| //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file includes support code use by SelectionDAGBuilder when lowering a |
| // statepoint sequence in SelectionDAG IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "StatepointLowering.h" |
| #include "SelectionDAGBuilder.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "statepoint-lowering" |
| |
| STATISTIC(NumSlotsAllocatedForStatepoints, |
| "Number of stack slots allocated for statepoints"); |
| STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); |
| STATISTIC(StatepointMaxSlotsRequired, |
| "Maximum number of stack slots required for a singe statepoint"); |
| |
| static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, |
| SelectionDAGBuilder &Builder, uint64_t Value) { |
| SDLoc L = Builder.getCurSDLoc(); |
| Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, |
| MVT::i64)); |
| Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); |
| } |
| |
| void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { |
| // Consistency check |
| assert(PendingGCRelocateCalls.empty() && |
| "Trying to visit statepoint before finished processing previous one"); |
| Locations.clear(); |
| NextSlotToAllocate = 0; |
| // Need to resize this on each safepoint - we need the two to stay in sync and |
| // the clear patterns of a SelectionDAGBuilder have no relation to |
| // FunctionLoweringInfo. Also need to ensure used bits get cleared. |
| AllocatedStackSlots.clear(); |
| AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); |
| } |
| |
| void StatepointLoweringState::clear() { |
| Locations.clear(); |
| AllocatedStackSlots.clear(); |
| assert(PendingGCRelocateCalls.empty() && |
| "cleared before statepoint sequence completed"); |
| } |
| |
| SDValue |
| StatepointLoweringState::allocateStackSlot(EVT ValueType, |
| SelectionDAGBuilder &Builder) { |
| NumSlotsAllocatedForStatepoints++; |
| MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); |
| |
| unsigned SpillSize = ValueType.getStoreSize(); |
| assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); |
| |
| // First look for a previously created stack slot which is not in |
| // use (accounting for the fact arbitrary slots may already be |
| // reserved), or to create a new stack slot and use it. |
| |
| const size_t NumSlots = AllocatedStackSlots.size(); |
| assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); |
| |
| assert(AllocatedStackSlots.size() == |
| Builder.FuncInfo.StatepointStackSlots.size() && |
| "Broken invariant"); |
| |
| for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { |
| if (!AllocatedStackSlots.test(NextSlotToAllocate)) { |
| const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; |
| if (MFI.getObjectSize(FI) == SpillSize) { |
| AllocatedStackSlots.set(NextSlotToAllocate); |
| // TODO: Is ValueType the right thing to use here? |
| return Builder.DAG.getFrameIndex(FI, ValueType); |
| } |
| } |
| } |
| |
| // Couldn't find a free slot, so create a new one: |
| |
| SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); |
| const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| MFI.markAsStatepointSpillSlotObjectIndex(FI); |
| |
| Builder.FuncInfo.StatepointStackSlots.push_back(FI); |
| AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); |
| assert(AllocatedStackSlots.size() == |
| Builder.FuncInfo.StatepointStackSlots.size() && |
| "Broken invariant"); |
| |
| StatepointMaxSlotsRequired.updateMax( |
| Builder.FuncInfo.StatepointStackSlots.size()); |
| |
| return SpillSlot; |
| } |
| |
| /// Utility function for reservePreviousStackSlotForValue. Tries to find |
| /// stack slot index to which we have spilled value for previous statepoints. |
| /// LookUpDepth specifies maximum DFS depth this function is allowed to look. |
| static Optional<int> findPreviousSpillSlot(const Value *Val, |
| SelectionDAGBuilder &Builder, |
| int LookUpDepth) { |
| // Can not look any further - give up now |
| if (LookUpDepth <= 0) |
| return None; |
| |
| // Spill location is known for gc relocates |
| if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { |
| const auto &SpillMap = |
| Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; |
| |
| auto It = SpillMap.find(Relocate->getDerivedPtr()); |
| if (It == SpillMap.end()) |
| return None; |
| |
| return It->second; |
| } |
| |
| // Look through bitcast instructions. |
| if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) |
| return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); |
| |
| // Look through phi nodes |
| // All incoming values should have same known stack slot, otherwise result |
| // is unknown. |
| if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { |
| Optional<int> MergedResult = None; |
| |
| for (auto &IncomingValue : Phi->incoming_values()) { |
| Optional<int> SpillSlot = |
| findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); |
| if (!SpillSlot.hasValue()) |
| return None; |
| |
| if (MergedResult.hasValue() && *MergedResult != *SpillSlot) |
| return None; |
| |
| MergedResult = SpillSlot; |
| } |
| return MergedResult; |
| } |
| |
| // TODO: We can do better for PHI nodes. In cases like this: |
| // ptr = phi(relocated_pointer, not_relocated_pointer) |
| // statepoint(ptr) |
| // We will return that stack slot for ptr is unknown. And later we might |
| // assign different stack slots for ptr and relocated_pointer. This limits |
| // llvm's ability to remove redundant stores. |
| // Unfortunately it's hard to accomplish in current infrastructure. |
| // We use this function to eliminate spill store completely, while |
| // in example we still need to emit store, but instead of any location |
| // we need to use special "preferred" location. |
| |
| // TODO: handle simple updates. If a value is modified and the original |
| // value is no longer live, it would be nice to put the modified value in the |
| // same slot. This allows folding of the memory accesses for some |
| // instructions types (like an increment). |
| // statepoint (i) |
| // i1 = i+1 |
| // statepoint (i1) |
| // However we need to be careful for cases like this: |
| // statepoint(i) |
| // i1 = i+1 |
| // statepoint(i, i1) |
| // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just |
| // put handling of simple modifications in this function like it's done |
| // for bitcasts we might end up reserving i's slot for 'i+1' because order in |
| // which we visit values is unspecified. |
| |
| // Don't know any information about this instruction |
| return None; |
| } |
| |
| /// Try to find existing copies of the incoming values in stack slots used for |
| /// statepoint spilling. If we can find a spill slot for the incoming value, |
| /// mark that slot as allocated, and reuse the same slot for this safepoint. |
| /// This helps to avoid series of loads and stores that only serve to reshuffle |
| /// values on the stack between calls. |
| static void reservePreviousStackSlotForValue(const Value *IncomingValue, |
| SelectionDAGBuilder &Builder) { |
| SDValue Incoming = Builder.getValue(IncomingValue); |
| |
| if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { |
| // We won't need to spill this, so no need to check for previously |
| // allocated stack slots |
| return; |
| } |
| |
| SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); |
| if (OldLocation.getNode()) |
| // Duplicates in input |
| return; |
| |
| const int LookUpDepth = 6; |
| Optional<int> Index = |
| findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); |
| if (!Index.hasValue()) |
| return; |
| |
| const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; |
| |
| auto SlotIt = find(StatepointSlots, *Index); |
| assert(SlotIt != StatepointSlots.end() && |
| "Value spilled to the unknown stack slot"); |
| |
| // This is one of our dedicated lowering slots |
| const int Offset = std::distance(StatepointSlots.begin(), SlotIt); |
| if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { |
| // stack slot already assigned to someone else, can't use it! |
| // TODO: currently we reserve space for gc arguments after doing |
| // normal allocation for deopt arguments. We should reserve for |
| // _all_ deopt and gc arguments, then start allocating. This |
| // will prevent some moves being inserted when vm state changes, |
| // but gc state doesn't between two calls. |
| return; |
| } |
| // Reserve this stack slot |
| Builder.StatepointLowering.reserveStackSlot(Offset); |
| |
| // Cache this slot so we find it when going through the normal |
| // assignment loop. |
| SDValue Loc = |
| Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); |
| Builder.StatepointLowering.setLocation(Incoming, Loc); |
| } |
| |
| /// Remove any duplicate (as SDValues) from the derived pointer pairs. This |
| /// is not required for correctness. It's purpose is to reduce the size of |
| /// StackMap section. It has no effect on the number of spill slots required |
| /// or the actual lowering. |
| static void |
| removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, |
| SmallVectorImpl<const Value *> &Ptrs, |
| SmallVectorImpl<const GCRelocateInst *> &Relocs, |
| SelectionDAGBuilder &Builder, |
| FunctionLoweringInfo::StatepointSpillMap &SSM) { |
| DenseMap<SDValue, const Value *> Seen; |
| |
| SmallVector<const Value *, 64> NewBases, NewPtrs; |
| SmallVector<const GCRelocateInst *, 64> NewRelocs; |
| for (size_t i = 0, e = Ptrs.size(); i < e; i++) { |
| SDValue SD = Builder.getValue(Ptrs[i]); |
| auto SeenIt = Seen.find(SD); |
| |
| if (SeenIt == Seen.end()) { |
| // Only add non-duplicates |
| NewBases.push_back(Bases[i]); |
| NewPtrs.push_back(Ptrs[i]); |
| NewRelocs.push_back(Relocs[i]); |
| Seen[SD] = Ptrs[i]; |
| } else { |
| // Duplicate pointer found, note in SSM and move on: |
| SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; |
| } |
| } |
| assert(Bases.size() >= NewBases.size()); |
| assert(Ptrs.size() >= NewPtrs.size()); |
| assert(Relocs.size() >= NewRelocs.size()); |
| Bases = NewBases; |
| Ptrs = NewPtrs; |
| Relocs = NewRelocs; |
| assert(Ptrs.size() == Bases.size()); |
| assert(Ptrs.size() == Relocs.size()); |
| } |
| |
| /// Extract call from statepoint, lower it and return pointer to the |
| /// call node. Also update NodeMap so that getValue(statepoint) will |
| /// reference lowered call result |
| static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( |
| SelectionDAGBuilder::StatepointLoweringInfo &SI, |
| SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { |
| SDValue ReturnValue, CallEndVal; |
| std::tie(ReturnValue, CallEndVal) = |
| Builder.lowerInvokable(SI.CLI, SI.EHPadBB); |
| SDNode *CallEnd = CallEndVal.getNode(); |
| |
| // Get a call instruction from the call sequence chain. Tail calls are not |
| // allowed. The following code is essentially reverse engineering X86's |
| // LowerCallTo. |
| // |
| // We are expecting DAG to have the following form: |
| // |
| // ch = eh_label (only in case of invoke statepoint) |
| // ch, glue = callseq_start ch |
| // ch, glue = X86::Call ch, glue |
| // ch, glue = callseq_end ch, glue |
| // get_return_value ch, glue |
| // |
| // get_return_value can either be a sequence of CopyFromReg instructions |
| // to grab the return value from the return register(s), or it can be a LOAD |
| // to load a value returned by reference via a stack slot. |
| |
| bool HasDef = !SI.CLI.RetTy->isVoidTy(); |
| if (HasDef) { |
| if (CallEnd->getOpcode() == ISD::LOAD) |
| CallEnd = CallEnd->getOperand(0).getNode(); |
| else |
| while (CallEnd->getOpcode() == ISD::CopyFromReg) |
| CallEnd = CallEnd->getOperand(0).getNode(); |
| } |
| |
| assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); |
| return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); |
| } |
| |
| /// Spill a value incoming to the statepoint. It might be either part of |
| /// vmstate |
| /// or gcstate. In both cases unconditionally spill it on the stack unless it |
| /// is a null constant. Return pair with first element being frame index |
| /// containing saved value and second element with outgoing chain from the |
| /// emitted store |
| static std::pair<SDValue, SDValue> |
| spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, |
| SelectionDAGBuilder &Builder) { |
| SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); |
| |
| // Emit new store if we didn't do it for this ptr before |
| if (!Loc.getNode()) { |
| Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), |
| Builder); |
| int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); |
| // We use TargetFrameIndex so that isel will not select it into LEA |
| Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); |
| |
| // TODO: We can create TokenFactor node instead of |
| // chaining stores one after another, this may allow |
| // a bit more optimal scheduling for them |
| |
| #ifndef NDEBUG |
| // Right now we always allocate spill slots that are of the same |
| // size as the value we're about to spill (the size of spillee can |
| // vary since we spill vectors of pointers too). At some point we |
| // can consider allowing spills of smaller values to larger slots |
| // (i.e. change the '==' in the assert below to a '>='). |
| MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); |
| assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && |
| "Bad spill: stack slot does not match!"); |
| #endif |
| |
| Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, |
| MachinePointerInfo::getFixedStack( |
| Builder.DAG.getMachineFunction(), Index)); |
| |
| Builder.StatepointLowering.setLocation(Incoming, Loc); |
| } |
| |
| assert(Loc.getNode()); |
| return std::make_pair(Loc, Chain); |
| } |
| |
| /// Lower a single value incoming to a statepoint node. This value can be |
| /// either a deopt value or a gc value, the handling is the same. We special |
| /// case constants and allocas, then fall back to spilling if required. |
| static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, |
| SmallVectorImpl<SDValue> &Ops, |
| SelectionDAGBuilder &Builder) { |
| SDValue Chain = Builder.getRoot(); |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { |
| // If the original value was a constant, make sure it gets recorded as |
| // such in the stackmap. This is required so that the consumer can |
| // parse any internal format to the deopt state. It also handles null |
| // pointers and other constant pointers in GC states. Note the constant |
| // vectors do not appear to actually hit this path and that anything larger |
| // than an i64 value (not type!) will fail asserts here. |
| pushStackMapConstant(Ops, Builder, C->getSExtValue()); |
| } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { |
| // This handles allocas as arguments to the statepoint (this is only |
| // really meaningful for a deopt value. For GC, we'd be trying to |
| // relocate the address of the alloca itself?) |
| assert(Incoming.getValueType() == Builder.getFrameIndexTy() && |
| "Incoming value is a frame index!"); |
| Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), |
| Builder.getFrameIndexTy())); |
| } else if (LiveInOnly) { |
| // If this value is live in (not live-on-return, or live-through), we can |
| // treat it the same way patchpoint treats it's "live in" values. We'll |
| // end up folding some of these into stack references, but they'll be |
| // handled by the register allocator. Note that we do not have the notion |
| // of a late use so these values might be placed in registers which are |
| // clobbered by the call. This is fine for live-in. |
| Ops.push_back(Incoming); |
| } else { |
| // Otherwise, locate a spill slot and explicitly spill it so it |
| // can be found by the runtime later. We currently do not support |
| // tracking values through callee saved registers to their eventual |
| // spill location. This would be a useful optimization, but would |
| // need to be optional since it requires a lot of complexity on the |
| // runtime side which not all would support. |
| auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); |
| Ops.push_back(Res.first); |
| Chain = Res.second; |
| } |
| |
| Builder.DAG.setRoot(Chain); |
| } |
| |
| /// Lower deopt state and gc pointer arguments of the statepoint. The actual |
| /// lowering is described in lowerIncomingStatepointValue. This function is |
| /// responsible for lowering everything in the right position and playing some |
| /// tricks to avoid redundant stack manipulation where possible. On |
| /// completion, 'Ops' will contain ready to use operands for machine code |
| /// statepoint. The chain nodes will have already been created and the DAG root |
| /// will be set to the last value spilled (if any were). |
| static void |
| lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, |
| SelectionDAGBuilder::StatepointLoweringInfo &SI, |
| SelectionDAGBuilder &Builder) { |
| // Lower the deopt and gc arguments for this statepoint. Layout will be: |
| // deopt argument length, deopt arguments.., gc arguments... |
| #ifndef NDEBUG |
| if (auto *GFI = Builder.GFI) { |
| // Check that each of the gc pointer and bases we've gotten out of the |
| // safepoint is something the strategy thinks might be a pointer (or vector |
| // of pointers) into the GC heap. This is basically just here to help catch |
| // errors during statepoint insertion. TODO: This should actually be in the |
| // Verifier, but we can't get to the GCStrategy from there (yet). |
| GCStrategy &S = GFI->getStrategy(); |
| for (const Value *V : SI.Bases) { |
| auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); |
| if (Opt.hasValue()) { |
| assert(Opt.getValue() && |
| "non gc managed base pointer found in statepoint"); |
| } |
| } |
| for (const Value *V : SI.Ptrs) { |
| auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); |
| if (Opt.hasValue()) { |
| assert(Opt.getValue() && |
| "non gc managed derived pointer found in statepoint"); |
| } |
| } |
| assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); |
| } else { |
| assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); |
| assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); |
| } |
| #endif |
| |
| // Figure out what lowering strategy we're going to use for each part |
| // Note: Is is conservatively correct to lower both "live-in" and "live-out" |
| // as "live-through". A "live-through" variable is one which is "live-in", |
| // "live-out", and live throughout the lifetime of the call (i.e. we can find |
| // it from any PC within the transitive callee of the statepoint). In |
| // particular, if the callee spills callee preserved registers we may not |
| // be able to find a value placed in that register during the call. This is |
| // fine for live-out, but not for live-through. If we were willing to make |
| // assumptions about the code generator producing the callee, we could |
| // potentially allow live-through values in callee saved registers. |
| const bool LiveInDeopt = |
| SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; |
| |
| auto isGCValue =[&](const Value *V) { |
| return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); |
| }; |
| |
| // Before we actually start lowering (and allocating spill slots for values), |
| // reserve any stack slots which we judge to be profitable to reuse for a |
| // particular value. This is purely an optimization over the code below and |
| // doesn't change semantics at all. It is important for performance that we |
| // reserve slots for both deopt and gc values before lowering either. |
| for (const Value *V : SI.DeoptState) { |
| if (!LiveInDeopt || isGCValue(V)) |
| reservePreviousStackSlotForValue(V, Builder); |
| } |
| for (unsigned i = 0; i < SI.Bases.size(); ++i) { |
| reservePreviousStackSlotForValue(SI.Bases[i], Builder); |
| reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); |
| } |
| |
| // First, prefix the list with the number of unique values to be |
| // lowered. Note that this is the number of *Values* not the |
| // number of SDValues required to lower them. |
| const int NumVMSArgs = SI.DeoptState.size(); |
| pushStackMapConstant(Ops, Builder, NumVMSArgs); |
| |
| // The vm state arguments are lowered in an opaque manner. We do not know |
| // what type of values are contained within. |
| for (const Value *V : SI.DeoptState) { |
| SDValue Incoming = Builder.getValue(V); |
| const bool LiveInValue = LiveInDeopt && !isGCValue(V); |
| lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); |
| } |
| |
| // Finally, go ahead and lower all the gc arguments. There's no prefixed |
| // length for this one. After lowering, we'll have the base and pointer |
| // arrays interwoven with each (lowered) base pointer immediately followed by |
| // it's (lowered) derived pointer. i.e |
| // (base[0], ptr[0], base[1], ptr[1], ...) |
| for (unsigned i = 0; i < SI.Bases.size(); ++i) { |
| const Value *Base = SI.Bases[i]; |
| lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, |
| Ops, Builder); |
| |
| const Value *Ptr = SI.Ptrs[i]; |
| lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, |
| Ops, Builder); |
| } |
| |
| // If there are any explicit spill slots passed to the statepoint, record |
| // them, but otherwise do not do anything special. These are user provided |
| // allocas and give control over placement to the consumer. In this case, |
| // it is the contents of the slot which may get updated, not the pointer to |
| // the alloca |
| for (Value *V : SI.GCArgs) { |
| SDValue Incoming = Builder.getValue(V); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { |
| // This handles allocas as arguments to the statepoint |
| assert(Incoming.getValueType() == Builder.getFrameIndexTy() && |
| "Incoming value is a frame index!"); |
| Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), |
| Builder.getFrameIndexTy())); |
| } |
| } |
| |
| // Record computed locations for all lowered values. |
| // This can not be embedded in lowering loops as we need to record *all* |
| // values, while previous loops account only values with unique SDValues. |
| const Instruction *StatepointInstr = SI.StatepointInstr; |
| auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; |
| |
| for (const GCRelocateInst *Relocate : SI.GCRelocates) { |
| const Value *V = Relocate->getDerivedPtr(); |
| SDValue SDV = Builder.getValue(V); |
| SDValue Loc = Builder.StatepointLowering.getLocation(SDV); |
| |
| if (Loc.getNode()) { |
| SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); |
| } else { |
| // Record value as visited, but not spilled. This is case for allocas |
| // and constants. For this values we can avoid emitting spill load while |
| // visiting corresponding gc_relocate. |
| // Actually we do not need to record them in this map at all. |
| // We do this only to check that we are not relocating any unvisited |
| // value. |
| SpillMap.SlotMap[V] = None; |
| |
| // Default llvm mechanisms for exporting values which are used in |
| // different basic blocks does not work for gc relocates. |
| // Note that it would be incorrect to teach llvm that all relocates are |
| // uses of the corresponding values so that it would automatically |
| // export them. Relocates of the spilled values does not use original |
| // value. |
| if (Relocate->getParent() != StatepointInstr->getParent()) |
| Builder.ExportFromCurrentBlock(V); |
| } |
| } |
| } |
| |
| SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( |
| SelectionDAGBuilder::StatepointLoweringInfo &SI) { |
| // The basic scheme here is that information about both the original call and |
| // the safepoint is encoded in the CallInst. We create a temporary call and |
| // lower it, then reverse engineer the calling sequence. |
| |
| NumOfStatepoints++; |
| // Clear state |
| StatepointLowering.startNewStatepoint(*this); |
| |
| #ifndef NDEBUG |
| // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ |
| // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. |
| for (auto *Reloc : SI.GCRelocates) |
| if (Reloc->getParent() == SI.StatepointInstr->getParent()) |
| StatepointLowering.scheduleRelocCall(*Reloc); |
| #endif |
| |
| // Remove any redundant llvm::Values which map to the same SDValue as another |
| // input. Also has the effect of removing duplicates in the original |
| // llvm::Value input list as well. This is a useful optimization for |
| // reducing the size of the StackMap section. It has no other impact. |
| removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, |
| FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); |
| assert(SI.Bases.size() == SI.Ptrs.size() && |
| SI.Ptrs.size() == SI.GCRelocates.size()); |
| |
| // Lower statepoint vmstate and gcstate arguments |
| SmallVector<SDValue, 10> LoweredMetaArgs; |
| lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); |
| |
| // Now that we've emitted the spills, we need to update the root so that the |
| // call sequence is ordered correctly. |
| SI.CLI.setChain(getRoot()); |
| |
| // Get call node, we will replace it later with statepoint |
| SDValue ReturnVal; |
| SDNode *CallNode; |
| std::tie(ReturnVal, CallNode) = |
| lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); |
| |
| // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END |
| // nodes with all the appropriate arguments and return values. |
| |
| // Call Node: Chain, Target, {Args}, RegMask, [Glue] |
| SDValue Chain = CallNode->getOperand(0); |
| |
| SDValue Glue; |
| bool CallHasIncomingGlue = CallNode->getGluedNode(); |
| if (CallHasIncomingGlue) { |
| // Glue is always last operand |
| Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); |
| } |
| |
| // Build the GC_TRANSITION_START node if necessary. |
| // |
| // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the |
| // order in which they appear in the call to the statepoint intrinsic. If |
| // any of the operands is a pointer-typed, that operand is immediately |
| // followed by a SRCVALUE for the pointer that may be used during lowering |
| // (e.g. to form MachinePointerInfo values for loads/stores). |
| const bool IsGCTransition = |
| (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == |
| (uint64_t)StatepointFlags::GCTransition; |
| if (IsGCTransition) { |
| SmallVector<SDValue, 8> TSOps; |
| |
| // Add chain |
| TSOps.push_back(Chain); |
| |
| // Add GC transition arguments |
| for (const Value *V : SI.GCTransitionArgs) { |
| TSOps.push_back(getValue(V)); |
| if (V->getType()->isPointerTy()) |
| TSOps.push_back(DAG.getSrcValue(V)); |
| } |
| |
| // Add glue if necessary |
| if (CallHasIncomingGlue) |
| TSOps.push_back(Glue); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| SDValue GCTransitionStart = |
| DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); |
| |
| Chain = GCTransitionStart.getValue(0); |
| Glue = GCTransitionStart.getValue(1); |
| } |
| |
| // TODO: Currently, all of these operands are being marked as read/write in |
| // PrologEpilougeInserter.cpp, we should special case the VMState arguments |
| // and flags to be read-only. |
| SmallVector<SDValue, 40> Ops; |
| |
| // Add the <id> and <numBytes> constants. |
| Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); |
| Ops.push_back( |
| DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); |
| |
| // Calculate and push starting position of vmstate arguments |
| // Get number of arguments incoming directly into call node |
| unsigned NumCallRegArgs = |
| CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); |
| Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); |
| |
| // Add call target |
| SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); |
| Ops.push_back(CallTarget); |
| |
| // Add call arguments |
| // Get position of register mask in the call |
| SDNode::op_iterator RegMaskIt; |
| if (CallHasIncomingGlue) |
| RegMaskIt = CallNode->op_end() - 2; |
| else |
| RegMaskIt = CallNode->op_end() - 1; |
| Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); |
| |
| // Add a constant argument for the calling convention |
| pushStackMapConstant(Ops, *this, SI.CLI.CallConv); |
| |
| // Add a constant argument for the flags |
| uint64_t Flags = SI.StatepointFlags; |
| assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && |
| "Unknown flag used"); |
| pushStackMapConstant(Ops, *this, Flags); |
| |
| // Insert all vmstate and gcstate arguments |
| Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); |
| |
| // Add register mask from call node |
| Ops.push_back(*RegMaskIt); |
| |
| // Add chain |
| Ops.push_back(Chain); |
| |
| // Same for the glue, but we add it only if original call had it |
| if (Glue.getNode()) |
| Ops.push_back(Glue); |
| |
| // Compute return values. Provide a glue output since we consume one as |
| // input. This allows someone else to chain off us as needed. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| SDNode *StatepointMCNode = |
| DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); |
| |
| SDNode *SinkNode = StatepointMCNode; |
| |
| // Build the GC_TRANSITION_END node if necessary. |
| // |
| // See the comment above regarding GC_TRANSITION_START for the layout of |
| // the operands to the GC_TRANSITION_END node. |
| if (IsGCTransition) { |
| SmallVector<SDValue, 8> TEOps; |
| |
| // Add chain |
| TEOps.push_back(SDValue(StatepointMCNode, 0)); |
| |
| // Add GC transition arguments |
| for (const Value *V : SI.GCTransitionArgs) { |
| TEOps.push_back(getValue(V)); |
| if (V->getType()->isPointerTy()) |
| TEOps.push_back(DAG.getSrcValue(V)); |
| } |
| |
| // Add glue |
| TEOps.push_back(SDValue(StatepointMCNode, 1)); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| SDValue GCTransitionStart = |
| DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); |
| |
| SinkNode = GCTransitionStart.getNode(); |
| } |
| |
| // Replace original call |
| DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root |
| // Remove original call node |
| DAG.DeleteNode(CallNode); |
| |
| // DON'T set the root - under the assumption that it's already set past the |
| // inserted node we created. |
| |
| // TODO: A better future implementation would be to emit a single variable |
| // argument, variable return value STATEPOINT node here and then hookup the |
| // return value of each gc.relocate to the respective output of the |
| // previously emitted STATEPOINT value. Unfortunately, this doesn't appear |
| // to actually be possible today. |
| |
| return ReturnVal; |
| } |
| |
| void |
| SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, |
| const BasicBlock *EHPadBB /*= nullptr*/) { |
| assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && |
| "anyregcc is not supported on statepoints!"); |
| |
| #ifndef NDEBUG |
| // If this is a malformed statepoint, report it early to simplify debugging. |
| // This should catch any IR level mistake that's made when constructing or |
| // transforming statepoints. |
| ISP.verify(); |
| |
| // Check that the associated GCStrategy expects to encounter statepoints. |
| assert(GFI->getStrategy().useStatepoints() && |
| "GCStrategy does not expect to encounter statepoints"); |
| #endif |
| |
| SDValue ActualCallee; |
| |
| if (ISP.getNumPatchBytes() > 0) { |
| // If we've been asked to emit a nop sequence instead of a call instruction |
| // for this statepoint then don't lower the call target, but use a constant |
| // `null` instead. Not lowering the call target lets statepoint clients get |
| // away without providing a physical address for the symbolic call target at |
| // link time. |
| |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| const auto &DL = DAG.getDataLayout(); |
| |
| unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); |
| ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); |
| } else { |
| ActualCallee = getValue(ISP.getCalledValue()); |
| } |
| |
| StatepointLoweringInfo SI(DAG); |
| populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), |
| ImmutableStatepoint::CallArgsBeginPos, |
| ISP.getNumCallArgs(), ActualCallee, |
| ISP.getActualReturnType(), false /* IsPatchPoint */); |
| |
| for (const GCRelocateInst *Relocate : ISP.getRelocates()) { |
| SI.GCRelocates.push_back(Relocate); |
| SI.Bases.push_back(Relocate->getBasePtr()); |
| SI.Ptrs.push_back(Relocate->getDerivedPtr()); |
| } |
| |
| SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); |
| SI.StatepointInstr = ISP.getInstruction(); |
| SI.GCTransitionArgs = |
| ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); |
| SI.ID = ISP.getID(); |
| SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); |
| SI.StatepointFlags = ISP.getFlags(); |
| SI.NumPatchBytes = ISP.getNumPatchBytes(); |
| SI.EHPadBB = EHPadBB; |
| |
| SDValue ReturnValue = LowerAsSTATEPOINT(SI); |
| |
| // Export the result value if needed |
| const GCResultInst *GCResult = ISP.getGCResult(); |
| Type *RetTy = ISP.getActualReturnType(); |
| if (!RetTy->isVoidTy() && GCResult) { |
| if (GCResult->getParent() != ISP.getCallSite().getParent()) { |
| // Result value will be used in a different basic block so we need to |
| // export it now. Default exporting mechanism will not work here because |
| // statepoint call has a different type than the actual call. It means |
| // that by default llvm will create export register of the wrong type |
| // (always i32 in our case). So instead we need to create export register |
| // with correct type manually. |
| // TODO: To eliminate this problem we can remove gc.result intrinsics |
| // completely and make statepoint call to return a tuple. |
| unsigned Reg = FuncInfo.CreateRegs(RetTy); |
| RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), |
| DAG.getDataLayout(), Reg, RetTy, |
| ISP.getCallSite().getCallingConv()); |
| SDValue Chain = DAG.getEntryNode(); |
| |
| RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); |
| PendingExports.push_back(Chain); |
| FuncInfo.ValueMap[ISP.getInstruction()] = Reg; |
| } else { |
| // Result value will be used in a same basic block. Don't export it or |
| // perform any explicit register copies. |
| // We'll replace the actuall call node shortly. gc_result will grab |
| // this value. |
| setValue(ISP.getInstruction(), ReturnValue); |
| } |
| } else { |
| // The token value is never used from here on, just generate a poison value |
| setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); |
| } |
| } |
| |
| void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( |
| ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, |
| bool VarArgDisallowed, bool ForceVoidReturnTy) { |
| StatepointLoweringInfo SI(DAG); |
| unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); |
| populateCallLoweringInfo( |
| SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, |
| ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), |
| false); |
| if (!VarArgDisallowed) |
| SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); |
| |
| auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); |
| |
| unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; |
| |
| auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); |
| SI.ID = SD.StatepointID.getValueOr(DefaultID); |
| SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); |
| |
| SI.DeoptState = |
| ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); |
| SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); |
| SI.EHPadBB = EHPadBB; |
| |
| // NB! The GC arguments are deliberately left empty. |
| |
| if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { |
| const Instruction *Inst = CS.getInstruction(); |
| ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); |
| setValue(Inst, ReturnVal); |
| } |
| } |
| |
| void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( |
| ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { |
| LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, |
| /* VarArgDisallowed = */ false, |
| /* ForceVoidReturnTy = */ false); |
| } |
| |
| void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { |
| // The result value of the gc_result is simply the result of the actual |
| // call. We've already emitted this, so just grab the value. |
| const Instruction *I = CI.getStatepoint(); |
| |
| if (I->getParent() != CI.getParent()) { |
| // Statepoint is in different basic block so we should have stored call |
| // result in a virtual register. |
| // We can not use default getValue() functionality to copy value from this |
| // register because statepoint and actual call return types can be |
| // different, and getValue() will use CopyFromReg of the wrong type, |
| // which is always i32 in our case. |
| PointerType *CalleeType = cast<PointerType>( |
| ImmutableStatepoint(I).getCalledValue()->getType()); |
| Type *RetTy = |
| cast<FunctionType>(CalleeType->getElementType())->getReturnType(); |
| SDValue CopyFromReg = getCopyFromRegs(I, RetTy); |
| |
| assert(CopyFromReg.getNode()); |
| setValue(&CI, CopyFromReg); |
| } else { |
| setValue(&CI, getValue(I)); |
| } |
| } |
| |
| void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { |
| #ifndef NDEBUG |
| // Consistency check |
| // We skip this check for relocates not in the same basic block as their |
| // statepoint. It would be too expensive to preserve validation info through |
| // different basic blocks. |
| if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) |
| StatepointLowering.relocCallVisited(Relocate); |
| |
| auto *Ty = Relocate.getType()->getScalarType(); |
| if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) |
| assert(*IsManaged && "Non gc managed pointer relocated!"); |
| #endif |
| |
| const Value *DerivedPtr = Relocate.getDerivedPtr(); |
| SDValue SD = getValue(DerivedPtr); |
| |
| auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; |
| auto SlotIt = SpillMap.find(DerivedPtr); |
| assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); |
| Optional<int> DerivedPtrLocation = SlotIt->second; |
| |
| // We didn't need to spill these special cases (constants and allocas). |
| // See the handling in spillIncomingValueForStatepoint for detail. |
| if (!DerivedPtrLocation) { |
| setValue(&Relocate, SD); |
| return; |
| } |
| |
| SDValue SpillSlot = |
| DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); |
| |
| // Be conservative: flush all pending loads |
| // TODO: Probably we can be less restrictive on this, |
| // it may allow more scheduling opportunities. |
| SDValue Chain = getRoot(); |
| |
| SDValue SpillLoad = |
| DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| Relocate.getType()), |
| getCurSDLoc(), Chain, SpillSlot, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), |
| *DerivedPtrLocation)); |
| |
| // Again, be conservative, don't emit pending loads |
| DAG.setRoot(SpillLoad.getValue(1)); |
| |
| assert(SpillLoad.getNode()); |
| setValue(&Relocate, SpillLoad); |
| } |
| |
| void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| // We don't lower calls to __llvm_deoptimize as varargs, but as a regular |
| // call. We also do not lower the return value to any virtual register, and |
| // change the immediately following return to a trap instruction. |
| LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, |
| /* VarArgDisallowed = */ true, |
| /* ForceVoidReturnTy = */ true); |
| } |
| |
| void SelectionDAGBuilder::LowerDeoptimizingReturn() { |
| // We do not lower the return value from llvm.deoptimize to any virtual |
| // register, and change the immediately following return to a trap |
| // instruction. |
| if (DAG.getTarget().Options.TrapUnreachable) |
| DAG.setRoot( |
| DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); |
| } |