| //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a CFL-based, summary-based alias analysis algorithm. It |
| // differs from CFLSteensAliasAnalysis in its inclusion-based nature while |
| // CFLSteensAliasAnalysis is unification-based. This pass has worse performance |
| // than CFLSteensAliasAnalysis (the worst case complexity of |
| // CFLAndersAliasAnalysis is cubic, while the worst case complexity of |
| // CFLSteensAliasAnalysis is almost linear), but it is able to yield more |
| // precise analysis result. The precision of this analysis is roughly the same |
| // as that of an one level context-sensitive Andersen's algorithm. |
| // |
| // The algorithm used here is based on recursive state machine matching scheme |
| // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu |
| // Rugina. The general idea is to extend the traditional transitive closure |
| // algorithm to perform CFL matching along the way: instead of recording |
| // "whether X is reachable from Y", we keep track of "whether X is reachable |
| // from Y at state Z", where the "state" field indicates where we are in the CFL |
| // matching process. To understand the matching better, it is advisable to have |
| // the state machine shown in Figure 3 of the paper available when reading the |
| // codes: all we do here is to selectively expand the transitive closure by |
| // discarding edges that are not recognized by the state machine. |
| // |
| // There are two differences between our current implementation and the one |
| // described in the paper: |
| // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built, |
| // while in the paper the authors did the computation in a demand-driven |
| // fashion. We did not implement the demand-driven algorithm due to the |
| // additional coding complexity and higher memory profile, but if we found it |
| // necessary we may switch to it eventually. |
| // - In the paper the authors use a state machine that does not distinguish |
| // value reads from value writes. For example, if Y is reachable from X at state |
| // S3, it may be the case that X is written into Y, or it may be the case that |
| // there's a third value Z that writes into both X and Y. To make that |
| // distinction (which is crucial in building function summary as well as |
| // retrieving mod-ref info), we choose to duplicate some of the states in the |
| // paper's proposed state machine. The duplication does not change the set the |
| // machine accepts. Given a pair of reachable values, it only provides more |
| // detailed information on which value is being written into and which is being |
| // read from. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and |
| // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because |
| // FunctionPasses are only allowed to inspect the Function that they're being |
| // run on. Realistically, this likely isn't a problem until we allow |
| // FunctionPasses to run concurrently. |
| |
| #include "llvm/Analysis/CFLAndersAliasAnalysis.h" |
| #include "AliasAnalysisSummary.h" |
| #include "CFLGraph.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <bitset> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <functional> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::cflaa; |
| |
| #define DEBUG_TYPE "cfl-anders-aa" |
| |
| CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {} |
| CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS) |
| : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {} |
| CFLAndersAAResult::~CFLAndersAAResult() = default; |
| |
| namespace { |
| |
| enum class MatchState : uint8_t { |
| // The following state represents S1 in the paper. |
| FlowFromReadOnly = 0, |
| // The following two states together represent S2 in the paper. |
| // The 'NoReadWrite' suffix indicates that there exists an alias path that |
| // does not contain assignment and reverse assignment edges. |
| // The 'ReadOnly' suffix indicates that there exists an alias path that |
| // contains reverse assignment edges only. |
| FlowFromMemAliasNoReadWrite, |
| FlowFromMemAliasReadOnly, |
| // The following two states together represent S3 in the paper. |
| // The 'WriteOnly' suffix indicates that there exists an alias path that |
| // contains assignment edges only. |
| // The 'ReadWrite' suffix indicates that there exists an alias path that |
| // contains both assignment and reverse assignment edges. Note that if X and Y |
| // are reachable at 'ReadWrite' state, it does NOT mean X is both read from |
| // and written to Y. Instead, it means that a third value Z is written to both |
| // X and Y. |
| FlowToWriteOnly, |
| FlowToReadWrite, |
| // The following two states together represent S4 in the paper. |
| FlowToMemAliasWriteOnly, |
| FlowToMemAliasReadWrite, |
| }; |
| |
| using StateSet = std::bitset<7>; |
| |
| const unsigned ReadOnlyStateMask = |
| (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) | |
| (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly)); |
| const unsigned WriteOnlyStateMask = |
| (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) | |
| (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly)); |
| |
| // A pair that consists of a value and an offset |
| struct OffsetValue { |
| const Value *Val; |
| int64_t Offset; |
| }; |
| |
| bool operator==(OffsetValue LHS, OffsetValue RHS) { |
| return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset; |
| } |
| bool operator<(OffsetValue LHS, OffsetValue RHS) { |
| return std::less<const Value *>()(LHS.Val, RHS.Val) || |
| (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset); |
| } |
| |
| // A pair that consists of an InstantiatedValue and an offset |
| struct OffsetInstantiatedValue { |
| InstantiatedValue IVal; |
| int64_t Offset; |
| }; |
| |
| bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) { |
| return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset; |
| } |
| |
| // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in |
| // the paper) during the analysis. |
| class ReachabilitySet { |
| using ValueStateMap = DenseMap<InstantiatedValue, StateSet>; |
| using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>; |
| |
| ValueReachMap ReachMap; |
| |
| public: |
| using const_valuestate_iterator = ValueStateMap::const_iterator; |
| using const_value_iterator = ValueReachMap::const_iterator; |
| |
| // Insert edge 'From->To' at state 'State' |
| bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) { |
| assert(From != To); |
| auto &States = ReachMap[To][From]; |
| auto Idx = static_cast<size_t>(State); |
| if (!States.test(Idx)) { |
| States.set(Idx); |
| return true; |
| } |
| return false; |
| } |
| |
| // Return the set of all ('From', 'State') pair for a given node 'To' |
| iterator_range<const_valuestate_iterator> |
| reachableValueAliases(InstantiatedValue V) const { |
| auto Itr = ReachMap.find(V); |
| if (Itr == ReachMap.end()) |
| return make_range<const_valuestate_iterator>(const_valuestate_iterator(), |
| const_valuestate_iterator()); |
| return make_range<const_valuestate_iterator>(Itr->second.begin(), |
| Itr->second.end()); |
| } |
| |
| iterator_range<const_value_iterator> value_mappings() const { |
| return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end()); |
| } |
| }; |
| |
| // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M" |
| // in the paper) during the analysis. |
| class AliasMemSet { |
| using MemSet = DenseSet<InstantiatedValue>; |
| using MemMapType = DenseMap<InstantiatedValue, MemSet>; |
| |
| MemMapType MemMap; |
| |
| public: |
| using const_mem_iterator = MemSet::const_iterator; |
| |
| bool insert(InstantiatedValue LHS, InstantiatedValue RHS) { |
| // Top-level values can never be memory aliases because one cannot take the |
| // addresses of them |
| assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0); |
| return MemMap[LHS].insert(RHS).second; |
| } |
| |
| const MemSet *getMemoryAliases(InstantiatedValue V) const { |
| auto Itr = MemMap.find(V); |
| if (Itr == MemMap.end()) |
| return nullptr; |
| return &Itr->second; |
| } |
| }; |
| |
| // We use AliasAttrMap to keep track of the AliasAttr of each node. |
| class AliasAttrMap { |
| using MapType = DenseMap<InstantiatedValue, AliasAttrs>; |
| |
| MapType AttrMap; |
| |
| public: |
| using const_iterator = MapType::const_iterator; |
| |
| bool add(InstantiatedValue V, AliasAttrs Attr) { |
| auto &OldAttr = AttrMap[V]; |
| auto NewAttr = OldAttr | Attr; |
| if (OldAttr == NewAttr) |
| return false; |
| OldAttr = NewAttr; |
| return true; |
| } |
| |
| AliasAttrs getAttrs(InstantiatedValue V) const { |
| AliasAttrs Attr; |
| auto Itr = AttrMap.find(V); |
| if (Itr != AttrMap.end()) |
| Attr = Itr->second; |
| return Attr; |
| } |
| |
| iterator_range<const_iterator> mappings() const { |
| return make_range<const_iterator>(AttrMap.begin(), AttrMap.end()); |
| } |
| }; |
| |
| struct WorkListItem { |
| InstantiatedValue From; |
| InstantiatedValue To; |
| MatchState State; |
| }; |
| |
| struct ValueSummary { |
| struct Record { |
| InterfaceValue IValue; |
| unsigned DerefLevel; |
| }; |
| SmallVector<Record, 4> FromRecords, ToRecords; |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| // Specialize DenseMapInfo for OffsetValue. |
| template <> struct DenseMapInfo<OffsetValue> { |
| static OffsetValue getEmptyKey() { |
| return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(), |
| DenseMapInfo<int64_t>::getEmptyKey()}; |
| } |
| |
| static OffsetValue getTombstoneKey() { |
| return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(), |
| DenseMapInfo<int64_t>::getEmptyKey()}; |
| } |
| |
| static unsigned getHashValue(const OffsetValue &OVal) { |
| return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue( |
| std::make_pair(OVal.Val, OVal.Offset)); |
| } |
| |
| static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| // Specialize DenseMapInfo for OffsetInstantiatedValue. |
| template <> struct DenseMapInfo<OffsetInstantiatedValue> { |
| static OffsetInstantiatedValue getEmptyKey() { |
| return OffsetInstantiatedValue{ |
| DenseMapInfo<InstantiatedValue>::getEmptyKey(), |
| DenseMapInfo<int64_t>::getEmptyKey()}; |
| } |
| |
| static OffsetInstantiatedValue getTombstoneKey() { |
| return OffsetInstantiatedValue{ |
| DenseMapInfo<InstantiatedValue>::getTombstoneKey(), |
| DenseMapInfo<int64_t>::getEmptyKey()}; |
| } |
| |
| static unsigned getHashValue(const OffsetInstantiatedValue &OVal) { |
| return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue( |
| std::make_pair(OVal.IVal, OVal.Offset)); |
| } |
| |
| static bool isEqual(const OffsetInstantiatedValue &LHS, |
| const OffsetInstantiatedValue &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| class CFLAndersAAResult::FunctionInfo { |
| /// Map a value to other values that may alias it |
| /// Since the alias relation is symmetric, to save some space we assume values |
| /// are properly ordered: if a and b alias each other, and a < b, then b is in |
| /// AliasMap[a] but not vice versa. |
| DenseMap<const Value *, std::vector<OffsetValue>> AliasMap; |
| |
| /// Map a value to its corresponding AliasAttrs |
| DenseMap<const Value *, AliasAttrs> AttrMap; |
| |
| /// Summary of externally visible effects. |
| AliasSummary Summary; |
| |
| Optional<AliasAttrs> getAttrs(const Value *) const; |
| |
| public: |
| FunctionInfo(const Function &, const SmallVectorImpl<Value *> &, |
| const ReachabilitySet &, const AliasAttrMap &); |
| |
| bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const; |
| const AliasSummary &getAliasSummary() const { return Summary; } |
| }; |
| |
| static bool hasReadOnlyState(StateSet Set) { |
| return (Set & StateSet(ReadOnlyStateMask)).any(); |
| } |
| |
| static bool hasWriteOnlyState(StateSet Set) { |
| return (Set & StateSet(WriteOnlyStateMask)).any(); |
| } |
| |
| static Optional<InterfaceValue> |
| getInterfaceValue(InstantiatedValue IValue, |
| const SmallVectorImpl<Value *> &RetVals) { |
| auto Val = IValue.Val; |
| |
| Optional<unsigned> Index; |
| if (auto Arg = dyn_cast<Argument>(Val)) |
| Index = Arg->getArgNo() + 1; |
| else if (is_contained(RetVals, Val)) |
| Index = 0; |
| |
| if (Index) |
| return InterfaceValue{*Index, IValue.DerefLevel}; |
| return None; |
| } |
| |
| static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap, |
| const AliasAttrMap &AMap) { |
| for (const auto &Mapping : AMap.mappings()) { |
| auto IVal = Mapping.first; |
| |
| // Insert IVal into the map |
| auto &Attr = AttrMap[IVal.Val]; |
| // AttrMap only cares about top-level values |
| if (IVal.DerefLevel == 0) |
| Attr |= Mapping.second; |
| } |
| } |
| |
| static void |
| populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap, |
| const ReachabilitySet &ReachSet) { |
| for (const auto &OuterMapping : ReachSet.value_mappings()) { |
| // AliasMap only cares about top-level values |
| if (OuterMapping.first.DerefLevel > 0) |
| continue; |
| |
| auto Val = OuterMapping.first.Val; |
| auto &AliasList = AliasMap[Val]; |
| for (const auto &InnerMapping : OuterMapping.second) { |
| // Again, AliasMap only cares about top-level values |
| if (InnerMapping.first.DerefLevel == 0) |
| AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset}); |
| } |
| |
| // Sort AliasList for faster lookup |
| llvm::sort(AliasList.begin(), AliasList.end()); |
| } |
| } |
| |
| static void populateExternalRelations( |
| SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn, |
| const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) { |
| // If a function only returns one of its argument X, then X will be both an |
| // argument and a return value at the same time. This is an edge case that |
| // needs special handling here. |
| for (const auto &Arg : Fn.args()) { |
| if (is_contained(RetVals, &Arg)) { |
| auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0}; |
| auto RetVal = InterfaceValue{0, 0}; |
| ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0}); |
| } |
| } |
| |
| // Below is the core summary construction logic. |
| // A naive solution of adding only the value aliases that are parameters or |
| // return values in ReachSet to the summary won't work: It is possible that a |
| // parameter P is written into an intermediate value I, and the function |
| // subsequently returns *I. In that case, *I is does not value alias anything |
| // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to |
| // (I, 1). |
| // To account for the aforementioned case, we need to check each non-parameter |
| // and non-return value for the possibility of acting as an intermediate. |
| // 'ValueMap' here records, for each value, which InterfaceValues read from or |
| // write into it. If both the read list and the write list of a given value |
| // are non-empty, we know that a particular value is an intermidate and we |
| // need to add summary edges from the writes to the reads. |
| DenseMap<Value *, ValueSummary> ValueMap; |
| for (const auto &OuterMapping : ReachSet.value_mappings()) { |
| if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) { |
| for (const auto &InnerMapping : OuterMapping.second) { |
| // If Src is a param/return value, we get a same-level assignment. |
| if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) { |
| // This may happen if both Dst and Src are return values |
| if (*Dst == *Src) |
| continue; |
| |
| if (hasReadOnlyState(InnerMapping.second)) |
| ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset}); |
| // No need to check for WriteOnly state, since ReachSet is symmetric |
| } else { |
| // If Src is not a param/return, add it to ValueMap |
| auto SrcIVal = InnerMapping.first; |
| if (hasReadOnlyState(InnerMapping.second)) |
| ValueMap[SrcIVal.Val].FromRecords.push_back( |
| ValueSummary::Record{*Dst, SrcIVal.DerefLevel}); |
| if (hasWriteOnlyState(InnerMapping.second)) |
| ValueMap[SrcIVal.Val].ToRecords.push_back( |
| ValueSummary::Record{*Dst, SrcIVal.DerefLevel}); |
| } |
| } |
| } |
| } |
| |
| for (const auto &Mapping : ValueMap) { |
| for (const auto &FromRecord : Mapping.second.FromRecords) { |
| for (const auto &ToRecord : Mapping.second.ToRecords) { |
| auto ToLevel = ToRecord.DerefLevel; |
| auto FromLevel = FromRecord.DerefLevel; |
| // Same-level assignments should have already been processed by now |
| if (ToLevel == FromLevel) |
| continue; |
| |
| auto SrcIndex = FromRecord.IValue.Index; |
| auto SrcLevel = FromRecord.IValue.DerefLevel; |
| auto DstIndex = ToRecord.IValue.Index; |
| auto DstLevel = ToRecord.IValue.DerefLevel; |
| if (ToLevel > FromLevel) |
| SrcLevel += ToLevel - FromLevel; |
| else |
| DstLevel += FromLevel - ToLevel; |
| |
| ExtRelations.push_back(ExternalRelation{ |
| InterfaceValue{SrcIndex, SrcLevel}, |
| InterfaceValue{DstIndex, DstLevel}, UnknownOffset}); |
| } |
| } |
| } |
| |
| // Remove duplicates in ExtRelations |
| llvm::sort(ExtRelations.begin(), ExtRelations.end()); |
| ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()), |
| ExtRelations.end()); |
| } |
| |
| static void populateExternalAttributes( |
| SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn, |
| const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) { |
| for (const auto &Mapping : AMap.mappings()) { |
| if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) { |
| auto Attr = getExternallyVisibleAttrs(Mapping.second); |
| if (Attr.any()) |
| ExtAttributes.push_back(ExternalAttribute{*IVal, Attr}); |
| } |
| } |
| } |
| |
| CFLAndersAAResult::FunctionInfo::FunctionInfo( |
| const Function &Fn, const SmallVectorImpl<Value *> &RetVals, |
| const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) { |
| populateAttrMap(AttrMap, AMap); |
| populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap); |
| populateAliasMap(AliasMap, ReachSet); |
| populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet); |
| } |
| |
| Optional<AliasAttrs> |
| CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const { |
| assert(V != nullptr); |
| |
| auto Itr = AttrMap.find(V); |
| if (Itr != AttrMap.end()) |
| return Itr->second; |
| return None; |
| } |
| |
| bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS, |
| LocationSize LHSSize, |
| const Value *RHS, |
| LocationSize RHSSize) const { |
| assert(LHS && RHS); |
| |
| // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created |
| // after the analysis gets executed, and we want to be conservative in those |
| // cases. |
| auto MaybeAttrsA = getAttrs(LHS); |
| auto MaybeAttrsB = getAttrs(RHS); |
| if (!MaybeAttrsA || !MaybeAttrsB) |
| return true; |
| |
| // Check AliasAttrs before AliasMap lookup since it's cheaper |
| auto AttrsA = *MaybeAttrsA; |
| auto AttrsB = *MaybeAttrsB; |
| if (hasUnknownOrCallerAttr(AttrsA)) |
| return AttrsB.any(); |
| if (hasUnknownOrCallerAttr(AttrsB)) |
| return AttrsA.any(); |
| if (isGlobalOrArgAttr(AttrsA)) |
| return isGlobalOrArgAttr(AttrsB); |
| if (isGlobalOrArgAttr(AttrsB)) |
| return isGlobalOrArgAttr(AttrsA); |
| |
| // At this point both LHS and RHS should point to locally allocated objects |
| |
| auto Itr = AliasMap.find(LHS); |
| if (Itr != AliasMap.end()) { |
| |
| // Find out all (X, Offset) where X == RHS |
| auto Comparator = [](OffsetValue LHS, OffsetValue RHS) { |
| return std::less<const Value *>()(LHS.Val, RHS.Val); |
| }; |
| #ifdef EXPENSIVE_CHECKS |
| assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator)); |
| #endif |
| auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(), |
| OffsetValue{RHS, 0}, Comparator); |
| |
| if (RangePair.first != RangePair.second) { |
| // Be conservative about UnknownSize |
| if (LHSSize == MemoryLocation::UnknownSize || |
| RHSSize == MemoryLocation::UnknownSize) |
| return true; |
| |
| for (const auto &OVal : make_range(RangePair)) { |
| // Be conservative about UnknownOffset |
| if (OVal.Offset == UnknownOffset) |
| return true; |
| |
| // We know that LHS aliases (RHS + OVal.Offset) if the control flow |
| // reaches here. The may-alias query essentially becomes integer |
| // range-overlap queries over two ranges [OVal.Offset, OVal.Offset + |
| // LHSSize) and [0, RHSSize). |
| |
| // Try to be conservative on super large offsets |
| if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX)) |
| return true; |
| |
| auto LHSStart = OVal.Offset; |
| // FIXME: Do we need to guard against integer overflow? |
| auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize); |
| auto RHSStart = 0; |
| auto RHSEnd = static_cast<int64_t>(RHSSize); |
| if (LHSEnd > RHSStart && LHSStart < RHSEnd) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static void propagate(InstantiatedValue From, InstantiatedValue To, |
| MatchState State, ReachabilitySet &ReachSet, |
| std::vector<WorkListItem> &WorkList) { |
| if (From == To) |
| return; |
| if (ReachSet.insert(From, To, State)) |
| WorkList.push_back(WorkListItem{From, To, State}); |
| } |
| |
| static void initializeWorkList(std::vector<WorkListItem> &WorkList, |
| ReachabilitySet &ReachSet, |
| const CFLGraph &Graph) { |
| for (const auto &Mapping : Graph.value_mappings()) { |
| auto Val = Mapping.first; |
| auto &ValueInfo = Mapping.second; |
| assert(ValueInfo.getNumLevels() > 0); |
| |
| // Insert all immediate assignment neighbors to the worklist |
| for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| auto Src = InstantiatedValue{Val, I}; |
| // If there's an assignment edge from X to Y, it means Y is reachable from |
| // X at S2 and X is reachable from Y at S1 |
| for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) { |
| propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet, |
| WorkList); |
| propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet, |
| WorkList); |
| } |
| } |
| } |
| } |
| |
| static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph, |
| InstantiatedValue V) { |
| auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1}; |
| if (Graph.getNode(NodeBelow)) |
| return NodeBelow; |
| return None; |
| } |
| |
| static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph, |
| ReachabilitySet &ReachSet, AliasMemSet &MemSet, |
| std::vector<WorkListItem> &WorkList) { |
| auto FromNode = Item.From; |
| auto ToNode = Item.To; |
| |
| auto NodeInfo = Graph.getNode(ToNode); |
| assert(NodeInfo != nullptr); |
| |
| // TODO: propagate field offsets |
| |
| // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds |
| // relations that are symmetric, we could actually cut the storage by half by |
| // sorting FromNode and ToNode before insertion happens. |
| |
| // The newly added value alias pair may potentially generate more memory |
| // alias pairs. Check for them here. |
| auto FromNodeBelow = getNodeBelow(Graph, FromNode); |
| auto ToNodeBelow = getNodeBelow(Graph, ToNode); |
| if (FromNodeBelow && ToNodeBelow && |
| MemSet.insert(*FromNodeBelow, *ToNodeBelow)) { |
| propagate(*FromNodeBelow, *ToNodeBelow, |
| MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList); |
| for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) { |
| auto Src = Mapping.first; |
| auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) { |
| if (Mapping.second.test(static_cast<size_t>(FromState))) |
| propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList); |
| }; |
| |
| MemAliasPropagate(MatchState::FlowFromReadOnly, |
| MatchState::FlowFromMemAliasReadOnly); |
| MemAliasPropagate(MatchState::FlowToWriteOnly, |
| MatchState::FlowToMemAliasWriteOnly); |
| MemAliasPropagate(MatchState::FlowToReadWrite, |
| MatchState::FlowToMemAliasReadWrite); |
| } |
| } |
| |
| // This is the core of the state machine walking algorithm. We expand ReachSet |
| // based on which state we are at (which in turn dictates what edges we |
| // should examine) |
| // From a high-level point of view, the state machine here guarantees two |
| // properties: |
| // - If *X and *Y are memory aliases, then X and Y are value aliases |
| // - If Y is an alias of X, then reverse assignment edges (if there is any) |
| // should precede any assignment edges on the path from X to Y. |
| auto NextAssignState = [&](MatchState State) { |
| for (const auto &AssignEdge : NodeInfo->Edges) |
| propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList); |
| }; |
| auto NextRevAssignState = [&](MatchState State) { |
| for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) |
| propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList); |
| }; |
| auto NextMemState = [&](MatchState State) { |
| if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { |
| for (const auto &MemAlias : *AliasSet) |
| propagate(FromNode, MemAlias, State, ReachSet, WorkList); |
| } |
| }; |
| |
| switch (Item.State) { |
| case MatchState::FlowFromReadOnly: |
| NextRevAssignState(MatchState::FlowFromReadOnly); |
| NextAssignState(MatchState::FlowToReadWrite); |
| NextMemState(MatchState::FlowFromMemAliasReadOnly); |
| break; |
| |
| case MatchState::FlowFromMemAliasNoReadWrite: |
| NextRevAssignState(MatchState::FlowFromReadOnly); |
| NextAssignState(MatchState::FlowToWriteOnly); |
| break; |
| |
| case MatchState::FlowFromMemAliasReadOnly: |
| NextRevAssignState(MatchState::FlowFromReadOnly); |
| NextAssignState(MatchState::FlowToReadWrite); |
| break; |
| |
| case MatchState::FlowToWriteOnly: |
| NextAssignState(MatchState::FlowToWriteOnly); |
| NextMemState(MatchState::FlowToMemAliasWriteOnly); |
| break; |
| |
| case MatchState::FlowToReadWrite: |
| NextAssignState(MatchState::FlowToReadWrite); |
| NextMemState(MatchState::FlowToMemAliasReadWrite); |
| break; |
| |
| case MatchState::FlowToMemAliasWriteOnly: |
| NextAssignState(MatchState::FlowToWriteOnly); |
| break; |
| |
| case MatchState::FlowToMemAliasReadWrite: |
| NextAssignState(MatchState::FlowToReadWrite); |
| break; |
| } |
| } |
| |
| static AliasAttrMap buildAttrMap(const CFLGraph &Graph, |
| const ReachabilitySet &ReachSet) { |
| AliasAttrMap AttrMap; |
| std::vector<InstantiatedValue> WorkList, NextList; |
| |
| // Initialize each node with its original AliasAttrs in CFLGraph |
| for (const auto &Mapping : Graph.value_mappings()) { |
| auto Val = Mapping.first; |
| auto &ValueInfo = Mapping.second; |
| for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| auto Node = InstantiatedValue{Val, I}; |
| AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr); |
| WorkList.push_back(Node); |
| } |
| } |
| |
| while (!WorkList.empty()) { |
| for (const auto &Dst : WorkList) { |
| auto DstAttr = AttrMap.getAttrs(Dst); |
| if (DstAttr.none()) |
| continue; |
| |
| // Propagate attr on the same level |
| for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) { |
| auto Src = Mapping.first; |
| if (AttrMap.add(Src, DstAttr)) |
| NextList.push_back(Src); |
| } |
| |
| // Propagate attr to the levels below |
| auto DstBelow = getNodeBelow(Graph, Dst); |
| while (DstBelow) { |
| if (AttrMap.add(*DstBelow, DstAttr)) { |
| NextList.push_back(*DstBelow); |
| break; |
| } |
| DstBelow = getNodeBelow(Graph, *DstBelow); |
| } |
| } |
| WorkList.swap(NextList); |
| NextList.clear(); |
| } |
| |
| return AttrMap; |
| } |
| |
| CFLAndersAAResult::FunctionInfo |
| CFLAndersAAResult::buildInfoFrom(const Function &Fn) { |
| CFLGraphBuilder<CFLAndersAAResult> GraphBuilder( |
| *this, TLI, |
| // Cast away the constness here due to GraphBuilder's API requirement |
| const_cast<Function &>(Fn)); |
| auto &Graph = GraphBuilder.getCFLGraph(); |
| |
| ReachabilitySet ReachSet; |
| AliasMemSet MemSet; |
| |
| std::vector<WorkListItem> WorkList, NextList; |
| initializeWorkList(WorkList, ReachSet, Graph); |
| // TODO: make sure we don't stop before the fix point is reached |
| while (!WorkList.empty()) { |
| for (const auto &Item : WorkList) |
| processWorkListItem(Item, Graph, ReachSet, MemSet, NextList); |
| |
| NextList.swap(WorkList); |
| NextList.clear(); |
| } |
| |
| // Now that we have all the reachability info, propagate AliasAttrs according |
| // to it |
| auto IValueAttrMap = buildAttrMap(Graph, ReachSet); |
| |
| return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet, |
| std::move(IValueAttrMap)); |
| } |
| |
| void CFLAndersAAResult::scan(const Function &Fn) { |
| auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>())); |
| (void)InsertPair; |
| assert(InsertPair.second && |
| "Trying to scan a function that has already been cached"); |
| |
| // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call |
| // may get evaluated after operator[], potentially triggering a DenseMap |
| // resize and invalidating the reference returned by operator[] |
| auto FunInfo = buildInfoFrom(Fn); |
| Cache[&Fn] = std::move(FunInfo); |
| Handles.emplace_front(const_cast<Function *>(&Fn), this); |
| } |
| |
| void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); } |
| |
| const Optional<CFLAndersAAResult::FunctionInfo> & |
| CFLAndersAAResult::ensureCached(const Function &Fn) { |
| auto Iter = Cache.find(&Fn); |
| if (Iter == Cache.end()) { |
| scan(Fn); |
| Iter = Cache.find(&Fn); |
| assert(Iter != Cache.end()); |
| assert(Iter->second.hasValue()); |
| } |
| return Iter->second; |
| } |
| |
| const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) { |
| auto &FunInfo = ensureCached(Fn); |
| if (FunInfo.hasValue()) |
| return &FunInfo->getAliasSummary(); |
| else |
| return nullptr; |
| } |
| |
| AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA, |
| const MemoryLocation &LocB) { |
| auto *ValA = LocA.Ptr; |
| auto *ValB = LocB.Ptr; |
| |
| if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy()) |
| return NoAlias; |
| |
| auto *Fn = parentFunctionOfValue(ValA); |
| if (!Fn) { |
| Fn = parentFunctionOfValue(ValB); |
| if (!Fn) { |
| // The only times this is known to happen are when globals + InlineAsm are |
| // involved |
| LLVM_DEBUG( |
| dbgs() |
| << "CFLAndersAA: could not extract parent function information.\n"); |
| return MayAlias; |
| } |
| } else { |
| assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn); |
| } |
| |
| assert(Fn != nullptr); |
| auto &FunInfo = ensureCached(*Fn); |
| |
| // AliasMap lookup |
| if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size)) |
| return MayAlias; |
| return NoAlias; |
| } |
| |
| AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA, |
| const MemoryLocation &LocB) { |
| if (LocA.Ptr == LocB.Ptr) |
| return MustAlias; |
| |
| // Comparisons between global variables and other constants should be |
| // handled by BasicAA. |
| // CFLAndersAA may report NoAlias when comparing a GlobalValue and |
| // ConstantExpr, but every query needs to have at least one Value tied to a |
| // Function, and neither GlobalValues nor ConstantExprs are. |
| if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) |
| return AAResultBase::alias(LocA, LocB); |
| |
| AliasResult QueryResult = query(LocA, LocB); |
| if (QueryResult == MayAlias) |
| return AAResultBase::alias(LocA, LocB); |
| |
| return QueryResult; |
| } |
| |
| AnalysisKey CFLAndersAA::Key; |
| |
| CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) { |
| return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F)); |
| } |
| |
| char CFLAndersAAWrapperPass::ID = 0; |
| INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa", |
| "Inclusion-Based CFL Alias Analysis", false, true) |
| |
| ImmutablePass *llvm::createCFLAndersAAWrapperPass() { |
| return new CFLAndersAAWrapperPass(); |
| } |
| |
| CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) { |
| initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void CFLAndersAAWrapperPass::initializePass() { |
| auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); |
| Result.reset(new CFLAndersAAResult(TLIWP.getTLI())); |
| } |
| |
| void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |