blob: 3660586c135813a4dd48257b751d102185f2fe9c [file] [log] [blame]
//===- RegisterScavenging.cpp - Machine register scavenging ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the machine register scavenger. It can provide
/// information, such as unused registers, at any point in a machine basic
/// block. It also provides a mechanism to make registers available by evicting
/// them to spill slots.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <string>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "reg-scavenging"
STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
void RegScavenger::setRegUsed(unsigned Reg, LaneBitmask LaneMask) {
LiveUnits.addRegMasked(Reg, LaneMask);
}
void RegScavenger::init(MachineBasicBlock &MBB) {
MachineFunction &MF = *MBB.getParent();
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
LiveUnits.init(*TRI);
assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
"Target changed?");
// Self-initialize.
if (!this->MBB) {
NumRegUnits = TRI->getNumRegUnits();
KillRegUnits.resize(NumRegUnits);
DefRegUnits.resize(NumRegUnits);
TmpRegUnits.resize(NumRegUnits);
}
this->MBB = &MBB;
for (ScavengedInfo &SI : Scavenged) {
SI.Reg = 0;
SI.Restore = nullptr;
}
Tracking = false;
}
void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
init(MBB);
LiveUnits.addLiveIns(MBB);
}
void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
init(MBB);
LiveUnits.addLiveOuts(MBB);
// Move internal iterator at the last instruction of the block.
if (MBB.begin() != MBB.end()) {
MBBI = std::prev(MBB.end());
Tracking = true;
}
}
void RegScavenger::addRegUnits(BitVector &BV, unsigned Reg) {
for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
BV.set(*RUI);
}
void RegScavenger::removeRegUnits(BitVector &BV, unsigned Reg) {
for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
BV.reset(*RUI);
}
void RegScavenger::determineKillsAndDefs() {
assert(Tracking && "Must be tracking to determine kills and defs");
MachineInstr &MI = *MBBI;
assert(!MI.isDebugInstr() && "Debug values have no kills or defs");
// Find out which registers are early clobbered, killed, defined, and marked
// def-dead in this instruction.
KillRegUnits.reset();
DefRegUnits.reset();
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
TmpRegUnits.clear();
for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) {
for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
if (MO.clobbersPhysReg(*RURI)) {
TmpRegUnits.set(RU);
break;
}
}
}
// Apply the mask.
KillRegUnits |= TmpRegUnits;
}
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(Reg) || isReserved(Reg))
continue;
if (MO.isUse()) {
// Ignore undef uses.
if (MO.isUndef())
continue;
if (MO.isKill())
addRegUnits(KillRegUnits, Reg);
} else {
assert(MO.isDef());
if (MO.isDead())
addRegUnits(KillRegUnits, Reg);
else
addRegUnits(DefRegUnits, Reg);
}
}
}
void RegScavenger::unprocess() {
assert(Tracking && "Cannot unprocess because we're not tracking");
MachineInstr &MI = *MBBI;
if (!MI.isDebugInstr()) {
determineKillsAndDefs();
// Commit the changes.
setUnused(DefRegUnits);
setUsed(KillRegUnits);
}
if (MBBI == MBB->begin()) {
MBBI = MachineBasicBlock::iterator(nullptr);
Tracking = false;
} else
--MBBI;
}
void RegScavenger::forward() {
// Move ptr forward.
if (!Tracking) {
MBBI = MBB->begin();
Tracking = true;
} else {
assert(MBBI != MBB->end() && "Already past the end of the basic block!");
MBBI = std::next(MBBI);
}
assert(MBBI != MBB->end() && "Already at the end of the basic block!");
MachineInstr &MI = *MBBI;
for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(),
IE = Scavenged.end(); I != IE; ++I) {
if (I->Restore != &MI)
continue;
I->Reg = 0;
I->Restore = nullptr;
}
if (MI.isDebugInstr())
return;
determineKillsAndDefs();
// Verify uses and defs.
#ifndef NDEBUG
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(Reg) || isReserved(Reg))
continue;
if (MO.isUse()) {
if (MO.isUndef())
continue;
if (!isRegUsed(Reg)) {
// Check if it's partial live: e.g.
// D0 = insert_subreg undef D0, S0
// ... D0
// The problem is the insert_subreg could be eliminated. The use of
// D0 is using a partially undef value. This is not *incorrect* since
// S1 is can be freely clobbered.
// Ideally we would like a way to model this, but leaving the
// insert_subreg around causes both correctness and performance issues.
bool SubUsed = false;
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
if (isRegUsed(*SubRegs)) {
SubUsed = true;
break;
}
bool SuperUsed = false;
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
if (isRegUsed(*SR)) {
SuperUsed = true;
break;
}
}
if (!SubUsed && !SuperUsed) {
MBB->getParent()->verify(nullptr, "In Register Scavenger");
llvm_unreachable("Using an undefined register!");
}
(void)SubUsed;
(void)SuperUsed;
}
} else {
assert(MO.isDef());
#if 0
// FIXME: Enable this once we've figured out how to correctly transfer
// implicit kills during codegen passes like the coalescer.
assert((KillRegs.test(Reg) || isUnused(Reg) ||
isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
"Re-defining a live register!");
#endif
}
}
#endif // NDEBUG
// Commit the changes.
setUnused(KillRegUnits);
setUsed(DefRegUnits);
}
void RegScavenger::backward() {
assert(Tracking && "Must be tracking to determine kills and defs");
const MachineInstr &MI = *MBBI;
LiveUnits.stepBackward(MI);
// Expire scavenge spill frameindex uses.
for (ScavengedInfo &I : Scavenged) {
if (I.Restore == &MI) {
I.Reg = 0;
I.Restore = nullptr;
}
}
if (MBBI == MBB->begin()) {
MBBI = MachineBasicBlock::iterator(nullptr);
Tracking = false;
} else
--MBBI;
}
bool RegScavenger::isRegUsed(unsigned Reg, bool includeReserved) const {
if (isReserved(Reg))
return includeReserved;
return !LiveUnits.available(Reg);
}
unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
for (unsigned Reg : *RC) {
if (!isRegUsed(Reg)) {
LLVM_DEBUG(dbgs() << "Scavenger found unused reg: " << printReg(Reg, TRI)
<< "\n");
return Reg;
}
}
return 0;
}
BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
BitVector Mask(TRI->getNumRegs());
for (unsigned Reg : *RC)
if (!isRegUsed(Reg))
Mask.set(Reg);
return Mask;
}
unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
BitVector &Candidates,
unsigned InstrLimit,
MachineBasicBlock::iterator &UseMI) {
int Survivor = Candidates.find_first();
assert(Survivor > 0 && "No candidates for scavenging");
MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
assert(StartMI != ME && "MI already at terminator");
MachineBasicBlock::iterator RestorePointMI = StartMI;
MachineBasicBlock::iterator MI = StartMI;
bool inVirtLiveRange = false;
for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
if (MI->isDebugInstr()) {
++InstrLimit; // Don't count debug instructions
continue;
}
bool isVirtKillInsn = false;
bool isVirtDefInsn = false;
// Remove any candidates touched by instruction.
for (const MachineOperand &MO : MI->operands()) {
if (MO.isRegMask())
Candidates.clearBitsNotInMask(MO.getRegMask());
if (!MO.isReg() || MO.isUndef() || !MO.getReg())
continue;
if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
if (MO.isDef())
isVirtDefInsn = true;
else if (MO.isKill())
isVirtKillInsn = true;
continue;
}
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
Candidates.reset(*AI);
}
// If we're not in a virtual reg's live range, this is a valid
// restore point.
if (!inVirtLiveRange) RestorePointMI = MI;
// Update whether we're in the live range of a virtual register
if (isVirtKillInsn) inVirtLiveRange = false;
if (isVirtDefInsn) inVirtLiveRange = true;
// Was our survivor untouched by this instruction?
if (Candidates.test(Survivor))
continue;
// All candidates gone?
if (Candidates.none())
break;
Survivor = Candidates.find_first();
}
// If we ran off the end, that's where we want to restore.
if (MI == ME) RestorePointMI = ME;
assert(RestorePointMI != StartMI &&
"No available scavenger restore location!");
// We ran out of candidates, so stop the search.
UseMI = RestorePointMI;
return Survivor;
}
/// Given the bitvector \p Available of free register units at position
/// \p From. Search backwards to find a register that is part of \p
/// Candidates and not used/clobbered until the point \p To. If there is
/// multiple candidates continue searching and pick the one that is not used/
/// clobbered for the longest time.
/// Returns the register and the earliest position we know it to be free or
/// the position MBB.end() if no register is available.
static std::pair<MCPhysReg, MachineBasicBlock::iterator>
findSurvivorBackwards(const MachineRegisterInfo &MRI,
MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
const LiveRegUnits &LiveOut, ArrayRef<MCPhysReg> AllocationOrder,
bool RestoreAfter) {
bool FoundTo = false;
MCPhysReg Survivor = 0;
MachineBasicBlock::iterator Pos;
MachineBasicBlock &MBB = *From->getParent();
unsigned InstrLimit = 25;
unsigned InstrCountDown = InstrLimit;
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
LiveRegUnits Used(TRI);
for (MachineBasicBlock::iterator I = From;; --I) {
const MachineInstr &MI = *I;
Used.accumulate(MI);
if (I == To) {
// See if one of the registers in RC wasn't used so far.
for (MCPhysReg Reg : AllocationOrder) {
if (!MRI.isReserved(Reg) && Used.available(Reg) &&
LiveOut.available(Reg))
return std::make_pair(Reg, MBB.end());
}
// Otherwise we will continue up to InstrLimit instructions to find
// the register which is not defined/used for the longest time.
FoundTo = true;
Pos = To;
// Note: It was fine so far to start our search at From, however now that
// we have to spill, and can only place the restore after From then
// add the regs used/defed by std::next(From) to the set.
if (RestoreAfter)
Used.accumulate(*std::next(From));
}
if (FoundTo) {
if (Survivor == 0 || !Used.available(Survivor)) {
MCPhysReg AvilableReg = 0;
for (MCPhysReg Reg : AllocationOrder) {
if (!MRI.isReserved(Reg) && Used.available(Reg)) {
AvilableReg = Reg;
break;
}
}
if (AvilableReg == 0)
break;
Survivor = AvilableReg;
}
if (--InstrCountDown == 0)
break;
// Keep searching when we find a vreg since the spilled register will
// be usefull for this other vreg as well later.
bool FoundVReg = false;
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
FoundVReg = true;
break;
}
}
if (FoundVReg) {
InstrCountDown = InstrLimit;
Pos = I;
}
if (I == MBB.begin())
break;
}
}
return std::make_pair(Survivor, Pos);
}
static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
unsigned i = 0;
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
return i;
}
RegScavenger::ScavengedInfo &
RegScavenger::spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj,
MachineBasicBlock::iterator Before,
MachineBasicBlock::iterator &UseMI) {
// Find an available scavenging slot with size and alignment matching
// the requirements of the class RC.
const MachineFunction &MF = *Before->getMF();
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned NeedSize = TRI->getSpillSize(RC);
unsigned NeedAlign = TRI->getSpillAlignment(RC);
unsigned SI = Scavenged.size(), Diff = std::numeric_limits<unsigned>::max();
int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
for (unsigned I = 0; I < Scavenged.size(); ++I) {
if (Scavenged[I].Reg != 0)
continue;
// Verify that this slot is valid for this register.
int FI = Scavenged[I].FrameIndex;
if (FI < FIB || FI >= FIE)
continue;
unsigned S = MFI.getObjectSize(FI);
unsigned A = MFI.getObjectAlignment(FI);
if (NeedSize > S || NeedAlign > A)
continue;
// Avoid wasting slots with large size and/or large alignment. Pick one
// that is the best fit for this register class (in street metric).
// Picking a larger slot than necessary could happen if a slot for a
// larger register is reserved before a slot for a smaller one. When
// trying to spill a smaller register, the large slot would be found
// first, thus making it impossible to spill the larger register later.
unsigned D = (S-NeedSize) + (A-NeedAlign);
if (D < Diff) {
SI = I;
Diff = D;
}
}
if (SI == Scavenged.size()) {
// We need to scavenge a register but have no spill slot, the target
// must know how to do it (if not, we'll assert below).
Scavenged.push_back(ScavengedInfo(FIE));
}
// Avoid infinite regress
Scavenged[SI].Reg = Reg;
// If the target knows how to save/restore the register, let it do so;
// otherwise, use the emergency stack spill slot.
if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
// Spill the scavenged register before \p Before.
int FI = Scavenged[SI].FrameIndex;
if (FI < FIB || FI >= FIE) {
std::string Msg = std::string("Error while trying to spill ") +
TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) +
": Cannot scavenge register without an emergency spill slot!";
report_fatal_error(Msg.c_str());
}
TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex,
&RC, TRI);
MachineBasicBlock::iterator II = std::prev(Before);
unsigned FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
// Restore the scavenged register before its use (or first terminator).
TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex,
&RC, TRI);
II = std::prev(UseMI);
FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
}
return Scavenged[SI];
}
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
MachineBasicBlock::iterator I,
int SPAdj) {
MachineInstr &MI = *I;
const MachineFunction &MF = *MI.getMF();
// Consider all allocatable registers in the register class initially
BitVector Candidates = TRI->getAllocatableSet(MF, RC);
// Exclude all the registers being used by the instruction.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
Candidates.reset(*AI);
}
// Try to find a register that's unused if there is one, as then we won't
// have to spill.
BitVector Available = getRegsAvailable(RC);
Available &= Candidates;
if (Available.any())
Candidates = Available;
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
// If we found an unused register there is no reason to spill it.
if (!isRegUsed(SReg)) {
LLVM_DEBUG(dbgs() << "Scavenged register: " << printReg(SReg, TRI) << "\n");
return SReg;
}
ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
Scavenged.Restore = &*std::prev(UseMI);
LLVM_DEBUG(dbgs() << "Scavenged register (with spill): "
<< printReg(SReg, TRI) << "\n");
return SReg;
}
unsigned RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
MachineBasicBlock::iterator To,
bool RestoreAfter, int SPAdj) {
const MachineBasicBlock &MBB = *To->getParent();
const MachineFunction &MF = *MBB.getParent();
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
ArrayRef<MCPhysReg> AllocationOrder = RC.getRawAllocationOrder(MF);
std::pair<MCPhysReg, MachineBasicBlock::iterator> P =
findSurvivorBackwards(*MRI, MBBI, To, LiveUnits, AllocationOrder,
RestoreAfter);
MCPhysReg Reg = P.first;
MachineBasicBlock::iterator SpillBefore = P.second;
assert(Reg != 0 && "No register left to scavenge!");
// Found an available register?
if (SpillBefore != MBB.end()) {
MachineBasicBlock::iterator ReloadAfter =
RestoreAfter ? std::next(MBBI) : MBBI;
MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
if (ReloadBefore != MBB.end())
LLVM_DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
Scavenged.Restore = &*std::prev(SpillBefore);
LiveUnits.removeReg(Reg);
LLVM_DEBUG(dbgs() << "Scavenged register with spill: " << printReg(Reg, TRI)
<< " until " << *SpillBefore);
} else {
LLVM_DEBUG(dbgs() << "Scavenged free register: " << printReg(Reg, TRI)
<< '\n');
}
return Reg;
}
/// Allocate a register for the virtual register \p VReg. The last use of
/// \p VReg is around the current position of the register scavenger \p RS.
/// \p ReserveAfter controls whether the scavenged register needs to be reserved
/// after the current instruction, otherwise it will only be reserved before the
/// current instruction.
static unsigned scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
unsigned VReg, bool ReserveAfter) {
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
#ifndef NDEBUG
// Verify that all definitions and uses are in the same basic block.
const MachineBasicBlock *CommonMBB = nullptr;
// Real definition for the reg, re-definitions are not considered.
const MachineInstr *RealDef = nullptr;
for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
MachineBasicBlock *MBB = MO.getParent()->getParent();
if (CommonMBB == nullptr)
CommonMBB = MBB;
assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
if (MO.isDef()) {
const MachineInstr &MI = *MO.getParent();
if (!MI.readsRegister(VReg, &TRI)) {
assert((!RealDef || RealDef == &MI) &&
"Can have at most one definition which is not a redefinition");
RealDef = &MI;
}
}
}
assert(RealDef != nullptr && "Must have at least 1 Def");
#endif
// We should only have one definition of the register. However to accommodate
// the requirements of two address code we also allow definitions in
// subsequent instructions provided they also read the register. That way
// we get a single contiguous lifetime.
//
// Definitions in MRI.def_begin() are unordered, search for the first.
MachineRegisterInfo::def_iterator FirstDef =
std::find_if(MRI.def_begin(VReg), MRI.def_end(),
[VReg, &TRI](const MachineOperand &MO) {
return !MO.getParent()->readsRegister(VReg, &TRI);
});
assert(FirstDef != MRI.def_end() &&
"Must have one definition that does not redefine vreg");
MachineInstr &DefMI = *FirstDef->getParent();
// The register scavenger will report a free register inserting an emergency
// spill/reload if necessary.
int SPAdj = 0;
const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
unsigned SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
ReserveAfter, SPAdj);
MRI.replaceRegWith(VReg, SReg);
++NumScavengedRegs;
return SReg;
}
/// Allocate (scavenge) vregs inside a single basic block.
/// Returns true if the target spill callback created new vregs and a 2nd pass
/// is necessary.
static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI,
RegScavenger &RS,
MachineBasicBlock &MBB) {
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
RS.enterBasicBlockEnd(MBB);
unsigned InitialNumVirtRegs = MRI.getNumVirtRegs();
bool NextInstructionReadsVReg = false;
for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
--I;
// Move RegScavenger to the position between *I and *std::next(I).
RS.backward(I);
// Look for unassigned vregs in the uses of *std::next(I).
if (NextInstructionReadsVReg) {
MachineBasicBlock::iterator N = std::next(I);
const MachineInstr &NMI = *N;
for (const MachineOperand &MO : NMI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
// We only care about virtual registers and ignore virtual registers
// created by the target callbacks in the process (those will be handled
// in a scavenging round).
if (!TargetRegisterInfo::isVirtualRegister(Reg) ||
TargetRegisterInfo::virtReg2Index(Reg) >= InitialNumVirtRegs)
continue;
if (!MO.readsReg())
continue;
unsigned SReg = scavengeVReg(MRI, RS, Reg, true);
N->addRegisterKilled(SReg, &TRI, false);
RS.setRegUsed(SReg);
}
}
// Look for unassigned vregs in the defs of *I.
NextInstructionReadsVReg = false;
const MachineInstr &MI = *I;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
// Only vregs, no newly created vregs (see above).
if (!TargetRegisterInfo::isVirtualRegister(Reg) ||
TargetRegisterInfo::virtReg2Index(Reg) >= InitialNumVirtRegs)
continue;
// We have to look at all operands anyway so we can precalculate here
// whether there is a reading operand. This allows use to skip the use
// step in the next iteration if there was none.
assert(!MO.isInternalRead() && "Cannot assign inside bundles");
assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
if (MO.readsReg()) {
NextInstructionReadsVReg = true;
}
if (MO.isDef()) {
unsigned SReg = scavengeVReg(MRI, RS, Reg, false);
I->addRegisterDead(SReg, &TRI, false);
}
}
}
#ifndef NDEBUG
for (const MachineOperand &MO : MBB.front().operands()) {
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
assert(!MO.isInternalRead() && "Cannot assign inside bundles");
assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
assert(!MO.readsReg() && "Vreg use in first instruction not allowed");
}
#endif
return MRI.getNumVirtRegs() != InitialNumVirtRegs;
}
void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) {
// FIXME: Iterating over the instruction stream is unnecessary. We can simply
// iterate over the vreg use list, which at this point only contains machine
// operands for which eliminateFrameIndex need a new scratch reg.
MachineRegisterInfo &MRI = MF.getRegInfo();
// Shortcut.
if (MRI.getNumVirtRegs() == 0) {
MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
return;
}
// Run through the instructions and find any virtual registers.
for (MachineBasicBlock &MBB : MF) {
if (MBB.empty())
continue;
bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
if (Again) {
LLVM_DEBUG(dbgs() << "Warning: Required two scavenging passes for block "
<< MBB.getName() << '\n');
Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
// The target required a 2nd run (because it created new vregs while
// spilling). Refuse to do another pass to keep compiletime in check.
if (Again)
report_fatal_error("Incomplete scavenging after 2nd pass");
}
}
MRI.clearVirtRegs();
MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
}
namespace {
/// This class runs register scavenging independ of the PrologEpilogInserter.
/// This is used in for testing.
class ScavengerTest : public MachineFunctionPass {
public:
static char ID;
ScavengerTest() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetFrameLowering &TFL = *STI.getFrameLowering();
RegScavenger RS;
// Let's hope that calling those outside of PrologEpilogueInserter works
// well enough to initialize the scavenger with some emergency spillslots
// for the target.
BitVector SavedRegs;
TFL.determineCalleeSaves(MF, SavedRegs, &RS);
TFL.processFunctionBeforeFrameFinalized(MF, &RS);
// Let's scavenge the current function
scavengeFrameVirtualRegs(MF, RS);
return true;
}
};
} // end anonymous namespace
char ScavengerTest::ID;
INITIALIZE_PASS(ScavengerTest, "scavenger-test",
"Scavenge virtual registers inside basic blocks", false, false)