
| return ValueLatticeElement::getOverdefined(); |
| } |
| |
| /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if |
| /// Val is not constrained on the edge. Result is unspecified if return value |
| /// is false. |
| static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, |
| BasicBlock *BBTo, ValueLatticeElement &Result) { |
| // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we |
| // know that v != 0. |
| if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { |
| // If this is a conditional branch and only one successor goes to BBTo, then |
| // we may be able to infer something from the condition. |
| if (BI->isConditional() && |
| BI->getSuccessor(0) != BI->getSuccessor(1)) { |
| bool isTrueDest = BI->getSuccessor(0) == BBTo; |
| assert(BI->getSuccessor(!isTrueDest) == BBTo && |
| "BBTo isn't a successor of BBFrom"); |
| Value *Condition = BI->getCondition(); |
| |
| // If V is the condition of the branch itself, then we know exactly what |
| // it is. |
| if (Condition == Val) { |
| Result = ValueLatticeElement::get(ConstantInt::get( |
| Type::getInt1Ty(Val->getContext()), isTrueDest)); |
| return true; |
| } |
| |
| // If the condition of the branch is an equality comparison, we may be |
| // able to infer the value. |
| Result = getValueFromCondition(Val, Condition, isTrueDest); |
| if (!Result.isOverdefined()) |
| return true; |
| |
| if (User *Usr = dyn_cast<User>(Val)) { |
| assert(Result.isOverdefined() && "Result isn't overdefined"); |
| // Check with isOperationFoldable() first to avoid linearly iterating |
| // over the operands unnecessarily which can be expensive for |
| // instructions with many operands. |
| if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { |
| const DataLayout &DL = BBTo->getModule()->getDataLayout(); |
| if (usesOperand(Usr, Condition)) { |
| // If Val has Condition as an operand and Val can be folded into a |
| // constant with either Condition == true or Condition == false, |
| // propagate the constant. |
| // eg. |
| // ; %Val is true on the edge to %then. |
| // %Val = and i1 %Condition, true. |
| // br %Condition, label %then, label %else |
| APInt ConditionVal(1, isTrueDest ? 1 : 0); |
| Result = constantFoldUser(Usr, Condition, ConditionVal, DL); |
| } else { |
| // If one of Val's operand has an inferred value, we may be able to |
| // infer the value of Val. |
| // eg. |
| // ; %Val is 94 on the edge to %then. |
| // %Val = add i8 %Op, 1 |
| // %Condition = icmp eq i8 %Op, 93 |
| // br i1 %Condition, label %then, label %else |
| for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { |
| Value *Op = Usr->getOperand(i); |
| ValueLatticeElement OpLatticeVal = |
| getValueFromCondition(Op, Condition, isTrueDest); |
| if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { |
| Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (!Result.isOverdefined()) |
| return true; |
| } |
| } |
| |
| // If the edge was formed by a switch on the value, then we may know exactly |
| // what it is. |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { |
| Value *Condition = SI->getCondition(); |
| if (!isa<IntegerType>(Val->getType())) |
| return false; |
| bool ValUsesConditionAndMayBeFoldable = false; |
| if (Condition != Val) { |
| // Check if Val has Condition as an operand. |
| if (User *Usr = dyn_cast<User>(Val)) |
| ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && |
| usesOperand(Usr, Condition); |
| if (!ValUsesConditionAndMayBeFoldable) |
| return false; |
| } |
| assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && |
| "Condition != Val nor Val doesn't use Condition"); |
| |
| bool DefaultCase = SI->getDefaultDest() == BBTo; |
| unsigned BitWidth = Val->getType()->getIntegerBitWidth(); |
| ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); |
| |
| for (auto Case : SI->cases()) { |
| APInt CaseValue = Case.getCaseValue()->getValue(); |
| ConstantRange EdgeVal(CaseValue); |
| if (ValUsesConditionAndMayBeFoldable) { |
| User *Usr = cast<User>(Val); |
| const DataLayout &DL = BBTo->getModule()->getDataLayout(); |
| ValueLatticeElement EdgeLatticeVal = |
| constantFoldUser(Usr, Condition, CaseValue, DL); |
| if (EdgeLatticeVal.isOverdefined()) |
| return false; |
| EdgeVal = EdgeLatticeVal.getConstantRange(); |
| } |
| if (DefaultCase) { |
| // It is possible that the default destination is the destination of |
| // some cases. We cannot perform difference for those cases. |
| // We know Condition != CaseValue in BBTo. In some cases we can use |
| // this to infer Val == f(Condition) is != f(CaseValue). For now, we |
| // only do this when f is identity (i.e. Val == Condition), but we |
| // should be able to do this for any injective f. |
| if (Case.getCaseSuccessor() != BBTo && Condition == Val) |
| EdgesVals = EdgesVals.difference(EdgeVal); |
| } else if (Case.getCaseSuccessor() == BBTo) |
| EdgesVals = EdgesVals.unionWith(EdgeVal); |
| } |
| Result = ValueLatticeElement::getRange(std::move(EdgesVals)); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Compute the value of Val on the edge BBFrom -> BBTo or the value at |
| /// the basic block if the edge does not constrain Val. |
| bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, |
| BasicBlock *BBTo, |
| ValueLatticeElement &Result, |
| Instruction *CxtI) { |
| // If already a constant, there is nothing to compute. |
| if (Constant *VC = dyn_cast<Constant>(Val)) { |
| Result = ValueLatticeElement::get(VC); |
| return true; |
| } |
| |
| ValueLatticeElement LocalResult; |
| if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) |
| // If we couldn't constrain the value on the edge, LocalResult doesn't |
| // provide any information. |
| LocalResult = ValueLatticeElement::getOverdefined(); |
| |
| if (hasSingleValue(LocalResult)) { |
| // Can't get any more precise here |
| Result = LocalResult; |
| return true; |
| } |
| |
| if (!hasBlockValue(Val, BBFrom)) { |
| if (pushBlockValue(std::make_pair(BBFrom, Val))) |
| return false; |
| // No new information. |
| Result = LocalResult; |
| return true; |
| } |
| |
| // Try to intersect ranges of the BB and the constraint on the edge. |
| ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); |
| intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, |
| BBFrom->getTerminator()); |
| // We can use the context instruction (generically the ultimate instruction |
| // the calling pass is trying to simplify) here, even though the result of |
| // this function is generally cached when called from the solve* functions |
| // (and that cached result might be used with queries using a different |
| // context instruction), because when this function is called from the solve* |
| // functions, the context instruction is not provided. When called from |
| // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, |
| // but then the result is not cached. |
| intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); |
| |
| Result = intersect(LocalResult, InBlock); |
| return true; |
| } |
| |
| ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, |
| Instruction *CxtI) { |
| LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" |
| << BB->getName() << "'\n"); |
| |
| assert(BlockValueStack.empty() && BlockValueSet.empty()); |
| if (!hasBlockValue(V, BB)) { |
| pushBlockValue(std::make_pair(BB, V)); |
| solve(); |
| } |
| ValueLatticeElement Result = getBlockValue(V, BB); |
| intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); |
| |
| LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); |
| return Result; |
| } |
| |
| ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { |
| LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() |
| << "'\n"); |
| |
| if (auto *C = dyn_cast<Constant>(V)) |
| return ValueLatticeElement::get(C); |
| |
| ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| Result = getFromRangeMetadata(I); |
| intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); |
| |
| LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); |
| return Result; |
| } |
| |
| ValueLatticeElement LazyValueInfoImpl:: |
| getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, |
| Instruction *CxtI) { |
| LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" |
| << FromBB->getName() << "' to '" << ToBB->getName() |
| << "'\n"); |
| |
| ValueLatticeElement Result; |
| if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { |
| solve(); |
| bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); |
| (void)WasFastQuery; |
| assert(WasFastQuery && "More work to do after problem solved?"); |
| } |
| |
| LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); |
| return Result; |
| } |
| |
| void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
| BasicBlock *NewSucc) { |
| TheCache.threadEdgeImpl(OldSucc, NewSucc); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfo Impl |
| //===----------------------------------------------------------------------===// |
| |
| /// This lazily constructs the LazyValueInfoImpl. |
| static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, |
| const DataLayout *DL, |
| DominatorTree *DT = nullptr) { |
| if (!PImpl) { |
| assert(DL && "getCache() called with a null DataLayout"); |
| PImpl = new LazyValueInfoImpl(AC, *DL, DT); |
| } |
| return *static_cast<LazyValueInfoImpl*>(PImpl); |
| } |
| |
| bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { |
| Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| |
| DominatorTreeWrapperPass *DTWP = |
| getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| |
| if (Info.PImpl) |
| getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); |
| |
| // Fully lazy. |
| return false; |
| } |
| |
| void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |
| |
| LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } |
| |
| LazyValueInfo::~LazyValueInfo() { releaseMemory(); } |
| |
| void LazyValueInfo::releaseMemory() { |
| // If the cache was allocated, free it. |
| if (PImpl) { |
| delete &getImpl(PImpl, AC, nullptr); |
| PImpl = nullptr; |
| } |
| } |
| |
| bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
| FunctionAnalysisManager::Invalidator &Inv) { |
| // We need to invalidate if we have either failed to preserve this analyses |
| // result directly or if any of its dependencies have been invalidated. |
| auto PAC = PA.getChecker<LazyValueAnalysis>(); |
| if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
| (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA))) |
| return true; |
| |
| return false; |
| } |
| |
| void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } |
| |
| LazyValueInfo LazyValueAnalysis::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| auto &AC = FAM.getResult<AssumptionAnalysis>(F); |
| auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); |
| auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); |
| |
| return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); |
| } |
| |
| /// Returns true if we can statically tell that this value will never be a |
| /// "useful" constant. In practice, this means we've got something like an |
| /// alloca or a malloc call for which a comparison against a constant can |
| /// only be guarding dead code. Note that we are potentially giving up some |
| /// precision in dead code (a constant result) in favour of avoiding a |
| /// expensive search for a easily answered common query. |
| static bool isKnownNonConstant(Value *V) { |
| V = V->stripPointerCasts(); |
| // The return val of alloc cannot be a Constant. |
| if (isa<AllocaInst>(V)) |
| return true; |
| return false; |
| } |
| |
| Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, |
| Instruction *CxtI) { |
| // Bail out early if V is known not to be a Constant. |
| if (isKnownNonConstant(V)) |
| return nullptr; |
| |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| ValueLatticeElement Result = |
| getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| if (Result.isConstantRange()) { |
| const ConstantRange &CR = Result.getConstantRange(); |
| if (const APInt *SingleVal = CR.getSingleElement()) |
| return ConstantInt::get(V->getContext(), *SingleVal); |
| } |
| return nullptr; |
| } |
| |
| ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, |
| Instruction *CxtI) { |
| assert(V->getType()->isIntegerTy()); |
| unsigned Width = V->getType()->getIntegerBitWidth(); |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| ValueLatticeElement Result = |
| getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); |
| if (Result.isUndefined()) |
| return ConstantRange(Width, /*isFullSet=*/false); |
| if (Result.isConstantRange()) |
| return Result.getConstantRange(); |
| // We represent ConstantInt constants as constant ranges but other kinds |
| // of integer constants, i.e. ConstantExpr will be tagged as constants |
| assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && |
| "ConstantInt value must be represented as constantrange"); |
| return ConstantRange(Width, /*isFullSet=*/true); |
| } |
| |
| /// Determine whether the specified value is known to be a |
| /// constant on the specified edge. Return null if not. |
| Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, |
| BasicBlock *ToBB, |
| Instruction *CxtI) { |
| const DataLayout &DL = FromBB->getModule()->getDataLayout(); |
| ValueLatticeElement Result = |
| getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| if (Result.isConstantRange()) { |
| const ConstantRange &CR = Result.getConstantRange(); |
| if (const APInt *SingleVal = CR.getSingleElement()) |
| return ConstantInt::get(V->getContext(), *SingleVal); |
| } |
| return nullptr; |
| } |
| |
| ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, |
| BasicBlock *FromBB, |
| BasicBlock *ToBB, |
| Instruction *CxtI) { |
| unsigned Width = V->getType()->getIntegerBitWidth(); |
| const DataLayout &DL = FromBB->getModule()->getDataLayout(); |
| ValueLatticeElement Result = |
| getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); |
| |
| if (Result.isUndefined()) |
| return ConstantRange(Width, /*isFullSet=*/false); |
| if (Result.isConstantRange()) |
| return Result.getConstantRange(); |
| // We represent ConstantInt constants as constant ranges but other kinds |
| // of integer constants, i.e. ConstantExpr will be tagged as constants |
| assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && |
| "ConstantInt value must be represented as constantrange"); |
| return ConstantRange(Width, /*isFullSet=*/true); |
| } |
| |
| static LazyValueInfo::Tristate |
| getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, |
| const DataLayout &DL, TargetLibraryInfo *TLI) { |
| // If we know the value is a constant, evaluate the conditional. |
| Constant *Res = nullptr; |
| if (Val.isConstant()) { |
| Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); |
| if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) |
| return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; |
| return LazyValueInfo::Unknown; |
| } |
| |
| if (Val.isConstantRange()) { |
| ConstantInt *CI = dyn_cast<ConstantInt>(C); |
| if (!CI) return LazyValueInfo::Unknown; |
| |
| const ConstantRange &CR = Val.getConstantRange(); |
| if (Pred == ICmpInst::ICMP_EQ) { |
| if (!CR.contains(CI->getValue())) |
| return LazyValueInfo::False; |
| |
| if (CR.isSingleElement()) |
| return LazyValueInfo::True; |
| } else if (Pred == ICmpInst::ICMP_NE) { |
| if (!CR.contains(CI->getValue())) |
| return LazyValueInfo::True; |
| |
| if (CR.isSingleElement()) |
| return LazyValueInfo::False; |
| } else { |
| // Handle more complex predicates. |
| ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( |
| (ICmpInst::Predicate)Pred, CI->getValue()); |
| if (TrueValues.contains(CR)) |
| return LazyValueInfo::True; |
| if (TrueValues.inverse().contains(CR)) |
| return LazyValueInfo::False; |
| } |
| return LazyValueInfo::Unknown; |
| } |
| |
| if (Val.isNotConstant()) { |
| // If this is an equality comparison, we can try to fold it knowing that |
| // "V != C1". |
| if (Pred == ICmpInst::ICMP_EQ) { |
| // !C1 == C -> false iff C1 == C. |
| Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
| Val.getNotConstant(), C, DL, |
| TLI); |
| if (Res->isNullValue()) |
| return LazyValueInfo::False; |
| } else if (Pred == ICmpInst::ICMP_NE) { |
| // !C1 != C -> true iff C1 == C. |
| Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
| Val.getNotConstant(), C, DL, |
| TLI); |
| if (Res->isNullValue()) |
| return LazyValueInfo::True; |
| } |
| return LazyValueInfo::Unknown; |
| } |
| |
| return LazyValueInfo::Unknown; |
| } |
| |
| /// Determine whether the specified value comparison with a constant is known to |
| /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. |
| LazyValueInfo::Tristate |
| LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, |
| BasicBlock *FromBB, BasicBlock *ToBB, |
| Instruction *CxtI) { |
| const DataLayout &DL = FromBB->getModule()->getDataLayout(); |
| ValueLatticeElement Result = |
| getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); |
| |
| return getPredicateResult(Pred, C, Result, DL, TLI); |
| } |
| |
| LazyValueInfo::Tristate |
| LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, |
| Instruction *CxtI) { |
| // Is or is not NonNull are common predicates being queried. If |
| // isKnownNonZero can tell us the result of the predicate, we can |
| // return it quickly. But this is only a fastpath, and falling |
| // through would still be correct. |
| const DataLayout &DL = CxtI->getModule()->getDataLayout(); |
| if (V->getType()->isPointerTy() && C->isNullValue() && |
| isKnownNonZero(V->stripPointerCasts(), DL)) { |
| if (Pred == ICmpInst::ICMP_EQ) |
| return LazyValueInfo::False; |
| else if (Pred == ICmpInst::ICMP_NE) |
| return LazyValueInfo::True; |
| } |
| ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); |
| Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); |
| if (Ret != Unknown) |
| return Ret; |
| |
| // Note: The following bit of code is somewhat distinct from the rest of LVI; |
| // LVI as a whole tries to compute a lattice value which is conservatively |
| // correct at a given location. In this case, we have a predicate which we |
| // weren't able to prove about the merged result, and we're pushing that |
| // predicate back along each incoming edge to see if we can prove it |
| // separately for each input. As a motivating example, consider: |
| // bb1: |
| // %v1 = ... ; constantrange<1, 5> |
| // br label %merge |
| // bb2: |
| // %v2 = ... ; constantrange<10, 20> |
| // br label %merge |
| // merge: |
| // %phi = phi [%v1, %v2] ; constantrange<1,20> |
| // %pred = icmp eq i32 %phi, 8 |
| // We can't tell from the lattice value for '%phi' that '%pred' is false |
| // along each path, but by checking the predicate over each input separately, |
| // we can. |
| // We limit the search to one step backwards from the current BB and value. |
| // We could consider extending this to search further backwards through the |
| // CFG and/or value graph, but there are non-obvious compile time vs quality |
| // tradeoffs. |
| if (CxtI) { |
| BasicBlock *BB = CxtI->getParent(); |
| |
| // Function entry or an unreachable block. Bail to avoid confusing |
| // analysis below. |
| pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| if (PI == PE) |
| return Unknown; |
| |
| // If V is a PHI node in the same block as the context, we need to ask |
| // questions about the predicate as applied to the incoming value along |
| // each edge. This is useful for eliminating cases where the predicate is |
| // known along all incoming edges. |
| if (auto *PHI = dyn_cast<PHINode>(V)) |
| if (PHI->getParent() == BB) { |
| Tristate Baseline = Unknown; |
| for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { |
| Value *Incoming = PHI->getIncomingValue(i); |
| BasicBlock *PredBB = PHI->getIncomingBlock(i); |
| // Note that PredBB may be BB itself. |
| Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, |
| CxtI); |
| |
| // Keep going as long as we've seen a consistent known result for |
| // all inputs. |
| Baseline = (i == 0) ? Result /* First iteration */ |
| : (Baseline == Result ? Baseline : Unknown); /* All others */ |
| if (Baseline == Unknown) |
| break; |
| } |
| if (Baseline != Unknown) |
| return Baseline; |
| } |
| |
| // For a comparison where the V is outside this block, it's possible |
| // that we've branched on it before. Look to see if the value is known |
| // on all incoming edges. |
| if (!isa<Instruction>(V) || |
| cast<Instruction>(V)->getParent() != BB) { |
| // For predecessor edge, determine if the comparison is true or false |
| // on that edge. If they're all true or all false, we can conclude |
| // the value of the comparison in this block. |
| Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); |
| if (Baseline != Unknown) { |
| // Check that all remaining incoming values match the first one. |
| while (++PI != PE) { |
| Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); |
| if (Ret != Baseline) break; |
| } |
| // If we terminated early, then one of the values didn't match. |
| if (PI == PE) { |
| return Baseline; |
| } |
| } |
| } |
| } |
| return Unknown; |
| } |
| |
| void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
| BasicBlock *NewSucc) { |
| if (PImpl) { |
| const DataLayout &DL = PredBB->getModule()->getDataLayout(); |
| getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); |
| } |
| } |
| |
| void LazyValueInfo::eraseBlock(BasicBlock *BB) { |
| if (PImpl) { |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); |
| } |
| } |
| |
| |
| void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { |
| if (PImpl) { |
| getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); |
| } |
| } |
| |
| void LazyValueInfo::disableDT() { |
| if (PImpl) |
| getImpl(PImpl, AC, DL, DT).disableDT(); |
| } |
| |
| void LazyValueInfo::enableDT() { |
| if (PImpl) |
| getImpl(PImpl, AC, DL, DT).enableDT(); |
| } |
| |
| // Print the LVI for the function arguments at the start of each basic block. |
| void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( |
| const BasicBlock *BB, formatted_raw_ostream &OS) { |
| // Find if there are latticevalues defined for arguments of the function. |
| auto *F = BB->getParent(); |
| for (auto &Arg : F->args()) { |
| ValueLatticeElement Result = LVIImpl->getValueInBlock( |
| const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); |
| if (Result.isUndefined()) |
| continue; |
| OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; |
| } |
| } |
| |
| // This function prints the LVI analysis for the instruction I at the beginning |
| // of various basic blocks. It relies on calculated values that are stored in |
| // the LazyValueInfoCache, and in the absence of cached values, recalculate the |
| // LazyValueInfo for `I`, and print that info. |
| void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( |
| const Instruction *I, formatted_raw_ostream &OS) { |
| |
| auto *ParentBB = I->getParent(); |
| SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; |
| // We can generate (solve) LVI values only for blocks that are dominated by |
| // the I's parent. However, to avoid generating LVI for all dominating blocks, |
| // that contain redundant/uninteresting information, we print LVI for |
| // blocks that may use this LVI information (such as immediate successor |
| // blocks, and blocks that contain uses of `I`). |
| auto printResult = [&](const BasicBlock *BB) { |
| if (!BlocksContainingLVI.insert(BB).second) |
| return; |
| ValueLatticeElement Result = LVIImpl->getValueInBlock( |
| const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); |
| OS << "; LatticeVal for: '" << *I << "' in BB: '"; |
| BB->printAsOperand(OS, false); |
| OS << "' is: " << Result << "\n"; |
| }; |
| |
| printResult(ParentBB); |
| // Print the LVI analysis results for the immediate successor blocks, that |
| // are dominated by `ParentBB`. |
| for (auto *BBSucc : successors(ParentBB)) |
| if (DT.dominates(ParentBB, BBSucc)) |
| printResult(BBSucc); |
| |
| // Print LVI in blocks where `I` is used. |
| for (auto *U : I->users()) |
| if (auto *UseI = dyn_cast<Instruction>(U)) |
| if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) |
| printResult(UseI->getParent()); |
| |
| } |
| |
| namespace { |
| // Printer class for LazyValueInfo results. |
| class LazyValueInfoPrinter : public FunctionPass { |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| LazyValueInfoPrinter() : FunctionPass(ID) { |
| initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<LazyValueInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| } |
| |
| // Get the mandatory dominator tree analysis and pass this in to the |
| // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. |
| bool runOnFunction(Function &F) override { |
| dbgs() << "LVI for function '" << F.getName() << "':\n"; |
| auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); |
| auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LVI.printLVI(F, DTree, dbgs()); |
| return false; |
| } |
| }; |
| } |
| |
| char LazyValueInfoPrinter::ID = 0; |
| INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", |
| "Lazy Value Info Printer Pass", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) |
| INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", |
| "Lazy Value Info Printer Pass", false, false) |