| //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass looks for safe point where the prologue and epilogue can be |
| // inserted. |
| // The safe point for the prologue (resp. epilogue) is called Save |
| // (resp. Restore). |
| // A point is safe for prologue (resp. epilogue) if and only if |
| // it 1) dominates (resp. post-dominates) all the frame related operations and |
| // between 2) two executions of the Save (resp. Restore) point there is an |
| // execution of the Restore (resp. Save) point. |
| // |
| // For instance, the following points are safe: |
| // for (int i = 0; i < 10; ++i) { |
| // Save |
| // ... |
| // Restore |
| // } |
| // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... |
| // And the following points are not: |
| // for (int i = 0; i < 10; ++i) { |
| // Save |
| // ... |
| // } |
| // for (int i = 0; i < 10; ++i) { |
| // ... |
| // Restore |
| // } |
| // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. |
| // |
| // This pass also ensures that the safe points are 3) cheaper than the regular |
| // entry and exits blocks. |
| // |
| // Property #1 is ensured via the use of MachineDominatorTree and |
| // MachinePostDominatorTree. |
| // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both |
| // points must be in the same loop. |
| // Property #3 is ensured via the MachineBlockFrequencyInfo. |
| // |
| // If this pass found points matching all these properties, then |
| // MachineFrameInfo is updated with this information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/MachinePostDominators.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "shrink-wrap" |
| |
| STATISTIC(NumFunc, "Number of functions"); |
| STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); |
| STATISTIC(NumCandidatesDropped, |
| "Number of shrink-wrapping candidates dropped because of frequency"); |
| |
| static cl::opt<cl::boolOrDefault> |
| EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, |
| cl::desc("enable the shrink-wrapping pass")); |
| |
| namespace { |
| |
| /// Class to determine where the safe point to insert the |
| /// prologue and epilogue are. |
| /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the |
| /// shrink-wrapping term for prologue/epilogue placement, this pass |
| /// does not rely on expensive data-flow analysis. Instead we use the |
| /// dominance properties and loop information to decide which point |
| /// are safe for such insertion. |
| class ShrinkWrap : public MachineFunctionPass { |
| /// Hold callee-saved information. |
| RegisterClassInfo RCI; |
| MachineDominatorTree *MDT; |
| MachinePostDominatorTree *MPDT; |
| |
| /// Current safe point found for the prologue. |
| /// The prologue will be inserted before the first instruction |
| /// in this basic block. |
| MachineBasicBlock *Save; |
| |
| /// Current safe point found for the epilogue. |
| /// The epilogue will be inserted before the first terminator instruction |
| /// in this basic block. |
| MachineBasicBlock *Restore; |
| |
| /// Hold the information of the basic block frequency. |
| /// Use to check the profitability of the new points. |
| MachineBlockFrequencyInfo *MBFI; |
| |
| /// Hold the loop information. Used to determine if Save and Restore |
| /// are in the same loop. |
| MachineLoopInfo *MLI; |
| |
| // Emit remarks. |
| MachineOptimizationRemarkEmitter *ORE = nullptr; |
| |
| /// Frequency of the Entry block. |
| uint64_t EntryFreq; |
| |
| /// Current opcode for frame setup. |
| unsigned FrameSetupOpcode; |
| |
| /// Current opcode for frame destroy. |
| unsigned FrameDestroyOpcode; |
| |
| /// Stack pointer register, used by llvm.{savestack,restorestack} |
| unsigned SP; |
| |
| /// Entry block. |
| const MachineBasicBlock *Entry; |
| |
| using SetOfRegs = SmallSetVector<unsigned, 16>; |
| |
| /// Registers that need to be saved for the current function. |
| mutable SetOfRegs CurrentCSRs; |
| |
| /// Current MachineFunction. |
| MachineFunction *MachineFunc; |
| |
| /// Check if \p MI uses or defines a callee-saved register or |
| /// a frame index. If this is the case, this means \p MI must happen |
| /// after Save and before Restore. |
| bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; |
| |
| const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { |
| if (CurrentCSRs.empty()) { |
| BitVector SavedRegs; |
| const TargetFrameLowering *TFI = |
| MachineFunc->getSubtarget().getFrameLowering(); |
| |
| TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); |
| |
| for (int Reg = SavedRegs.find_first(); Reg != -1; |
| Reg = SavedRegs.find_next(Reg)) |
| CurrentCSRs.insert((unsigned)Reg); |
| } |
| return CurrentCSRs; |
| } |
| |
| /// Update the Save and Restore points such that \p MBB is in |
| /// the region that is dominated by Save and post-dominated by Restore |
| /// and Save and Restore still match the safe point definition. |
| /// Such point may not exist and Save and/or Restore may be null after |
| /// this call. |
| void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); |
| |
| /// Initialize the pass for \p MF. |
| void init(MachineFunction &MF) { |
| RCI.runOnMachineFunction(MF); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| MPDT = &getAnalysis<MachinePostDominatorTree>(); |
| Save = nullptr; |
| Restore = nullptr; |
| MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); |
| EntryFreq = MBFI->getEntryFreq(); |
| const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| FrameSetupOpcode = TII.getCallFrameSetupOpcode(); |
| FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); |
| SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); |
| Entry = &MF.front(); |
| CurrentCSRs.clear(); |
| MachineFunc = &MF; |
| |
| ++NumFunc; |
| } |
| |
| /// Check whether or not Save and Restore points are still interesting for |
| /// shrink-wrapping. |
| bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } |
| |
| /// Check if shrink wrapping is enabled for this target and function. |
| static bool isShrinkWrapEnabled(const MachineFunction &MF); |
| |
| public: |
| static char ID; |
| |
| ShrinkWrap() : MachineFunctionPass(ID) { |
| initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachinePostDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| StringRef getPassName() const override { return "Shrink Wrapping analysis"; } |
| |
| /// Perform the shrink-wrapping analysis and update |
| /// the MachineFrameInfo attached to \p MF with the results. |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| }; |
| |
| } // end anonymous namespace |
| |
| char ShrinkWrap::ID = 0; |
| |
| char &llvm::ShrinkWrapID = ShrinkWrap::ID; |
| |
| INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) |
| INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) |
| |
| bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, |
| RegScavenger *RS) const { |
| if (MI.getOpcode() == FrameSetupOpcode || |
| MI.getOpcode() == FrameDestroyOpcode) { |
| LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); |
| return true; |
| } |
| for (const MachineOperand &MO : MI.operands()) { |
| bool UseOrDefCSR = false; |
| if (MO.isReg()) { |
| // Ignore instructions like DBG_VALUE which don't read/def the register. |
| if (!MO.isDef() && !MO.readsReg()) |
| continue; |
| unsigned PhysReg = MO.getReg(); |
| if (!PhysReg) |
| continue; |
| assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && |
| "Unallocated register?!"); |
| // The stack pointer is not normally described as a callee-saved register |
| // in calling convention definitions, so we need to watch for it |
| // separately. An SP mentioned by a call instruction, we can ignore, |
| // though, as it's harmless and we do not want to effectively disable tail |
| // calls by forcing the restore point to post-dominate them. |
| UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || |
| RCI.getLastCalleeSavedAlias(PhysReg); |
| } else if (MO.isRegMask()) { |
| // Check if this regmask clobbers any of the CSRs. |
| for (unsigned Reg : getCurrentCSRs(RS)) { |
| if (MO.clobbersPhysReg(Reg)) { |
| UseOrDefCSR = true; |
| break; |
| } |
| } |
| } |
| // Skip FrameIndex operands in DBG_VALUE instructions. |
| if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { |
| LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" |
| << MO.isFI() << "): " << MI << '\n'); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Helper function to find the immediate (post) dominator. |
| template <typename ListOfBBs, typename DominanceAnalysis> |
| static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, |
| DominanceAnalysis &Dom) { |
| MachineBasicBlock *IDom = &Block; |
| for (MachineBasicBlock *BB : BBs) { |
| IDom = Dom.findNearestCommonDominator(IDom, BB); |
| if (!IDom) |
| break; |
| } |
| if (IDom == &Block) |
| return nullptr; |
| return IDom; |
| } |
| |
| void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, |
| RegScavenger *RS) { |
| // Get rid of the easy cases first. |
| if (!Save) |
| Save = &MBB; |
| else |
| Save = MDT->findNearestCommonDominator(Save, &MBB); |
| |
| if (!Save) { |
| LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); |
| return; |
| } |
| |
| if (!Restore) |
| Restore = &MBB; |
| else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it |
| // means the block never returns. If that's the |
| // case, we don't want to call |
| // `findNearestCommonDominator`, which will |
| // return `Restore`. |
| Restore = MPDT->findNearestCommonDominator(Restore, &MBB); |
| else |
| Restore = nullptr; // Abort, we can't find a restore point in this case. |
| |
| // Make sure we would be able to insert the restore code before the |
| // terminator. |
| if (Restore == &MBB) { |
| for (const MachineInstr &Terminator : MBB.terminators()) { |
| if (!useOrDefCSROrFI(Terminator, RS)) |
| continue; |
| // One of the terminator needs to happen before the restore point. |
| if (MBB.succ_empty()) { |
| Restore = nullptr; // Abort, we can't find a restore point in this case. |
| break; |
| } |
| // Look for a restore point that post-dominates all the successors. |
| // The immediate post-dominator is what we are looking for. |
| Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); |
| break; |
| } |
| } |
| |
| if (!Restore) { |
| LLVM_DEBUG( |
| dbgs() << "Restore point needs to be spanned on several blocks\n"); |
| return; |
| } |
| |
| // Make sure Save and Restore are suitable for shrink-wrapping: |
| // 1. all path from Save needs to lead to Restore before exiting. |
| // 2. all path to Restore needs to go through Save from Entry. |
| // We achieve that by making sure that: |
| // A. Save dominates Restore. |
| // B. Restore post-dominates Save. |
| // C. Save and Restore are in the same loop. |
| bool SaveDominatesRestore = false; |
| bool RestorePostDominatesSave = false; |
| while (Save && Restore && |
| (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || |
| !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || |
| // Post-dominance is not enough in loops to ensure that all uses/defs |
| // are after the prologue and before the epilogue at runtime. |
| // E.g., |
| // while(1) { |
| // Save |
| // Restore |
| // if (...) |
| // break; |
| // use/def CSRs |
| // } |
| // All the uses/defs of CSRs are dominated by Save and post-dominated |
| // by Restore. However, the CSRs uses are still reachable after |
| // Restore and before Save are executed. |
| // |
| // For now, just push the restore/save points outside of loops. |
| // FIXME: Refine the criteria to still find interesting cases |
| // for loops. |
| MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { |
| // Fix (A). |
| if (!SaveDominatesRestore) { |
| Save = MDT->findNearestCommonDominator(Save, Restore); |
| continue; |
| } |
| // Fix (B). |
| if (!RestorePostDominatesSave) |
| Restore = MPDT->findNearestCommonDominator(Restore, Save); |
| |
| // Fix (C). |
| if (Save && Restore && |
| (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { |
| if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { |
| // Push Save outside of this loop if immediate dominator is different |
| // from save block. If immediate dominator is not different, bail out. |
| Save = FindIDom<>(*Save, Save->predecessors(), *MDT); |
| if (!Save) |
| break; |
| } else { |
| // If the loop does not exit, there is no point in looking |
| // for a post-dominator outside the loop. |
| SmallVector<MachineBasicBlock*, 4> ExitBlocks; |
| MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); |
| // Push Restore outside of this loop. |
| // Look for the immediate post-dominator of the loop exits. |
| MachineBasicBlock *IPdom = Restore; |
| for (MachineBasicBlock *LoopExitBB: ExitBlocks) { |
| IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); |
| if (!IPdom) |
| break; |
| } |
| // If the immediate post-dominator is not in a less nested loop, |
| // then we are stuck in a program with an infinite loop. |
| // In that case, we will not find a safe point, hence, bail out. |
| if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) |
| Restore = IPdom; |
| else { |
| Restore = nullptr; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, |
| StringRef RemarkName, StringRef RemarkMessage, |
| const DiagnosticLocation &Loc, |
| const MachineBasicBlock *MBB) { |
| ORE->emit([&]() { |
| return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) |
| << RemarkMessage; |
| }); |
| |
| LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); |
| return false; |
| } |
| |
| bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); |
| |
| init(MF); |
| |
| ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); |
| if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { |
| // If MF is irreducible, a block may be in a loop without |
| // MachineLoopInfo reporting it. I.e., we may use the |
| // post-dominance property in loops, which lead to incorrect |
| // results. Moreover, we may miss that the prologue and |
| // epilogue are not in the same loop, leading to unbalanced |
| // construction/deconstruction of the stack frame. |
| return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", |
| "Irreducible CFGs are not supported yet.", |
| MF.getFunction().getSubprogram(), &MF.front()); |
| } |
| |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| std::unique_ptr<RegScavenger> RS( |
| TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); |
| |
| for (MachineBasicBlock &MBB : MF) { |
| LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' |
| << MBB.getName() << '\n'); |
| |
| if (MBB.isEHFuncletEntry()) |
| return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", |
| "EH Funclets are not supported yet.", |
| MBB.front().getDebugLoc(), &MBB); |
| |
| if (MBB.isEHPad()) { |
| // Push the prologue and epilogue outside of |
| // the region that may throw by making sure |
| // that all the landing pads are at least at the |
| // boundary of the save and restore points. |
| // The problem with exceptions is that the throw |
| // is not properly modeled and in particular, a |
| // basic block can jump out from the middle. |
| updateSaveRestorePoints(MBB, RS.get()); |
| if (!ArePointsInteresting()) { |
| LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n"); |
| return false; |
| } |
| continue; |
| } |
| |
| for (const MachineInstr &MI : MBB) { |
| if (!useOrDefCSROrFI(MI, RS.get())) |
| continue; |
| // Save (resp. restore) point must dominate (resp. post dominate) |
| // MI. Look for the proper basic block for those. |
| updateSaveRestorePoints(MBB, RS.get()); |
| // If we are at a point where we cannot improve the placement of |
| // save/restore instructions, just give up. |
| if (!ArePointsInteresting()) { |
| LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); |
| return false; |
| } |
| // No need to look for other instructions, this basic block |
| // will already be part of the handled region. |
| break; |
| } |
| } |
| if (!ArePointsInteresting()) { |
| // If the points are not interesting at this point, then they must be null |
| // because it means we did not encounter any frame/CSR related code. |
| // Otherwise, we would have returned from the previous loop. |
| assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); |
| LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq |
| << '\n'); |
| |
| const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); |
| do { |
| LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " |
| << Save->getNumber() << ' ' << Save->getName() << ' ' |
| << MBFI->getBlockFreq(Save).getFrequency() |
| << "\nRestore: " << Restore->getNumber() << ' ' |
| << Restore->getName() << ' ' |
| << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); |
| |
| bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; |
| if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && |
| EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && |
| ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && |
| TFI->canUseAsEpilogue(*Restore))) |
| break; |
| LLVM_DEBUG( |
| dbgs() << "New points are too expensive or invalid for the target\n"); |
| MachineBasicBlock *NewBB; |
| if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { |
| Save = FindIDom<>(*Save, Save->predecessors(), *MDT); |
| if (!Save) |
| break; |
| NewBB = Save; |
| } else { |
| // Restore is expensive. |
| Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); |
| if (!Restore) |
| break; |
| NewBB = Restore; |
| } |
| updateSaveRestorePoints(*NewBB, RS.get()); |
| } while (Save && Restore); |
| |
| if (!ArePointsInteresting()) { |
| ++NumCandidatesDropped; |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " |
| << Save->getNumber() << ' ' << Save->getName() |
| << "\nRestore: " << Restore->getNumber() << ' ' |
| << Restore->getName() << '\n'); |
| |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setSavePoint(Save); |
| MFI.setRestorePoint(Restore); |
| ++NumCandidates; |
| return false; |
| } |
| |
| bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { |
| const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); |
| |
| switch (EnableShrinkWrapOpt) { |
| case cl::BOU_UNSET: |
| return TFI->enableShrinkWrapping(MF) && |
| // Windows with CFI has some limitations that make it impossible |
| // to use shrink-wrapping. |
| !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && |
| // Sanitizers look at the value of the stack at the location |
| // of the crash. Since a crash can happen anywhere, the |
| // frame must be lowered before anything else happen for the |
| // sanitizers to be able to get a correct stack frame. |
| !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || |
| MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || |
| MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || |
| MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); |
| // If EnableShrinkWrap is set, it takes precedence on whatever the |
| // target sets. The rational is that we assume we want to test |
| // something related to shrink-wrapping. |
| case cl::BOU_TRUE: |
| return true; |
| case cl::BOU_FALSE: |
| return false; |
| } |
| llvm_unreachable("Invalid shrink-wrapping state"); |
| } |