| //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a wrapper around MCSchedModel that allows the interface |
| // to benefit from information currently only available in TargetInstrInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), |
| cl::desc("Use TargetSchedModel for latency lookup")); |
| |
| static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), |
| cl::desc("Use InstrItineraryData for latency lookup")); |
| |
| bool TargetSchedModel::hasInstrSchedModel() const { |
| return EnableSchedModel && SchedModel.hasInstrSchedModel(); |
| } |
| |
| bool TargetSchedModel::hasInstrItineraries() const { |
| return EnableSchedItins && !InstrItins.isEmpty(); |
| } |
| |
| static unsigned gcd(unsigned Dividend, unsigned Divisor) { |
| // Dividend and Divisor will be naturally swapped as needed. |
| while (Divisor) { |
| unsigned Rem = Dividend % Divisor; |
| Dividend = Divisor; |
| Divisor = Rem; |
| }; |
| return Dividend; |
| } |
| |
| static unsigned lcm(unsigned A, unsigned B) { |
| unsigned LCM = (uint64_t(A) * B) / gcd(A, B); |
| assert((LCM >= A && LCM >= B) && "LCM overflow"); |
| return LCM; |
| } |
| |
| void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { |
| STI = TSInfo; |
| SchedModel = TSInfo->getSchedModel(); |
| TII = TSInfo->getInstrInfo(); |
| STI->initInstrItins(InstrItins); |
| |
| unsigned NumRes = SchedModel.getNumProcResourceKinds(); |
| ResourceFactors.resize(NumRes); |
| ResourceLCM = SchedModel.IssueWidth; |
| for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
| unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; |
| if (NumUnits > 0) |
| ResourceLCM = lcm(ResourceLCM, NumUnits); |
| } |
| MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; |
| for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
| unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; |
| ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; |
| } |
| } |
| |
| /// Returns true only if instruction is specified as single issue. |
| bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, |
| const MCSchedClassDesc *SC) const { |
| if (hasInstrSchedModel()) { |
| if (!SC) |
| SC = resolveSchedClass(MI); |
| if (SC->isValid()) |
| return SC->BeginGroup; |
| } |
| return false; |
| } |
| |
| bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, |
| const MCSchedClassDesc *SC) const { |
| if (hasInstrSchedModel()) { |
| if (!SC) |
| SC = resolveSchedClass(MI); |
| if (SC->isValid()) |
| return SC->EndGroup; |
| } |
| return false; |
| } |
| |
| unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, |
| const MCSchedClassDesc *SC) const { |
| if (hasInstrItineraries()) { |
| int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); |
| return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); |
| } |
| if (hasInstrSchedModel()) { |
| if (!SC) |
| SC = resolveSchedClass(MI); |
| if (SC->isValid()) |
| return SC->NumMicroOps; |
| } |
| return MI->isTransient() ? 0 : 1; |
| } |
| |
| // The machine model may explicitly specify an invalid latency, which |
| // effectively means infinite latency. Since users of the TargetSchedule API |
| // don't know how to handle this, we convert it to a very large latency that is |
| // easy to distinguish when debugging the DAG but won't induce overflow. |
| static unsigned capLatency(int Cycles) { |
| return Cycles >= 0 ? Cycles : 1000; |
| } |
| |
| /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require |
| /// evaluation of predicates that depend on instruction operands or flags. |
| const MCSchedClassDesc *TargetSchedModel:: |
| resolveSchedClass(const MachineInstr *MI) const { |
| // Get the definition's scheduling class descriptor from this machine model. |
| unsigned SchedClass = MI->getDesc().getSchedClass(); |
| const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); |
| if (!SCDesc->isValid()) |
| return SCDesc; |
| |
| #ifndef NDEBUG |
| unsigned NIter = 0; |
| #endif |
| while (SCDesc->isVariant()) { |
| assert(++NIter < 6 && "Variants are nested deeper than the magic number"); |
| |
| SchedClass = STI->resolveSchedClass(SchedClass, MI, this); |
| SCDesc = SchedModel.getSchedClassDesc(SchedClass); |
| } |
| return SCDesc; |
| } |
| |
| /// Find the def index of this operand. This index maps to the machine model and |
| /// is independent of use operands. Def operands may be reordered with uses or |
| /// merged with uses without affecting the def index (e.g. before/after |
| /// regalloc). However, an instruction's def operands must never be reordered |
| /// with respect to each other. |
| static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { |
| unsigned DefIdx = 0; |
| for (unsigned i = 0; i != DefOperIdx; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef()) |
| ++DefIdx; |
| } |
| return DefIdx; |
| } |
| |
| /// Find the use index of this operand. This is independent of the instruction's |
| /// def operands. |
| /// |
| /// Note that uses are not determined by the operand's isUse property, which |
| /// is simply the inverse of isDef. Here we consider any readsReg operand to be |
| /// a "use". The machine model allows an operand to be both a Def and Use. |
| static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { |
| unsigned UseIdx = 0; |
| for (unsigned i = 0; i != UseOperIdx; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.readsReg() && !MO.isDef()) |
| ++UseIdx; |
| } |
| return UseIdx; |
| } |
| |
| // Top-level API for clients that know the operand indices. |
| unsigned TargetSchedModel::computeOperandLatency( |
| const MachineInstr *DefMI, unsigned DefOperIdx, |
| const MachineInstr *UseMI, unsigned UseOperIdx) const { |
| |
| if (!hasInstrSchedModel() && !hasInstrItineraries()) |
| return TII->defaultDefLatency(SchedModel, *DefMI); |
| |
| if (hasInstrItineraries()) { |
| int OperLatency = 0; |
| if (UseMI) { |
| OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, |
| *UseMI, UseOperIdx); |
| } |
| else { |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); |
| } |
| if (OperLatency >= 0) |
| return OperLatency; |
| |
| // No operand latency was found. |
| unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); |
| |
| // Expected latency is the max of the stage latency and itinerary props. |
| // Rather than directly querying InstrItins stage latency, we call a TII |
| // hook to allow subtargets to specialize latency. This hook is only |
| // applicable to the InstrItins model. InstrSchedModel should model all |
| // special cases without TII hooks. |
| InstrLatency = |
| std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); |
| return InstrLatency; |
| } |
| // hasInstrSchedModel() |
| const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); |
| unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); |
| if (DefIdx < SCDesc->NumWriteLatencyEntries) { |
| // Lookup the definition's write latency in SubtargetInfo. |
| const MCWriteLatencyEntry *WLEntry = |
| STI->getWriteLatencyEntry(SCDesc, DefIdx); |
| unsigned WriteID = WLEntry->WriteResourceID; |
| unsigned Latency = capLatency(WLEntry->Cycles); |
| if (!UseMI) |
| return Latency; |
| |
| // Lookup the use's latency adjustment in SubtargetInfo. |
| const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); |
| if (UseDesc->NumReadAdvanceEntries == 0) |
| return Latency; |
| unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); |
| int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); |
| if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap |
| return 0; |
| return Latency - Advance; |
| } |
| // If DefIdx does not exist in the model (e.g. implicit defs), then return |
| // unit latency (defaultDefLatency may be too conservative). |
| #ifndef NDEBUG |
| if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() |
| && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() |
| && SchedModel.isComplete()) { |
| errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " |
| << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; |
| llvm_unreachable("incomplete machine model"); |
| } |
| #endif |
| // FIXME: Automatically giving all implicit defs defaultDefLatency is |
| // undesirable. We should only do it for defs that are known to the MC |
| // desc like flags. Truly implicit defs should get 1 cycle latency. |
| return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); |
| } |
| |
| unsigned |
| TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { |
| return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); |
| } |
| |
| unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { |
| assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); |
| unsigned SCIdx = TII->get(Opcode).getSchedClass(); |
| return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx)); |
| } |
| |
| unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { |
| if (hasInstrSchedModel()) |
| return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst)); |
| return computeInstrLatency(Inst.getOpcode()); |
| } |
| |
| unsigned |
| TargetSchedModel::computeInstrLatency(const MachineInstr *MI, |
| bool UseDefaultDefLatency) const { |
| // For the itinerary model, fall back to the old subtarget hook. |
| // Allow subtargets to compute Bundle latencies outside the machine model. |
| if (hasInstrItineraries() || MI->isBundle() || |
| (!hasInstrSchedModel() && !UseDefaultDefLatency)) |
| return TII->getInstrLatency(&InstrItins, *MI); |
| |
| if (hasInstrSchedModel()) { |
| const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); |
| if (SCDesc->isValid()) |
| return computeInstrLatency(*SCDesc); |
| } |
| return TII->defaultDefLatency(SchedModel, *MI); |
| } |
| |
| unsigned TargetSchedModel:: |
| computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
| const MachineInstr *DepMI) const { |
| if (!SchedModel.isOutOfOrder()) |
| return 1; |
| |
| // Out-of-order processor can dispatch WAW dependencies in the same cycle. |
| |
| // Treat predication as a data dependency for out-of-order cpus. In-order |
| // cpus do not need to treat predicated writes specially. |
| // |
| // TODO: The following hack exists because predication passes do not |
| // correctly append imp-use operands, and readsReg() strangely returns false |
| // for predicated defs. |
| unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); |
| const MachineFunction &MF = *DefMI->getMF(); |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) |
| return computeInstrLatency(DefMI); |
| |
| // If we have a per operand scheduling model, check if this def is writing |
| // an unbuffered resource. If so, it treated like an in-order cpu. |
| if (hasInstrSchedModel()) { |
| const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); |
| if (SCDesc->isValid()) { |
| for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), |
| *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { |
| if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| double |
| TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { |
| if (hasInstrItineraries()) { |
| unsigned SchedClass = MI->getDesc().getSchedClass(); |
| return MCSchedModel::getReciprocalThroughput(SchedClass, |
| *getInstrItineraries()); |
| } |
| |
| if (hasInstrSchedModel()) |
| return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); |
| |
| return 0.0; |
| } |
| |
| double |
| TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { |
| unsigned SchedClass = TII->get(Opcode).getSchedClass(); |
| if (hasInstrItineraries()) |
| return MCSchedModel::getReciprocalThroughput(SchedClass, |
| *getInstrItineraries()); |
| if (hasInstrSchedModel()) { |
| const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); |
| if (SCDesc.isValid() && !SCDesc.isVariant()) |
| return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); |
| } |
| |
| return 0.0; |
| } |
| |
| double |
| TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { |
| if (hasInstrSchedModel()) |
| return SchedModel.getReciprocalThroughput(*STI, *TII, MI); |
| return computeReciprocalThroughput(MI.getOpcode()); |
| } |
| |