| //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAG class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "SDNodeDbgValue.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Mutex.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <limits> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the |
| /// specified members. |
| static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { |
| SDVTList Res = {VTs, NumVTs}; |
| return Res; |
| } |
| |
| // Default null implementations of the callbacks. |
| void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} |
| void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} |
| |
| #define DEBUG_TYPE "selectiondag" |
| |
| static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", |
| cl::Hidden, cl::init(true), |
| cl::desc("Gang up loads and stores generated by inlining of memcpy")); |
| |
| static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", |
| cl::desc("Number limit for gluing ld/st of memcpy."), |
| cl::Hidden, cl::init(0)); |
| |
| static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { |
| LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFPSDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { |
| return getValueAPF().bitwiseIsEqual(V); |
| } |
| |
| bool ConstantFPSDNode::isValueValidForType(EVT VT, |
| const APFloat& Val) { |
| assert(VT.isFloatingPoint() && "Can only convert between FP types"); |
| |
| // convert modifies in place, so make a copy. |
| APFloat Val2 = APFloat(Val); |
| bool losesInfo; |
| (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, |
| &losesInfo); |
| return !losesInfo; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ISD Namespace |
| //===----------------------------------------------------------------------===// |
| |
| bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { |
| auto *BV = dyn_cast<BuildVectorSDNode>(N); |
| if (!BV) |
| return false; |
| |
| APInt SplatUndef; |
| unsigned SplatBitSize; |
| bool HasUndefs; |
| unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); |
| return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, |
| EltSize) && |
| EltSize == SplatBitSize; |
| } |
| |
| // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be |
| // specializations of the more general isConstantSplatVector()? |
| |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) { |
| // Look through a bit convert. |
| while (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).isUndef()) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. We have to be a bit careful here, as the type of the constant |
| // may not be the same as the type of the vector elements due to type |
| // legalization (the elements are promoted to a legal type for the target and |
| // a vector of a type may be legal when the base element type is not). |
| // We only want to check enough bits to cover the vector elements, because |
| // we care if the resultant vector is all ones, not whether the individual |
| // constants are. |
| SDValue NotZero = N->getOperand(i); |
| unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { |
| if (CN->getAPIntValue().countTrailingOnes() < EltSize) |
| return false; |
| } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { |
| if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. Even with the above element type twiddling, this should be OK, as |
| // the same type legalization should have applied to all the elements. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) |
| return false; |
| return true; |
| } |
| |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) { |
| // Look through a bit convert. |
| while (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| bool IsAllUndef = true; |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| IsAllUndef = false; |
| // Do not accept build_vectors that aren't all constants or which have non-0 |
| // elements. We have to be a bit careful here, as the type of the constant |
| // may not be the same as the type of the vector elements due to type |
| // legalization (the elements are promoted to a legal type for the target |
| // and a vector of a type may be legal when the base element type is not). |
| // We only want to check enough bits to cover the vector elements, because |
| // we care if the resultant vector is all zeros, not whether the individual |
| // constants are. |
| unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { |
| if (CN->getAPIntValue().countTrailingZeros() < EltSize) |
| return false; |
| } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { |
| if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) |
| return false; |
| } else |
| return false; |
| } |
| |
| // Do not accept an all-undef vector. |
| if (IsAllUndef) |
| return false; |
| return true; |
| } |
| |
| bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| if (!isa<ConstantSDNode>(Op)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| if (!isa<ConstantFPSDNode>(Op)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ISD::allOperandsUndef(const SDNode *N) { |
| // Return false if the node has no operands. |
| // This is "logically inconsistent" with the definition of "all" but |
| // is probably the desired behavior. |
| if (N->getNumOperands() == 0) |
| return false; |
| |
| for (const SDValue &Op : N->op_values()) |
| if (!Op.isUndef()) |
| return false; |
| |
| return true; |
| } |
| |
| bool ISD::matchUnaryPredicate(SDValue Op, |
| std::function<bool(ConstantSDNode *)> Match) { |
| if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) |
| return Match(Cst); |
| |
| if (ISD::BUILD_VECTOR != Op.getOpcode()) |
| return false; |
| |
| EVT SVT = Op.getValueType().getScalarType(); |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); |
| if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ISD::matchBinaryPredicate( |
| SDValue LHS, SDValue RHS, |
| std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) { |
| if (LHS.getValueType() != RHS.getValueType()) |
| return false; |
| |
| if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) |
| if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) |
| return Match(LHSCst, RHSCst); |
| |
| if (ISD::BUILD_VECTOR != LHS.getOpcode() || |
| ISD::BUILD_VECTOR != RHS.getOpcode()) |
| return false; |
| |
| EVT SVT = LHS.getValueType().getScalarType(); |
| for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { |
| auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i)); |
| auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i)); |
| if (!LHSCst || !RHSCst) |
| return false; |
| if (LHSCst->getValueType(0) != SVT || |
| LHSCst->getValueType(0) != RHSCst->getValueType(0)) |
| return false; |
| if (!Match(LHSCst, RHSCst)) |
| return false; |
| } |
| return true; |
| } |
| |
| ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { |
| switch (ExtType) { |
| case ISD::EXTLOAD: |
| return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; |
| case ISD::SEXTLOAD: |
| return ISD::SIGN_EXTEND; |
| case ISD::ZEXTLOAD: |
| return ISD::ZERO_EXTEND; |
| default: |
| break; |
| } |
| |
| llvm_unreachable("Invalid LoadExtType"); |
| } |
| |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { |
| // To perform this operation, we just need to swap the L and G bits of the |
| // operation. |
| unsigned OldL = (Operation >> 2) & 1; |
| unsigned OldG = (Operation >> 1) & 1; |
| return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits |
| (OldL << 1) | // New G bit |
| (OldG << 2)); // New L bit. |
| } |
| |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { |
| unsigned Operation = Op; |
| if (isInteger) |
| Operation ^= 7; // Flip L, G, E bits, but not U. |
| else |
| Operation ^= 15; // Flip all of the condition bits. |
| |
| if (Operation > ISD::SETTRUE2) |
| Operation &= ~8; // Don't let N and U bits get set. |
| |
| return ISD::CondCode(Operation); |
| } |
| |
| /// For an integer comparison, return 1 if the comparison is a signed operation |
| /// and 2 if the result is an unsigned comparison. Return zero if the operation |
| /// does not depend on the sign of the input (setne and seteq). |
| static int isSignedOp(ISD::CondCode Opcode) { |
| switch (Opcode) { |
| default: llvm_unreachable("Illegal integer setcc operation!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: return 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: return 1; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: return 2; |
| } |
| } |
| |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool IsInteger) { |
| if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed integer setcc with an unsigned integer setcc. |
| return ISD::SETCC_INVALID; |
| |
| unsigned Op = Op1 | Op2; // Combine all of the condition bits. |
| |
| // If the N and U bits get set, then the resultant comparison DOES suddenly |
| // care about orderedness, and it is true when ordered. |
| if (Op > ISD::SETTRUE2) |
| Op &= ~16; // Clear the U bit if the N bit is set. |
| |
| // Canonicalize illegal integer setcc's. |
| if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT |
| Op = ISD::SETNE; |
| |
| return ISD::CondCode(Op); |
| } |
| |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool IsInteger) { |
| if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed setcc with an unsigned setcc. |
| return ISD::SETCC_INVALID; |
| |
| // Combine all of the condition bits. |
| ISD::CondCode Result = ISD::CondCode(Op1 & Op2); |
| |
| // Canonicalize illegal integer setcc's. |
| if (IsInteger) { |
| switch (Result) { |
| default: break; |
| case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT |
| case ISD::SETOEQ: // SETEQ & SETU[LG]E |
| case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE |
| case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE |
| case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE |
| } |
| } |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Profile Support |
| //===----------------------------------------------------------------------===// |
| |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data. |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { |
| ID.AddInteger(OpC); |
| } |
| |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them |
| /// solely with their pointer. |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { |
| ID.AddPointer(VTList.VTs); |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| ArrayRef<SDValue> Ops) { |
| for (auto& Op : Ops) { |
| ID.AddPointer(Op.getNode()); |
| ID.AddInteger(Op.getResNo()); |
| } |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| ArrayRef<SDUse> Ops) { |
| for (auto& Op : Ops) { |
| ID.AddPointer(Op.getNode()); |
| ID.AddInteger(Op.getResNo()); |
| } |
| } |
| |
| static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, |
| SDVTList VTList, ArrayRef<SDValue> OpList) { |
| AddNodeIDOpcode(ID, OpC); |
| AddNodeIDValueTypes(ID, VTList); |
| AddNodeIDOperands(ID, OpList); |
| } |
| |
| /// If this is an SDNode with special info, add this info to the NodeID data. |
| static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::TargetExternalSymbol: |
| case ISD::ExternalSymbol: |
| case ISD::MCSymbol: |
| llvm_unreachable("Should only be used on nodes with operands"); |
| default: break; // Normal nodes don't need extra info. |
| case ISD::TargetConstant: |
| case ISD::Constant: { |
| const ConstantSDNode *C = cast<ConstantSDNode>(N); |
| ID.AddPointer(C->getConstantIntValue()); |
| ID.AddBoolean(C->isOpaque()); |
| break; |
| } |
| case ISD::TargetConstantFP: |
| case ISD::ConstantFP: |
| ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); |
| break; |
| case ISD::TargetGlobalAddress: |
| case ISD::GlobalAddress: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::GlobalTLSAddress: { |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| ID.AddPointer(GA->getGlobal()); |
| ID.AddInteger(GA->getOffset()); |
| ID.AddInteger(GA->getTargetFlags()); |
| break; |
| } |
| case ISD::BasicBlock: |
| ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); |
| break; |
| case ISD::Register: |
| ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); |
| break; |
| case ISD::RegisterMask: |
| ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); |
| break; |
| case ISD::SRCVALUE: |
| ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); |
| break; |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::JumpTable: |
| case ISD::TargetJumpTable: |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); |
| break; |
| case ISD::ConstantPool: |
| case ISD::TargetConstantPool: { |
| const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); |
| ID.AddInteger(CP->getAlignment()); |
| ID.AddInteger(CP->getOffset()); |
| if (CP->isMachineConstantPoolEntry()) |
| CP->getMachineCPVal()->addSelectionDAGCSEId(ID); |
| else |
| ID.AddPointer(CP->getConstVal()); |
| ID.AddInteger(CP->getTargetFlags()); |
| break; |
| } |
| case ISD::TargetIndex: { |
| const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); |
| ID.AddInteger(TI->getIndex()); |
| ID.AddInteger(TI->getOffset()); |
| ID.AddInteger(TI->getTargetFlags()); |
| break; |
| } |
| case ISD::LOAD: { |
| const LoadSDNode *LD = cast<LoadSDNode>(N); |
| ID.AddInteger(LD->getMemoryVT().getRawBits()); |
| ID.AddInteger(LD->getRawSubclassData()); |
| ID.AddInteger(LD->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::STORE: { |
| const StoreSDNode *ST = cast<StoreSDNode>(N); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawSubclassData()); |
| ID.AddInteger(ST->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MLOAD: { |
| const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); |
| ID.AddInteger(MLD->getMemoryVT().getRawBits()); |
| ID.AddInteger(MLD->getRawSubclassData()); |
| ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MSTORE: { |
| const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); |
| ID.AddInteger(MST->getMemoryVT().getRawBits()); |
| ID.AddInteger(MST->getRawSubclassData()); |
| ID.AddInteger(MST->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MGATHER: { |
| const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); |
| ID.AddInteger(MG->getMemoryVT().getRawBits()); |
| ID.AddInteger(MG->getRawSubclassData()); |
| ID.AddInteger(MG->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MSCATTER: { |
| const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); |
| ID.AddInteger(MS->getMemoryVT().getRawBits()); |
| ID.AddInteger(MS->getRawSubclassData()); |
| ID.AddInteger(MS->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP: |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_CLR: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_LOAD: |
| case ISD::ATOMIC_STORE: { |
| const AtomicSDNode *AT = cast<AtomicSDNode>(N); |
| ID.AddInteger(AT->getMemoryVT().getRawBits()); |
| ID.AddInteger(AT->getRawSubclassData()); |
| ID.AddInteger(AT->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::PREFETCH: { |
| const MemSDNode *PF = cast<MemSDNode>(N); |
| ID.AddInteger(PF->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); |
| i != e; ++i) |
| ID.AddInteger(SVN->getMaskElt(i)); |
| break; |
| } |
| case ISD::TargetBlockAddress: |
| case ISD::BlockAddress: { |
| const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); |
| ID.AddPointer(BA->getBlockAddress()); |
| ID.AddInteger(BA->getOffset()); |
| ID.AddInteger(BA->getTargetFlags()); |
| break; |
| } |
| } // end switch (N->getOpcode()) |
| |
| // Target specific memory nodes could also have address spaces to check. |
| if (N->isTargetMemoryOpcode()) |
| ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); |
| } |
| |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID |
| /// data. |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { |
| AddNodeIDOpcode(ID, N->getOpcode()); |
| // Add the return value info. |
| AddNodeIDValueTypes(ID, N->getVTList()); |
| // Add the operand info. |
| AddNodeIDOperands(ID, N->ops()); |
| |
| // Handle SDNode leafs with special info. |
| AddNodeIDCustom(ID, N); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG Class |
| //===----------------------------------------------------------------------===// |
| |
| /// doNotCSE - Return true if CSE should not be performed for this node. |
| static bool doNotCSE(SDNode *N) { |
| if (N->getValueType(0) == MVT::Glue) |
| return true; // Never CSE anything that produces a flag. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::HANDLENODE: |
| case ISD::EH_LABEL: |
| return true; // Never CSE these nodes. |
| } |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Glue) |
| return true; // Never CSE anything that produces a flag. |
| |
| return false; |
| } |
| |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the |
| /// SelectionDAG. |
| void SelectionDAG::RemoveDeadNodes() { |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted. |
| HandleSDNode Dummy(getRoot()); |
| |
| SmallVector<SDNode*, 128> DeadNodes; |
| |
| // Add all obviously-dead nodes to the DeadNodes worklist. |
| for (SDNode &Node : allnodes()) |
| if (Node.use_empty()) |
| DeadNodes.push_back(&Node); |
| |
| RemoveDeadNodes(DeadNodes); |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| setRoot(Dummy.getValue()); |
| } |
| |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the |
| /// given list, and any nodes that become unreachable as a result. |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { |
| |
| // Process the worklist, deleting the nodes and adding their uses to the |
| // worklist. |
| while (!DeadNodes.empty()) { |
| SDNode *N = DeadNodes.pop_back_val(); |
| // Skip to next node if we've already managed to delete the node. This could |
| // happen if replacing a node causes a node previously added to the node to |
| // be deleted. |
| if (N->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeDeleted(N, nullptr); |
| |
| // Take the node out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| SDNode *Operand = Use.getNode(); |
| Use.set(SDValue()); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| if (Operand->use_empty()) |
| DeadNodes.push_back(Operand); |
| } |
| |
| DeallocateNode(N); |
| } |
| } |
| |
| void SelectionDAG::RemoveDeadNode(SDNode *N){ |
| SmallVector<SDNode*, 16> DeadNodes(1, N); |
| |
| // Create a dummy node that adds a reference to the root node, preventing |
| // it from being deleted. (This matters if the root is an operand of the |
| // dead node.) |
| HandleSDNode Dummy(getRoot()); |
| |
| RemoveDeadNodes(DeadNodes); |
| } |
| |
| void SelectionDAG::DeleteNode(SDNode *N) { |
| // First take this out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Finally, remove uses due to operands of this node, remove from the |
| // AllNodes list, and delete the node. |
| DeleteNodeNotInCSEMaps(N); |
| } |
| |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { |
| assert(N->getIterator() != AllNodes.begin() && |
| "Cannot delete the entry node!"); |
| assert(N->use_empty() && "Cannot delete a node that is not dead!"); |
| |
| // Drop all of the operands and decrement used node's use counts. |
| N->DropOperands(); |
| |
| DeallocateNode(N); |
| } |
| |
| void SDDbgInfo::erase(const SDNode *Node) { |
| DbgValMapType::iterator I = DbgValMap.find(Node); |
| if (I == DbgValMap.end()) |
| return; |
| for (auto &Val: I->second) |
| Val->setIsInvalidated(); |
| DbgValMap.erase(I); |
| } |
| |
| void SelectionDAG::DeallocateNode(SDNode *N) { |
| // If we have operands, deallocate them. |
| removeOperands(N); |
| |
| NodeAllocator.Deallocate(AllNodes.remove(N)); |
| |
| // Set the opcode to DELETED_NODE to help catch bugs when node |
| // memory is reallocated. |
| // FIXME: There are places in SDag that have grown a dependency on the opcode |
| // value in the released node. |
| __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); |
| N->NodeType = ISD::DELETED_NODE; |
| |
| // If any of the SDDbgValue nodes refer to this SDNode, invalidate |
| // them and forget about that node. |
| DbgInfo->erase(N); |
| } |
| |
| #ifndef NDEBUG |
| /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. |
| static void VerifySDNode(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::BUILD_PAIR: { |
| EVT VT = N->getValueType(0); |
| assert(N->getNumValues() == 1 && "Too many results!"); |
| assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && |
| "Wrong return type!"); |
| assert(N->getNumOperands() == 2 && "Wrong number of operands!"); |
| assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && |
| "Mismatched operand types!"); |
| assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && |
| "Wrong operand type!"); |
| assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && |
| "Wrong return type size"); |
| break; |
| } |
| case ISD::BUILD_VECTOR: { |
| assert(N->getNumValues() == 1 && "Too many results!"); |
| assert(N->getValueType(0).isVector() && "Wrong return type!"); |
| assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && |
| "Wrong number of operands!"); |
| EVT EltVT = N->getValueType(0).getVectorElementType(); |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| assert((I->getValueType() == EltVT || |
| (EltVT.isInteger() && I->getValueType().isInteger() && |
| EltVT.bitsLE(I->getValueType()))) && |
| "Wrong operand type!"); |
| assert(I->getValueType() == N->getOperand(0).getValueType() && |
| "Operands must all have the same type"); |
| } |
| break; |
| } |
| } |
| } |
| #endif // NDEBUG |
| |
| /// Insert a newly allocated node into the DAG. |
| /// |
| /// Handles insertion into the all nodes list and CSE map, as well as |
| /// verification and other common operations when a new node is allocated. |
| void SelectionDAG::InsertNode(SDNode *N) { |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| N->PersistentId = NextPersistentId++; |
| VerifySDNode(N); |
| #endif |
| } |
| |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that |
| /// correspond to it. This is useful when we're about to delete or repurpose |
| /// the node. We don't want future request for structurally identical nodes |
| /// to return N anymore. |
| bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { |
| bool Erased = false; |
| switch (N->getOpcode()) { |
| case ISD::HANDLENODE: return false; // noop. |
| case ISD::CONDCODE: |
| assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && |
| "Cond code doesn't exist!"); |
| Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; |
| CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; |
| break; |
| case ISD::ExternalSymbol: |
| Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::TargetExternalSymbol: { |
| ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); |
| Erased = TargetExternalSymbols.erase( |
| std::pair<std::string,unsigned char>(ESN->getSymbol(), |
| ESN->getTargetFlags())); |
| break; |
| } |
| case ISD::MCSymbol: { |
| auto *MCSN = cast<MCSymbolSDNode>(N); |
| Erased = MCSymbols.erase(MCSN->getMCSymbol()); |
| break; |
| } |
| case ISD::VALUETYPE: { |
| EVT VT = cast<VTSDNode>(N)->getVT(); |
| if (VT.isExtended()) { |
| Erased = ExtendedValueTypeNodes.erase(VT); |
| } else { |
| Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; |
| ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; |
| } |
| break; |
| } |
| default: |
| // Remove it from the CSE Map. |
| assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); |
| assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); |
| Erased = CSEMap.RemoveNode(N); |
| break; |
| } |
| #ifndef NDEBUG |
| // Verify that the node was actually in one of the CSE maps, unless it has a |
| // flag result (which cannot be CSE'd) or is one of the special cases that are |
| // not subject to CSE. |
| if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && |
| !N->isMachineOpcode() && !doNotCSE(N)) { |
| N->dump(this); |
| dbgs() << "\n"; |
| llvm_unreachable("Node is not in map!"); |
| } |
| #endif |
| return Erased; |
| } |
| |
| /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE |
| /// maps and modified in place. Add it back to the CSE maps, unless an identical |
| /// node already exists, in which case transfer all its users to the existing |
| /// node. This transfer can potentially trigger recursive merging. |
| void |
| SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { |
| // For node types that aren't CSE'd, just act as if no identical node |
| // already exists. |
| if (!doNotCSE(N)) { |
| SDNode *Existing = CSEMap.GetOrInsertNode(N); |
| if (Existing != N) { |
| // If there was already an existing matching node, use ReplaceAllUsesWith |
| // to replace the dead one with the existing one. This can cause |
| // recursive merging of other unrelated nodes down the line. |
| ReplaceAllUsesWith(N, Existing); |
| |
| // N is now dead. Inform the listeners and delete it. |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeDeleted(N, Existing); |
| DeleteNodeNotInCSEMaps(N); |
| return; |
| } |
| } |
| |
| // If the node doesn't already exist, we updated it. Inform listeners. |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeUpdated(N); |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return nullptr; |
| |
| SDValue Ops[] = { Op }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); |
| if (Node) |
| Node->intersectFlagsWith(N->getFlags()); |
| return Node; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| SDValue Op1, SDValue Op2, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return nullptr; |
| |
| SDValue Ops[] = { Op1, Op2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); |
| if (Node) |
| Node->intersectFlagsWith(N->getFlags()); |
| return Node; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return nullptr; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); |
| if (Node) |
| Node->intersectFlagsWith(N->getFlags()); |
| return Node; |
| } |
| |
| unsigned SelectionDAG::getEVTAlignment(EVT VT) const { |
| Type *Ty = VT == MVT::iPTR ? |
| PointerType::get(Type::getInt8Ty(*getContext()), 0) : |
| VT.getTypeForEVT(*getContext()); |
| |
| return getDataLayout().getABITypeAlignment(Ty); |
| } |
| |
| // EntryNode could meaningfully have debug info if we can find it... |
| SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) |
| : TM(tm), OptLevel(OL), |
| EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), |
| Root(getEntryNode()) { |
| InsertNode(&EntryNode); |
| DbgInfo = new SDDbgInfo(); |
| } |
| |
| void SelectionDAG::init(MachineFunction &NewMF, |
| OptimizationRemarkEmitter &NewORE, |
| Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, |
| DivergenceAnalysis * Divergence) { |
| MF = &NewMF; |
| SDAGISelPass = PassPtr; |
| ORE = &NewORE; |
| TLI = getSubtarget().getTargetLowering(); |
| TSI = getSubtarget().getSelectionDAGInfo(); |
| LibInfo = LibraryInfo; |
| Context = &MF->getFunction().getContext(); |
| DA = Divergence; |
| } |
| |
| SelectionDAG::~SelectionDAG() { |
| assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); |
| allnodes_clear(); |
| OperandRecycler.clear(OperandAllocator); |
| delete DbgInfo; |
| } |
| |
| void SelectionDAG::allnodes_clear() { |
| assert(&*AllNodes.begin() == &EntryNode); |
| AllNodes.remove(AllNodes.begin()); |
| while (!AllNodes.empty()) |
| DeallocateNode(&AllNodes.front()); |
| #ifndef NDEBUG |
| NextPersistentId = 0; |
| #endif |
| } |
| |
| SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, |
| void *&InsertPos) { |
| SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| if (N) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::Constant: |
| case ISD::ConstantFP: |
| llvm_unreachable("Querying for Constant and ConstantFP nodes requires " |
| "debug location. Use another overload."); |
| } |
| } |
| return N; |
| } |
| |
| SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, |
| const SDLoc &DL, void *&InsertPos) { |
| SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| if (N) { |
| switch (N->getOpcode()) { |
| case ISD::Constant: |
| case ISD::ConstantFP: |
| // Erase debug location from the node if the node is used at several |
| // different places. Do not propagate one location to all uses as it |
| // will cause a worse single stepping debugging experience. |
| if (N->getDebugLoc() != DL.getDebugLoc()) |
| N->setDebugLoc(DebugLoc()); |
| break; |
| default: |
| // When the node's point of use is located earlier in the instruction |
| // sequence than its prior point of use, update its debug info to the |
| // earlier location. |
| if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) |
| N->setDebugLoc(DL.getDebugLoc()); |
| break; |
| } |
| } |
| return N; |
| } |
| |
| void SelectionDAG::clear() { |
| allnodes_clear(); |
| OperandRecycler.clear(OperandAllocator); |
| OperandAllocator.Reset(); |
| CSEMap.clear(); |
| |
| ExtendedValueTypeNodes.clear(); |
| ExternalSymbols.clear(); |
| TargetExternalSymbols.clear(); |
| MCSymbols.clear(); |
| std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), |
| static_cast<CondCodeSDNode*>(nullptr)); |
| std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), |
| static_cast<SDNode*>(nullptr)); |
| |
| EntryNode.UseList = nullptr; |
| InsertNode(&EntryNode); |
| Root = getEntryNode(); |
| DbgInfo->clear(); |
| } |
| |
| SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) |
| ? getNode(ISD::FP_EXTEND, DL, VT, Op) |
| : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); |
| } |
| |
| SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::ANY_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::SIGN_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::ZERO_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, |
| EVT OpVT) { |
| if (VT.bitsLE(Op.getValueType())) |
| return getNode(ISD::TRUNCATE, SL, VT, Op); |
| |
| TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); |
| return getNode(TLI->getExtendForContent(BType), SL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { |
| assert(!VT.isVector() && |
| "getZeroExtendInReg should use the vector element type instead of " |
| "the vector type!"); |
| if (Op.getValueType().getScalarType() == VT) return Op; |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| APInt Imm = APInt::getLowBitsSet(BitWidth, |
| VT.getSizeInBits()); |
| return getNode(ISD::AND, DL, Op.getValueType(), Op, |
| getConstant(Imm, DL, Op.getValueType())); |
| } |
| |
| SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, |
| EVT VT) { |
| assert(VT.isVector() && "This DAG node is restricted to vector types."); |
| assert(VT.getSizeInBits() == Op.getValueSizeInBits() && |
| "The sizes of the input and result must match in order to perform the " |
| "extend in-register."); |
| assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && |
| "The destination vector type must have fewer lanes than the input."); |
| return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, |
| EVT VT) { |
| assert(VT.isVector() && "This DAG node is restricted to vector types."); |
| assert(VT.getSizeInBits() == Op.getValueSizeInBits() && |
| "The sizes of the input and result must match in order to perform the " |
| "extend in-register."); |
| assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && |
| "The destination vector type must have fewer lanes than the input."); |
| return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, |
| EVT VT) { |
| assert(VT.isVector() && "This DAG node is restricted to vector types."); |
| assert(VT.getSizeInBits() == Op.getValueSizeInBits() && |
| "The sizes of the input and result must match in order to perform the " |
| "extend in-register."); |
| assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && |
| "The destination vector type must have fewer lanes than the input."); |
| return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); |
| } |
| |
| /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). |
| SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { |
| EVT EltVT = VT.getScalarType(); |
| SDValue NegOne = |
| getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); |
| return getNode(ISD::XOR, DL, VT, Val, NegOne); |
| } |
| |
| SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { |
| SDValue TrueValue = getBoolConstant(true, DL, VT, VT); |
| return getNode(ISD::XOR, DL, VT, Val, TrueValue); |
| } |
| |
| SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, |
| EVT OpVT) { |
| if (!V) |
| return getConstant(0, DL, VT); |
| |
| switch (TLI->getBooleanContents(OpVT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| case TargetLowering::UndefinedBooleanContent: |
| return getConstant(1, DL, VT); |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| return getAllOnesConstant(DL, VT); |
| } |
| llvm_unreachable("Unexpected boolean content enum!"); |
| } |
| |
| SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
| bool isT, bool isO) { |
| EVT EltVT = VT.getScalarType(); |
| assert((EltVT.getSizeInBits() >= 64 || |
| (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && |
| "getConstant with a uint64_t value that doesn't fit in the type!"); |
| return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); |
| } |
| |
| SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
| bool isT, bool isO) { |
| return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); |
| } |
| |
| SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, |
| EVT VT, bool isT, bool isO) { |
| assert(VT.isInteger() && "Cannot create FP integer constant!"); |
| |
| EVT EltVT = VT.getScalarType(); |
| const ConstantInt *Elt = &Val; |
| |
| // In some cases the vector type is legal but the element type is illegal and |
| // needs to be promoted, for example v8i8 on ARM. In this case, promote the |
| // inserted value (the type does not need to match the vector element type). |
| // Any extra bits introduced will be truncated away. |
| if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == |
| TargetLowering::TypePromoteInteger) { |
| EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); |
| APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); |
| Elt = ConstantInt::get(*getContext(), NewVal); |
| } |
| // In other cases the element type is illegal and needs to be expanded, for |
| // example v2i64 on MIPS32. In this case, find the nearest legal type, split |
| // the value into n parts and use a vector type with n-times the elements. |
| // Then bitcast to the type requested. |
| // Legalizing constants too early makes the DAGCombiner's job harder so we |
| // only legalize if the DAG tells us we must produce legal types. |
| else if (NewNodesMustHaveLegalTypes && VT.isVector() && |
| TLI->getTypeAction(*getContext(), EltVT) == |
| TargetLowering::TypeExpandInteger) { |
| const APInt &NewVal = Elt->getValue(); |
| EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); |
| unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); |
| unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; |
| EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); |
| |
| // Check the temporary vector is the correct size. If this fails then |
| // getTypeToTransformTo() probably returned a type whose size (in bits) |
| // isn't a power-of-2 factor of the requested type size. |
| assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| SmallVector<SDValue, 2> EltParts; |
| for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { |
| EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) |
| .zextOrTrunc(ViaEltSizeInBits), DL, |
| ViaEltVT, isT, isO)); |
| } |
| |
| // EltParts is currently in little endian order. If we actually want |
| // big-endian order then reverse it now. |
| if (getDataLayout().isBigEndian()) |
| std::reverse(EltParts.begin(), EltParts.end()); |
| |
| // The elements must be reversed when the element order is different |
| // to the endianness of the elements (because the BITCAST is itself a |
| // vector shuffle in this situation). However, we do not need any code to |
| // perform this reversal because getConstant() is producing a vector |
| // splat. |
| // This situation occurs in MIPS MSA. |
| |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) |
| Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); |
| |
| SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); |
| return V; |
| } |
| |
| assert(Elt->getBitWidth() == EltVT.getSizeInBits() && |
| "APInt size does not match type size!"); |
| unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), None); |
| ID.AddPointer(Elt); |
| ID.AddBoolean(isO); |
| void *IP = nullptr; |
| SDNode *N = nullptr; |
| if ((N = FindNodeOrInsertPos(ID, DL, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| |
| if (!N) { |
| N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) |
| Result = getSplatBuildVector(VT, DL, Result); |
| |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, |
| bool isTarget) { |
| return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); |
| } |
| |
| SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, |
| bool isTarget) { |
| return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); |
| } |
| |
| SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, |
| EVT VT, bool isTarget) { |
| assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); |
| |
| EVT EltVT = VT.getScalarType(); |
| |
| // Do the map lookup using the actual bit pattern for the floating point |
| // value, so that we don't have problems with 0.0 comparing equal to -0.0, and |
| // we don't have issues with SNANs. |
| unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), None); |
| ID.AddPointer(&V); |
| void *IP = nullptr; |
| SDNode *N = nullptr; |
| if ((N = FindNodeOrInsertPos(ID, DL, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| |
| if (!N) { |
| N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) |
| Result = getSplatBuildVector(VT, DL, Result); |
| NewSDValueDbgMsg(Result, "Creating fp constant: ", this); |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, |
| bool isTarget) { |
| EVT EltVT = VT.getScalarType(); |
| if (EltVT == MVT::f32) |
| return getConstantFP(APFloat((float)Val), DL, VT, isTarget); |
| else if (EltVT == MVT::f64) |
| return getConstantFP(APFloat(Val), DL, VT, isTarget); |
| else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || |
| EltVT == MVT::f16) { |
| bool Ignored; |
| APFloat APF = APFloat(Val); |
| APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, |
| &Ignored); |
| return getConstantFP(APF, DL, VT, isTarget); |
| } else |
| llvm_unreachable("Unsupported type in getConstantFP"); |
| } |
| |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, |
| EVT VT, int64_t Offset, bool isTargetGA, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTargetGA) && |
| "Cannot set target flags on target-independent globals"); |
| |
| // Truncate (with sign-extension) the offset value to the pointer size. |
| unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); |
| if (BitWidth < 64) |
| Offset = SignExtend64(Offset, BitWidth); |
| |
| unsigned Opc; |
| if (GV->isThreadLocal()) |
| Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; |
| else |
| Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddPointer(GV); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<GlobalAddressSDNode>( |
| Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(FI); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent jump tables"); |
| unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(JTI); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent globals"); |
| if (Alignment == 0) |
| Alignment = MF->getFunction().optForSize() |
| ? getDataLayout().getABITypeAlignment(C->getType()) |
| : getDataLayout().getPrefTypeAlignment(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| ID.AddPointer(C); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent globals"); |
| if (Alignment == 0) |
| Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| C->addSelectionDAGCSEId(ID); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, |
| unsigned char TargetFlags) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); |
| ID.AddInteger(Index); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); |
| ID.AddPointer(MBB); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<BasicBlockSDNode>(MBB); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getValueType(EVT VT) { |
| if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= |
| ValueTypeNodes.size()) |
| ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); |
| |
| SDNode *&N = VT.isExtended() ? |
| ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; |
| |
| if (N) return SDValue(N, 0); |
| N = newSDNode<VTSDNode>(VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { |
| SDNode *&N = ExternalSymbols[Sym]; |
| if (N) return SDValue(N, 0); |
| N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { |
| SDNode *&N = MCSymbols[Sym]; |
| if (N) |
| return SDValue(N, 0); |
| N = newSDNode<MCSymbolSDNode>(Sym, VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, |
| unsigned char TargetFlags) { |
| SDNode *&N = |
| TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, |
| TargetFlags)]; |
| if (N) return SDValue(N, 0); |
| N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { |
| if ((unsigned)Cond >= CondCodeNodes.size()) |
| CondCodeNodes.resize(Cond+1); |
| |
| if (!CondCodeNodes[Cond]) { |
| auto *N = newSDNode<CondCodeSDNode>(Cond); |
| CondCodeNodes[Cond] = N; |
| InsertNode(N); |
| } |
| |
| return SDValue(CondCodeNodes[Cond], 0); |
| } |
| |
| /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that |
| /// point at N1 to point at N2 and indices that point at N2 to point at N1. |
| static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { |
| std::swap(N1, N2); |
| ShuffleVectorSDNode::commuteMask(M); |
| } |
| |
| SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, |
| SDValue N2, ArrayRef<int> Mask) { |
| assert(VT.getVectorNumElements() == Mask.size() && |
| "Must have the same number of vector elements as mask elements!"); |
| assert(VT == N1.getValueType() && VT == N2.getValueType() && |
| "Invalid VECTOR_SHUFFLE"); |
| |
| // Canonicalize shuffle undef, undef -> undef |
| if (N1.isUndef() && N2.isUndef()) |
| return getUNDEF(VT); |
| |
| // Validate that all indices in Mask are within the range of the elements |
| // input to the shuffle. |
| int NElts = Mask.size(); |
| assert(llvm::all_of(Mask, |
| [&](int M) { return M < (NElts * 2) && M >= -1; }) && |
| "Index out of range"); |
| |
| // Copy the mask so we can do any needed cleanup. |
| SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); |
| |
| // Canonicalize shuffle v, v -> v, undef |
| if (N1 == N2) { |
| N2 = getUNDEF(VT); |
| for (int i = 0; i != NElts; ++i) |
| if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; |
| } |
| |
| // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. |
| if (N1.isUndef()) |
| commuteShuffle(N1, N2, MaskVec); |
| |
| if (TLI->hasVectorBlend()) { |
| // If shuffling a splat, try to blend the splat instead. We do this here so |
| // that even when this arises during lowering we don't have to re-handle it. |
| auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { |
| BitVector UndefElements; |
| SDValue Splat = BV->getSplatValue(&UndefElements); |
| if (!Splat) |
| return; |
| |
| for (int i = 0; i < NElts; ++i) { |
| if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) |
| continue; |
| |
| // If this input comes from undef, mark it as such. |
| if (UndefElements[MaskVec[i] - Offset]) { |
| MaskVec[i] = -1; |
| continue; |
| } |
| |
| // If we can blend a non-undef lane, use that instead. |
| if (!UndefElements[i]) |
| MaskVec[i] = i + Offset; |
| } |
| }; |
| if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) |
| BlendSplat(N1BV, 0); |
| if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) |
| BlendSplat(N2BV, NElts); |
| } |
| |
| // Canonicalize all index into lhs, -> shuffle lhs, undef |
| // Canonicalize all index into rhs, -> shuffle rhs, undef |
| bool AllLHS = true, AllRHS = true; |
| bool N2Undef = N2.isUndef(); |
| for (int i = 0; i != NElts; ++i) { |
| if (MaskVec[i] >= NElts) { |
| if (N2Undef) |
| MaskVec[i] = -1; |
| else |
| AllLHS = false; |
| } else if (MaskVec[i] >= 0) { |
| AllRHS = false; |
| } |
| } |
| if (AllLHS && AllRHS) |
| return getUNDEF(VT); |
| if (AllLHS && !N2Undef) |
| N2 = getUNDEF(VT); |
| if (AllRHS) { |
| N1 = getUNDEF(VT); |
| commuteShuffle(N1, N2, MaskVec); |
| } |
| // Reset our undef status after accounting for the mask. |
| N2Undef = N2.isUndef(); |
| // Re-check whether both sides ended up undef. |
| if (N1.isUndef() && N2Undef) |
| return getUNDEF(VT); |
| |
| // If Identity shuffle return that node. |
| bool Identity = true, AllSame = true; |
| for (int i = 0; i != NElts; ++i) { |
| if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; |
| if (MaskVec[i] != MaskVec[0]) AllSame = false; |
| } |
| if (Identity && NElts) |
| return N1; |
| |
| // Shuffling a constant splat doesn't change the result. |
| if (N2Undef) { |
| SDValue V = N1; |
| |
| // Look through any bitcasts. We check that these don't change the number |
| // (and size) of elements and just changes their types. |
| while (V.getOpcode() == ISD::BITCAST) |
| V = V->getOperand(0); |
| |
| // A splat should always show up as a build vector node. |
| if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { |
| BitVector UndefElements; |
| SDValue Splat = BV->getSplatValue(&UndefElements); |
| // If this is a splat of an undef, shuffling it is also undef. |
| if (Splat && Splat.isUndef()) |
| return getUNDEF(VT); |
| |
| bool SameNumElts = |
| V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); |
| |
| // We only have a splat which can skip shuffles if there is a splatted |
| // value and no undef lanes rearranged by the shuffle. |
| if (Splat && UndefElements.none()) { |
| // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the |
| // number of elements match or the value splatted is a zero constant. |
| if (SameNumElts) |
| return N1; |
| if (auto *C = dyn_cast<ConstantSDNode>(Splat)) |
| if (C->isNullValue()) |
| return N1; |
| } |
| |
| // If the shuffle itself creates a splat, build the vector directly. |
| if (AllSame && SameNumElts) { |
| EVT BuildVT = BV->getValueType(0); |
| const SDValue &Splatted = BV->getOperand(MaskVec[0]); |
| SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); |
| |
| // We may have jumped through bitcasts, so the type of the |
| // BUILD_VECTOR may not match the type of the shuffle. |
| if (BuildVT != VT) |
| NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); |
| return NewBV; |
| } |
| } |
| } |
| |
| FoldingSetNodeID ID; |
| SDValue Ops[2] = { N1, N2 }; |
| AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); |
| for (int i = 0; i != NElts; ++i) |
| ID.AddInteger(MaskVec[i]); |
| |
| void* IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) |
| return SDValue(E, 0); |
| |
| // Allocate the mask array for the node out of the BumpPtrAllocator, since |
| // SDNode doesn't have access to it. This memory will be "leaked" when |
| // the node is deallocated, but recovered when the NodeAllocator is released. |
| int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); |
| std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); |
| |
| auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), |
| dl.getDebugLoc(), MaskAlloc); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V = SDValue(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { |
| EVT VT = SV.getValueType(0); |
| SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); |
| ShuffleVectorSDNode::commuteMask(MaskVec); |
| |
| SDValue Op0 = SV.getOperand(0); |
| SDValue Op1 = SV.getOperand(1); |
| return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); |
| } |
| |
| SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); |
| ID.AddInteger(RegNo); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<RegisterSDNode>(RegNo, VT); |
| N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); |
| ID.AddPointer(RegMask); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<RegisterMaskSDNode>(RegMask); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, |
| MCSymbol *Label) { |
| return getLabelNode(ISD::EH_LABEL, dl, Root, Label); |
| } |
| |
| SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, |
| SDValue Root, MCSymbol *Label) { |
| FoldingSetNodeID ID; |
| SDValue Ops[] = { Root }; |
| AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); |
| ID.AddPointer(Label); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, |
| int64_t Offset, |
| bool isTarget, |
| unsigned char TargetFlags) { |
| unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddPointer(BA); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getSrcValue(const Value *V) { |
| assert((!V || V->getType()->isPointerTy()) && |
| "SrcValue is not a pointer?"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); |
| ID.AddPointer(V); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<SrcValueSDNode>(V); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getMDNode(const MDNode *MD) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); |
| ID.AddPointer(MD); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<MDNodeSDNode>(MD); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { |
| if (VT == V.getValueType()) |
| return V; |
| |
| return getNode(ISD::BITCAST, SDLoc(V), VT, V); |
| } |
| |
| SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, |
| unsigned SrcAS, unsigned DestAS) { |
| SDValue Ops[] = {Ptr}; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); |
| ID.AddInteger(SrcAS); |
| ID.AddInteger(DestAS); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), |
| VT, SrcAS, DestAS); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| /// getShiftAmountOperand - Return the specified value casted to |
| /// the target's desired shift amount type. |
| SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { |
| EVT OpTy = Op.getValueType(); |
| EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); |
| if (OpTy == ShTy || OpTy.isVector()) return Op; |
| |
| return getZExtOrTrunc(Op, SDLoc(Op), ShTy); |
| } |
| |
| SDValue SelectionDAG::expandVAArg(SDNode *Node) { |
| SDLoc dl(Node); |
| const TargetLowering &TLI = getTargetLoweringInfo(); |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| EVT VT = Node->getValueType(0); |
| SDValue Tmp1 = Node->getOperand(0); |
| SDValue Tmp2 = Node->getOperand(1); |
| unsigned Align = Node->getConstantOperandVal(3); |
| |
| SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, |
| Tmp2, MachinePointerInfo(V)); |
| SDValue VAList = VAListLoad; |
| |
| if (Align > TLI.getMinStackArgumentAlignment()) { |
| assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); |
| |
| VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, |
| getConstant(Align - 1, dl, VAList.getValueType())); |
| |
| VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, |
| getConstant(-(int64_t)Align, dl, VAList.getValueType())); |
| } |
| |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, |
| getConstant(getDataLayout().getTypeAllocSize( |
| VT.getTypeForEVT(*getContext())), |
| dl, VAList.getValueType())); |
| // Store the incremented VAList to the legalized pointer |
| Tmp1 = |
| getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); |
| // Load the actual argument out of the pointer VAList |
| return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); |
| } |
| |
| SDValue SelectionDAG::expandVACopy(SDNode *Node) { |
| SDLoc dl(Node); |
| const TargetLowering &TLI = getTargetLoweringInfo(); |
| // This defaults to loading a pointer from the input and storing it to the |
| // output, returning the chain. |
| const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); |
| const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); |
| SDValue Tmp1 = |
| getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), |
| Node->getOperand(2), MachinePointerInfo(VS)); |
| return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), |
| MachinePointerInfo(VD)); |
| } |
| |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { |
| MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); |
| unsigned ByteSize = VT.getStoreSize(); |
| Type *Ty = VT.getTypeForEVT(*getContext()); |
| unsigned StackAlign = |
| std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); |
| |
| int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); |
| return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); |
| } |
| |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { |
| unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); |
| Type *Ty1 = VT1.getTypeForEVT(*getContext()); |
| Type *Ty2 = VT2.getTypeForEVT(*getContext()); |
| const DataLayout &DL = getDataLayout(); |
| unsigned Align = |
| std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); |
| |
| MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); |
| int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); |
| return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); |
| } |
| |
| SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, |
| ISD::CondCode Cond, const SDLoc &dl) { |
| EVT OpVT = N1.getValueType(); |
| |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); |
| |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETO: |
| case ISD::SETUO: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); |
| break; |
| } |
| |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { |
| const APInt &C2 = N2C->getAPIntValue(); |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| switch (Cond) { |
| default: llvm_unreachable("Unknown integer setcc!"); |
| case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); |
| case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); |
| case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); |
| case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); |
| case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); |
| case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); |
| case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); |
| case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); |
| case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); |
| case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); |
| } |
| } |
| } |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { |
| if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { |
| APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); |
| switch (Cond) { |
| default: break; |
| case ISD::SETEQ: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETNE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| case ISD::SETLT: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| case ISD::SETGT: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, |
| VT, OpVT); |
| case ISD::SETLE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || |
| R==APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETGE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpEqual, dl, VT, OpVT); |
| case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, |
| OpVT); |
| case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, |
| OpVT); |
| case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpUnordered, dl, VT, |
| OpVT); |
| case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, |
| VT, OpVT); |
| case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); |
| MVT CompVT = N1.getValueType().getSimpleVT(); |
| if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) |
| return SDValue(); |
| |
| return getSetCC(dl, VT, N2, N1, SwappedCond); |
| } |
| } |
| |
| // Could not fold it. |
| return SDValue(); |
| } |
| |
| /// See if the specified operand can be simplified with the knowledge that only |
| /// the bits specified by Mask are used. |
| SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { |
| switch (V.getOpcode()) { |
| default: |
| break; |
| case ISD::Constant: { |
| const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); |
| assert(CV && "Const value should be ConstSDNode."); |
| const APInt &CVal = CV->getAPIntValue(); |
| APInt NewVal = CVal & Mask; |
| if (NewVal != CVal) |
| return getConstant(NewVal, SDLoc(V), V.getValueType()); |
| break; |
| } |
| case ISD::OR: |
| case ISD::XOR: |
| // If the LHS or RHS don't contribute bits to the or, drop them. |
| if (MaskedValueIsZero(V.getOperand(0), Mask)) |
| return V.getOperand(1); |
| if (MaskedValueIsZero(V.getOperand(1), Mask)) |
| return V.getOperand(0); |
| break; |
| case ISD::SRL: |
| // Only look at single-use SRLs. |
| if (!V.getNode()->hasOneUse()) |
| break; |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { |
| // See if we can recursively simplify the LHS. |
| unsigned Amt = RHSC->getZExtValue(); |
| |
| // Watch out for shift count overflow though. |
| if (Amt >= Mask.getBitWidth()) |
| break; |
| APInt NewMask = Mask << Amt; |
| if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) |
| return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, |
| V.getOperand(1)); |
| } |
| break; |
| case ISD::AND: { |
| // X & -1 -> X (ignoring bits which aren't demanded). |
| ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); |
| if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) |
| return V.getOperand(0); |
| break; |
| } |
| case ISD::ANY_EXTEND: { |
| SDValue Src = V.getOperand(0); |
| unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); |
| // Being conservative here - only peek through if we only demand bits in the |
| // non-extended source (even though the extended bits are technically undef). |
| if (Mask.getActiveBits() > SrcBitWidth) |
| break; |
| APInt SrcMask = Mask.trunc(SrcBitWidth); |
| if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) |
| return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); |
| break; |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We |
| /// use this predicate to simplify operations downstream. |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. Mask is known to be zero |
| /// for bits that V cannot have. |
| bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, |
| unsigned Depth) const { |
| KnownBits Known; |
| computeKnownBits(Op, Known, Depth); |
| return Mask.isSubsetOf(Known.Zero); |
| } |
| |
| /// Helper function that checks to see if a node is a constant or a |
| /// build vector of splat constants at least within the demanded elts. |
| static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, |
| const APInt &DemandedElts) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) |
| return CN; |
| if (N.getOpcode() != ISD::BUILD_VECTOR) |
| return nullptr; |
| EVT VT = N.getValueType(); |
| ConstantSDNode *Cst = nullptr; |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); |
| if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || |
| C->getValueType(0) != VT.getScalarType()) |
| return nullptr; |
| Cst = C; |
| } |
| return Cst; |
| } |
| |
| /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that |
| /// is less than the element bit-width of the shift node, return it. |
| static const APInt *getValidShiftAmountConstant(SDValue V) { |
| if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { |
| // Shifting more than the bitwidth is not valid. |
| const APInt &ShAmt = SA->getAPIntValue(); |
| if (ShAmt.ult(V.getScalarValueSizeInBits())) |
| return &ShAmt; |
| } |
| return nullptr; |
| } |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. For vectors, the known bits are those that are shared by |
| /// every vector element. |
| void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, |
| unsigned Depth) const { |
| EVT VT = Op.getValueType(); |
| APInt DemandedElts = VT.isVector() |
| ? APInt::getAllOnesValue(VT.getVectorNumElements()) |
| : APInt(1, 1); |
| computeKnownBits(Op, Known, DemandedElts, Depth); |
| } |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. The DemandedElts argument allows us to only collect the known |
| /// bits that are shared by the requested vector elements. |
| void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, |
| const APInt &DemandedElts, |
| unsigned Depth) const { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| |
| Known = KnownBits(BitWidth); // Don't know anything. |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| // We know all of the bits for a constant! |
| Known.One = C->getAPIntValue(); |
| Known.Zero = ~Known.One; |
| return; |
| } |
| if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { |
| // We know all of the bits for a constant fp! |
| Known.One = C->getValueAPF().bitcastToAPInt(); |
| Known.Zero = ~Known.One; |
| return; |
| } |
| |
| if (Depth == 6) |
| return; // Limit search depth. |
| |
| KnownBits Known2; |
| unsigned NumElts = DemandedElts.getBitWidth(); |
| |
| if (!DemandedElts) |
| return; // No demanded elts, better to assume we don't know anything. |
| |
| unsigned Opcode = Op.getOpcode(); |
| switch (Opcode) { |
| case ISD::BUILD_VECTOR: |
| // Collect the known bits that are shared by every demanded vector element. |
| assert(NumElts == Op.getValueType().getVectorNumElements() && |
| "Unexpected vector size"); |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| |
| SDValue SrcOp = Op.getOperand(i); |
| computeKnownBits(SrcOp, Known2, Depth + 1); |
| |
| // BUILD_VECTOR can implicitly truncate sources, we must handle this. |
| if (SrcOp.getValueSizeInBits() != BitWidth) { |
| assert(SrcOp.getValueSizeInBits() > BitWidth && |
| "Expected BUILD_VECTOR implicit truncation"); |
| Known2 = Known2.trunc(BitWidth); |
| } |
| |
| // Known bits are the values that are shared by every demanded element. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| } |
| break; |
| case ISD::VECTOR_SHUFFLE: { |
| // Collect the known bits that are shared by every vector element referenced |
| // by the shuffle. |
| APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); |
| assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| |
| int M = SVN->getMaskElt(i); |
| if (M < 0) { |
| // For UNDEF elements, we don't know anything about the common state of |
| // the shuffle result. |
| Known.resetAll(); |
| DemandedLHS.clearAllBits(); |
| DemandedRHS.clearAllBits(); |
| break; |
| } |
| |
| if ((unsigned)M < NumElts) |
| DemandedLHS.setBit((unsigned)M % NumElts); |
| else |
| DemandedRHS.setBit((unsigned)M % NumElts); |
| } |
| // Known bits are the values that are shared by every demanded element. |
| if (!!DemandedLHS) { |
| SDValue LHS = Op.getOperand(0); |
| computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| if (!!DemandedRHS) { |
| SDValue RHS = Op.getOperand(1); |
| computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| break; |
| } |
| case ISD::CONCAT_VECTORS: { |
| // Split DemandedElts and test each of the demanded subvectors. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| EVT SubVectorVT = Op.getOperand(0).getValueType(); |
| unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); |
| unsigned NumSubVectors = Op.getNumOperands(); |
| for (unsigned i = 0; i != NumSubVectors; ++i) { |
| APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); |
| DemandedSub = DemandedSub.trunc(NumSubVectorElts); |
| if (!!DemandedSub) { |
| SDValue Sub = Op.getOperand(i); |
| computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| } |
| break; |
| } |
| case ISD::INSERT_SUBVECTOR: { |
| // If we know the element index, demand any elements from the subvector and |
| // the remainder from the src its inserted into, otherwise demand them all. |
| SDValue Src = Op.getOperand(0); |
| SDValue Sub = Op.getOperand(1); |
| ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
| if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { |
| Known.One.setAllBits(); |
| Known.Zero.setAllBits(); |
| uint64_t Idx = SubIdx->getZExtValue(); |
| APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); |
| if (!!DemandedSubElts) { |
| computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1); |
| if (Known.isUnknown()) |
| break; // early-out. |
| } |
| APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); |
| APInt DemandedSrcElts = DemandedElts & ~SubMask; |
| if (!!DemandedSrcElts) { |
| computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| } else { |
| computeKnownBits(Sub, Known, Depth + 1); |
| if (Known.isUnknown()) |
| break; // early-out. |
| computeKnownBits(Src, Known2, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| break; |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| // If we know the element index, just demand that subvector elements, |
| // otherwise demand them all. |
| SDValue Src = Op.getOperand(0); |
| ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { |
| // Offset the demanded elts by the subvector index. |
| uint64_t Idx = SubIdx->getZExtValue(); |
| APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); |
| computeKnownBits(Src, Known, DemandedSrc, Depth + 1); |
| } else { |
| computeKnownBits(Src, Known, Depth + 1); |
| } |
| break; |
| } |
| case ISD::BITCAST: { |
| SDValue N0 = Op.getOperand(0); |
| EVT SubVT = N0.getValueType(); |
| unsigned SubBitWidth = SubVT.getScalarSizeInBits(); |
| |
| // Ignore bitcasts from unsupported types. |
| if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) |
| break; |
| |
| // Fast handling of 'identity' bitcasts. |
| if (BitWidth == SubBitWidth) { |
| computeKnownBits(N0, Known, DemandedElts, Depth + 1); |
| break; |
| } |
| |
| bool IsLE = getDataLayout().isLittleEndian(); |
| |
| // Bitcast 'small element' vector to 'large element' scalar/vector. |
| if ((BitWidth % SubBitWidth) == 0) { |
| assert(N0.getValueType().isVector() && "Expected bitcast from vector"); |
| |
| // Collect known bits for the (larger) output by collecting the known |
| // bits from each set of sub elements and shift these into place. |
| // We need to separately call computeKnownBits for each set of |
| // sub elements as the knownbits for each is likely to be different. |
| unsigned SubScale = BitWidth / SubBitWidth; |
| APInt SubDemandedElts(NumElts * SubScale, 0); |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (DemandedElts[i]) |
| SubDemandedElts.setBit(i * SubScale); |
| |
| for (unsigned i = 0; i != SubScale; ++i) { |
| computeKnownBits(N0, Known2, SubDemandedElts.shl(i), |
| Depth + 1); |
| unsigned Shifts = IsLE ? i : SubScale - 1 - i; |
| Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); |
| Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); |
| } |
| } |
| |
| // Bitcast 'large element' scalar/vector to 'small element' vector. |
| if ((SubBitWidth % BitWidth) == 0) { |
| assert(Op.getValueType().isVector() && "Expected bitcast to vector"); |
| |
| // Collect known bits for the (smaller) output by collecting the known |
| // bits from the overlapping larger input elements and extracting the |
| // sub sections we actually care about. |
| unsigned SubScale = SubBitWidth / BitWidth; |
| APInt SubDemandedElts(NumElts / SubScale, 0); |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (DemandedElts[i]) |
| SubDemandedElts.setBit(i / SubScale); |
| |
| computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); |
| |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (DemandedElts[i]) { |
| unsigned Shifts = IsLE ? i : NumElts - 1 - i; |
| unsigned Offset = (Shifts % SubScale) * BitWidth; |
| Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); |
| Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| } |
| } |
| break; |
| } |
| case ISD::AND: |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| Known.One &= Known2.One; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| Known.Zero |= Known2.Zero; |
| break; |
| case ISD::OR: |
| computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| Known.Zero &= Known2.Zero; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| Known.One |= Known2.One; |
| break; |
| case ISD::XOR: { |
| computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); |
| Known.Zero = KnownZeroOut; |
| break; |
| } |
| case ISD::MUL: { |
| computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // If low bits are zero in either operand, output low known-0 bits. |
| // Also compute a conservative estimate for high known-0 bits. |
| // More trickiness is possible, but this is sufficient for the |
| // interesting case of alignment computation. |
| unsigned TrailZ = Known.countMinTrailingZeros() + |
| Known2.countMinTrailingZeros(); |
| unsigned LeadZ = std::max(Known.countMinLeadingZeros() + |
| Known2.countMinLeadingZeros(), |
| BitWidth) - BitWidth; |
| |
| Known.resetAll(); |
| Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); |
| Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); |
| break; |
| } |
| case ISD::UDIV: { |
| // For the purposes of computing leading zeros we can conservatively |
| // treat a udiv as a logical right shift by the power of 2 known to |
| // be less than the denominator. |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| unsigned LeadZ = Known2.countMinLeadingZeros(); |
| |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); |
| unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); |
| if (RHSMaxLeadingZeros != BitWidth) |
| LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); |
| |
| Known.Zero.setHighBits(LeadZ); |
| break; |
| } |
| case ISD::SELECT: |
| case ISD::VSELECT: |
| computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1); |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1); |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| case ISD::SELECT_CC: |
| computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1); |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1); |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| case ISD::SMULO: |
| case ISD::UMULO: |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
| if (Op.getResNo() != 1) |
| break; |
| // The boolean result conforms to getBooleanContents. |
| // If we know the result of a setcc has the top bits zero, use this info. |
| // We know that we have an integer-based boolean since these operations |
| // are only available for integer. |
| if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| case ISD::SETCC: |
| // If we know the result of a setcc has the top bits zero, use this info. |
| if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| case ISD::SHL: |
| if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| unsigned Shift = ShAmt->getZExtValue(); |
| Known.Zero <<= Shift; |
| Known.One <<= Shift; |
| // Low bits are known zero. |
| Known.Zero.setLowBits(Shift); |
| } |
| break; |
| case ISD::SRL: |
| if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| unsigned Shift = ShAmt->getZExtValue(); |
| Known.Zero.lshrInPlace(Shift); |
| Known.One.lshrInPlace(Shift); |
| // High bits are known zero. |
| Known.Zero.setHighBits(Shift); |
| } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { |
| // If the shift amount is a vector of constants see if we can bound |
| // the number of upper zero bits. |
| unsigned ShiftAmountMin = BitWidth; |
| for (unsigned i = 0; i != BV->getNumOperands(); ++i) { |
| if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { |
| const APInt &ShAmt = C->getAPIntValue(); |
| if (ShAmt.ult(BitWidth)) { |
| ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, |
| ShAmt.getZExtValue()); |
| continue; |
| } |
| } |
| // Don't know anything. |
| ShiftAmountMin = 0; |
| break; |
| } |
| |
| Known.Zero.setHighBits(ShiftAmountMin); |
| } |
| break; |
| case ISD::SRA: |
| if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| unsigned Shift = ShAmt->getZExtValue(); |
| // Sign extend known zero/one bit (else is unknown). |
| Known.Zero.ashrInPlace(Shift); |
| Known.One.ashrInPlace(Shift); |
| } |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| unsigned EBits = EVT.getScalarSizeInBits(); |
| |
| // Sign extension. Compute the demanded bits in the result that are not |
| // present in the input. |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); |
| |
| APInt InSignMask = APInt::getSignMask(EBits); |
| APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); |
| |
| // If the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| InSignMask = InSignMask.zext(BitWidth); |
| if (NewBits.getBoolValue()) |
| InputDemandedBits |= InSignMask; |
| |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| Known.One &= InputDemandedBits; |
| Known.Zero &= InputDemandedBits; |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear |
| Known.Zero |= NewBits; |
| Known.One &= ~NewBits; |
| } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set |
| Known.One |= NewBits; |
| Known.Zero &= ~NewBits; |
| } else { // Input sign bit unknown |
| Known.Zero &= ~NewBits; |
| Known.One &= ~NewBits; |
| } |
| break; |
| } |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: { |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| // If we have a known 1, its position is our upper bound. |
| unsigned PossibleTZ = Known2.countMaxTrailingZeros(); |
| unsigned LowBits = Log2_32(PossibleTZ) + 1; |
| Known.Zero.setBitsFrom(LowBits); |
| break; |
| } |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: { |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| // If we have a known 1, its position is our upper bound. |
| unsigned PossibleLZ = Known2.countMaxLeadingZeros(); |
| unsigned LowBits = Log2_32(PossibleLZ) + 1; |
| Known.Zero.setBitsFrom(LowBits); |
| break; |
| } |
| case ISD::CTPOP: { |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| // If we know some of the bits are zero, they can't be one. |
| unsigned PossibleOnes = Known2.countMaxPopulation(); |
| Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); |
| break; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| // If this is a ZEXTLoad and we are looking at the loaded value. |
| if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { |
| EVT VT = LD->getMemoryVT(); |
| unsigned MemBits = VT.getScalarSizeInBits(); |
| Known.Zero.setBitsFrom(MemBits); |
| } else if (const MDNode *Ranges = LD->getRanges()) { |
| if (LD->getExtensionType() == ISD::NON_EXTLOAD) |
| computeKnownBitsFromRangeMetadata(*Ranges, Known); |
| } |
| break; |
| } |
| case ISD::ZERO_EXTEND_VECTOR_INREG: { |
| EVT InVT = Op.getOperand(0).getValueType(); |
| APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); |
| computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1); |
| Known = Known.zext(BitWidth); |
| Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); |
| break; |
| } |
| case ISD::ZERO_EXTEND: { |
| EVT InVT = Op.getOperand(0).getValueType(); |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| Known = Known.zext(BitWidth); |
| Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); |
| break; |
| } |
| // TODO ISD::SIGN_EXTEND_VECTOR_INREG |
| case ISD::SIGN_EXTEND: { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| // If the sign bit is known to be zero or one, then sext will extend |
| // it to the top bits, else it will just zext. |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| case ISD::ANY_EXTEND: { |
| computeKnownBits(Op.getOperand(0), Known, Depth+1); |
| Known = Known.zext(BitWidth); |
| break; |
| } |
| case ISD::TRUNCATE: { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| Known = Known.trunc(BitWidth); |
| break; |
| } |
| case ISD::AssertZext: { |
| EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); |
| computeKnownBits(Op.getOperand(0), Known, Depth+1); |
| Known.Zero |= (~InMask); |
| Known.One &= (~Known.Zero); |
| break; |
| } |
| case ISD::FGETSIGN: |
| // All bits are zero except the low bit. |
| Known.Zero.setBitsFrom(1); |
| break; |
| case ISD::USUBO: |
| case ISD::SSUBO: |
| if (Op.getResNo() == 1) { |
| // If we know the result of a setcc has the top bits zero, use this info. |
| if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| case ISD::SUB: |
| case ISD::SUBC: { |
| if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { |
| // We know that the top bits of C-X are clear if X contains less bits |
| // than C (i.e. no wrap-around can happen). For example, 20-X is |
| // positive if we can prove that X is >= 0 and < 16. |
| if (CLHS->getAPIntValue().isNonNegative()) { |
| unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); |
| // NLZ can't be BitWidth with no sign bit |
| APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, |
| Depth + 1); |
| |
| // If all of the MaskV bits are known to be zero, then we know the |
| // output top bits are zero, because we now know that the output is |
| // from [0-C]. |
| if ((Known2.Zero & MaskV) == MaskV) { |
| unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); |
| // Top bits known zero. |
| Known.Zero.setHighBits(NLZ2); |
| } |
| } |
| } |
| |
| // If low bits are know to be zero in both operands, then we know they are |
| // going to be 0 in the result. Both addition and complement operations |
| // preserve the low zero bits. |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| unsigned KnownZeroLow = Known2.countMinTrailingZeros(); |
| if (KnownZeroLow == 0) |
| break; |
| |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); |
| KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); |
| Known.Zero.setLowBits(KnownZeroLow); |
| break; |
| } |
| case ISD::UADDO: |
| case ISD::SADDO: |
| case ISD::ADDCARRY: |
| if (Op.getResNo() == 1) { |
| // If we know the result of a setcc has the top bits zero, use this info. |
| if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| case ISD::ADD: |
| case ISD::ADDC: |
| case ISD::ADDE: { |
| // Output known-0 bits are known if clear or set in both the low clear bits |
| // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| // low 3 bits clear. |
| // Output known-0 bits are also known if the top bits of each input are |
| // known to be clear. For example, if one input has the top 10 bits clear |
| // and the other has the top 8 bits clear, we know the top 7 bits of the |
| // output must be clear. |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); |
| unsigned KnownZeroLow = Known2.countMinTrailingZeros(); |
| |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, |
| Depth + 1); |
| KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); |
| KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); |
| |
| if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { |
| // With ADDE and ADDCARRY, a carry bit may be added in, so we can only |
| // use this information if we know (at least) that the low two bits are |
| // clear. We then return to the caller that the low bit is unknown but |
| // that other bits are known zero. |
| if (KnownZeroLow >= 2) |
| Known.Zero.setBits(1, KnownZeroLow); |
| break; |
| } |
| |
| Known.Zero.setLowBits(KnownZeroLow); |
| if (KnownZeroHigh > 1) |
| Known.Zero.setHighBits(KnownZeroHigh - 1); |
| break; |
| } |
| case ISD::SREM: |
| if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { |
| const APInt &RA = Rem->getAPIntValue().abs(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = RA - 1; |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // The low bits of the first operand are unchanged by the srem. |
| Known.Zero = Known2.Zero & LowBits; |
| Known.One = Known2.One & LowBits; |
| |
| // If the first operand is non-negative or has all low bits zero, then |
| // the upper bits are all zero. |
| if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) |
| Known.Zero |= ~LowBits; |
| |
| // If the first operand is negative and not all low bits are zero, then |
| // the upper bits are all one. |
| if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) |
| Known.One |= ~LowBits; |
| assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); |
| } |
| } |
| break; |
| case ISD::UREM: { |
| if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { |
| const APInt &RA = Rem->getAPIntValue(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = (RA - 1); |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // The upper bits are all zero, the lower ones are unchanged. |
| Known.Zero = Known2.Zero | ~LowBits; |
| Known.One = Known2.One & LowBits; |
| break; |
| } |
| } |
| |
| // Since the result is less than or equal to either operand, any leading |
| // zero bits in either operand must also exist in the result. |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); |
| |
| uint32_t Leaders = |
| std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); |
| Known.resetAll(); |
| Known.Zero.setHighBits(Leaders); |
| break; |
| } |
| case ISD::EXTRACT_ELEMENT: { |
| computeKnownBits(Op.getOperand(0), Known, Depth+1); |
| const unsigned Index = Op.getConstantOperandVal(1); |
| const unsigned BitWidth = Op.getValueSizeInBits(); |
| |
| // Remove low part of known bits mask |
| Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); |
| Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); |
| |
| // Remove high part of known bit mask |
| Known = Known.trunc(BitWidth); |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| SDValue InVec = Op.getOperand(0); |
| SDValue EltNo = Op.getOperand(1); |
| EVT VecVT = InVec.getValueType(); |
| const unsigned BitWidth = Op.getValueSizeInBits(); |
| const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); |
| const unsigned NumSrcElts = VecVT.getVectorNumElements(); |
| // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know |
| // anything about the extended bits. |
| if (BitWidth > EltBitWidth) |
| Known = Known.trunc(EltBitWidth); |
| ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); |
| if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { |
| // If we know the element index, just demand that vector element. |
| unsigned Idx = ConstEltNo->getZExtValue(); |
| APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); |
| computeKnownBits(InVec, Known, DemandedElt, Depth + 1); |
| } else { |
| // Unknown element index, so ignore DemandedElts and demand them all. |
| computeKnownBits(InVec, Known, Depth + 1); |
| } |
| if (BitWidth > EltBitWidth) |
| Known = Known.zext(BitWidth); |
| break; |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| SDValue InVec = Op.getOperand(0); |
| SDValue InVal = Op.getOperand(1); |
| SDValue EltNo = Op.getOperand(2); |
| |
| ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); |
| if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { |
| // If we know the element index, split the demand between the |
| // source vector and the inserted element. |
| Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); |
| unsigned EltIdx = CEltNo->getZExtValue(); |
| |
| // If we demand the inserted element then add its common known bits. |
| if (DemandedElts[EltIdx]) { |
| computeKnownBits(InVal, Known2, Depth + 1); |
| Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); |
| Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); |
| } |
| |
| // If we demand the source vector then add its common known bits, ensuring |
| // that we don't demand the inserted element. |
| APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); |
| if (!!VectorElts) { |
| computeKnownBits(InVec, Known2, VectorElts, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| } else { |
| // Unknown element index, so ignore DemandedElts and demand them all. |
| computeKnownBits(InVec, Known, Depth + 1); |
| computeKnownBits(InVal, Known2, Depth + 1); |
| Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); |
| Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); |
| } |
| break; |
| } |
| case ISD::BITREVERSE: { |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| Known.Zero = Known2.Zero.reverseBits(); |
| Known.One = Known2.One.reverseBits(); |
| break; |
| } |
| case ISD::BSWAP: { |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| Known.Zero = Known2.Zero.byteSwap(); |
| Known.One = Known2.One.byteSwap(); |
| break; |
| } |
| case ISD::ABS: { |
| computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); |
| |
| // If the source's MSB is zero then we know the rest of the bits already. |
| if (Known2.isNonNegative()) { |
| Known.Zero = Known2.Zero; |
| Known.One = Known2.One; |
| break; |
| } |
| |
| // We only know that the absolute values's MSB will be zero iff there is |
| // a set bit that isn't the sign bit (otherwise it could be INT_MIN). |
| Known2.One.clearSignBit(); |
| if (Known2.One.getBoolValue()) { |
| Known.Zero = APInt::getSignMask(BitWidth); |
| break; |
| } |
| break; |
| } |
| case ISD::UMIN: { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); |
| |
| // UMIN - we know that the result will have the maximum of the |
| // known zero leading bits of the inputs. |
| unsigned LeadZero = Known.countMinLeadingZeros(); |
| LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); |
| |
| Known.Zero &= Known2.Zero; |
| Known.One &= Known2.One; |
| Known.Zero.setHighBits(LeadZero); |
| break; |
| } |
| case ISD::UMAX: { |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); |
| |
| // UMAX - we know that the result will have the maximum of the |
| // known one leading bits of the inputs. |
| unsigned LeadOne = Known.countMinLeadingOnes(); |
| LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); |
| |
| Known.Zero &= Known2.Zero; |
| Known.One &= Known2.One; |
| Known.One.setHighBits(LeadOne); |
| break; |
| } |
| case ISD::SMIN: |
| case ISD::SMAX: { |
| // If we have a clamp pattern, we know that the number of sign bits will be |
| // the minimum of the clamp min/max range. |
| bool IsMax = (Opcode == ISD::SMAX); |
| ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; |
| if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) |
| if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) |
| CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), |
| DemandedElts); |
| if (CstLow && CstHigh) { |
| if (!IsMax) |
| std::swap(CstLow, CstHigh); |
| |
| const APInt &ValueLow = CstLow->getAPIntValue(); |
| const APInt &ValueHigh = CstHigh->getAPIntValue(); |
| if (ValueLow.sle(ValueHigh)) { |
| unsigned LowSignBits = ValueLow.getNumSignBits(); |
| unsigned HighSignBits = ValueHigh.getNumSignBits(); |
| unsigned MinSignBits = std::min(LowSignBits, HighSignBits); |
| if (ValueLow.isNegative() && ValueHigh.isNegative()) { |
| Known.One.setHighBits(MinSignBits); |
| break; |
| } |
| if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { |
| Known.Zero.setHighBits(MinSignBits); |
| break; |
| } |
| } |
| } |
| |
| // Fallback - just get the shared known bits of the operands. |
| computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| if (Known.isUnknown()) break; // Early-out |
| computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); |
| Known.Zero &= Known2.Zero; |
| Known.One &= Known2.One; |
| break; |
| } |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); |
| break; |
| |
| default: |
| if (Opcode < ISD::BUILTIN_OP_END) |
| break; |
| LLVM_FALLTHROUGH; |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| // Allow the target to implement this method for its nodes. |
| TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); |
| break; |
| } |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| } |
| |
| SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, |
| SDValue N1) const { |
| // X + 0 never overflow |
| if (isNullConstant(N1)) |
| return OFK_Never; |
| |
| KnownBits N1Known; |
| computeKnownBits(N1, N1Known); |
| if (N1Known.Zero.getBoolValue()) { |
| KnownBits N0Known; |
| computeKnownBits(N0, N0Known); |
| |
| bool overflow; |
| (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); |
| if (!overflow) |
| return OFK_Never; |
| } |
| |
| // mulhi + 1 never overflow |
| if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && |
| (~N1Known.Zero & 0x01) == ~N1Known.Zero) |
| return OFK_Never; |
| |
| if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { |
| KnownBits N0Known; |
| computeKnownBits(N0, N0Known); |
| |
| if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) |
| return OFK_Never; |
| } |
| |
| return OFK_Sometime; |
| } |
| |
| bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { |
| EVT OpVT = Val.getValueType(); |
| unsigned BitWidth = OpVT.getScalarSizeInBits(); |
| |
| // Is the constant a known power of 2? |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) |
| return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); |
| |
| // A left-shift of a constant one will have exactly one bit set because |
| // shifting the bit off the end is undefined. |
| if (Val.getOpcode() == ISD::SHL) { |
| auto *C = isConstOrConstSplat(Val.getOperand(0)); |
| if (C && C->getAPIntValue() == 1) |
| return true; |
| } |
| |
| // Similarly, a logical right-shift of a constant sign-bit will have exactly |
| // one bit set. |
| if (Val.getOpcode() == ISD::SRL) { |
| auto *C = isConstOrConstSplat(Val.getOperand(0)); |
| if (C && C->getAPIntValue().isSignMask()) |
| return true; |
| } |
| |
| // Are all operands of a build vector constant powers of two? |
| if (Val.getOpcode() == ISD::BUILD_VECTOR) |
| if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) |
| return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); |
| return false; |
| })) |
| return true; |
| |
| // More could be done here, though the above checks are enough |
| // to handle some common cases. |
| |
| // Fall back to computeKnownBits to catch other known cases. |
| KnownBits Known; |
| computeKnownBits(Val, Known); |
| return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); |
| } |
| |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { |
| EVT VT = Op.getValueType(); |
| APInt DemandedElts = VT.isVector() |
| ? APInt::getAllOnesValue(VT.getVectorNumElements()) |
| : APInt(1, 1); |
| return ComputeNumSignBits(Op, DemandedElts, Depth); |
| } |
| |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth) const { |
| EVT VT = Op.getValueType(); |
| assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); |
| unsigned VTBits = VT.getScalarSizeInBits(); |
| unsigned NumElts = DemandedElts.getBitWidth(); |
| unsigned Tmp, Tmp2; |
| unsigned FirstAnswer = 1; |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| const APInt &Val = C->getAPIntValue(); |
| return Val.getNumSignBits(); |
| } |
| |
| if (Depth == 6) |
| return 1; // Limit search depth. |
| |
| if (!DemandedElts) |
| return 1; // No demanded elts, better to assume we don't know anything. |
| |
| unsigned Opcode = Op.getOpcode(); |
| switch (Opcode) { |
| default: break; |
| case ISD::AssertSext: |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| return VTBits-Tmp+1; |
| case ISD::AssertZext: |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| return VTBits-Tmp; |
| |
| case ISD::BUILD_VECTOR: |
| Tmp = VTBits; |
| for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| |
| SDValue SrcOp = Op.getOperand(i); |
| Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); |
| |
| // BUILD_VECTOR can implicitly truncate sources, we must handle this. |
| if (SrcOp.getValueSizeInBits() != VTBits) { |
| assert(SrcOp.getValueSizeInBits() > VTBits && |
| "Expected BUILD_VECTOR implicit truncation"); |
| unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; |
| Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); |
| } |
| Tmp = std::min(Tmp, Tmp2); |
| } |
| return Tmp; |
| |
| case ISD::VECTOR_SHUFFLE: { |
| // Collect the minimum number of sign bits that are shared by every vector |
| // element referenced by the shuffle. |
| APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); |
| assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int M = SVN->getMaskElt(i); |
| if (!DemandedElts[i]) |
| continue; |
| // For UNDEF elements, we don't know anything about the common state of |
| // the shuffle result. |
| if (M < 0) |
| return 1; |
| if ((unsigned)M < NumElts) |
| DemandedLHS.setBit((unsigned)M % NumElts); |
| else |
| DemandedRHS.setBit((unsigned)M % NumElts); |
| } |
| Tmp = std::numeric_limits<unsigned>::max(); |
| if (!!DemandedLHS) |
| Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); |
| if (!!DemandedRHS) { |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); |
| Tmp = std::min(Tmp, Tmp2); |
| } |
| // If we don't know anything, early out and try computeKnownBits fall-back. |
| if (Tmp == 1) |
| break; |
| assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); |
| return Tmp; |
| } |
| |
| case ISD::BITCAST: { |
| SDValue N0 = Op.getOperand(0); |
| EVT SrcVT = N0.getValueType(); |
| unsigned SrcBits = SrcVT.getScalarSizeInBits(); |
| |
| // Ignore bitcasts from unsupported types.. |
| if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) |
| break; |
| |
| // Fast handling of 'identity' bitcasts. |
| if (VTBits == SrcBits) |
| return ComputeNumSignBits(N0, DemandedElts, Depth + 1); |
| |
| // Bitcast 'large element' scalar/vector to 'small element' vector. |
| // TODO: Handle cases other than 'sign splat' when we have a use case. |
| // Requires handling of DemandedElts and Endianness. |
| if ((SrcBits % VTBits) == 0) { |
| assert(Op.getValueType().isVector() && "Expected bitcast to vector"); |
| Tmp = ComputeNumSignBits(N0, Depth + 1); |
| if (Tmp == SrcBits) |
| return VTBits; |
| } |
| break; |
| } |
| |
| case ISD::SIGN_EXTEND: |
| Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); |
| return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; |
| case ISD::SIGN_EXTEND_INREG: |
| // Max of the input and what this extends. |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); |
| Tmp = VTBits-Tmp+1; |
| Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); |
| return std::max(Tmp, Tmp2); |
| case ISD::SIGN_EXTEND_VECTOR_INREG: { |
| SDValue Src = Op.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); |
| Tmp = VTBits - SrcVT.getScalarSizeInBits(); |
| return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; |
| } |
| |
| case ISD::SRA: |
| Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); |
| // SRA X, C -> adds C sign bits. |
| if (ConstantSDNode *C = |
| isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { |
| APInt ShiftVal = C->getAPIntValue(); |
| ShiftVal += Tmp; |
| Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); |
| } |
| return Tmp; |
| case ISD::SHL: |
| if (ConstantSDNode *C = |
| isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { |
| // shl destroys sign bits. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); |
| if (C->getAPIntValue().uge(VTBits) || // Bad shift. |
| C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. |
| return Tmp - C->getZExtValue(); |
| } |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: // NOT is handled here. |
| // Logical binary ops preserve the number of sign bits at the worst. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); |
| if (Tmp != 1) { |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); |
| FirstAnswer = std::min(Tmp, Tmp2); |
| // We computed what we know about the sign bits as our first |
| // answer. Now proceed to the generic code that uses |
| // computeKnownBits, and pick whichever answer is better. |
| } |
| break; |
| |
| case ISD::SELECT: |
| case ISD::VSELECT: |
| Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); |
| return std::min(Tmp, Tmp2); |
| case ISD::SELECT_CC: |
| Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); |
| return std::min(Tmp, Tmp2); |
| |
| case ISD::SMIN: |
| case ISD::SMAX: { |
| // If we have a clamp pattern, we know that the number of sign bits will be |
| // the minimum of the clamp min/max range. |
| bool IsMax = (Opcode == ISD::SMAX); |
| ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; |
| if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) |
| if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) |
| CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), |
| DemandedElts); |
| if (CstLow && CstHigh) { |
| if (!IsMax) |
| std::swap(CstLow, CstHigh); |
| if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { |
| Tmp = CstLow->getAPIntValue().getNumSignBits(); |
| Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); |
| return std::min(Tmp, Tmp2); |
| } |
| } |
| |
| // Fallback - just get the minimum number of sign bits of the operands. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); |
| if (Tmp == 1) |
| return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); |
| return std::min(Tmp, Tmp2); |
| } |
| case ISD::UMIN: |
| case ISD::UMAX: |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); |
| if (Tmp == 1) |
| return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); |
| return std::min(Tmp, Tmp2); |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: |
| if (Op.getResNo() != 1) |
| break; |
| // The boolean result conforms to getBooleanContents. Fall through. |
| // If setcc returns 0/-1, all bits are sign bits. |
| // We know that we have an integer-based boolean since these operations |
| // are only available for integer. |
| if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) |
| return VTBits; |
| break; |
| case ISD::SETCC: |
| // If setcc returns 0/-1, all bits are sign bits. |
| if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) |
| return VTBits; |
| break; |
| case ISD::ROTL: |
| case ISD::ROTR: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned RotAmt = C->getAPIntValue().urem(VTBits); |
| |
| // Handle rotate right by N like a rotate left by 32-N. |
| if (Opcode == ISD::ROTR) |
| RotAmt = (VTBits - RotAmt) % VTBits; |
| |
| // If we aren't rotating out all of the known-in sign bits, return the |
| // number that are left. This handles rotl(sext(x), 1) for example. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); |
| } |
| break; |
| case ISD::ADD: |
| case ISD::ADDC: |
| // Add can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| |
| // Special case decrementing a value (ADD X, -1): |
| if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| if (CRHS->isAllOnesValue()) { |
| KnownBits Known; |
| computeKnownBits(Op.getOperand(0), Known, Depth+1); |
| |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((Known.Zero | 1).isAllOnesValue()) |
| return VTBits; |
| |
| // If we are subtracting one from a positive number, there is no carry |
| // out of the result. |
| if (Known.isNonNegative()) |
| return Tmp; |
| } |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| return std::min(Tmp, Tmp2)-1; |
| |
| case ISD::SUB: |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| |
| // Handle NEG. |
| if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) |
| if (CLHS->isNullValue()) { |
| KnownBits Known; |
| computeKnownBits(Op.getOperand(1), Known, Depth+1); |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((Known.Zero | 1).isAllOnesValue()) |
| return VTBits; |
| |
| // If the input is known to be positive (the sign bit is known clear), |
| // the output of the NEG has the same number of sign bits as the input. |
| if (Known.isNonNegative()) |
| return Tmp2; |
| |
| // Otherwise, we treat this like a SUB. |
| } |
| |
| // Sub can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| return std::min(Tmp, Tmp2)-1; |
| case ISD::TRUNCATE: { |
| // Check if the sign bits of source go down as far as the truncated value. |
| unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); |
| unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); |
| if (NumSrcSignBits > (NumSrcBits - VTBits)) |
| return NumSrcSignBits - (NumSrcBits - VTBits); |
| break; |
| } |
| case ISD::EXTRACT_ELEMENT: { |
| const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| const int BitWidth = Op.getValueSizeInBits(); |
| const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; |
| |
| // Get reverse index (starting from 1), Op1 value indexes elements from |
| // little end. Sign starts at big end. |
| const int rIndex = Items - 1 - Op.getConstantOperandVal(1); |
| |
| // If the sign portion ends in our element the subtraction gives correct |
| // result. Otherwise it gives either negative or > bitwidth result |
| return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| SDValue InVec = Op.getOperand(0); |
| SDValue InVal = Op.getOperand(1); |
| SDValue EltNo = Op.getOperand(2); |
| unsigned NumElts = InVec.getValueType().getVectorNumElements(); |
| |
| ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); |
| if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { |
| // If we know the element index, split the demand between the |
| // source vector and the inserted element. |
| unsigned EltIdx = CEltNo->getZExtValue(); |
| |
| // If we demand the inserted element then get its sign bits. |
| Tmp = std::numeric_limits<unsigned>::max(); |
| if (DemandedElts[EltIdx]) { |
| // TODO - handle implicit truncation of inserted elements. |
| if (InVal.getScalarValueSizeInBits() != VTBits) |
| break; |
| Tmp = ComputeNumSignBits(InVal, Depth + 1); |
| } |
| |
| // If we demand the source vector then get its sign bits, and determine |
| // the minimum. |
| APInt VectorElts = DemandedElts; |
| VectorElts.clearBit(EltIdx); |
| if (!!VectorElts) { |
| Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); |
| Tmp = std::min(Tmp, Tmp2); |
| } |
| } else { |
| // Unknown element index, so ignore DemandedElts and demand them all. |
| Tmp = ComputeNumSignBits(InVec, Depth + 1); |
| Tmp2 = ComputeNumSignBits(InVal, Depth + 1); |
| Tmp = std::min(Tmp, Tmp2); |
| } |
| assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); |
| return Tmp; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| SDValue InVec = Op.getOperand(0); |
| SDValue EltNo = Op.getOperand(1); |
| EVT VecVT = InVec.getValueType(); |
| const unsigned BitWidth = Op.getValueSizeInBits(); |
| const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| const unsigned NumSrcElts = VecVT.getVectorNumElements(); |
| |
| // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know |
| // anything about sign bits. But if the sizes match we can derive knowledge |
| // about sign bits from the vector operand. |
| if (BitWidth != EltBitWidth) |
| break; |
| |
| // If we know the element index, just demand that vector element, else for |
| // an unknown element index, ignore DemandedElts and demand them all. |
| APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); |
| ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); |
| if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) |
| DemandedSrcElts = |
| APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); |
| |
| return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| // If we know the element index, just demand that subvector elements, |
| // otherwise demand them all. |
| SDValue Src = Op.getOperand(0); |
| ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { |
| // Offset the demanded elts by the subvector index. |
| uint64_t Idx = SubIdx->getZExtValue(); |
| APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); |
| return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); |
| } |
| return ComputeNumSignBits(Src, Depth + 1); |
| } |
| case ISD::CONCAT_VECTORS: |
| // Determine the minimum number of sign bits across all demanded |
| // elts of the input vectors. Early out if the result is already 1. |
| Tmp = std::numeric_limits<unsigned>::max(); |
| EVT SubVectorVT = Op.getOperand(0).getValueType(); |
| unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); |
| unsigned NumSubVectors = Op.getNumOperands(); |
| for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { |
| APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); |
| DemandedSub = DemandedSub.trunc(NumSubVectorElts); |
| if (!DemandedSub) |
| continue; |
| Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); |
| Tmp = std::min(Tmp, Tmp2); |
| } |
| assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); |
| return Tmp; |
| } |
| |
| // If we are looking at the loaded value of the SDNode. |
| if (Op.getResNo() == 0) { |
| // Handle LOADX separately here. EXTLOAD case will fallthrough. |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { |
| unsigned ExtType = LD->getExtensionType(); |
| switch (ExtType) { |
| default: break; |
| case ISD::SEXTLOAD: // '17' bits known |
| Tmp = LD->getMemoryVT().getScalarSizeInBits(); |
| return VTBits-Tmp+1; |
| case ISD::ZEXTLOAD: // '16' bits known |
| Tmp = LD->getMemoryVT().getScalarSizeInBits(); |
| return VTBits-Tmp; |
| } |
| } |
| } |
| |
| // Allow the target to implement this method for its nodes. |
| if (Opcode >= ISD::BUILTIN_OP_END || |
| Opcode == ISD::INTRINSIC_WO_CHAIN || |
| Opcode == ISD::INTRINSIC_W_CHAIN || |
| Opcode == ISD::INTRINSIC_VOID) { |
| unsigned NumBits = |
| TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); |
| if (NumBits > 1) |
| FirstAnswer = std::max(FirstAnswer, NumBits); |
| } |
| |
| // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| // use this information. |
| KnownBits Known; |
| computeKnownBits(Op, Known, DemandedElts, Depth); |
| |
| APInt Mask; |
| if (Known.isNonNegative()) { // sign bit is 0 |
| Mask = Known.Zero; |
| } else if (Known.isNegative()) { // sign bit is 1; |
| Mask = Known.One; |
| } else { |
| // Nothing known. |
| return FirstAnswer; |
| } |
| |
| // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| // the number of identical bits in the top of the input value. |
| Mask = ~Mask; |
| Mask <<= Mask.getBitWidth()-VTBits; |
| // Return # leading zeros. We use 'min' here in case Val was zero before |
| // shifting. We don't want to return '64' as for an i32 "0". |
| return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); |
| } |
| |
| bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { |
| if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || |
| !isa<ConstantSDNode>(Op.getOperand(1))) |
| return false; |
| |
| if (Op.getOpcode() == ISD::OR && |
| !MaskedValueIsZero(Op.getOperand(0), |
| cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) |
| return false; |
| |
| return true; |
| } |
| |
| bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { |
| // If we're told that NaNs won't happen, assume they won't. |
| if (getTarget().Options.NoNaNsFPMath) |
| return true; |
| |
| if (Op->getFlags().hasNoNaNs()) |
| return true; |
| |
| // If the value is a constant, we can obviously see if it is a NaN or not. |
| if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) |
| return !C->getValueAPF().isNaN(); |
| |
| // TODO: Recognize more cases here. |
| |
| return false; |
| } |
| |
| bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { |
| assert(Op.getValueType().isFloatingPoint() && |
| "Floating point type expected"); |
| |
| // If the value is a constant, we can obviously see if it is a zero or not. |
| // TODO: Add BuildVector support. |
| if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) |
| return !C->isZero(); |
| return false; |
| } |
| |
| bool SelectionDAG::isKnownNeverZero(SDValue Op) const { |
| assert(!Op.getValueType().isFloatingPoint() && |
| "Floating point types unsupported - use isKnownNeverZeroFloat"); |
| |
| // If the value is a constant, we can obviously see if it is a zero or not. |
| if (ISD::matchUnaryPredicate( |
| Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) |
| return true; |
| |
| // TODO: Recognize more cases here. |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::OR: |
| if (isKnownNeverZero(Op.getOperand(1)) || |
| isKnownNeverZero(Op.getOperand(0))) |
| return true; |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { |
| // Check the obvious case. |
| if (A == B) return true; |
| |
| // For for negative and positive zero. |
| if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) |
| if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) |
| if (CA->isZero() && CB->isZero()) return true; |
| |
| // Otherwise they may not be equal. |
| return false; |
| } |
| |
| // FIXME: unify with llvm::haveNoCommonBitsSet. |
| // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) |
| bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { |
| assert(A.getValueType() == B.getValueType() && |
| "Values must have the same type"); |
| KnownBits AKnown, BKnown; |
| computeKnownBits(A, AKnown); |
| computeKnownBits(B, BKnown); |
| return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); |
| } |
| |
| static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, |
| SelectionDAG &DAG) { |
| assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); |
| assert(llvm::all_of(Ops, |
| [Ops](SDValue Op) { |
| return Ops[0].getValueType() == Op.getValueType(); |
| }) && |
| "Concatenation of vectors with inconsistent value types!"); |
| assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == |
| VT.getVectorNumElements() && |
| "Incorrect element count in vector concatenation!"); |
| |
| if (Ops.size() == 1) |
| return Ops[0]; |
| |
| // Concat of UNDEFs is UNDEF. |
| if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) |
| return DAG.getUNDEF(VT); |
| |
| // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be |
| // simplified to one big BUILD_VECTOR. |
| // FIXME: Add support for SCALAR_TO_VECTOR as well. |
| EVT SVT = VT.getScalarType(); |
| SmallVector<SDValue, 16> Elts; |
| for (SDValue Op : Ops) { |
| EVT OpVT = Op.getValueType(); |
| if (Op.isUndef()) |
| Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); |
| else if (Op.getOpcode() == ISD::BUILD_VECTOR) |
| Elts.append(Op->op_begin(), Op->op_end()); |
| else |
| return SDValue(); |
| } |
| |
| // BUILD_VECTOR requires all inputs to be of the same type, find the |
| // maximum type and extend them all. |
| for (SDValue Op : Elts) |
| SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); |
| |
| if (SVT.bitsGT(VT.getScalarType())) |
| for (SDValue &Op : Elts) |
| Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) |
| ? DAG.getZExtOrTrunc(Op, DL, SVT) |
| : DAG.getSExtOrTrunc(Op, DL, SVT); |
| |
| SDValue V = DAG.getBuildVector(VT, DL, Elts); |
| NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); |
| return V; |
| } |
| |
| /// Gets or creates the specified node. |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, getVTList(VT), None); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), |
| getVTList(VT)); |
| CSEMap.InsertNode(N, IP); |
| |
| InsertNode(N); |
| SDValue V = SDValue(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDValue Operand, const SDNodeFlags Flags) { |
| // Constant fold unary operations with an integer constant operand. Even |
| // opaque constant will be folded, because the folding of unary operations |
| // doesn't create new constants with different values. Nevertheless, the |
| // opaque flag is preserved during folding to prevent future folding with |
| // other constants. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { |
| const APInt &Val = C->getAPIntValue(); |
| switch (Opcode) { |
| default: break; |
| case ISD::SIGN_EXTEND: |
| return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, |
| C->isTargetOpcode(), C->isOpaque()); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::TRUNCATE: |
| return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, |
| C->isTargetOpcode(), C->isOpaque()); |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: { |
| APFloat apf(EVTToAPFloatSemantics(VT), |
| APInt::getNullValue(VT.getSizeInBits())); |
| (void)apf.convertFromAPInt(Val, |
| Opcode==ISD::SINT_TO_FP, |
| APFloat::rmNearestTiesToEven); |
| return getConstantFP(apf, DL, VT); |
| } |
| case ISD::BITCAST: |
| if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) |
| return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); |
| if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) |
| return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); |
| if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) |
| return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); |
| if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) |
| return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); |
| break; |
| case ISD::ABS: |
| return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), |
| C->isOpaque()); |
| case ISD::BITREVERSE: |
| return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), |
| C->isOpaque()); |
| case ISD::BSWAP: |
| return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), |
| C->isOpaque()); |
| case ISD::CTPOP: |
| return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), |
| C->isOpaque()); |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), |
| C->isOpaque()); |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), |
| C->isOpaque()); |
| case ISD::FP16_TO_FP: { |
| bool Ignored; |
| APFloat FPV(APFloat::IEEEhalf(), |
| (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); |
| |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)FPV.convert(EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, &Ignored); |
| return getConstantFP(FPV, DL, VT); |
| } |
| } |
| } |
| |
| // Constant fold unary operations with a floating point constant operand. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { |
| APFloat V = C->getValueAPF(); // make copy |
| switch (Opcode) { |
| case ISD::FNEG: |
| V.changeSign(); |
| return getConstantFP(V, DL, VT); |
| case ISD::FABS: |
| V.clearSign(); |
| return getConstantFP(V, DL, VT); |
| case ISD::FCEIL: { |
| APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); |
| if (fs == APFloat::opOK || fs == APFloat::opInexact) |
| return getConstantFP(V, DL, VT); |
| break; |
| } |
| case ISD::FTRUNC: { |
| APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); |
| if (fs == APFloat::opOK || fs == APFloat::opInexact) |
| return getConstantFP(V, DL, VT); |
| break; |
| } |
| case ISD::FFLOOR: { |
| APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); |
| if (fs == APFloat::opOK || fs == APFloat::opInexact) |
| return getConstantFP(V, DL, VT); |
| break; |
| } |
| case ISD::FP_EXTEND: { |
| bool ignored; |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)V.convert(EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, &ignored); |
| return getConstantFP(V, DL, VT); |
| } |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| bool ignored; |
| APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); |
| // FIXME need to be more flexible about rounding mode. |
| APFloat::opStatus s = |
| V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); |
| if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual |
| break; |
| return getConstant(IntVal, DL, VT); |
| } |
| case ISD::BITCAST: |
| if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) |
| return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); |
| else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) |
| return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); |
| else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) |
| return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); |
| break; |
| case ISD::FP_TO_FP16: { |
| bool Ignored; |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)V.convert(APFloat::IEEEhalf(), |
| APFloat::rmNearestTiesToEven, &Ignored); |
| return getConstant(V.bitcastToAPInt(), DL, VT); |
| } |
| } |
| } |
| |
| // Constant fold unary operations with a vector integer or float operand. |
| if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { |
| if (BV->isConstant()) { |
| switch (Opcode) { |
| default: |
| // FIXME: Entirely reasonable to perform folding of other unary |
| // operations here as the need arises. |
| break; |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FCEIL: |
| case ISD::FTRUNC: |
| case ISD::FFLOOR: |
| case ISD::FP_EXTEND: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::TRUNCATE: |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: |
| case ISD::ABS: |
| case ISD::BITREVERSE: |
| case ISD::BSWAP: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTPOP: { |
| SDValue Ops = { Operand }; |
| if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) |
| return Fold; |
| } |
| } |
| } |
| } |
| |
| unsigned OpOpcode = Operand.getNode()->getOpcode(); |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| case ISD::MERGE_VALUES: |
| case ISD::CONCAT_VECTORS: |
| return Operand; // Factor, merge or concat of one node? No need. |
| case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); |
| case ISD::FP_EXTEND: |
| assert(VT.isFloatingPoint() && |
| Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); |
| if (Operand.getValueType() == VT) return Operand; // noop conversion. |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| assert(Operand.getValueType().bitsLT(VT) && |
| "Invalid fpext node, dst < src!"); |
| if (Operand.isUndef()) |
| return getUNDEF(VT); |
| break; |
| case ISD::SIGN_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid SIGN_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| assert(Operand.getValueType().bitsLT(VT) && |
| "Invalid sext node, dst < src!"); |
| if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) |
| return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); |
| else if (OpOpcode == ISD::UNDEF) |
| // sext(undef) = 0, because the top bits will all be the same. |
| return getConstant(0, DL, VT); |
| break; |
| case ISD::ZERO_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid ZERO_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| assert(Operand.getValueType().bitsLT(VT) && |
| "Invalid zext node, dst < src!"); |
| if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) |
| return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); |
| else if (OpOpcode == ISD::UNDEF) |
| // zext(undef) = 0, because the top bits will be zero. |
| return getConstant(0, DL, VT); |
| break; |
| case ISD::ANY_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid ANY_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| assert(Operand.getValueType().bitsLT(VT) && |
| "Invalid anyext node, dst < src!"); |
| |
| if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || |
| OpOpcode == ISD::ANY_EXTEND) |
| // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) |
| return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); |
| else if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| |
| // (ext (trunc x)) -> x |
| if (OpOpcode == ISD::TRUNCATE) { |
| SDValue OpOp = Operand.getOperand(0); |
| if (OpOp.getValueType() == VT) { |
| transferDbgValues(Operand, OpOp); |
| return OpOp; |
| } |
| } |
| break; |
| case ISD::TRUNCATE: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid TRUNCATE!"); |
| if (Operand.getValueType() == VT) return Operand; // noop truncate |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| assert(Operand.getValueType().bitsGT(VT) && |
| "Invalid truncate node, src < dst!"); |
| if (OpOpcode == ISD::TRUNCATE) |
| return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); |
| if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || |
| OpOpcode == ISD::ANY_EXTEND) { |
| // If the source is smaller than the dest, we still need an extend. |
| if (Operand.getOperand(0).getValueType().getScalarType() |
| .bitsLT(VT.getScalarType())) |
| return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); |
| if (Operand.getOperand(0).getValueType().bitsGT(VT)) |
| return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); |
| return Operand.getOperand(0); |
| } |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::ABS: |
| assert(VT.isInteger() && VT == Operand.getValueType() && |
| "Invalid ABS!"); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::BSWAP: |
| assert(VT.isInteger() && VT == Operand.getValueType() && |
| "Invalid BSWAP!"); |
| assert((VT.getScalarSizeInBits() % 16 == 0) && |
| "BSWAP types must be a multiple of 16 bits!"); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::BITREVERSE: |
| assert(VT.isInteger() && VT == Operand.getValueType() && |
| "Invalid BITREVERSE!"); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::BITCAST: |
| // Basic sanity checking. |
| assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && |
| "Cannot BITCAST between types of different sizes!"); |
| if (VT == Operand.getValueType()) return Operand; // noop conversion. |
| if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) |
| return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::SCALAR_TO_VECTOR: |
| assert(VT.isVector() && !Operand.getValueType().isVector() && |
| (VT.getVectorElementType() == Operand.getValueType() || |
| (VT.getVectorElementType().isInteger() && |
| Operand.getValueType().isInteger() && |
| VT.getVectorElementType().bitsLE(Operand.getValueType()))) && |
| "Illegal SCALAR_TO_VECTOR node!"); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. |
| if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && |
| isa<ConstantSDNode>(Operand.getOperand(1)) && |
| Operand.getConstantOperandVal(1) == 0 && |
| Operand.getOperand(0).getValueType() == VT) |
| return Operand.getOperand(0); |
| break; |
| case ISD::FNEG: |
| // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 |
| if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && |
| OpOpcode == ISD::FSUB) |
| return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), |
| Operand.getOperand(0), Flags); |
| if (OpOpcode == ISD::FNEG) // --X -> X |
| return Operand.getOperand(0); |
| break; |
| case ISD::FABS: |
| if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) |
| return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); |
| break; |
| } |
| |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = {Operand}; |
| if (VT != MVT::Glue) { // Don't CSE flag producing nodes |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { |
| E->intersectFlagsWith(Flags); |
| return SDValue(E, 0); |
| } |
| |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| N->setFlags(Flags); |
| createOperands(N, Ops); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| createOperands(N, Ops); |
| } |
| |
| InsertNode(N); |
| SDValue V = SDValue(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, |
| const APInt &C2) { |
| switch (Opcode) { |
| case ISD::ADD: return std::make_pair(C1 + C2, true); |
| case ISD::SUB: return std::make_pair(C1 - C2, true); |
| case ISD::MUL: return std::make_pair(C1 * C2, true); |
| case ISD::AND: return std::make_pair(C1 & C2, true); |
| case ISD::OR: return std::make_pair(C1 | C2, true); |
| case ISD::XOR: return std::make_pair(C1 ^ C2, true); |
| case ISD::SHL: return std::make_pair(C1 << C2, true); |
| case ISD::SRL: return std::make_pair(C1.lshr(C2), true); |
| case ISD::SRA: return std::make_pair(C1.ashr(C2), true); |
| case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); |
| case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); |
| case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); |
| case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); |
| case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); |
| case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); |
| case ISD::UDIV: |
| if (!C2.getBoolValue()) |
| break; |
| return std::make_pair(C1.udiv(C2), true); |
| case ISD::UREM: |
| if (!C2.getBoolValue()) |
| break; |
| return std::make_pair(C1.urem(C2), true); |
| case ISD::SDIV: |
| if (!C2.getBoolValue()) |
| break; |
| return std::make_pair(C1.sdiv(C2), true); |
| case ISD::SREM: |
| if (!C2.getBoolValue()) |
| break; |
| return std::make_pair(C1.srem(C2), true); |
| } |
| return std::make_pair(APInt(1, 0), false); |
| } |
| |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, |
| EVT VT, const ConstantSDNode *Cst1, |
| const ConstantSDNode *Cst2) { |
| if (Cst1->isOpaque() || Cst2->isOpaque()) |
| return SDValue(); |
| |
| std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), |
| Cst2->getAPIntValue()); |
| if (!Folded.second) |
| return SDValue(); |
| return getConstant(Folded.first, DL, VT); |
| } |
| |
| SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, |
| const GlobalAddressSDNode *GA, |
| const SDNode *N2) { |
| if (GA->getOpcode() != ISD::GlobalAddress) |
| return SDValue(); |
| if (!TLI->isOffsetFoldingLegal(GA)) |
| return SDValue(); |
| const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); |
| if (!Cst2) |
| return SDValue(); |
| int64_t Offset = Cst2->getSExtValue(); |
| switch (Opcode) { |
| case ISD::ADD: break; |
| case ISD::SUB: Offset = -uint64_t(Offset); break; |
| default: return SDValue(); |
| } |
| return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, |
| GA->getOffset() + uint64_t(Offset)); |
| } |
| |
| bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { |
| switch (Opcode) { |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: { |
| // If a divisor is zero/undef or any element of a divisor vector is |
| // zero/undef, the whole op is undef. |
| assert(Ops.size() == 2 && "Div/rem should have 2 operands"); |
| SDValue Divisor = Ops[1]; |
| if (Divisor.isUndef() || isNullConstant(Divisor)) |
| return true; |
| |
| return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && |
| llvm::any_of(Divisor->op_values(), |
| [](SDValue V) { return V.isUndef() || |
| isNullConstant(V); }); |
| // TODO: Handle signed overflow. |
| } |
| // TODO: Handle oversized shifts. |
| default: |
| return false; |
| } |
| } |
| |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, |
| EVT VT, SDNode *Cst1, |
| SDNode *Cst2) { |
| // If the opcode is a target-specific ISD node, there's nothing we can |
| // do here and the operand rules may not line up with the below, so |
| // bail early. |
| if (Opcode >= ISD::BUILTIN_OP_END) |
| return SDValue(); |
| |
| if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) |
| return getUNDEF(VT); |
| |
| // Handle the case of two scalars. |
| if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { |
| if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { |
| SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); |
| assert((!Folded || !VT.isVector()) && |
| "Can't fold vectors ops with scalar operands"); |
| return Folded; |
| } |
| } |
| |
| // fold (add Sym, c) -> Sym+c |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) |
| return FoldSymbolOffset(Opcode, VT, GA, Cst2); |
| if (TLI->isCommutativeBinOp(Opcode)) |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) |
| return FoldSymbolOffset(Opcode, VT, GA, Cst1); |
| |
| // For vectors extract each constant element into Inputs so we can constant |
| // fold them individually. |
| BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); |
| BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); |
| if (!BV1 || !BV2) |
| return SDValue(); |
| |
| assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); |
| |
| EVT SVT = VT.getScalarType(); |
| EVT LegalSVT = SVT; |
| if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { |
| LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); |
| if (LegalSVT.bitsLT(SVT)) |
| return SDValue(); |
| } |
| SmallVector<SDValue, 4> Outputs; |
| for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { |
| SDValue V1 = BV1->getOperand(I); |
| SDValue V2 = BV2->getOperand(I); |
| |
| if (SVT.isInteger()) { |
| if (V1->getValueType(0).bitsGT(SVT)) |
| V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); |
| if (V2->getValueType(0).bitsGT(SVT)) |
| V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); |
| } |
| |
| if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) |
| return SDValue(); |
| |
| // Fold one vector element. |
| SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); |
| if (LegalSVT != SVT) |
| ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); |
| |
| // Scalar folding only succeeded if the result is a constant or UNDEF. |
| if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && |
| ScalarResult.getOpcode() != ISD::ConstantFP) |
| return SDValue(); |
| Outputs.push_back(ScalarResult); |
| } |
| |
| assert(VT.getVectorNumElements() == Outputs.size() && |
| "Vector size mismatch!"); |
| |
| // We may have a vector type but a scalar result. Create a splat. |
| Outputs.resize(VT.getVectorNumElements(), Outputs.back()); |
| |
| // Build a big vector out of the scalar elements we generated. |
| return getBuildVector(VT, SDLoc(), Outputs); |
| } |
| |
| // TODO: Merge with FoldConstantArithmetic |
| SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, |
| const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, |
| const SDNodeFlags Flags) { |
| // If the opcode is a target-specific ISD node, there's nothing we can |
| // do here and the operand rules may not line up with the below, so |
| // bail early. |
| if (Opcode >= ISD::BUILTIN_OP_END) |
| return SDValue(); |
| |
| if (isUndef(Opcode, Ops)) |
| return getUNDEF(VT); |
| |
| // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { |
| return !Op.getValueType().isVector() || |
| Op.getValueType().getVectorNumElements() == NumElts; |
| }; |
| |
| auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { |
| BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); |
| return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || |
| (BV && BV->isConstant()); |
| }; |
| |
| // All operands must be vector types with the same number of elements as |
| // the result type and must be either UNDEF or a build vector of constant |
| // or UNDEF scalars. |
| if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || |
| !llvm::all_of(Ops, IsScalarOrSameVectorSize)) |
| return SDValue(); |
| |
| // If we are comparing vectors, then the result needs to be a i1 boolean |
| // that is then sign-extended back to the legal result type. |
| EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); |
| |
| // Find legal integer scalar type for constant promotion and |
| // ensure that its scalar size is at least as large as source. |
| EVT LegalSVT = VT.getScalarType(); |
| if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { |
| LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); |
| if (LegalSVT.bitsLT(VT.getScalarType())) |
| return SDValue(); |
| } |
| |
| // Constant fold each scalar lane separately. |
| SmallVector<SDValue, 4> ScalarResults; |
| for (unsigned i = 0; i != NumElts; i++) { |
| SmallVector<SDValue, 4> ScalarOps; |
| for (SDValue Op : Ops) { |
| EVT InSVT = Op.getValueType().getScalarType(); |
| BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); |
| if (!InBV) { |
| // We've checked that this is UNDEF or a constant of some kind. |
| if (Op.isUndef()) |
| ScalarOps.push_back(getUNDEF(InSVT)); |
| else |
| ScalarOps.push_back(Op); |
| continue; |
| } |
| |
| SDValue ScalarOp = InBV->getOperand(i); |
| EVT ScalarVT = ScalarOp.getValueType(); |
| |
| // Build vector (integer) scalar operands may need implicit |
| // truncation - do this before constant folding. |
| if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) |
| ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); |
| |
| ScalarOps.push_back(ScalarOp); |
| } |
| |
| // Constant fold the scalar operands. |
| SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); |
| |
| // Legalize the (integer) scalar constant if necessary. |
| if (LegalSVT != SVT) |
| ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); |
| |
| // Scalar folding only succeeded if the result is a constant or UNDEF. |
| if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && |
| ScalarResult.getOpcode() != ISD::ConstantFP) |
| return SDValue(); |
| ScalarResults.push_back(ScalarResult); |
| } |
| |
| SDValue V = getBuildVector(VT, DL, ScalarResults); |
| NewSDValueDbgMsg(V, "New node fold constant vector: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDValue N1, SDValue N2, const SDNodeFlags Flags) { |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); |
| |
| // Canonicalize constant to RHS if commutative. |
| if (TLI->isCommutativeBinOp(Opcode)) { |
| if (N1C && !N2C) { |
| std::swap(N1C, N2C); |
| std::swap(N1, N2); |
| } else if (N1CFP && !N2CFP) { |
| std::swap(N1CFP, N2CFP); |
| std::swap(N1, N2); |
| } |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::TokenFactor: |
| assert(VT == MVT::Other && N1.getValueType() == MVT::Other && |
| N2.getValueType() == MVT::Other && "Invalid token factor!"); |
| // Fold trivial token factors. |
| if (N1.getOpcode() == ISD::EntryToken) return N2; |
| if (N2.getOpcode() == ISD::EntryToken) return N1; |
| if (N1 == N2) return N1; |
| break; |
| case ISD::CONCAT_VECTORS: { |
| // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. |
| SDValue Ops[] = {N1, N2}; |
| if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) |
| return V; |
| break; |
| } |
| case ISD::AND: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's |
| // worth handling here. |
| if (N2C && N2C->isNullValue()) |
| return N2; |
| if (N2C && N2C->isAllOnesValue()) // X & -1 -> X |
| return N1; |
| break; |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::ADD: |
| case ISD::SUB: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so |
| // it's worth handling here. |
| if (N2C && N2C->isNullValue()) |
| return N1; |
| break; |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::MULHU: |
| case ISD::MULHS: |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. |
| assert(N1.getValueType() == VT && |
| N1.getValueType().isFloatingPoint() && |
| N2.getValueType().isFloatingPoint() && |
| "Invalid FCOPYSIGN!"); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| assert(VT == N1.getValueType() && |
| "Shift operators return type must be the same as their first arg"); |
| assert(VT.isInteger() && N2.getValueType().isInteger() && |
| "Shifts only work on integers"); |
| assert((!VT.isVector() || VT == N2.getValueType()) && |
| "Vector shift amounts must be in the same as their first arg"); |
| // Verify that the shift amount VT is bit enough to hold valid shift |
| // amounts. This catches things like trying to shift an i1024 value by an |
| // i8, which is easy to fall into in generic code that uses |
| // TLI.getShiftAmount(). |
| assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && |
| "Invalid use of small shift amount with oversized value!"); |
| |
| // Always fold shifts of i1 values so the code generator doesn't need to |
| // handle them. Since we know the size of the shift has to be less than the |
| // size of the value, the shift/rotate count is guaranteed to be zero. |
| if (VT == MVT::i1) |
| return N1; |
| if (N2C && N2C->isNullValue()) |
| return N1; |
| break; |
| case ISD::FP_ROUND_INREG: { |
| EVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg round!"); |
| assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && |
| "Cannot FP_ROUND_INREG integer types"); |
| assert(EVT.isVector() == VT.isVector() && |
| "FP_ROUND_INREG type should be vector iff the operand " |
| "type is vector!"); |
| assert((!EVT.isVector() || |
| EVT.getVectorNumElements() == VT.getVectorNumElements()) && |
| "Vector element counts must match in FP_ROUND_INREG"); |
| assert(EVT.bitsLE(VT) && "Not rounding down!"); |
| (void)EVT; |
| if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. |
| break; |
| } |
| case ISD::FP_ROUND: |
| assert(VT.isFloatingPoint() && |
| N1.getValueType().isFloatingPoint() && |
| VT.bitsLE(N1.getValueType()) && |
| N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && |
| "Invalid FP_ROUND!"); |
| if (N1.getValueType() == VT) return N1; // noop conversion. |
| break; |
| case ISD::AssertSext: |
| case ISD::AssertZext: { |
| EVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(VT.isInteger() && EVT.isInteger() && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(!EVT.isVector() && |
| "AssertSExt/AssertZExt type should be the vector element type " |
| "rather than the vector type!"); |
| assert(EVT.bitsLE(VT) && "Not extending!"); |
| if (VT == EVT) return N1; // noop assertion. |
| break; |
| } |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(VT.isInteger() && EVT.isInteger() && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(EVT.isVector() == VT.isVector() && |
| "SIGN_EXTEND_INREG type should be vector iff the operand " |
| "type is vector!"); |
| assert((!EVT.isVector() || |
| EVT.getVectorNumElements() == VT.getVectorNumElements()) && |
| "Vector element counts must match in SIGN_EXTEND_INREG"); |
| assert(EVT.bitsLE(VT) && "Not extending!"); |
| if (EVT == VT) return N1; // Not actually extending |
| |
| auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { |
| unsigned FromBits = EVT.getScalarSizeInBits(); |
| Val <<= Val.getBitWidth() - FromBits; |
| Val.ashrInPlace(Val.getBitWidth() - FromBits); |
| return getConstant(Val, DL, ConstantVT); |
| }; |
| |
| if (N1C) { |
| const APInt &Val = N1C->getAPIntValue(); |
| return SignExtendInReg(Val, VT); |
| } |
| if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { |
| SmallVector<SDValue, 8> Ops; |
| llvm::EVT OpVT = N1.getOperand(0).getValueType(); |
| for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { |
| SDValue Op = N1.getOperand(i); |
| if (Op.isUndef()) { |
| Ops.push_back(getUNDEF(OpVT)); |
| continue; |
| } |
| ConstantSDNode *C = cast<ConstantSDNode>(Op); |
| APInt Val = C->getAPIntValue(); |
| Ops.push_back(SignExtendInReg(Val, OpVT)); |
| } |
| return getBuildVector(VT, DL, Ops); |
| } |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && |
| "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ |
| element type of the vector."); |
| |
| // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. |
| if (N1.isUndef()) |
| return getUNDEF(VT); |
| |
| // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF |
| if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) |
| return getUNDEF(VT); |
| |
| // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is |
| // expanding copies of large vectors from registers. |
| if (N2C && |
| N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N1.getNumOperands() > 0) { |
| unsigned Factor = |
| N1.getOperand(0).getValueType().getVectorNumElements(); |
| return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, |
| N1.getOperand(N2C->getZExtValue() / Factor), |
| getConstant(N2C->getZExtValue() % Factor, DL, |
| N2.getValueType())); |
| } |
| |
| // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is |
| // expanding large vector constants. |
| if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { |
| SDValue Elt = N1.getOperand(N2C->getZExtValue()); |
| |
| if (VT != Elt.getValueType()) |
| // If the vector element type is not legal, the BUILD_VECTOR operands |
| // are promoted and implicitly truncated, and the result implicitly |
| // extended. Make that explicit here. |
| Elt = getAnyExtOrTrunc(Elt, DL, VT); |
| |
| return Elt; |
| } |
| |
| // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector |
| // operations are lowered to scalars. |
| if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| // If the indices are the same, return the inserted element else |
| // if the indices are known different, extract the element from |
| // the original vector. |
| SDValue N1Op2 = N1.getOperand(2); |
| ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); |
| |
| if (N1Op2C && N2C) { |
| if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { |
| if (VT == N1.getOperand(1).getValueType()) |
| return N1.getOperand(1); |
| else |
| return getSExtOrTrunc(N1.getOperand(1), DL, VT); |
| } |
| |
| return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); |
| } |
| } |
| |
| // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed |
| // when vector types are scalarized and v1iX is legal. |
| // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) |
| if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| N1.getValueType().getVectorNumElements() == 1) { |
| return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), |
| N1.getOperand(1)); |
| } |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); |
| assert(!N1.getValueType().isVector() && !VT.isVector() && |
| (N1.getValueType().isInteger() == VT.isInteger()) && |
| N1.getValueType() != VT && |
| "Wrong types for EXTRACT_ELEMENT!"); |
| |
| // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding |
| // 64-bit integers into 32-bit parts. Instead of building the extract of |
| // the BUILD_PAIR, only to have legalize rip it apart, just do it now. |
| if (N1.getOpcode() == ISD::BUILD_PAIR) |
| return N1.getOperand(N2C->getZExtValue()); |
| |
| // EXTRACT_ELEMENT of a constant int is also very common. |
| if (N1C) { |
| unsigned ElementSize = VT.getSizeInBits(); |
| unsigned Shift = ElementSize * N2C->getZExtValue(); |
| APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); |
| return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); |
| } |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| if (VT.isSimple() && N1.getValueType().isSimple()) { |
| assert(VT.isVector() && N1.getValueType().isVector() && |
| "Extract subvector VTs must be a vectors!"); |
| assert(VT.getVectorElementType() == |
| N1.getValueType().getVectorElementType() && |
| "Extract subvector VTs must have the same element type!"); |
| assert(VT.getSimpleVT() <= N1.getSimpleValueType() && |
| "Extract subvector must be from larger vector to smaller vector!"); |
| |
| if (N2C) { |
| assert((VT.getVectorNumElements() + N2C->getZExtValue() |
| <= N1.getValueType().getVectorNumElements()) |
| && "Extract subvector overflow!"); |
| } |
| |
| // Trivial extraction. |
| if (VT.getSimpleVT() == N1.getSimpleValueType()) |
| return N1; |
| |
| // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. |
| if (N1.isUndef()) |
| return getUNDEF(VT); |
| |
| // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of |
| // the concat have the same type as the extract. |
| if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N1.getNumOperands() > 0 && |
| VT == N1.getOperand(0).getValueType()) { |
| unsigned Factor = VT.getVectorNumElements(); |
| return N1.getOperand(N2C->getZExtValue() / Factor); |
| } |
| |
| // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created |
| // during shuffle legalization. |
| if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && |
| VT == N1.getOperand(1).getValueType()) |
| return N1.getOperand(1); |
| } |
| break; |
| } |
| |
| // Perform trivial constant folding. |
| if (SDValue SV = |
| FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) |
| return SV; |
| |
| // Constant fold FP operations. |
| bool HasFPExceptions = TLI->hasFloatingPointExceptions(); |
| if (N1CFP) { |
| if (N2CFP) { |
| APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); |
| APFloat::opStatus s; |
| switch (Opcode) { |
| case ISD::FADD: |
| s = V1.add(V2, APFloat::rmNearestTiesToEven); |
| if (!HasFPExceptions || s != APFloat::opInvalidOp) |
| return getConstantFP(V1, DL, VT); |
| break; |
| case ISD::FSUB: |
| s = V1.subtract(V2, APFloat::rmNearestTiesToEven); |
| if (!HasFPExceptions || s!=APFloat::opInvalidOp) |
| return getConstantFP(V1, DL, VT); |
| break; |
| case ISD::FMUL: |
| s = V1.multiply(V2, APFloat::rmNearestTiesToEven); |
| if (!HasFPExceptions || s!=APFloat::opInvalidOp) |
| return getConstantFP(V1, DL, VT); |
| break; |
| case ISD::FDIV: |
| s = V1.divide(V2, APFloat::rmNearestTiesToEven); |
| if (!HasFPExceptions || (s!=APFloat::opInvalidOp && |
| s!=APFloat::opDivByZero)) { |
| return getConstantFP(V1, DL, VT); |
| } |
| break; |
| case ISD::FREM : |
| s = V1.mod(V2); |
| if (!HasFPExceptions || (s!=APFloat::opInvalidOp && |
| s!=APFloat::opDivByZero)) { |
| return getConstantFP(V1, DL, VT); |
| } |
| break; |
| case ISD::FCOPYSIGN: |
| V1.copySign(V2); |
| return getConstantFP(V1, DL, VT); |
| default: break; |
| } |
| } |
| |
| if (Opcode == ISD::FP_ROUND) { |
| APFloat V = N1CFP->getValueAPF(); // make copy |
| bool ignored; |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)V.convert(EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, &ignored); |
| return getConstantFP(V, DL, VT); |
| } |
| } |
| |
| // Any FP binop with an undef operand is folded to NaN. This matches the |
| // behavior of the IR optimizer. |
| switch (Opcode) { |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| if (N1.isUndef() || N2.isUndef()) |
| return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); |
| } |
| |
| // Canonicalize an UNDEF to the RHS, even over a constant. |
| if (N1.isUndef()) { |
| if (TLI->isCommutativeBinOp(Opcode)) { |
| std::swap(N1, N2); |
| } else { |
| switch (Opcode) { |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::SUB: |
| return getUNDEF(VT); // fold op(undef, arg2) -> undef |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: |
| return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 |
| } |
| } |
| } |
| |
| // Fold a bunch of operators when the RHS is undef. |
| if (N2.isUndef()) { |
| switch (Opcode) { |
| case ISD::XOR: |
| if (N1.isUndef()) |
| // Handle undef ^ undef -> 0 special case. This is a common |
| // idiom (misuse). |
| return getConstant(0, DL, VT); |
| LLVM_FALLTHROUGH; |
| case ISD::ADD: |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUB: |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: |
| return getUNDEF(VT); // fold op(arg1, undef) -> undef |
| case ISD::MUL: |
| case ISD::AND: |
| return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 |
| case ISD::OR: |
| return getAllOnesConstant(DL, VT); |
| } |
| } |
| |
| // Memoize this node if possible. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = {N1, N2}; |
| if (VT != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { |
| E->intersectFlagsWith(Flags); |
| return SDValue(E, 0); |
| } |
| |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| N->setFlags(Flags); |
| createOperands(N, Ops); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| createOperands(N, Ops); |
| } |
| |
| InsertNode(N); |
| SDValue V = SDValue(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDValue N1, SDValue N2, SDValue N3, |
| const SDNodeFlags Flags) { |
| // Perform various simplifications. |
| switch (Opcode) { |
| case ISD::FMA: { |
| assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); |
| assert(N1.getValueType() == VT && N2.getValueType() == VT && |
| N3.getValueType() == VT && "FMA types must match!"); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); |
| ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); |
| if (N1CFP && N2CFP && N3CFP) { |
| APFloat V1 = N1CFP->getValueAPF(); |
| const APFloat &V2 = N2CFP->getValueAPF(); |
| const APFloat &V3 = N3CFP->getValueAPF(); |
| APFloat::opStatus s = |
| V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); |
| if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) |
| return getConstantFP(V1, DL, VT); |
| } |
| break; |
| } |
| case ISD::CONCAT_VECTORS: { |
| // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. |
| SDValue Ops[] = {N1, N2, N3}; |
| if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) |
| return V; |
| break; |
| } |
| case ISD::SETCC: { |
| // Use FoldSetCC to simplify SETCC's. |
| if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) |
| return V; |
| // Vector constant folding. |
| SDValue Ops[] = {N1, N2, N3}; |
| if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { |
| NewSDValueDbgMsg(V, "New node vector constant folding: ", this); |
| return V; |
| } |
| break; |
| } |
| case ISD::SELECT: |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { |
| if (N1C->getZExtValue()) |
| return N2; // select true, X, Y -> X |
| return N3; // select false, X, Y -> Y |
| } |
| |
| if (N2 == N3) return N2; // select C, X, X -> X |
| break; |
| case ISD::VECTOR_SHUFFLE: |
| llvm_unreachable("should use getVectorShuffle constructor!"); |
| case ISD::INSERT_VECTOR_ELT: { |
| ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); |
| // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF |
| if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) |
| return getUNDEF(VT); |
| break; |
| } |
| case ISD::INSERT_SUBVECTOR: { |
| SDValue Index = N3; |
| if (VT.isSimple() && N1.getValueType().isSimple() |
| && N2.getValueType().isSimple()) { |
| assert(VT.isVector() && N1.getValueType().isVector() && |
| N2.getValueType().isVector() && |
| "Insert subvector VTs must be a vectors"); |
| assert(VT == N1.getValueType() && |
| "Dest and insert subvector source types must match!"); |
| assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && |
| "Insert subvector must be from smaller vector to larger vector!"); |
| if (isa<ConstantSDNode>(Index)) { |
| assert((N2.getValueType().getVectorNumElements() + |
| cast<ConstantSDNode>(Index)->getZExtValue() |
| <= VT.getVectorNumElements()) |
| && "Insert subvector overflow!"); |
| } |
| |
| // Trivial insertion. |
| if (VT.getSimpleVT() == N2.getSimpleValueType()) |
| return N2; |
| } |
| break; |
| } |
| case ISD::BITCAST: |
| // Fold bit_convert nodes from a type to themselves. |
| if (N1.getValueType() == VT) |
| return N1; |
| break; |
| } |
| |
| // Memoize node if it doesn't produce a flag. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = {N1, N2, N3}; |
| if (VT != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { |
| E->intersectFlagsWith(Flags); |
| return SDValue(E, 0); |
| } |
| |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| N->setFlags(Flags); |
| createOperands(N, Ops); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| createOperands(N, Ops); |
| } |
| |
| InsertNode(N); |
| SDValue V = SDValue(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDValue N1, SDValue N2, SDValue N3, SDValue N4) { |
| SDValue Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, DL, VT, Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDValue N1, SDValue N2, SDValue N3, SDValue N4, |
| SDValue N5) { |
| SDValue Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, DL, VT, Ops); |
| } |
| |
| /// getStackArgumentTokenFactor - Compute a TokenFactor to force all |
| /// the incoming stack arguments to be loaded from the stack. |
| SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { |
| SmallVector<SDValue, 8> ArgChains; |
| |
| // Include the original chain at the beginning of the list. When this is |
| // used by target LowerCall hooks, this helps legalize find the |
| // CALLSEQ_BEGIN node. |
| ArgChains.push_back(Chain); |
| |
| // Add a chain value for each stack argument. |
| for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), |
| UE = getEntryNode().getNode()->use_end(); U != UE; ++U) |
| if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) |
| if (FI->getIndex() < 0) |
| ArgChains.push_back(SDValue(L, 1)); |
| |
| // Build a tokenfactor for all the chains. |
| return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); |
| } |
| |
| /// getMemsetValue - Vectorized representation of the memset value |
| /// operand. |
| static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| assert(!Value.isUndef()); |
| |
| unsigned NumBits = VT.getScalarSizeInBits(); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { |
| assert(C->getAPIntValue().getBitWidth() == 8); |
| APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); |
| if (VT.isInteger()) |
| return DAG.getConstant(Val, dl, VT); |
| return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, |
| VT); |
| } |
| |
| assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); |
| EVT IntVT = VT.getScalarType(); |
| if (!IntVT.isInteger()) |
| IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); |
| |
| Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); |
| if (NumBits > 8) { |
| // Use a multiplication with 0x010101... to extend the input to the |
| // required length. |
| APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); |
| Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, |
| DAG.getConstant(Magic, dl, IntVT)); |
| } |
| |
| if (VT != Value.getValueType() && !VT.isInteger()) |
| Value = DAG.getBitcast(VT.getScalarType(), Value); |
| if (VT != Value.getValueType()) |
| Value = DAG.getSplatBuildVector(VT, dl, Value); |
| |
| return Value; |
| } |
| |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only |
| /// used when a memcpy is turned into a memset when the source is a constant |
| /// string ptr. |
| static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| const ConstantDataArraySlice &Slice) { |
| // Handle vector with all elements zero. |
| if (Slice.Array == nullptr) { |
| if (VT.isInteger()) |
| return DAG.getConstant(0, dl, VT); |
| else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) |
| return DAG.getConstantFP(0.0, dl, VT); |
| else if (VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getConstant(0, dl, |
| EVT::getVectorVT(*DAG.getContext(), |
| EltVT, NumElts))); |
| } else |
| llvm_unreachable("Expected type!"); |
| } |
| |
| assert(!VT.isVector() && "Can't handle vector type here!"); |
| unsigned NumVTBits = VT.getSizeInBits(); |
| unsigned NumVTBytes = NumVTBits / 8; |
| unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); |
| |
| APInt Val(NumVTBits, 0); |
| if (DAG.getDataLayout().isLittleEndian()) { |
| for (unsigned i = 0; i != NumBytes; ++i) |
| Val |= (uint64_t)(unsigned char)Slice[i] << i*8; |
| } else { |
| for (unsigned i = 0; i != NumBytes; ++i) |
| Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; |
| } |
| |
| // If the "cost" of materializing the integer immediate is less than the cost |
| // of a load, then it is cost effective to turn the load into the immediate. |
| Type *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) |
| return DAG.getConstant(Val, dl, VT); |
| return SDValue(nullptr, 0); |
| } |
| |
| SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, |
| const SDLoc &DL) { |
| EVT VT = Base.getValueType(); |
| return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); |
| } |
| |
| /// Returns true if memcpy source is constant data. |
| static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { |
| uint64_t SrcDelta = 0; |
| GlobalAddressSDNode *G = nullptr; |
| if (Src.getOpcode() == ISD::GlobalAddress) |
| G = cast<GlobalAddressSDNode>(Src); |
| else if (Src.getOpcode() == ISD::ADD && |
| Src.getOperand(0).getOpcode() == ISD::GlobalAddress && |
| Src.getOperand(1).getOpcode() == ISD::Constant) { |
| G = cast<GlobalAddressSDNode>(Src.getOperand(0)); |
| SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); |
| } |
| if (!G) |
| return false; |
| |
| return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, |
| SrcDelta + G->getOffset()); |
| } |
| |
| /// Determines the optimal series of memory ops to replace the memset / memcpy. |
| /// Return true if the number of memory ops is below the threshold (Limit). |
| /// It returns the types of the sequence of memory ops to perform |
| /// memset / memcpy by reference. |
| static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, |
| unsigned Limit, uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, |
| bool ZeroMemset, |
| bool MemcpyStrSrc, |
| bool AllowOverlap, |
| unsigned DstAS, unsigned SrcAS, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| assert((SrcAlign == 0 || SrcAlign >= DstAlign) && |
| "Expecting memcpy / memset source to meet alignment requirement!"); |
| // If 'SrcAlign' is zero, that means the memory operation does not need to |
| // load the value, i.e. memset or memcpy from constant string. Otherwise, |
| // it's the inferred alignment of the source. 'DstAlign', on the other hand, |
| // is the specified alignment of the memory operation. If it is zero, that |
| // means it's possible to change the alignment of the destination. |
| // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does |
| // not need to be loaded. |
| EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, |
| IsMemset, ZeroMemset, MemcpyStrSrc, |
| DAG.getMachineFunction()); |
| |
| if (VT == MVT::Other) { |
| // Use the largest integer type whose alignment constraints are satisfied. |
| // We only need to check DstAlign here as SrcAlign is always greater or |
| // equal to DstAlign (or zero). |
| VT = MVT::i64; |
| while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && |
| !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) |
| VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); |
| assert(VT.isInteger()); |
| |
| // Find the largest legal integer type. |
| MVT LVT = MVT::i64; |
| while (!TLI.isTypeLegal(LVT)) |
| LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); |
| assert(LVT.isInteger()); |
| |
| // If the type we've chosen is larger than the largest legal integer type |
| // then use that instead. |
| if (VT.bitsGT(LVT)) |
| VT = LVT; |
| } |
| |
| unsigned NumMemOps = 0; |
| while (Size != 0) { |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| while (VTSize > Size) { |
| // For now, only use non-vector load / store's for the left-over pieces. |
| EVT NewVT = VT; |
| unsigned NewVTSize; |
| |
| bool Found = false; |
| if (VT.isVector() || VT.isFloatingPoint()) { |
| NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; |
| if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && |
| TLI.isSafeMemOpType(NewVT.getSimpleVT())) |
| Found = true; |
| else if (NewVT == MVT::i64 && |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && |
| TLI.isSafeMemOpType(MVT::f64)) { |
| // i64 is usually not legal on 32-bit targets, but f64 may be. |
| NewVT = MVT::f64; |
| Found = true; |
| } |
| } |
| |
| if (!Found) { |
| do { |
| NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); |
| if (NewVT == MVT::i8) |
| break; |
| } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); |
| } |
| NewVTSize = NewVT.getSizeInBits() / 8; |
| |
| // If the new VT cannot cover all of the remaining bits, then consider |
| // issuing a (or a pair of) unaligned and overlapping load / store. |
| // FIXME: Only does this for 64-bit or more since we don't have proper |
| // cost model for unaligned load / store. |
| bool Fast; |
| if (NumMemOps && AllowOverlap && |
| VTSize >= 8 && NewVTSize < Size && |
| TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) |
| VTSize = Size; |
| else { |
| VT = NewVT; |
| VTSize = NewVTSize; |
| } |
| } |
| |
| if (++NumMemOps > Limit) |
| return false; |
| |
| MemOps.push_back(VT); |
| Size -= VTSize; |
| } |
| |
| return true; |
| } |
| |
| static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { |
| // On Darwin, -Os means optimize for size without hurting performance, so |
| // only really optimize for size when -Oz (MinSize) is used. |
| if (MF.getTarget().getTargetTriple().isOSDarwin()) |
| return MF.getFunction().optForMinSize(); |
| return MF.getFunction().optForSize(); |
| } |
| |
| static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, |
| SmallVector<SDValue, 32> &OutChains, unsigned From, |
| unsigned To, SmallVector<SDValue, 16> &OutLoadChains, |
| SmallVector<SDValue, 16> &OutStoreChains) { |
| assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); |
| assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); |
| SmallVector<SDValue, 16> GluedLoadChains; |
| for (unsigned i = From; i < To; ++i) { |
| OutChains.push_back(OutLoadChains[i]); |
| GluedLoadChains.push_back(OutLoadChains[i]); |
| } |
| |
| // Chain for all loads. |
| SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| GluedLoadChains); |
| |
| for (unsigned i = From; i < To; ++i) { |
| StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); |
| SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), |
| ST->getBasePtr(), ST->getMemoryVT(), |
| ST->getMemOperand()); |
| OutChains.push_back(NewStore); |
| } |
| } |
| |
| static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, |
| SDValue Chain, SDValue Dst, SDValue Src, |
| uint64_t Size, unsigned Align, |
| bool isVol, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| // Turn a memcpy of undef to nop. |
| if (Src.isUndef()) |
| return Chain; |
| |
| // Expand memcpy to a series of load and store ops if the size operand falls |
| // below a certain threshold. |
| // TODO: In the AlwaysInline case, if the size is big then generate a loop |
| // rather than maybe a humongous number of loads and stores. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| LLVMContext &C = *DAG.getContext(); |
| std::vector<EVT> MemOps; |
| bool DstAlignCanChange = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); |
| if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) |
| DstAlignCanChange = true; |
| unsigned SrcAlign = DAG.InferPtrAlignment(Src); |
| if (Align > SrcAlign) |
| SrcAlign = Align; |
| ConstantDataArraySlice Slice; |
| bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); |
| bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; |
| unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); |
| |
| if (!FindOptimalMemOpLowering(MemOps, Limit, Size, |
| (DstAlignCanChange ? 0 : Align), |
| (isZeroConstant ? 0 : SrcAlign), |
| false, false, CopyFromConstant, true, |
| DstPtrInfo.getAddrSpace(), |
| SrcPtrInfo.getAddrSpace(), |
| DAG, TLI)) |
| return SDValue(); |
| |
| if (DstAlignCanChange) { |
| Type *Ty = MemOps[0].getTypeForEVT(C); |
| unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); |
| |
| // Don't promote to an alignment that would require dynamic stack |
| // realignment. |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!TRI->needsStackRealignment(MF)) |
| while (NewAlign > Align && |
| DL.exceedsNaturalStackAlignment(NewAlign)) |
| NewAlign /= 2; |
| |
| if (NewAlign > Align) { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) |
| MFI.setObjectAlignment(FI->getIndex(), NewAlign); |
| Align = NewAlign; |
| } |
| } |
| |
| MachineMemOperand::Flags MMOFlags = |
| isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; |
| SmallVector<SDValue, 16> OutLoadChains; |
| SmallVector<SDValue, 16> OutStoreChains; |
| SmallVector<SDValue, 32> OutChains; |
| unsigned NumMemOps = MemOps.size(); |
| uint64_t SrcOff = 0, DstOff = 0; |
| for (unsigned i = 0; i != NumMemOps; ++i) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| if (VTSize > Size) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| assert(i == NumMemOps-1 && i != 0); |
| SrcOff -= VTSize - Size; |
| DstOff -= VTSize - Size; |
| } |
| |
| if (CopyFromConstant && |
| (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { |
| // It's unlikely a store of a vector immediate can be done in a single |
| // instruction. It would require a load from a constantpool first. |
| // We only handle zero vectors here. |
| // FIXME: Handle other cases where store of vector immediate is done in |
| // a single instruction. |
| ConstantDataArraySlice SubSlice; |
| if (SrcOff < Slice.Length) { |
| SubSlice = Slice; |
| SubSlice.move(SrcOff); |
| } else { |
| // This is an out-of-bounds access and hence UB. Pretend we read zero. |
| SubSlice.Array = nullptr; |
| SubSlice.Offset = 0; |
| SubSlice.Length = VTSize; |
| } |
| Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); |
| if (Value.getNode()) { |
| Store = DAG.getStore(Chain, dl, Value, |
| DAG.getMemBasePlusOffset(Dst, DstOff, dl), |
| DstPtrInfo.getWithOffset(DstOff), Align, |
| MMOFlags); |
| OutChains.push_back(Store); |
| } |
| } |
| |
| if (!Store.getNode()) { |
| // The type might not be legal for the target. This should only happen |
| // if the type is smaller than a legal type, as on PPC, so the right |
| // thing to do is generate a LoadExt/StoreTrunc pair. These simplify |
| // to Load/Store if NVT==VT. |
| // FIXME does the case above also need this? |
| EVT NVT = TLI.getTypeToTransformTo(C, VT); |
| assert(NVT.bitsGE(VT)); |
| |
| bool isDereferenceable = |
| SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); |
| MachineMemOperand::Flags SrcMMOFlags = MMOFlags; |
| if (isDereferenceable) |
| SrcMMOFlags |= MachineMemOperand::MODereferenceable; |
| |
| Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, |
| DAG.getMemBasePlusOffset(Src, SrcOff, dl), |
| SrcPtrInfo.getWithOffset(SrcOff), VT, |
| MinAlign(SrcAlign, SrcOff), SrcMMOFlags); |
| OutLoadChains.push_back(Value.getValue(1)); |
| |
| Store = DAG.getTruncStore( |
| Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), |
| DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); |
| OutStoreChains.push_back(Store); |
| } |
| SrcOff += VTSize; |
| DstOff += VTSize; |
| Size -= VTSize; |
| } |
| |
| unsigned GluedLdStLimit = MaxLdStGlue == 0 ? |
| TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; |
| unsigned NumLdStInMemcpy = OutStoreChains.size(); |
| |
| if (NumLdStInMemcpy) { |
| // It may be that memcpy might be converted to memset if it's memcpy |
| // of constants. In such a case, we won't have loads and stores, but |
| // just stores. In the absence of loads, there is nothing to gang up. |
| if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { |
| // If target does not care, just leave as it. |
| for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { |
| OutChains.push_back(OutLoadChains[i]); |
| OutChains.push_back(OutStoreChains[i]); |
| } |
| } else { |
| // Ld/St less than/equal limit set by target. |
| if (NumLdStInMemcpy <= GluedLdStLimit) { |
| chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, |
| NumLdStInMemcpy, OutLoadChains, |
| OutStoreChains); |
| } else { |
| unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; |
| unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; |
| unsigned GlueIter = 0; |
| |
| for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { |
| unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; |
| unsigned IndexTo = NumLdStInMemcpy - GlueIter; |
| |
| chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, |
| OutLoadChains, OutStoreChains); |
| GlueIter += GluedLdStLimit; |
| } |
| |
| // Residual ld/st. |
| if (RemainingLdStInMemcpy) { |
| chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, |
| RemainingLdStInMemcpy, OutLoadChains, |
| OutStoreChains); |
| } |
| } |
| } |
| } |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } |
| |
| static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, |
| SDValue Chain, SDValue Dst, SDValue Src, |
| uint64_t Size, unsigned Align, |
| bool isVol, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| // Turn a memmove of undef to nop. |
| if (Src.isUndef()) |
| return Chain; |
| |
| // Expand memmove to a series of load and store ops if the size operand falls |
| // below a certain threshold. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| LLVMContext &C = *DAG.getContext(); |
| std::vector<EVT> MemOps; |
| bool DstAlignCanChange = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); |
| if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) |
| DstAlignCanChange = true; |
| unsigned SrcAlign = DAG.InferPtrAlignment(Src); |
| if (Align > SrcAlign) |
| SrcAlign = Align; |
| unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); |
| |
| if (!FindOptimalMemOpLowering(MemOps, Limit, Size, |
| (DstAlignCanChange ? 0 : Align), SrcAlign, |
| false, false, false, false, |
| DstPtrInfo.getAddrSpace(), |
| SrcPtrInfo.getAddrSpace(), |
| DAG, TLI)) |
| return SDValue(); |
| |
| if (DstAlignCanChange) { |
| Type *Ty = MemOps[0].getTypeForEVT(C); |
| unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); |
| if (NewAlign > Align) { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) |
| MFI.setObjectAlignment(FI->getIndex(), NewAlign); |
| Align = NewAlign; |
| } |
| } |
| |
| MachineMemOperand::Flags MMOFlags = |
| isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; |
| uint64_t SrcOff = 0, DstOff = 0; |
| SmallVector<SDValue, 8> LoadValues; |
| SmallVector<SDValue, 8> LoadChains; |
| SmallVector<SDValue, 8> OutChains; |
| unsigned NumMemOps = MemOps.size(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value; |
| |
| bool isDereferenceable = |
| SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); |
| MachineMemOperand::Flags SrcMMOFlags = MMOFlags; |
| if (isDereferenceable) |
| SrcMMOFlags |= MachineMemOperand::MODereferenceable; |
| |
| Value = |
| DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), |
| SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); |
| LoadValues.push_back(Value); |
| LoadChains.push_back(Value.getValue(1)); |
| SrcOff += VTSize; |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); |
| OutChains.clear(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Store; |
| |
| Store = DAG.getStore(Chain, dl, LoadValues[i], |
| DAG.getMemBasePlusOffset(Dst, DstOff, dl), |
| DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); |
| OutChains.push_back(Store); |
| DstOff += VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } |
| |
| /// Lower the call to 'memset' intrinsic function into a series of store |
| /// operations. |
| /// |
| /// \param DAG Selection DAG where lowered code is placed. |
| /// \param dl Link to corresponding IR location. |
| /// \param Chain Control flow dependency. |
| /// \param Dst Pointer to destination memory location. |
| /// \param Src Value of byte to write into the memory. |
| /// \param Size Number of bytes to write. |
| /// \param Align Alignment of the destination in bytes. |
| /// \param isVol True if destination is volatile. |
| /// \param DstPtrInfo IR information on the memory pointer. |
| /// \returns New head in the control flow, if lowering was successful, empty |
| /// SDValue otherwise. |
| /// |
| /// The function tries to replace 'llvm.memset' intrinsic with several store |
| /// operations and value calculation code. This is usually profitable for small |
| /// memory size. |
| static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, |
| SDValue Chain, SDValue Dst, SDValue Src, |
| uint64_t Size, unsigned Align, bool isVol, |
| MachinePointerInfo DstPtrInfo) { |
| // Turn a memset of undef to nop. |
| if (Src.isUndef()) |
| return Chain; |
| |
| // Expand memset to a series of load/store ops if the size operand |
| // falls below a certain threshold. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| std::vector<EVT> MemOps; |
| bool DstAlignCanChange = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); |
| if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) |
| DstAlignCanChange = true; |
| bool IsZeroVal = |
| isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); |
| if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), |
| Size, (DstAlignCanChange ? 0 : Align), 0, |
| true, IsZeroVal, false, true, |
| DstPtrInfo.getAddrSpace(), ~0u, |
| DAG, TLI)) |
| return SDValue(); |
| |
| if (DstAlignCanChange) { |
| Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); |
| unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); |
| if (NewAlign > Align) { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) |
| MFI.setObjectAlignment(FI->getIndex(), NewAlign); |
| Align = NewAlign; |
| } |
| } |
| |
| SmallVector<SDValue, 8> OutChains; |
| uint64_t DstOff = 0; |
| unsigned NumMemOps = MemOps.size(); |
| |
| // Find the largest store and generate the bit pattern for it. |
| EVT LargestVT = MemOps[0]; |
| for (unsigned i = 1; i < NumMemOps; i++) |
| if (MemOps[i].bitsGT(LargestVT)) |
| LargestVT = MemOps[i]; |
| SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); |
| |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| if (VTSize > Size) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| assert(i == NumMemOps-1 && i != 0); |
| DstOff -= VTSize - Size; |
| } |
| |
| // If this store is smaller than the largest store see whether we can get |
| // the smaller value for free with a truncate. |
| SDValue Value = MemSetValue; |
| if (VT.bitsLT(LargestVT)) { |
| if (!LargestVT.isVector() && !VT.isVector() && |
| TLI.isTruncateFree(LargestVT, VT)) |
| Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); |
| else |
| Value = getMemsetValue(Src, VT, DAG, dl); |
| } |
| assert(Value.getValueType() == VT && "Value with wrong type."); |
| SDValue Store = DAG.getStore( |
| Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), |
| DstPtrInfo.getWithOffset(DstOff), Align, |
| isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); |
| OutChains.push_back(Store); |
| DstOff += VT.getSizeInBits() / 8; |
| Size -= VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } |
| |
| static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, |
| unsigned AS) { |
| // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all |
| // pointer operands can be losslessly bitcasted to pointers of address space 0 |
| if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { |
| report_fatal_error("cannot lower memory intrinsic in address space " + |
| Twine(AS)); |
| } |
| } |
| |
| SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| SDValue Src, SDValue Size, unsigned Align, |
| bool isVol, bool AlwaysInline, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); |
| |
| // Check to see if we should lower the memcpy to loads and stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memcpy with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(),Align, |
| isVol, false, DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memcpy with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| if (TSI) { |
| SDValue Result = TSI->EmitTargetCodeForMemcpy( |
| *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, |
| DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // If we really need inline code and the target declined to provide it, |
| // use a (potentially long) sequence of loads and stores. |
| if (AlwaysInline) { |
| assert(ConstantSize && "AlwaysInline requires a constant size!"); |
| return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), Align, isVol, |
| true, DstPtrInfo, SrcPtrInfo); |
| } |
| |
| checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); |
| checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); |
| |
| // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc |
| // memcpy is not guaranteed to be safe. libc memcpys aren't required to |
| // respect volatile, so they may do things like read or write memory |
| // beyond the given memory regions. But fixing this isn't easy, and most |
| // people don't care. |
| |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = getDataLayout().getIntPtrType(*getContext()); |
| Entry.Node = Dst; Args.push_back(Entry); |
| Entry.Node = Src; Args.push_back(Entry); |
| Entry.Node = Size; Args.push_back(Entry); |
| // FIXME: pass in SDLoc |
| TargetLowering::CallLoweringInfo CLI(*this); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), |
| Dst.getValueType().getTypeForEVT(*getContext()), |
| getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), |
| TLI->getPointerTy(getDataLayout())), |
| std::move(Args)) |
| .setDiscardResult() |
| .setTailCall(isTailCall); |
| |
| std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, |
| SDValue Dst, unsigned DstAlign, |
| SDValue Src, unsigned SrcAlign, |
| SDValue Size, Type *SizeTy, |
| unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = getDataLayout().getIntPtrType(*getContext()); |
| Entry.Node = Dst; |
| Args.push_back(Entry); |
| |
| Entry.Node = Src; |
| Args.push_back(Entry); |
| |
| Entry.Ty = SizeTy; |
| Entry.Node = Size; |
| Args.push_back(Entry); |
| |
| RTLIB::Libcall LibraryCall = |
| RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); |
| if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) |
| report_fatal_error("Unsupported element size"); |
| |
| TargetLowering::CallLoweringInfo CLI(*this); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), |
| Type::getVoidTy(*getContext()), |
| getExternalSymbol(TLI->getLibcallName(LibraryCall), |
| TLI->getPointerTy(getDataLayout())), |
| std::move(Args)) |
| .setDiscardResult() |
| .setTailCall(isTailCall); |
| |
| std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| SDValue Src, SDValue Size, unsigned Align, |
| bool isVol, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); |
| |
| // Check to see if we should lower the memmove to loads and stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memmove with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), Align, isVol, |
| false, DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memmove with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| if (TSI) { |
| SDValue Result = TSI->EmitTargetCodeForMemmove( |
| *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); |
| checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); |
| |
| // FIXME: If the memmove is volatile, lowering it to plain libc memmove may |
| // not be safe. See memcpy above for more details. |
| |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = getDataLayout().getIntPtrType(*getContext()); |
| Entry.Node = Dst; Args.push_back(Entry); |
| Entry.Node = Src; Args.push_back(Entry); |
| Entry.Node = Size; Args.push_back(Entry); |
| // FIXME: pass in SDLoc |
| TargetLowering::CallLoweringInfo CLI(*this); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), |
| Dst.getValueType().getTypeForEVT(*getContext()), |
| getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), |
| TLI->getPointerTy(getDataLayout())), |
| std::move(Args)) |
| .setDiscardResult() |
| .setTailCall(isTailCall); |
| |
| std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, |
| SDValue Dst, unsigned DstAlign, |
| SDValue Src, unsigned SrcAlign, |
| SDValue Size, Type *SizeTy, |
| unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = getDataLayout().getIntPtrType(*getContext()); |
| Entry.Node = Dst; |
| Args.push_back(Entry); |
| |
| Entry.Node = Src; |
| Args.push_back(Entry); |
| |
| Entry.Ty = SizeTy; |
| Entry.Node = Size; |
| Args.push_back(Entry); |
| |
| RTLIB::Libcall LibraryCall = |
| RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); |
| if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) |
| report_fatal_error("Unsupported element size"); |
| |
| TargetLowering::CallLoweringInfo CLI(*this); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), |
| Type::getVoidTy(*getContext()), |
| getExternalSymbol(TLI->getLibcallName(LibraryCall), |
| TLI->getPointerTy(getDataLayout())), |
| std::move(Args)) |
| .setDiscardResult() |
| .setTailCall(isTailCall); |
| |
| std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| SDValue Src, SDValue Size, unsigned Align, |
| bool isVol, bool isTailCall, |
| MachinePointerInfo DstPtrInfo) { |
| assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); |
| |
| // Check to see if we should lower the memset to stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memset with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), |
| Align, isVol, DstPtrInfo); |
| |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memset with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| if (TSI) { |
| SDValue Result = TSI->EmitTargetCodeForMemset( |
| *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); |
| |
| // Emit a library call. |
| Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Dst; Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| Entry.Node = Src; |
| Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); |
| Args.push_back(Entry); |
| Entry.Node = Size; |
| Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| |
| // FIXME: pass in SDLoc |
| TargetLowering::CallLoweringInfo CLI(*this); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), |
| Dst.getValueType().getTypeForEVT(*getContext()), |
| getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), |
| TLI->getPointerTy(getDataLayout())), |
| std::move(Args)) |
| .setDiscardResult() |
| .setTailCall(isTailCall); |
| |
| std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, |
| SDValue Dst, unsigned DstAlign, |
| SDValue Value, SDValue Size, Type *SizeTy, |
| unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo) { |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = getDataLayout().getIntPtrType(*getContext()); |
| Entry.Node = Dst; |
| Args.push_back(Entry); |
| |
| Entry.Ty = Type::getInt8Ty(*getContext()); |
| Entry.Node = Value; |
| Args.push_back(Entry); |
| |
| Entry.Ty = SizeTy; |
| Entry.Node = Size; |
| Args.push_back(Entry); |
| |
| RTLIB::Libcall LibraryCall = |
| RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); |
| if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) |
| report_fatal_error("Unsupported element size"); |
| |
| TargetLowering::CallLoweringInfo CLI(*this); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), |
| Type::getVoidTy(*getContext()), |
| getExternalSymbol(TLI->getLibcallName(LibraryCall), |
| TLI->getPointerTy(getDataLayout())), |
| std::move(Args)) |
| .setDiscardResult() |
| .setTailCall(isTailCall); |
| |
| std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDVTList VTList, ArrayRef<SDValue> Ops, |
| MachineMemOperand *MMO) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(MemVT.getRawBits()); |
| AddNodeIDNode(ID, Opcode, VTList, Ops); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void* IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<AtomicSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| |
| auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), |
| VTList, MemVT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getAtomicCmpSwap( |
| unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, |
| SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, |
| unsigned Alignment, AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, SyncScope::ID SSID) { |
| assert(Opcode == ISD::ATOMIC_CMP_SWAP || |
| Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); |
| assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); |
| |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(MemVT); |
| |
| MachineFunction &MF = getMachineFunction(); |
| |
| // FIXME: Volatile isn't really correct; we should keep track of atomic |
| // orderings in the memoperand. |
| auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore; |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, |
| AAMDNodes(), nullptr, SSID, SuccessOrdering, |
| FailureOrdering); |
| |
| return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); |
| } |
| |
| SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, |
| EVT MemVT, SDVTList VTs, SDValue Chain, |
| SDValue Ptr, SDValue Cmp, SDValue Swp, |
| MachineMemOperand *MMO) { |
| assert(Opcode == ISD::ATOMIC_CMP_SWAP || |
| Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); |
| assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); |
| |
| SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; |
| return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDValue Chain, SDValue Ptr, SDValue Val, |
| const Value *PtrVal, unsigned Alignment, |
| AtomicOrdering Ordering, |
| SyncScope::ID SSID) { |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(MemVT); |
| |
| MachineFunction &MF = getMachineFunction(); |
| // An atomic store does not load. An atomic load does not store. |
| // (An atomicrmw obviously both loads and stores.) |
| // For now, atomics are considered to be volatile always, and they are |
| // chained as such. |
| // FIXME: Volatile isn't really correct; we should keep track of atomic |
| // orderings in the memoperand. |
| auto Flags = MachineMemOperand::MOVolatile; |
| if (Opcode != ISD::ATOMIC_STORE) |
| Flags |= MachineMemOperand::MOLoad; |
| if (Opcode != ISD::ATOMIC_LOAD) |
| Flags |= MachineMemOperand::MOStore; |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, |
| MemVT.getStoreSize(), Alignment, AAMDNodes(), |
| nullptr, SSID, Ordering); |
| |
| return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDValue Chain, SDValue Ptr, SDValue Val, |
| MachineMemOperand *MMO) { |
| assert((Opcode == ISD::ATOMIC_LOAD_ADD || |
| Opcode == ISD::ATOMIC_LOAD_SUB || |
| Opcode == ISD::ATOMIC_LOAD_AND || |
| Opcode == ISD::ATOMIC_LOAD_CLR || |
| Opcode == ISD::ATOMIC_LOAD_OR || |
| Opcode == ISD::ATOMIC_LOAD_XOR || |
| Opcode == ISD::ATOMIC_LOAD_NAND || |
| Opcode == ISD::ATOMIC_LOAD_MIN || |
| Opcode == ISD::ATOMIC_LOAD_MAX || |
| Opcode == ISD::ATOMIC_LOAD_UMIN || |
| Opcode == ISD::ATOMIC_LOAD_UMAX || |
| Opcode == ISD::ATOMIC_SWAP || |
| Opcode == ISD::ATOMIC_STORE) && |
| "Invalid Atomic Op"); |
| |
| EVT VT = Val.getValueType(); |
| |
| SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : |
| getVTList(VT, MVT::Other); |
| SDValue Ops[] = {Chain, Ptr, Val}; |
| return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| EVT VT, SDValue Chain, SDValue Ptr, |
| MachineMemOperand *MMO) { |
| assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); |
| |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| SDValue Ops[] = {Chain, Ptr}; |
| return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); |
| } |
| |
| /// getMergeValues - Create a MERGE_VALUES node from the given operands. |
| SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { |
| if (Ops.size() == 1) |
| return Ops[0]; |
| |
| SmallVector<EVT, 4> VTs; |
| VTs.reserve(Ops.size()); |
| for (unsigned i = 0; i < Ops.size(); ++i) |
| VTs.push_back(Ops[i].getValueType()); |
| return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); |
| } |
| |
| SDValue SelectionDAG::getMemIntrinsicNode( |
| unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, |
| EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, |
| MachineMemOperand::Flags Flags, unsigned Size) { |
| if (Align == 0) // Ensure that codegen never sees alignment 0 |
| Align = getEVTAlignment(MemVT); |
| |
| if (!Size) |
| Size = MemVT.getStoreSize(); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); |
| |
| return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); |
| } |
| |
| SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, |
| SDVTList VTList, |
| ArrayRef<SDValue> Ops, EVT MemVT, |
| MachineMemOperand *MMO) { |
| assert((Opcode == ISD::INTRINSIC_VOID || |
| Opcode == ISD::INTRINSIC_W_CHAIN || |
| Opcode == ISD::PREFETCH || |
| Opcode == ISD::LIFETIME_START || |
| Opcode == ISD::LIFETIME_END || |
| ((int)Opcode <= std::numeric_limits<int>::max() && |
| (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && |
| "Opcode is not a memory-accessing opcode!"); |
| |
| // Memoize the node unless it returns a flag. |
| MemIntrinsicSDNode *N; |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops); |
| ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( |
| Opcode, dl.getIROrder(), VTList, MemVT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| |
| N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), |
| VTList, MemVT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), |
| VTList, MemVT, MMO); |
| createOperands(N, Ops); |
| } |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a |
| /// MachinePointerInfo record from it. This is particularly useful because the |
| /// code generator has many cases where it doesn't bother passing in a |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". |
| static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, |
| SelectionDAG &DAG, SDValue Ptr, |
| int64_t Offset = 0) { |
| // If this is FI+Offset, we can model it. |
| if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) |
| return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), |
| FI->getIndex(), Offset); |
| |
| // If this is (FI+Offset1)+Offset2, we can model it. |
| if (Ptr.getOpcode() != ISD::ADD || |
| !isa<ConstantSDNode>(Ptr.getOperand(1)) || |
| !isa<FrameIndexSDNode>(Ptr.getOperand(0))) |
| return Info; |
| |
| int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| return MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), FI, |
| Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); |
| } |
| |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a |
| /// MachinePointerInfo record from it. This is particularly useful because the |
| /// code generator has many cases where it doesn't bother passing in a |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". |
| static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, |
| SelectionDAG &DAG, SDValue Ptr, |
| SDValue OffsetOp) { |
| // If the 'Offset' value isn't a constant, we can't handle this. |
| if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) |
| return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); |
| if (OffsetOp.isUndef()) |
| return InferPointerInfo(Info, DAG, Ptr); |
| return Info; |
| } |
| |
| SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
| EVT VT, const SDLoc &dl, SDValue Chain, |
| SDValue Ptr, SDValue Offset, |
| MachinePointerInfo PtrInfo, EVT MemVT, |
| unsigned Alignment, |
| MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo, const MDNode *Ranges) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(MemVT); |
| |
| MMOFlags |= MachineMemOperand::MOLoad; |
| assert((MMOFlags & MachineMemOperand::MOStore) == 0); |
| // If we don't have a PtrInfo, infer the trivial frame index case to simplify |
| // clients. |
| if (PtrInfo.V.isNull()) |
| PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); |
| return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); |
| } |
| |
| SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
| EVT VT, const SDLoc &dl, SDValue Chain, |
| SDValue Ptr, SDValue Offset, EVT MemVT, |
| MachineMemOperand *MMO) { |
| if (VT == MemVT) { |
| ExtType = ISD::NON_EXTLOAD; |
| } else if (ExtType == ISD::NON_EXTLOAD) { |
| assert(VT == MemVT && "Non-extending load from different memory type!"); |
| } else { |
| // Extending load. |
| assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && |
| "Should only be an extending load, not truncating!"); |
| assert(VT.isInteger() == MemVT.isInteger() && |
| "Cannot convert from FP to Int or Int -> FP!"); |
| assert(VT.isVector() == MemVT.isVector() && |
| "Cannot use an ext load to convert to or from a vector!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == MemVT.getVectorNumElements()) && |
| "Cannot use an ext load to change the number of vector elements!"); |
| } |
| |
| bool Indexed = AM != ISD::UNINDEXED; |
| assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); |
| |
| SDVTList VTs = Indexed ? |
| getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); |
| SDValue Ops[] = { Chain, Ptr, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); |
| ID.AddInteger(MemVT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( |
| dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<LoadSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, |
| ExtType, MemVT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, |
| SDValue Ptr, MachinePointerInfo PtrInfo, |
| unsigned Alignment, |
| MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo, const MDNode *Ranges) { |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, |
| PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); |
| } |
| |
| SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, |
| SDValue Ptr, MachineMemOperand *MMO) { |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, |
| VT, MMO); |
| } |
| |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, |
| EVT VT, SDValue Chain, SDValue Ptr, |
| MachinePointerInfo PtrInfo, EVT MemVT, |
| unsigned Alignment, |
| MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo) { |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, |
| MemVT, Alignment, MMOFlags, AAInfo); |
| } |
| |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, |
| EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, |
| MachineMemOperand *MMO) { |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, |
| MemVT, MMO); |
| } |
| |
| SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, |
| SDValue Base, SDValue Offset, |
| ISD::MemIndexedMode AM) { |
| LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); |
| assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); |
| // Don't propagate the invariant or dereferenceable flags. |
| auto MMOFlags = |
| LD->getMemOperand()->getFlags() & |
| ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); |
| return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, |
| LD->getChain(), Base, Offset, LD->getPointerInfo(), |
| LD->getMemoryVT(), LD->getAlignment(), MMOFlags, |
| LD->getAAInfo()); |
| } |
| |
| SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, MachinePointerInfo PtrInfo, |
| unsigned Alignment, |
| MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo) { |
| assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(Val.getValueType()); |
| |
| MMOFlags |= MachineMemOperand::MOStore; |
| assert((MMOFlags & MachineMemOperand::MOLoad) == 0); |
| |
| if (PtrInfo.V.isNull()) |
| PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); |
| return getStore(Chain, dl, Val, Ptr, MMO); |
| } |
| |
| SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, MachineMemOperand *MMO) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| EVT VT = Val.getValueType(); |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( |
| dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<StoreSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, |
| ISD::UNINDEXED, false, VT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, MachinePointerInfo PtrInfo, |
| EVT SVT, unsigned Alignment, |
| MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(SVT); |
| |
| MMOFlags |= MachineMemOperand::MOStore; |
| assert((MMOFlags & MachineMemOperand::MOLoad) == 0); |
| |
| if (PtrInfo.V.isNull()) |
| PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); |
| return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); |
| } |
| |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, EVT SVT, |
| MachineMemOperand *MMO) { |
| EVT VT = Val.getValueType(); |
| |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (VT == SVT) |
| return getStore(Chain, dl, Val, Ptr, MMO); |
| |
| assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && |
| "Should only be a truncating store, not extending!"); |
| assert(VT.isInteger() == SVT.isInteger() && |
| "Can't do FP-INT conversion!"); |
| assert(VT.isVector() == SVT.isVector() && |
| "Cannot use trunc store to convert to or from a vector!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == SVT.getVectorNumElements()) && |
| "Cannot use trunc store to change the number of vector elements!"); |
| |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops); |
| ID.AddInteger(SVT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( |
| dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<StoreSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, |
| ISD::UNINDEXED, true, SVT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, |
| SDValue Base, SDValue Offset, |
| ISD::MemIndexedMode AM) { |
| StoreSDNode *ST = cast<StoreSDNode>(OrigStore); |
| assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); |
| SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); |
| SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawSubclassData()); |
| ID.AddInteger(ST->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, |
| ST->isTruncatingStore(), ST->getMemoryVT(), |
| ST->getMemOperand()); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, |
| SDValue Ptr, SDValue Mask, SDValue Src0, |
| EVT MemVT, MachineMemOperand *MMO, |
| ISD::LoadExtType ExtTy, bool isExpanding) { |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( |
| dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, |
| ExtTy, isExpanding, MemVT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, |
| SDValue Val, SDValue Ptr, SDValue Mask, |
| EVT MemVT, MachineMemOperand *MMO, |
| bool IsTruncating, bool IsCompressing) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| EVT VT = Val.getValueType(); |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Ops[] = { Chain, Ptr, Mask, Val }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( |
| dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, |
| IsTruncating, IsCompressing, MemVT, MMO); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, |
| MachineMemOperand *MMO) { |
| assert(Ops.size() == 6 && "Incompatible number of operands"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( |
| dl.getIROrder(), VTs, VT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| |
| auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), |
| VTs, VT, MMO); |
| createOperands(N, Ops); |
| |
| assert(N->getValue().getValueType() == N->getValueType(0) && |
| "Incompatible type of the PassThru value in MaskedGatherSDNode"); |
| assert(N->getMask().getValueType().getVectorNumElements() == |
| N->getValueType(0).getVectorNumElements() && |
| "Vector width mismatch between mask and data"); |
| assert(N->getIndex().getValueType().getVectorNumElements() == |
| N->getValueType(0).getVectorNumElements() && |
| "Vector width mismatch between index and data"); |
| assert(isa<ConstantSDNode>(N->getScale()) && |
| cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && |
| "Scale should be a constant power of 2"); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, |
| MachineMemOperand *MMO) { |
| assert(Ops.size() == 6 && "Incompatible number of operands"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( |
| dl.getIROrder(), VTs, VT, MMO)); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), |
| VTs, VT, MMO); |
| createOperands(N, Ops); |
| |
| assert(N->getMask().getValueType().getVectorNumElements() == |
| N->getValue().getValueType().getVectorNumElements() && |
| "Vector width mismatch between mask and data"); |
| assert(N->getIndex().getValueType().getVectorNumElements() == |
| N->getValue().getValueType().getVectorNumElements() && |
| "Vector width mismatch between index and data"); |
| assert(isa<ConstantSDNode>(N->getScale()) && |
| cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && |
| "Scale should be a constant power of 2"); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, |
| SDValue Ptr, SDValue SV, unsigned Align) { |
| SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; |
| return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDUse> Ops) { |
| switch (Ops.size()) { |
| case 0: return getNode(Opcode, DL, VT); |
| case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); |
| case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| // Copy from an SDUse array into an SDValue array for use with |
| // the regular getNode logic. |
| SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); |
| return getNode(Opcode, DL, VT, NewOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { |
| unsigned NumOps = Ops.size(); |
| switch (NumOps) { |
| case 0: return getNode(Opcode, DL, VT); |
| case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); |
| case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); |
| case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::CONCAT_VECTORS: |
| // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. |
| if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) |
| return V; |
| break; |
| case ISD::SELECT_CC: |
| assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); |
| assert(Ops[0].getValueType() == Ops[1].getValueType() && |
| "LHS and RHS of condition must have same type!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "True and False arms of SelectCC must have same type!"); |
| assert(Ops[2].getValueType() == VT && |
| "select_cc node must be of same type as true and false value!"); |
| break; |
| case ISD::BR_CC: |
| assert(NumOps == 5 && "BR_CC takes 5 operands!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "LHS/RHS of comparison should match types!"); |
| break; |
| } |
| |
| // Memoize nodes. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| |
| if (VT != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops); |
| void *IP = nullptr; |
| |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) |
| return SDValue(E, 0); |
| |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| createOperands(N, Ops); |
| } |
| |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, |
| ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { |
| return getNode(Opcode, DL, getVTList(ResultTys), Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| ArrayRef<SDValue> Ops) { |
| if (VTList.NumVTs == 1) |
| return getNode(Opcode, DL, VTList.VTs[0], Ops); |
| |
| #if 0 |
| switch (Opcode) { |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SHL_PARTS: |
| if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); |
| else if (N3.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = VT.getScalarSizeInBits()*2; |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); |
| } |
| break; |
| } |
| #endif |
| |
| // Memoize the node unless it returns a flag. |
| SDNode *N; |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) |
| return SDValue(E, 0); |
| |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); |
| createOperands(N, Ops); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); |
| createOperands(N, Ops); |
| } |
| InsertNode(N); |
| SDValue V(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, |
| SDVTList VTList) { |
| return getNode(Opcode, DL, VTList, None); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| SDValue N1) { |
| SDValue Ops[] = { N1 }; |
| return getNode(Opcode, DL, VTList, Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| SDValue N1, SDValue N2) { |
| SDValue Ops[] = { N1, N2 }; |
| return getNode(Opcode, DL, VTList, Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3) { |
| SDValue Ops[] = { N1, N2, N3 }; |
| return getNode(Opcode, DL, VTList, Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3, SDValue N4) { |
| SDValue Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, DL, VTList, Ops); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3, SDValue N4, |
| SDValue N5) { |
| SDValue Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, DL, VTList, Ops); |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT) { |
| return makeVTList(SDNode::getValueTypeList(VT), 1); |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(2U); |
| ID.AddInteger(VT1.getRawBits()); |
| ID.AddInteger(VT2.getRawBits()); |
| |
| void *IP = nullptr; |
| SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); |
| if (!Result) { |
| EVT *Array = Allocator.Allocate<EVT>(2); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); |
| VTListMap.InsertNode(Result, IP); |
| } |
| return Result->getSDVTList(); |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(3U); |
| ID.AddInteger(VT1.getRawBits()); |
| ID.AddInteger(VT2.getRawBits()); |
| ID.AddInteger(VT3.getRawBits()); |
| |
| void *IP = nullptr; |
| SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); |
| if (!Result) { |
| EVT *Array = Allocator.Allocate<EVT>(3); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| Array[2] = VT3; |
| Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); |
| VTListMap.InsertNode(Result, IP); |
| } |
| return Result->getSDVTList(); |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(4U); |
| ID.AddInteger(VT1.getRawBits()); |
| ID.AddInteger(VT2.getRawBits()); |
| ID.AddInteger(VT3.getRawBits()); |
| ID.AddInteger(VT4.getRawBits()); |
| |
| void *IP = nullptr; |
| SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); |
| if (!Result) { |
| EVT *Array = Allocator.Allocate<EVT>(4); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| Array[2] = VT3; |
| Array[3] = VT4; |
| Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); |
| VTListMap.InsertNode(Result, IP); |
| } |
| return Result->getSDVTList(); |
| } |
| |
| SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { |
| unsigned NumVTs = VTs.size(); |
| FoldingSetNodeID ID; |
| ID.AddInteger(NumVTs); |
| for (unsigned index = 0; index < NumVTs; index++) { |
| ID.AddInteger(VTs[index].getRawBits()); |
| } |
| |
| void *IP = nullptr; |
| SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); |
| if (!Result) { |
| EVT *Array = Allocator.Allocate<EVT>(NumVTs); |
| std::copy(VTs.begin(), VTs.end(), Array); |
| Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); |
| VTListMap.InsertNode(Result, IP); |
| } |
| return Result->getSDVTList(); |
| } |
| |
| |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the |
| /// specified operands. If the resultant node already exists in the DAG, |
| /// this does not modify the specified node, instead it returns the node that |
| /// already exists. If the resultant node does not exist in the DAG, the |
| /// input node is returned. As a degenerate case, if you specify the same |
| /// input operands as the node already has, the input node is returned. |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { |
| assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op == N->getOperand(0)) return N; |
| |
| // See if the modified node already exists. |
| void *InsertPos = nullptr; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) |
| return Existing; |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = nullptr; |
| |
| // Now we update the operands. |
| N->OperandList[0].set(Op); |
| |
| updateDivergence(N); |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return N; |
| } |
| |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { |
| assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) |
| return N; // No operands changed, just return the input node. |
| |
| // See if the modified node already exists. |
| void *InsertPos = nullptr; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) |
| return Existing; |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = nullptr; |
| |
| // Now we update the operands. |
| if (N->OperandList[0] != Op1) |
| N->OperandList[0].set(Op1); |
| if (N->OperandList[1] != Op2) |
| N->OperandList[1].set(Op2); |
| |
| updateDivergence(N); |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return N; |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return UpdateNodeOperands(N, Ops); |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4) { |
| SDValue Ops[] = { Op1, Op2, Op3, Op4 }; |
| return UpdateNodeOperands(N, Ops); |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4, SDValue Op5) { |
| SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; |
| return UpdateNodeOperands(N, Ops); |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { |
| unsigned NumOps = Ops.size(); |
| assert(N->getNumOperands() == NumOps && |
| "Update with wrong number of operands"); |
| |
| // If no operands changed just return the input node. |
| if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) |
| return N; |
| |
| // See if the modified node already exists. |
| void *InsertPos = nullptr; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) |
| return Existing; |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = nullptr; |
| |
| // Now we update the operands. |
| for (unsigned i = 0; i != NumOps; ++i) |
| if (N->OperandList[i] != Ops[i]) |
| N->OperandList[i].set(Ops[i]); |
| |
| updateDivergence(N); |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return N; |
| } |
| |
| /// DropOperands - Release the operands and set this node to have |
| /// zero operands. |
| void SDNode::DropOperands() { |
| // Unlike the code in MorphNodeTo that does this, we don't need to |
| // watch for dead nodes here. |
| for (op_iterator I = op_begin(), E = op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| Use.set(SDValue()); |
| } |
| } |
| |
| /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a |
| /// machine opcode. |
| /// |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT) { |
| SDVTList VTs = getVTList(VT); |
| return SelectNodeTo(N, MachineOpc, VTs, None); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, SDValue Op1) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, SDValue Op1, |
| SDValue Op2) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(VT); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return SelectNodeTo(N, MachineOpc, VTs, None); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, EVT VT3, |
| ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| SDVTList VTs,ArrayRef<SDValue> Ops) { |
| SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); |
| // Reset the NodeID to -1. |
| New->setNodeId(-1); |
| if (New != N) { |
| ReplaceAllUsesWith(N, New); |
| RemoveDeadNode(N); |
| } |
| return New; |
| } |
| |
| /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away |
| /// the line number information on the merged node since it is not possible to |
| /// preserve the information that operation is associated with multiple lines. |
| /// This will make the debugger working better at -O0, were there is a higher |
| /// probability having other instructions associated with that line. |
| /// |
| /// For IROrder, we keep the smaller of the two |
| SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { |
| DebugLoc NLoc = N->getDebugLoc(); |
| if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { |
| N->setDebugLoc(DebugLoc()); |
| } |
| unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); |
| N->setIROrder(Order); |
| return N; |
| } |
| |
| /// MorphNodeTo - This *mutates* the specified node to have the specified |
| /// return type, opcode, and operands. |
| /// |
| /// Note that MorphNodeTo returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. Note that the SDLoc need not be the same. |
| /// |
| /// Using MorphNodeTo is faster than creating a new node and swapping it in |
| /// with ReplaceAllUsesWith both because it often avoids allocating a new |
| /// node, and because it doesn't require CSE recalculation for any of |
| /// the node's users. |
| /// |
| /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. |
| /// As a consequence it isn't appropriate to use from within the DAG combiner or |
| /// the legalizer which maintain worklists that would need to be updated when |
| /// deleting things. |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| SDVTList VTs, ArrayRef<SDValue> Ops) { |
| // If an identical node already exists, use it. |
| void *IP = nullptr; |
| if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, VTs, Ops); |
| if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) |
| return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); |
| } |
| |
| if (!RemoveNodeFromCSEMaps(N)) |
| IP = nullptr; |
| |
| // Start the morphing. |
| N->NodeType = Opc; |
| N->ValueList = VTs.VTs; |
| N->NumValues = VTs.NumVTs; |
| |
| // Clear the operands list, updating used nodes to remove this from their |
| // use list. Keep track of any operands that become dead as a result. |
| SmallPtrSet<SDNode*, 16> DeadNodeSet; |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| SDNode *Used = Use.getNode(); |
| Use.set(SDValue()); |
| if (Used->use_empty()) |
| DeadNodeSet.insert(Used); |
| } |
| |
| // For MachineNode, initialize the memory references information. |
| if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) |
| MN->setMemRefs(nullptr, nullptr); |
| |
| // Swap for an appropriately sized array from the recycler. |
| removeOperands(N); |
| createOperands(N, Ops); |
| |
| // Delete any nodes that are still dead after adding the uses for the |
| // new operands. |
| if (!DeadNodeSet.empty()) { |
| SmallVector<SDNode *, 16> DeadNodes; |
| for (SDNode *N : DeadNodeSet) |
| if (N->use_empty()) |
| DeadNodes.push_back(N); |
| RemoveDeadNodes(DeadNodes); |
| } |
| |
| if (IP) |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { |
| unsigned OrigOpc = Node->getOpcode(); |
| unsigned NewOpc; |
| bool IsUnary = false; |
| bool IsTernary = false; |
| switch (OrigOpc) { |
| default: |
| llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); |
| case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; |
| case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; |
| case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; |
| case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; |
| case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; |
| case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; |
| case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; |
| case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; |
| case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; |
| case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; |
| case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; |
| case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; |
| case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; |
| case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; |
| case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; |
| case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; |
| case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; |
| case ISD::STRICT_FNEARBYINT: |
| NewOpc = ISD::FNEARBYINT; |
| IsUnary = true; |
| break; |
| } |
| |
| // We're taking this node out of the chain, so we need to re-link things. |
| SDValue InputChain = Node->getOperand(0); |
| SDValue OutputChain = SDValue(Node, 1); |
| ReplaceAllUsesOfValueWith(OutputChain, InputChain); |
| |
| SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); |
| SDNode *Res = nullptr; |
| if (IsUnary) |
| Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); |
| else if (IsTernary) |
| Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), |
| Node->getOperand(2), |
| Node->getOperand(3)}); |
| else |
| Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), |
| Node->getOperand(2) }); |
| |
| // MorphNodeTo can operate in two ways: if an existing node with the |
| // specified operands exists, it can just return it. Otherwise, it |
| // updates the node in place to have the requested operands. |
| if (Res == Node) { |
| // If we updated the node in place, reset the node ID. To the isel, |
| // this should be just like a newly allocated machine node. |
| Res->setNodeId(-1); |
| } else { |
| ReplaceAllUsesWith(Node, Res); |
| RemoveDeadNode(Node); |
| } |
| |
| return Res; |
| } |
| |
| /// getMachineNode - These are used for target selectors to create a new node |
| /// with specified return type(s), MachineInstr opcode, and operands. |
| /// |
| /// Note that getMachineNode returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT) { |
| SDVTList VTs = getVTList(VT); |
| return getMachineNode(Opcode, dl, VTs, None); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT, SDValue Op1) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT, SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT, SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT, ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(VT); |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT1, EVT VT2, SDValue Op1, |
| SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT1, EVT VT2, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT1, EVT VT2, |
| ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT1, EVT VT2, EVT VT3, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT1, EVT VT2, EVT VT3, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| EVT VT1, EVT VT2, EVT VT3, |
| ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, |
| ArrayRef<EVT> ResultTys, |
| ArrayRef<SDValue> Ops) { |
| SDVTList VTs = getVTList(ResultTys); |
| return getMachineNode(Opcode, dl, VTs, Ops); |
| } |
| |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, |
| SDVTList VTs, |
| ArrayRef<SDValue> Ops) { |
| bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; |
| MachineSDNode *N; |
| void *IP = nullptr; |
| |
| if (DoCSE) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ~Opcode, VTs, Ops); |
| IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { |
| return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); |
| } |
| } |
| |
| // Allocate a new MachineSDNode. |
| N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); |
| createOperands(N, Ops); |
| |
| if (DoCSE) |
| CSEMap.InsertNode(N, IP); |
| |
| InsertNode(N); |
| return N; |
| } |
| |
| /// getTargetExtractSubreg - A convenience function for creating |
| /// TargetOpcode::EXTRACT_SUBREG nodes. |
| SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
| SDValue Operand) { |
| SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); |
| SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, |
| VT, Operand, SRIdxVal); |
| return SDValue(Subreg, 0); |
| } |
| |
| /// getTargetInsertSubreg - A convenience function for creating |
| /// TargetOpcode::INSERT_SUBREG nodes. |
| SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
| SDValue Operand, SDValue Subreg) { |
| SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); |
| SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, |
| VT, Operand, Subreg, SRIdxVal); |
| return SDValue(Result, 0); |
| } |
| |
| /// getNodeIfExists - Get the specified node if it's already available, or |
| /// else return NULL. |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, |
| ArrayRef<SDValue> Ops, |
| const SDNodeFlags Flags) { |
| if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { |
| E->intersectFlagsWith(Flags); |
| return E; |
| } |
| } |
| return nullptr; |
| } |
| |
| /// getDbgValue - Creates a SDDbgValue node. |
| /// |
| /// SDNode |
| SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, |
| SDNode *N, unsigned R, bool IsIndirect, |
| const DebugLoc &DL, unsigned O) { |
| assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| return new (DbgInfo->getAlloc()) |
| SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); |
| } |
| |
| /// Constant |
| SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, |
| DIExpression *Expr, |
| const Value *C, |
| const DebugLoc &DL, unsigned O) { |
| assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); |
| } |
| |
| /// FrameIndex |
| SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, |
| DIExpression *Expr, unsigned FI, |
| bool IsIndirect, |
| const DebugLoc &DL, |
| unsigned O) { |
| assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| return new (DbgInfo->getAlloc()) |
| SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); |
| } |
| |
| /// VReg |
| SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, |
| DIExpression *Expr, |
| unsigned VReg, bool IsIndirect, |
| const DebugLoc &DL, unsigned O) { |
| assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| return new (DbgInfo->getAlloc()) |
| SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); |
| } |
| |
| void SelectionDAG::transferDbgValues(SDValue From, SDValue To, |
| unsigned OffsetInBits, unsigned SizeInBits, |
| bool InvalidateDbg) { |
| SDNode *FromNode = From.getNode(); |
| SDNode *ToNode = To.getNode(); |
| assert(FromNode && ToNode && "Can't modify dbg values"); |
| |
| // PR35338 |
| // TODO: assert(From != To && "Redundant dbg value transfer"); |
| // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); |
| if (From == To || FromNode == ToNode) |
| return; |
| |
| if (!FromNode->getHasDebugValue()) |
| return; |
| |
| SmallVector<SDDbgValue *, 2> ClonedDVs; |
| for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { |
| if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) |
| continue; |
| |
| // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); |
| |
| // Just transfer the dbg value attached to From. |
| if (Dbg->getResNo() != From.getResNo()) |
| continue; |
| |
| DIVariable *Var = Dbg->getVariable(); |
| auto *Expr = Dbg->getExpression(); |
| // If a fragment is requested, update the expression. |
| if (SizeInBits) { |
| // When splitting a larger (e.g., sign-extended) value whose |
| // lower bits are described with an SDDbgValue, do not attempt |
| // to transfer the SDDbgValue to the upper bits. |
| if (auto FI = Expr->getFragmentInfo()) |
| if (OffsetInBits + SizeInBits > FI->SizeInBits) |
| continue; |
| auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, |
| SizeInBits); |
| if (!Fragment) |
| continue; |
| Expr = *Fragment; |
| } |
| // Clone the SDDbgValue and move it to To. |
| SDDbgValue *Clone = |
| getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), |
| Dbg->getDebugLoc(), Dbg->getOrder()); |
| ClonedDVs.push_back(Clone); |
| |
| if (InvalidateDbg) |
| Dbg->setIsInvalidated(); |
| } |
| |
| for (SDDbgValue *Dbg : ClonedDVs) |
| AddDbgValue(Dbg, ToNode, false); |
| } |
| |
| void SelectionDAG::salvageDebugInfo(SDNode &N) { |
| if (!N.getHasDebugValue()) |
| return; |
| |
| SmallVector<SDDbgValue *, 2> ClonedDVs; |
| for (auto DV : GetDbgValues(&N)) { |
| if (DV->isInvalidated()) |
| continue; |
| switch (N.getOpcode()) { |
| default: |
| break; |
| case ISD::ADD: |
| SDValue N0 = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| if (!isConstantIntBuildVectorOrConstantInt(N0) && |
| isConstantIntBuildVectorOrConstantInt(N1)) { |
| uint64_t Offset = N.getConstantOperandVal(1); |
| // Rewrite an ADD constant node into a DIExpression. Since we are |
| // performing arithmetic to compute the variable's *value* in the |
| // DIExpression, we need to mark the expression with a |
| // DW_OP_stack_value. |
| auto *DIExpr = DV->getExpression(); |
| DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, |
| DIExpression::NoDeref, |
| DIExpression::WithStackValue); |
| SDDbgValue *Clone = |
| getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), |
| DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); |
| ClonedDVs.push_back(Clone); |
| DV->setIsInvalidated(); |
| LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; |
| N0.getNode()->dumprFull(this); |
| dbgs() << " into " << *DIExpr << '\n'); |
| } |
| } |
| } |
| |
| for (SDDbgValue *Dbg : ClonedDVs) |
| AddDbgValue(Dbg, Dbg->getSDNode(), false); |
| } |
| |
| /// Creates a SDDbgLabel node. |
| SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, |
| const DebugLoc &DL, unsigned O) { |
| assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); |
| } |
| |
| namespace { |
| |
| /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node |
| /// pointed to by a use iterator is deleted, increment the use iterator |
| /// so that it doesn't dangle. |
| /// |
| class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { |
| SDNode::use_iterator &UI; |
| SDNode::use_iterator &UE; |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { |
| // Increment the iterator as needed. |
| while (UI != UE && N == *UI) |
| ++UI; |
| } |
| |
| public: |
| RAUWUpdateListener(SelectionDAG &d, |
| SDNode::use_iterator &ui, |
| SDNode::use_iterator &ue) |
| : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From has a single result value. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { |
| SDNode *From = FromN.getNode(); |
| assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && |
| "Cannot replace with this method!"); |
| assert(From != To.getNode() && "Cannot replace uses of with self"); |
| |
| // Preserve Debug Values |
| transferDbgValues(FromN, To); |
| |
| // Iterate over all the existing uses of From. New uses will be added |
| // to the beginning of the use list, which we avoid visiting. |
| // This specifically avoids visiting uses of From that arise while the |
| // replacement is happening, because any such uses would be the result |
| // of CSE: If an existing node looks like From after one of its operands |
| // is replaced by To, we don't want to replace of all its users with To |
| // too. See PR3018 for more info. |
| SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| ++UI; |
| Use.set(To); |
| if (To->isDivergent() != From->isDivergent()) |
| updateDivergence(User); |
| } while (UI != UE && *UI == User); |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (FromN == getRoot()) |
| setRoot(To); |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes that for each value of From, there is a |
| /// corresponding value in To in the same position with the same type. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) |
| assert((!From->hasAnyUseOfValue(i) || |
| From->getValueType(i) == To->getValueType(i)) && |
| "Cannot use this version of ReplaceAllUsesWith!"); |
| #endif |
| |
| // Handle the trivial case. |
| if (From == To) |
| return; |
| |
| // Preserve Debug Info. Only do this if there's a use. |
| for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) |
| if (From->hasAnyUseOfValue(i)) { |
| assert((i < To->getNumValues()) && "Invalid To location"); |
| transferDbgValues(SDValue(From, i), SDValue(To, i)); |
| } |
| |
| // Iterate over just the existing users of From. See the comments in |
| // the ReplaceAllUsesWith above. |
| SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| ++UI; |
| Use.setNode(To); |
| if (To->isDivergent() != From->isDivergent()) |
| updateDivergence(User); |
| } while (UI != UE && *UI == User); |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (From == getRoot().getNode()) |
| setRoot(SDValue(To, getRoot().getResNo())); |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version can replace From with any result values. To must match the |
| /// number and types of values returned by From. |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { |
| if (From->getNumValues() == 1) // Handle the simple case efficiently. |
| return ReplaceAllUsesWith(SDValue(From, 0), To[0]); |
| |
| // Preserve Debug Info. |
| for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) |
| transferDbgValues(SDValue(From, i), *To); |
| |
| // Iterate over just the existing users of From. See the comments in |
| // the ReplaceAllUsesWith above. |
| SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| const SDValue &ToOp = To[Use.getResNo()]; |
| ++UI; |
| Use.set(ToOp); |
| if (To->getNode()->isDivergent() != From->isDivergent()) |
| updateDivergence(User); |
| } while (UI != UE && *UI == User); |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (From == getRoot().getNode()) |
| setRoot(SDValue(To[getRoot().getResNo()])); |
| } |
| |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getNode() alone. The Deleted |
| /// vector is handled the same way as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ |
| // Handle the really simple, really trivial case efficiently. |
| if (From == To) return; |
| |
| // Handle the simple, trivial, case efficiently. |
| if (From.getNode()->getNumValues() == 1) { |
| ReplaceAllUsesWith(From, To); |
| return; |
| } |
| |
| // Preserve Debug Info. |
| transferDbgValues(From, To); |
| |
| // Iterate over just the existing users of From. See the comments in |
| // the ReplaceAllUsesWith above. |
| SDNode::use_iterator UI = From.getNode()->use_begin(), |
| UE = From.getNode()->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| bool UserRemovedFromCSEMaps = false; |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| |
| // Skip uses of different values from the same node. |
| if (Use.getResNo() != From.getResNo()) { |
| ++UI; |
| continue; |
| } |
| |
| // If this node hasn't been modified yet, it's still in the CSE maps, |
| // so remove its old self from the CSE maps. |
| if (!UserRemovedFromCSEMaps) { |
| RemoveNodeFromCSEMaps(User); |
| UserRemovedFromCSEMaps = true; |
| } |
| |
| ++UI; |
| Use.set(To); |
| if (To->isDivergent() != From->isDivergent()) |
| updateDivergence(User); |
| } while (UI != UE && *UI == User); |
| // We are iterating over all uses of the From node, so if a use |
| // doesn't use the specific value, no changes are made. |
| if (!UserRemovedFromCSEMaps) |
| continue; |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (From == getRoot()) |
| setRoot(To); |
| } |
| |
| namespace { |
| |
| /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith |
| /// to record information about a use. |
| struct UseMemo { |
| SDNode *User; |
| unsigned Index; |
| SDUse *Use; |
| }; |
| |
| /// operator< - Sort Memos by User. |
| bool operator<(const UseMemo &L, const UseMemo &R) { |
| return (intptr_t)L.User < (intptr_t)R.User; |
| } |
| |
| } // end anonymous namespace |
| |
| void SelectionDAG::updateDivergence(SDNode * N) |
| { |
| if (TLI->isSDNodeAlwaysUniform(N)) |
| return; |
| bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); |
| for (auto &Op : N->ops()) { |
| if (Op.Val.getValueType() != MVT::Other) |
| IsDivergent |= Op.getNode()->isDivergent(); |
| } |
| if (N->SDNodeBits.IsDivergent != IsDivergent) { |
| N->SDNodeBits.IsDivergent = IsDivergent; |
| for (auto U : N->uses()) { |
| updateDivergence(U); |
| } |
| } |
| } |
| |
| |
| void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) { |
| DenseMap<SDNode *, unsigned> Degree; |
| Order.reserve(AllNodes.size()); |
| for (auto & N : allnodes()) { |
| unsigned NOps = N.getNumOperands(); |
| Degree[&N] = NOps; |
| if (0 == NOps) |
| Order.push_back(&N); |
| } |
| for (std::vector<SDNode *>::iterator I = Order.begin(); |
| I!=Order.end();++I) { |
| SDNode * N = *I; |
| for (auto U : N->uses()) { |
| unsigned &UnsortedOps = Degree[U]; |
| if (0 == --UnsortedOps) |
| Order.push_back(U); |
| } |
| } |
| } |
| |
| void SelectionDAG::VerifyDAGDiverence() |
| { |
| std::vector<SDNode*> TopoOrder; |
| CreateTopologicalOrder(TopoOrder); |
| const TargetLowering &TLI = getTargetLoweringInfo(); |
| DenseMap<const SDNode *, bool> DivergenceMap; |
| for (auto &N : allnodes()) { |
| DivergenceMap[&N] = false; |
| } |
| for (auto N : TopoOrder) { |
| bool IsDivergent = DivergenceMap[N]; |
| bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); |
| for (auto &Op : N->ops()) { |
| if (Op.Val.getValueType() != MVT::Other) |
| IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; |
| } |
| if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { |
| DivergenceMap[N] = true; |
| } |
| } |
| for (auto &N : allnodes()) { |
| (void)N; |
| assert(DivergenceMap[&N] == N.isDivergent() && |
| "Divergence bit inconsistency detected\n"); |
| } |
| } |
| |
| |
| /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getNode() alone. The same value |
| /// may appear in both the From and To list. The Deleted vector is |
| /// handled the same way as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, |
| const SDValue *To, |
| unsigned Num){ |
| // Handle the simple, trivial case efficiently. |
| if (Num == 1) |
| return ReplaceAllUsesOfValueWith(*From, *To); |
| |
| transferDbgValues(*From, *To); |
| |
| // Read up all the uses and make records of them. This helps |
| // processing new uses that are introduced during the |
| // replacement process. |
| SmallVector<UseMemo, 4> Uses; |
| for (unsigned i = 0; i != Num; ++i) { |
| unsigned FromResNo = From[i].getResNo(); |
| SDNode *FromNode = From[i].getNode(); |
| for (SDNode::use_iterator UI = FromNode->use_begin(), |
| E = FromNode->use_end(); UI != E; ++UI) { |
| SDUse &Use = UI.getUse(); |
| if (Use.getResNo() == FromResNo) { |
| UseMemo Memo = { *UI, i, &Use }; |
| Uses.push_back(Memo); |
| } |
| } |
| } |
| |
| // Sort the uses, so that all the uses from a given User are together. |
| llvm::sort(Uses.begin(), Uses.end()); |
| |
| for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); |
| UseIndex != UseIndexEnd; ) { |
| // We know that this user uses some value of From. If it is the right |
| // value, update it. |
| SDNode *User = Uses[UseIndex].User; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // The Uses array is sorted, so all the uses for a given User |
| // are next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| unsigned i = Uses[UseIndex].Index; |
| SDUse &Use = *Uses[UseIndex].Use; |
| ++UseIndex; |
| |
| Use.set(To[i]); |
| } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| } |
| |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG |
| /// based on their topological order. It returns the maximum id and a vector |
| /// of the SDNodes* in assigned order by reference. |
| unsigned SelectionDAG::AssignTopologicalOrder() { |
| unsigned DAGSize = 0; |
| |
| // SortedPos tracks the progress of the algorithm. Nodes before it are |
| // sorted, nodes after it are unsorted. When the algorithm completes |
| // it is at the end of the list. |
| allnodes_iterator SortedPos = allnodes_begin(); |
| |
| // Visit all the nodes. Move nodes with no operands to the front of |
| // the list immediately. Annotate nodes that do have operands with their |
| // operand count. Before we do this, the Node Id fields of the nodes |
| // may contain arbitrary values. After, the Node Id fields for nodes |
| // before SortedPos will contain the topological sort index, and the |
| // Node Id fields for nodes At SortedPos and after will contain the |
| // count of outstanding operands. |
| for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { |
| SDNode *N = &*I++; |
| checkForCycles(N, this); |
| unsigned Degree = N->getNumOperands(); |
| if (Degree == 0) { |
| // A node with no uses, add it to the result array immediately. |
| N->setNodeId(DAGSize++); |
| allnodes_iterator Q(N); |
| if (Q != SortedPos) |
| SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); |
| assert(SortedPos != AllNodes.end() && "Overran node list"); |
| ++SortedPos; |
| } else { |
| // Temporarily use the Node Id as scratch space for the degree count. |
| N->setNodeId(Degree); |
| } |
| } |
| |
| // Visit all the nodes. As we iterate, move nodes into sorted order, |
| // such that by the time the end is reached all nodes will be sorted. |
| for (SDNode &Node : allnodes()) { |
| SDNode *N = &Node; |
| checkForCycles(N, this); |
| // N is in sorted position, so all its uses have one less operand |
| // that needs to be sorted. |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDNode *P = *UI; |
| unsigned Degree = P->getNodeId(); |
| assert(Degree != 0 && "Invalid node degree"); |
| --Degree; |
| if (Degree == 0) { |
| // All of P's operands are sorted, so P may sorted now. |
| P->setNodeId(DAGSize++); |
| if (P->getIterator() != SortedPos) |
| SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); |
| assert(SortedPos != AllNodes.end() && "Overran node list"); |
| ++SortedPos; |
| } else { |
| // Update P's outstanding operand count. |
| P->setNodeId(Degree); |
| } |
| } |
| if (Node.getIterator() == SortedPos) { |
| #ifndef NDEBUG |
| allnodes_iterator I(N); |
| SDNode *S = &*++I; |
| dbgs() << "Overran sorted position:\n"; |
| S->dumprFull(this); dbgs() << "\n"; |
| dbgs() << "Checking if this is due to cycles\n"; |
| checkForCycles(this, true); |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| assert(SortedPos == AllNodes.end() && |
| "Topological sort incomplete!"); |
| assert(AllNodes.front().getOpcode() == ISD::EntryToken && |
| "First node in topological sort is not the entry token!"); |
| assert(AllNodes.front().getNodeId() == 0 && |
| "First node in topological sort has non-zero id!"); |
| assert(AllNodes.front().getNumOperands() == 0 && |
| "First node in topological sort has operands!"); |
| assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && |
| "Last node in topologic sort has unexpected id!"); |
| assert(AllNodes.back().use_empty() && |
| "Last node in topologic sort has users!"); |
| assert(DAGSize == allnodes_size() && "Node count mismatch!"); |
| return DAGSize; |
| } |
| |
| /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the |
| /// value is produced by SD. |
| void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { |
| if (SD) { |
| assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); |
| SD->setHasDebugValue(true); |
| } |
| DbgInfo->add(DB, SD, isParameter); |
| } |
| |
| void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { |
| DbgInfo->add(DB); |
| } |
| |
| SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, |
| SDValue NewMemOp) { |
| assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); |
| // The new memory operation must have the same position as the old load in |
| // terms of memory dependency. Create a TokenFactor for the old load and new |
| // memory operation and update uses of the old load's output chain to use that |
| // TokenFactor. |
| SDValue OldChain = SDValue(OldLoad, 1); |
| SDValue NewChain = SDValue(NewMemOp.getNode(), 1); |
| if (!OldLoad->hasAnyUseOfValue(1)) |
| return NewChain; |
| |
| SDValue TokenFactor = |
| getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); |
| ReplaceAllUsesOfValueWith(OldChain, TokenFactor); |
| UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); |
| return TokenFactor; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| bool llvm::isNullConstant(SDValue V) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); |
| return Const != nullptr && Const->isNullValue(); |
| } |
| |
| bool llvm::isNullFPConstant(SDValue V) { |
| ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); |
| return Const != nullptr && Const->isZero() && !Const->isNegative(); |
| } |
| |
| bool llvm::isAllOnesConstant(SDValue V) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); |
| return Const != nullptr && Const->isAllOnesValue(); |
| } |
| |
| bool llvm::isOneConstant(SDValue V) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); |
| return Const != nullptr && Const->isOne(); |
| } |
| |
| bool llvm::isBitwiseNot(SDValue V) { |
| return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); |
| } |
| |
| ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) |
| return CN; |
| |
| if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { |
| BitVector UndefElements; |
| ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); |
| |
| // BuildVectors can truncate their operands. Ignore that case here. |
| // FIXME: We blindly ignore splats which include undef which is overly |
| // pessimistic. |
| if (CN && UndefElements.none() && |
| CN->getValueType(0) == N.getValueType().getScalarType()) |
| return CN; |
| } |
| |
| return nullptr; |
| } |
| |
| ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { |
| if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) |
| return CN; |
| |
| if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { |
| BitVector UndefElements; |
| ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); |
| |
| if (CN && UndefElements.none()) |
| return CN; |
| } |
| |
| return nullptr; |
| } |
| |
| HandleSDNode::~HandleSDNode() { |
| DropOperands(); |
| } |
| |
| GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, |
| const DebugLoc &DL, |
| const GlobalValue *GA, EVT VT, |
| int64_t o, unsigned char TF) |
| : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { |
| TheGlobal = GA; |
| } |
| |
| AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, |
| EVT VT, unsigned SrcAS, |
| unsigned DestAS) |
| : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), |
| SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} |
| |
| MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, |
| SDVTList VTs, EVT memvt, MachineMemOperand *mmo) |
| : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { |
| MemSDNodeBits.IsVolatile = MMO->isVolatile(); |
| MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); |
| MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); |
| MemSDNodeBits.IsInvariant = MMO->isInvariant(); |
| |
| // We check here that the size of the memory operand fits within the size of |
| // the MMO. This is because the MMO might indicate only a possible address |
| // range instead of specifying the affected memory addresses precisely. |
| assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); |
| } |
| |
| /// Profile - Gather unique data for the node. |
| /// |
| void SDNode::Profile(FoldingSetNodeID &ID) const { |
| AddNodeIDNode(ID, this); |
| } |
| |
| namespace { |
| |
| struct EVTArray { |
| std::vector<EVT> VTs; |
| |
| EVTArray() { |
| VTs.reserve(MVT::LAST_VALUETYPE); |
| for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) |
| VTs.push_back(MVT((MVT::SimpleValueType)i)); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; |
| static ManagedStatic<EVTArray> SimpleVTArray; |
| static ManagedStatic<sys::SmartMutex<true>> VTMutex; |
| |
| /// getValueTypeList - Return a pointer to the specified value type. |
| /// |
| const EVT *SDNode::getValueTypeList(EVT VT) { |
| if (VT.isExtended()) { |
| sys::SmartScopedLock<true> Lock(*VTMutex); |
| return &(*EVTs->insert(VT).first); |
| } else { |
| assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| "Value type out of range!"); |
| return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; |
| } |
| } |
| |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the |
| /// indicated value. This method ignores uses of other values defined by this |
| /// operation. |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| // TODO: Only iterate over uses of a given value of the node |
| for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { |
| if (UI.getUse().getResNo() == Value) { |
| if (NUses == 0) |
| return false; |
| --NUses; |
| } |
| } |
| |
| // Found exactly the right number of uses? |
| return NUses == 0; |
| } |
| |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated |
| /// value. This method ignores uses of other values defined by this operation. |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) |
| if (UI.getUse().getResNo() == Value) |
| return true; |
| |
| return false; |
| } |
| |
| /// isOnlyUserOf - Return true if this node is the only use of N. |
| bool SDNode::isOnlyUserOf(const SDNode *N) const { |
| bool Seen = false; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDNode *User = *I; |
| if (User == this) |
| Seen = true; |
| else |
| return false; |
| } |
| |
| return Seen; |
| } |
| |
| /// Return true if the only users of N are contained in Nodes. |
| bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { |
| bool Seen = false; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDNode *User = *I; |
| if (llvm::any_of(Nodes, |
| [&User](const SDNode *Node) { return User == Node; })) |
| Seen = true; |
| else |
| return false; |
| } |
| |
| return Seen; |
| } |
| |
| /// isOperand - Return true if this node is an operand of N. |
| bool SDValue::isOperandOf(const SDNode *N) const { |
| for (const SDValue &Op : N->op_values()) |
| if (*this == Op) |
| return true; |
| return false; |
| } |
| |
| bool SDNode::isOperandOf(const SDNode *N) const { |
| for (const SDValue &Op : N->op_values()) |
| if (this == Op.getNode()) |
| return true; |
| return false; |
| } |
| |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must |
| /// be a chain) reaches the specified operand without crossing any |
| /// side-effecting instructions on any chain path. In practice, this looks |
| /// through token factors and non-volatile loads. In order to remain efficient, |
| /// this only looks a couple of nodes in, it does not do an exhaustive search. |
| /// |
| /// Note that we only need to examine chains when we're searching for |
| /// side-effects; SelectionDAG requires that all side-effects are represented |
| /// by chains, even if another operand would force a specific ordering. This |
| /// constraint is necessary to allow transformations like splitting loads. |
| bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, |
| unsigned Depth) const { |
| if (*this == Dest) return true; |
| |
| // Don't search too deeply, we just want to be able to see through |
| // TokenFactor's etc. |
| if (Depth == 0) return false; |
| |
| // If this is a token factor, all inputs to the TF happen in parallel. |
| if (getOpcode() == ISD::TokenFactor) { |
| // First, try a shallow search. |
| if (is_contained((*this)->ops(), Dest)) { |
| // We found the chain we want as an operand of this TokenFactor. |
| // Essentially, we reach the chain without side-effects if we could |
| // serialize the TokenFactor into a simple chain of operations with |
| // Dest as the last operation. This is automatically true if the |
| // chain has one use: there are no other ordering constraints. |
| // If the chain has more than one use, we give up: some other |
| // use of Dest might force a side-effect between Dest and the current |
| // node. |
| if (Dest.hasOneUse()) |
| return true; |
| } |
| // Next, try a deep search: check whether every operand of the TokenFactor |
| // reaches Dest. |
| return llvm::all_of((*this)->ops(), [=](SDValue Op) { |
| return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); |
| }); |
| } |
| |
| // Loads don't have side effects, look through them. |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { |
| if (!Ld->isVolatile()) |
| return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); |
| } |
| return false; |
| } |
| |
| bool SDNode::hasPredecessor(const SDNode *N) const { |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| Worklist.push_back(this); |
| return hasPredecessorHelper(N, Visited, Worklist); |
| } |
| |
| void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { |
| this->Flags.intersectWith(Flags); |
| } |
| |
| SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { |
| assert(N->getNumValues() == 1 && |
| "Can't unroll a vector with multiple results!"); |
| |
| EVT VT = N->getValueType(0); |
| unsigned NE = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDLoc dl(N); |
| |
| SmallVector<SDValue, 8> Scalars; |
| SmallVector<SDValue, 4> Operands(N->getNumOperands()); |
| |
| // If ResNE is 0, fully unroll the vector op. |
| if (ResNE == 0) |
| ResNE = NE; |
| else if (NE > ResNE) |
| NE = ResNE; |
| |
| unsigned i; |
| for (i= 0; i != NE; ++i) { |
| for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { |
| SDValue Operand = N->getOperand(j); |
| EVT OperandVT = Operand.getValueType(); |
| if (OperandVT.isVector()) { |
| // A vector operand; extract a single element. |
| EVT OperandEltVT = OperandVT.getVectorElementType(); |
| Operands[j] = |
| getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, |
| getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); |
| } else { |
| // A scalar operand; just use it as is. |
| Operands[j] = Operand; |
| } |
| } |
| |
| switch (N->getOpcode()) { |
| default: { |
| Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, |
| N->getFlags())); |
| break; |
| } |
| case ISD::VSELECT: |
| Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], |
| getShiftAmountOperand(Operands[0].getValueType(), |
| Operands[1]))); |
| break; |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::FP_ROUND_INREG: { |
| EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); |
| Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, |
| Operands[0], |
| getValueType(ExtVT))); |
| } |
| } |
| } |
| |
| for (; i < ResNE; ++i) |
| Scalars.push_back(getUNDEF(EltVT)); |
| |
| EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); |
| return getBuildVector(VecVT, dl, Scalars); |
| } |
| |
| bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, |
| LoadSDNode *Base, |
| unsigned Bytes, |
| int Dist) const { |
| if (LD->isVolatile() || Base->isVolatile()) |
| return false; |
| if (LD->isIndexed() || Base->isIndexed()) |
| return false; |
| if (LD->getChain() != Base->getChain()) |
| return false; |
| EVT VT = LD->getValueType(0); |
| if (VT.getSizeInBits() / 8 != Bytes) |
| return false; |
| |
| auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); |
| auto LocDecomp = BaseIndexOffset::match(LD, *this); |
| |
| int64_t Offset = 0; |
| if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) |
| return (Dist * Bytes == Offset); |
| return false; |
| } |
| |
| /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if |
| /// it cannot be inferred. |
| unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { |
| // If this is a GlobalAddress + cst, return the alignment. |
| const GlobalValue *GV; |
| int64_t GVOffset = 0; |
| if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { |
| unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); |
| KnownBits Known(IdxWidth); |
| llvm::computeKnownBits(GV, Known, getDataLayout()); |
| unsigned AlignBits = Known.countMinTrailingZeros(); |
| unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; |
| if (Align) |
| return MinAlign(Align, GVOffset); |
| } |
| |
| // If this is a direct reference to a stack slot, use information about the |
| // stack slot's alignment. |
| int FrameIdx = 1 << 31; |
| int64_t FrameOffset = 0; |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { |
| FrameIdx = FI->getIndex(); |
| } else if (isBaseWithConstantOffset(Ptr) && |
| isa<FrameIndexSDNode>(Ptr.getOperand(0))) { |
| // Handle FI+Cst |
| FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| FrameOffset = Ptr.getConstantOperandVal(1); |
| } |
| |
| if (FrameIdx != (1 << 31)) { |
| const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); |
| unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), |
| FrameOffset); |
| return FIInfoAlign; |
| } |
| |
| return 0; |
| } |
| |
| /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type |
| /// which is split (or expanded) into two not necessarily identical pieces. |
| std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { |
| // Currently all types are split in half. |
| EVT LoVT, HiVT; |
| if (!VT.isVector()) |
| LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); |
| else |
| LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); |
| |
| return std::make_pair(LoVT, HiVT); |
| } |
| |
| /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the |
| /// low/high part. |
| std::pair<SDValue, SDValue> |
| SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, |
| const EVT &HiVT) { |
| assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= |
| N.getValueType().getVectorNumElements() && |
| "More vector elements requested than available!"); |
| SDValue Lo, Hi; |
| Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, |
| getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); |
| Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, |
| getConstant(LoVT.getVectorNumElements(), DL, |
| TLI->getVectorIdxTy(getDataLayout()))); |
| return std::make_pair(Lo, Hi); |
| } |
| |
| void SelectionDAG::ExtractVectorElements(SDValue Op, |
| SmallVectorImpl<SDValue> &Args, |
| unsigned Start, unsigned Count) { |
| EVT VT = Op.getValueType(); |
| if (Count == 0) |
| Count = VT.getVectorNumElements(); |
| |
| EVT EltVT = VT.getVectorElementType(); |
| EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); |
| SDLoc SL(Op); |
| for (unsigned i = Start, e = Start + Count; i != e; ++i) { |
| Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Op, getConstant(i, SL, IdxTy))); |
| } |
| } |
| |
| // getAddressSpace - Return the address space this GlobalAddress belongs to. |
| unsigned GlobalAddressSDNode::getAddressSpace() const { |
| return getGlobal()->getType()->getAddressSpace(); |
| } |
| |
| Type *ConstantPoolSDNode::getType() const { |
| if (isMachineConstantPoolEntry()) |
| return Val.MachineCPVal->getType(); |
| return Val.ConstVal->getType(); |
| } |
| |
| bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, |
| unsigned &SplatBitSize, |
| bool &HasAnyUndefs, |
| unsigned MinSplatBits, |
| bool IsBigEndian) const { |
| EVT VT = getValueType(0); |
| assert(VT.isVector() && "Expected a vector type"); |
| unsigned VecWidth = VT.getSizeInBits(); |
| if (MinSplatBits > VecWidth) |
| return false; |
| |
| // FIXME: The widths are based on this node's type, but build vectors can |
| // truncate their operands. |
| SplatValue = APInt(VecWidth, 0); |
| SplatUndef = APInt(VecWidth, 0); |
| |
| // Get the bits. Bits with undefined values (when the corresponding element |
| // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared |
| // in SplatValue. If any of the values are not constant, give up and return |
| // false. |
| unsigned int NumOps = getNumOperands(); |
| assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); |
| unsigned EltWidth = VT.getScalarSizeInBits(); |
| |
| for (unsigned j = 0; j < NumOps; ++j) { |
| unsigned i = IsBigEndian ? NumOps - 1 - j : j; |
| SDValue OpVal = getOperand(i); |
| unsigned BitPos = j * EltWidth; |
| |
| if (OpVal.isUndef()) |
| SplatUndef.setBits(BitPos, BitPos + EltWidth); |
| else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) |
| SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); |
| else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) |
| SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); |
| else |
| return false; |
| } |
| |
| // The build_vector is all constants or undefs. Find the smallest element |
| // size that splats the vector. |
| HasAnyUndefs = (SplatUndef != 0); |
| |
| // FIXME: This does not work for vectors with elements less than 8 bits. |
| while (VecWidth > 8) { |
| unsigned HalfSize = VecWidth / 2; |
| APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); |
| APInt LowValue = SplatValue.trunc(HalfSize); |
| APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); |
| APInt LowUndef = SplatUndef.trunc(HalfSize); |
| |
| // If the two halves do not match (ignoring undef bits), stop here. |
| if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || |
| MinSplatBits > HalfSize) |
| break; |
| |
| SplatValue = HighValue | LowValue; |
| SplatUndef = HighUndef & LowUndef; |
| |
| VecWidth = HalfSize; |
| } |
| |
| SplatBitSize = VecWidth; |
| return true; |
| } |
| |
| SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { |
| if (UndefElements) { |
| UndefElements->clear(); |
| UndefElements->resize(getNumOperands()); |
| } |
| SDValue Splatted; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| SDValue Op = getOperand(i); |
| if (Op.isUndef()) { |
| if (UndefElements) |
| (*UndefElements)[i] = true; |
| } else if (!Splatted) { |
| Splatted = Op; |
| } else if (Splatted != Op) { |
| return SDValue(); |
| } |
| } |
| |
| if (!Splatted) { |
| assert(getOperand(0).isUndef() && |
| "Can only have a splat without a constant for all undefs."); |
| return getOperand(0); |
| } |
| |
| return Splatted; |
| } |
| |
| ConstantSDNode * |
| BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { |
| return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); |
| } |
| |
| ConstantFPSDNode * |
| BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { |
| return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); |
| } |
| |
| int32_t |
| BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, |
| uint32_t BitWidth) const { |
| if (ConstantFPSDNode *CN = |
| dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { |
| bool IsExact; |
| APSInt IntVal(BitWidth); |
| const APFloat &APF = CN->getValueAPF(); |
| if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != |
| APFloat::opOK || |
| !IsExact) |
| return -1; |
| |
| return IntVal.exactLogBase2(); |
| } |
| return -1; |
| } |
| |
| bool BuildVectorSDNode::isConstant() const { |
| for (const SDValue &Op : op_values()) { |
| unsigned Opc = Op.getOpcode(); |
| if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { |
| // Find the first non-undef value in the shuffle mask. |
| unsigned i, e; |
| for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) |
| /* search */; |
| |
| assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); |
| |
| // Make sure all remaining elements are either undef or the same as the first |
| // non-undef value. |
| for (int Idx = Mask[i]; i != e; ++i) |
| if (Mask[i] >= 0 && Mask[i] != Idx) |
| return false; |
| return true; |
| } |
| |
| // Returns the SDNode if it is a constant integer BuildVector |
| // or constant integer. |
| SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { |
| if (isa<ConstantSDNode>(N)) |
| return N.getNode(); |
| if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) |
| return N.getNode(); |
| // Treat a GlobalAddress supporting constant offset folding as a |
| // constant integer. |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) |
| if (GA->getOpcode() == ISD::GlobalAddress && |
| TLI->isOffsetFoldingLegal(GA)) |
| return GA; |
| return nullptr; |
| } |
| |
| SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { |
| if (isa<ConstantFPSDNode>(N)) |
| return N.getNode(); |
| |
| if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) |
| return N.getNode(); |
| |
| return nullptr; |
| } |
| |
| void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { |
| assert(!Node->OperandList && "Node already has operands"); |
| SDUse *Ops = OperandRecycler.allocate( |
| ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); |
| |
| bool IsDivergent = false; |
| for (unsigned I = 0; I != Vals.size(); ++I) { |
| Ops[I].setUser(Node); |
| Ops[I].setInitial(Vals[I]); |
| if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. |
| IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); |
| } |
| Node->NumOperands = Vals.size(); |
| Node->OperandList = Ops; |
| IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); |
| if (!TLI->isSDNodeAlwaysUniform(Node)) |
| Node->SDNodeBits.IsDivergent = IsDivergent; |
| checkForCycles(Node); |
| } |
| |
| #ifndef NDEBUG |
| static void checkForCyclesHelper(const SDNode *N, |
| SmallPtrSetImpl<const SDNode*> &Visited, |
| SmallPtrSetImpl<const SDNode*> &Checked, |
| const llvm::SelectionDAG *DAG) { |
| // If this node has already been checked, don't check it again. |
| if (Checked.count(N)) |
| return; |
| |
| // If a node has already been visited on this depth-first walk, reject it as |
| // a cycle. |
| if (!Visited.insert(N).second) { |
| errs() << "Detected cycle in SelectionDAG\n"; |
| dbgs() << "Offending node:\n"; |
| N->dumprFull(DAG); dbgs() << "\n"; |
| abort(); |
| } |
| |
| for (const SDValue &Op : N->op_values()) |
| checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); |
| |
| Checked.insert(N); |
| Visited.erase(N); |
| } |
| #endif |
| |
| void llvm::checkForCycles(const llvm::SDNode *N, |
| const llvm::SelectionDAG *DAG, |
| bool force) { |
| #ifndef NDEBUG |
| bool check = force; |
| #ifdef EXPENSIVE_CHECKS |
| check = true; |
| #endif // EXPENSIVE_CHECKS |
| if (check) { |
| assert(N && "Checking nonexistent SDNode"); |
| SmallPtrSet<const SDNode*, 32> visited; |
| SmallPtrSet<const SDNode*, 32> checked; |
| checkForCyclesHelper(N, visited, checked, DAG); |
| } |
| #endif // !NDEBUG |
| } |
| |
| void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { |
| checkForCycles(DAG->getRoot().getNode(), DAG, force); |
| } |