| //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. |
| // |
| // Software pipelining (SWP) is an instruction scheduling technique for loops |
| // that overlap loop iterations and exploits ILP via a compiler transformation. |
| // |
| // Swing Modulo Scheduling is an implementation of software pipelining |
| // that generates schedules that are near optimal in terms of initiation |
| // interval, register requirements, and stage count. See the papers: |
| // |
| // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, |
| // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 |
| // Conference on Parallel Architectures and Compilation Techiniques. |
| // |
| // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. |
| // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE |
| // Transactions on Computers, Vol. 50, No. 3, 2001. |
| // |
| // "An Implementation of Swing Modulo Scheduling With Extensions for |
| // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at |
| // Urbana-Chambpain, 2005. |
| // |
| // |
| // The SMS algorithm consists of three main steps after computing the minimal |
| // initiation interval (MII). |
| // 1) Analyze the dependence graph and compute information about each |
| // instruction in the graph. |
| // 2) Order the nodes (instructions) by priority based upon the heuristics |
| // described in the algorithm. |
| // 3) Attempt to schedule the nodes in the specified order using the MII. |
| // |
| // This SMS implementation is a target-independent back-end pass. When enabled, |
| // the pass runs just prior to the register allocation pass, while the machine |
| // IR is in SSA form. If software pipelining is successful, then the original |
| // loop is replaced by the optimized loop. The optimized loop contains one or |
| // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If |
| // the instructions cannot be scheduled in a given MII, we increase the MII by |
| // one and try again. |
| // |
| // The SMS implementation is an extension of the ScheduleDAGInstrs class. We |
| // represent loop carried dependences in the DAG as order edges to the Phi |
| // nodes. We also perform several passes over the DAG to eliminate unnecessary |
| // edges that inhibit the ability to pipeline. The implementation uses the |
| // DFAPacketizer class to compute the minimum initiation interval and the check |
| // where an instruction may be inserted in the pipelined schedule. |
| // |
| // In order for the SMS pass to work, several target specific hooks need to be |
| // implemented to get information about the loop structure and to rewrite |
| // instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/DFAPacketizer.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/CodeGen/ScheduleDAGMutation.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstdint> |
| #include <deque> |
| #include <functional> |
| #include <iterator> |
| #include <map> |
| #include <memory> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "pipeliner" |
| |
| STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); |
| STATISTIC(NumPipelined, "Number of loops software pipelined"); |
| STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); |
| |
| /// A command line option to turn software pipelining on or off. |
| static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), |
| cl::ZeroOrMore, |
| cl::desc("Enable Software Pipelining")); |
| |
| /// A command line option to enable SWP at -Os. |
| static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", |
| cl::desc("Enable SWP at Os."), cl::Hidden, |
| cl::init(false)); |
| |
| /// A command line argument to limit minimum initial interval for pipelining. |
| static cl::opt<int> SwpMaxMii("pipeliner-max-mii", |
| cl::desc("Size limit for the MII."), |
| cl::Hidden, cl::init(27)); |
| |
| /// A command line argument to limit the number of stages in the pipeline. |
| static cl::opt<int> |
| SwpMaxStages("pipeliner-max-stages", |
| cl::desc("Maximum stages allowed in the generated scheduled."), |
| cl::Hidden, cl::init(3)); |
| |
| /// A command line option to disable the pruning of chain dependences due to |
| /// an unrelated Phi. |
| static cl::opt<bool> |
| SwpPruneDeps("pipeliner-prune-deps", |
| cl::desc("Prune dependences between unrelated Phi nodes."), |
| cl::Hidden, cl::init(true)); |
| |
| /// A command line option to disable the pruning of loop carried order |
| /// dependences. |
| static cl::opt<bool> |
| SwpPruneLoopCarried("pipeliner-prune-loop-carried", |
| cl::desc("Prune loop carried order dependences."), |
| cl::Hidden, cl::init(true)); |
| |
| #ifndef NDEBUG |
| static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); |
| #endif |
| |
| static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", |
| cl::ReallyHidden, cl::init(false), |
| cl::ZeroOrMore, cl::desc("Ignore RecMII")); |
| |
| namespace { |
| |
| class NodeSet; |
| class SMSchedule; |
| |
| /// The main class in the implementation of the target independent |
| /// software pipeliner pass. |
| class MachinePipeliner : public MachineFunctionPass { |
| public: |
| MachineFunction *MF = nullptr; |
| const MachineLoopInfo *MLI = nullptr; |
| const MachineDominatorTree *MDT = nullptr; |
| const InstrItineraryData *InstrItins; |
| const TargetInstrInfo *TII = nullptr; |
| RegisterClassInfo RegClassInfo; |
| |
| #ifndef NDEBUG |
| static int NumTries; |
| #endif |
| |
| /// Cache the target analysis information about the loop. |
| struct LoopInfo { |
| MachineBasicBlock *TBB = nullptr; |
| MachineBasicBlock *FBB = nullptr; |
| SmallVector<MachineOperand, 4> BrCond; |
| MachineInstr *LoopInductionVar = nullptr; |
| MachineInstr *LoopCompare = nullptr; |
| }; |
| LoopInfo LI; |
| |
| static char ID; |
| |
| MachinePipeliner() : MachineFunctionPass(ID) { |
| initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<LiveIntervals>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| void preprocessPhiNodes(MachineBasicBlock &B); |
| bool canPipelineLoop(MachineLoop &L); |
| bool scheduleLoop(MachineLoop &L); |
| bool swingModuloScheduler(MachineLoop &L); |
| }; |
| |
| /// This class builds the dependence graph for the instructions in a loop, |
| /// and attempts to schedule the instructions using the SMS algorithm. |
| class SwingSchedulerDAG : public ScheduleDAGInstrs { |
| MachinePipeliner &Pass; |
| /// The minimum initiation interval between iterations for this schedule. |
| unsigned MII = 0; |
| /// Set to true if a valid pipelined schedule is found for the loop. |
| bool Scheduled = false; |
| MachineLoop &Loop; |
| LiveIntervals &LIS; |
| const RegisterClassInfo &RegClassInfo; |
| |
| /// A toplogical ordering of the SUnits, which is needed for changing |
| /// dependences and iterating over the SUnits. |
| ScheduleDAGTopologicalSort Topo; |
| |
| struct NodeInfo { |
| int ASAP = 0; |
| int ALAP = 0; |
| int ZeroLatencyDepth = 0; |
| int ZeroLatencyHeight = 0; |
| |
| NodeInfo() = default; |
| }; |
| /// Computed properties for each node in the graph. |
| std::vector<NodeInfo> ScheduleInfo; |
| |
| enum OrderKind { BottomUp = 0, TopDown = 1 }; |
| /// Computed node ordering for scheduling. |
| SetVector<SUnit *> NodeOrder; |
| |
| using NodeSetType = SmallVector<NodeSet, 8>; |
| using ValueMapTy = DenseMap<unsigned, unsigned>; |
| using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
| using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
| |
| /// Instructions to change when emitting the final schedule. |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; |
| |
| /// We may create a new instruction, so remember it because it |
| /// must be deleted when the pass is finished. |
| SmallPtrSet<MachineInstr *, 4> NewMIs; |
| |
| /// Ordered list of DAG postprocessing steps. |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
| |
| /// Helper class to implement Johnson's circuit finding algorithm. |
| class Circuits { |
| std::vector<SUnit> &SUnits; |
| SetVector<SUnit *> Stack; |
| BitVector Blocked; |
| SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; |
| SmallVector<SmallVector<int, 4>, 16> AdjK; |
| unsigned NumPaths; |
| static unsigned MaxPaths; |
| |
| public: |
| Circuits(std::vector<SUnit> &SUs) |
| : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} |
| |
| /// Reset the data structures used in the circuit algorithm. |
| void reset() { |
| Stack.clear(); |
| Blocked.reset(); |
| B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); |
| NumPaths = 0; |
| } |
| |
| void createAdjacencyStructure(SwingSchedulerDAG *DAG); |
| bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); |
| void unblock(int U); |
| }; |
| |
| public: |
| SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, |
| const RegisterClassInfo &rci) |
| : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), |
| RegClassInfo(rci), Topo(SUnits, &ExitSU) { |
| P.MF->getSubtarget().getSMSMutations(Mutations); |
| } |
| |
| void schedule() override; |
| void finishBlock() override; |
| |
| /// Return true if the loop kernel has been scheduled. |
| bool hasNewSchedule() { return Scheduled; } |
| |
| /// Return the earliest time an instruction may be scheduled. |
| int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } |
| |
| /// Return the latest time an instruction my be scheduled. |
| int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } |
| |
| /// The mobility function, which the number of slots in which |
| /// an instruction may be scheduled. |
| int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } |
| |
| /// The depth, in the dependence graph, for a node. |
| unsigned getDepth(SUnit *Node) { return Node->getDepth(); } |
| |
| /// The maximum unweighted length of a path from an arbitrary node to the |
| /// given node in which each edge has latency 0 |
| int getZeroLatencyDepth(SUnit *Node) { |
| return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; |
| } |
| |
| /// The height, in the dependence graph, for a node. |
| unsigned getHeight(SUnit *Node) { return Node->getHeight(); } |
| |
| /// The maximum unweighted length of a path from the given node to an |
| /// arbitrary node in which each edge has latency 0 |
| int getZeroLatencyHeight(SUnit *Node) { |
| return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; |
| } |
| |
| /// Return true if the dependence is a back-edge in the data dependence graph. |
| /// Since the DAG doesn't contain cycles, we represent a cycle in the graph |
| /// using an anti dependence from a Phi to an instruction. |
| bool isBackedge(SUnit *Source, const SDep &Dep) { |
| if (Dep.getKind() != SDep::Anti) |
| return false; |
| return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); |
| } |
| |
| bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); |
| |
| /// The distance function, which indicates that operation V of iteration I |
| /// depends on operations U of iteration I-distance. |
| unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { |
| // Instructions that feed a Phi have a distance of 1. Computing larger |
| // values for arrays requires data dependence information. |
| if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) |
| return 1; |
| return 0; |
| } |
| |
| /// Set the Minimum Initiation Interval for this schedule attempt. |
| void setMII(unsigned mii) { MII = mii; } |
| |
| void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); |
| |
| void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); |
| |
| /// Return the new base register that was stored away for the changed |
| /// instruction. |
| unsigned getInstrBaseReg(SUnit *SU) { |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
| InstrChanges.find(SU); |
| if (It != InstrChanges.end()) |
| return It->second.first; |
| return 0; |
| } |
| |
| void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
| Mutations.push_back(std::move(Mutation)); |
| } |
| |
| private: |
| void addLoopCarriedDependences(AliasAnalysis *AA); |
| void updatePhiDependences(); |
| void changeDependences(); |
| unsigned calculateResMII(); |
| unsigned calculateRecMII(NodeSetType &RecNodeSets); |
| void findCircuits(NodeSetType &NodeSets); |
| void fuseRecs(NodeSetType &NodeSets); |
| void removeDuplicateNodes(NodeSetType &NodeSets); |
| void computeNodeFunctions(NodeSetType &NodeSets); |
| void registerPressureFilter(NodeSetType &NodeSets); |
| void colocateNodeSets(NodeSetType &NodeSets); |
| void checkNodeSets(NodeSetType &NodeSets); |
| void groupRemainingNodes(NodeSetType &NodeSets); |
| void addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
| SetVector<SUnit *> &NodesAdded); |
| void computeNodeOrder(NodeSetType &NodeSets); |
| void checkValidNodeOrder(const NodeSetType &Circuits) const; |
| bool schedulePipeline(SMSchedule &Schedule); |
| void generatePipelinedLoop(SMSchedule &Schedule); |
| void generateProlog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, |
| MBBVectorTy &PrologBBs); |
| void generateEpilog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, |
| MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); |
| void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, |
| unsigned CurStageNum, bool IsLast); |
| void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, |
| unsigned CurStageNum, bool IsLast); |
| void removeDeadInstructions(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs); |
| void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, |
| SMSchedule &Schedule); |
| void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs, SMSchedule &Schedule, |
| ValueMapTy *VRMap); |
| bool computeDelta(MachineInstr &MI, unsigned &Delta); |
| void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, |
| unsigned Num); |
| MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| unsigned InstStageNum); |
| MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| unsigned InstStageNum, |
| SMSchedule &Schedule); |
| void updateInstruction(MachineInstr *NewMI, bool LastDef, |
| unsigned CurStageNum, unsigned InstrStageNum, |
| SMSchedule &Schedule, ValueMapTy *VRMap); |
| MachineInstr *findDefInLoop(unsigned Reg); |
| unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, |
| unsigned LoopStage, ValueMapTy *VRMap, |
| MachineBasicBlock *BB); |
| void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap); |
| void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, |
| InstrMapTy &InstrMap, unsigned CurStageNum, |
| unsigned PhiNum, MachineInstr *Phi, |
| unsigned OldReg, unsigned NewReg, |
| unsigned PrevReg = 0); |
| bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, |
| unsigned &OffsetPos, unsigned &NewBase, |
| int64_t &NewOffset); |
| void postprocessDAG(); |
| }; |
| |
| /// A NodeSet contains a set of SUnit DAG nodes with additional information |
| /// that assigns a priority to the set. |
| class NodeSet { |
| SetVector<SUnit *> Nodes; |
| bool HasRecurrence = false; |
| unsigned RecMII = 0; |
| int MaxMOV = 0; |
| unsigned MaxDepth = 0; |
| unsigned Colocate = 0; |
| SUnit *ExceedPressure = nullptr; |
| unsigned Latency = 0; |
| |
| public: |
| using iterator = SetVector<SUnit *>::const_iterator; |
| |
| NodeSet() = default; |
| NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { |
| Latency = 0; |
| for (unsigned i = 0, e = Nodes.size(); i < e; ++i) |
| for (const SDep &Succ : Nodes[i]->Succs) |
| if (Nodes.count(Succ.getSUnit())) |
| Latency += Succ.getLatency(); |
| } |
| |
| bool insert(SUnit *SU) { return Nodes.insert(SU); } |
| |
| void insert(iterator S, iterator E) { Nodes.insert(S, E); } |
| |
| template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { |
| return Nodes.remove_if(P); |
| } |
| |
| unsigned count(SUnit *SU) const { return Nodes.count(SU); } |
| |
| bool hasRecurrence() { return HasRecurrence; }; |
| |
| unsigned size() const { return Nodes.size(); } |
| |
| bool empty() const { return Nodes.empty(); } |
| |
| SUnit *getNode(unsigned i) const { return Nodes[i]; }; |
| |
| void setRecMII(unsigned mii) { RecMII = mii; }; |
| |
| void setColocate(unsigned c) { Colocate = c; }; |
| |
| void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } |
| |
| bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } |
| |
| int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } |
| |
| int getRecMII() { return RecMII; } |
| |
| /// Summarize node functions for the entire node set. |
| void computeNodeSetInfo(SwingSchedulerDAG *SSD) { |
| for (SUnit *SU : *this) { |
| MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); |
| MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); |
| } |
| } |
| |
| unsigned getLatency() { return Latency; } |
| |
| unsigned getMaxDepth() { return MaxDepth; } |
| |
| void clear() { |
| Nodes.clear(); |
| RecMII = 0; |
| HasRecurrence = false; |
| MaxMOV = 0; |
| MaxDepth = 0; |
| Colocate = 0; |
| ExceedPressure = nullptr; |
| } |
| |
| operator SetVector<SUnit *> &() { return Nodes; } |
| |
| /// Sort the node sets by importance. First, rank them by recurrence MII, |
| /// then by mobility (least mobile done first), and finally by depth. |
| /// Each node set may contain a colocate value which is used as the first |
| /// tie breaker, if it's set. |
| bool operator>(const NodeSet &RHS) const { |
| if (RecMII == RHS.RecMII) { |
| if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) |
| return Colocate < RHS.Colocate; |
| if (MaxMOV == RHS.MaxMOV) |
| return MaxDepth > RHS.MaxDepth; |
| return MaxMOV < RHS.MaxMOV; |
| } |
| return RecMII > RHS.RecMII; |
| } |
| |
| bool operator==(const NodeSet &RHS) const { |
| return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && |
| MaxDepth == RHS.MaxDepth; |
| } |
| |
| bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } |
| |
| iterator begin() { return Nodes.begin(); } |
| iterator end() { return Nodes.end(); } |
| |
| void print(raw_ostream &os) const { |
| os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV |
| << " depth " << MaxDepth << " col " << Colocate << "\n"; |
| for (const auto &I : Nodes) |
| os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); |
| os << "\n"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| #endif |
| }; |
| |
| /// This class represents the scheduled code. The main data structure is a |
| /// map from scheduled cycle to instructions. During scheduling, the |
| /// data structure explicitly represents all stages/iterations. When |
| /// the algorithm finshes, the schedule is collapsed into a single stage, |
| /// which represents instructions from different loop iterations. |
| /// |
| /// The SMS algorithm allows negative values for cycles, so the first cycle |
| /// in the schedule is the smallest cycle value. |
| class SMSchedule { |
| private: |
| /// Map from execution cycle to instructions. |
| DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; |
| |
| /// Map from instruction to execution cycle. |
| std::map<SUnit *, int> InstrToCycle; |
| |
| /// Map for each register and the max difference between its uses and def. |
| /// The first element in the pair is the max difference in stages. The |
| /// second is true if the register defines a Phi value and loop value is |
| /// scheduled before the Phi. |
| std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; |
| |
| /// Keep track of the first cycle value in the schedule. It starts |
| /// as zero, but the algorithm allows negative values. |
| int FirstCycle = 0; |
| |
| /// Keep track of the last cycle value in the schedule. |
| int LastCycle = 0; |
| |
| /// The initiation interval (II) for the schedule. |
| int InitiationInterval = 0; |
| |
| /// Target machine information. |
| const TargetSubtargetInfo &ST; |
| |
| /// Virtual register information. |
| MachineRegisterInfo &MRI; |
| |
| std::unique_ptr<DFAPacketizer> Resources; |
| |
| public: |
| SMSchedule(MachineFunction *mf) |
| : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), |
| Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} |
| |
| void reset() { |
| ScheduledInstrs.clear(); |
| InstrToCycle.clear(); |
| RegToStageDiff.clear(); |
| FirstCycle = 0; |
| LastCycle = 0; |
| InitiationInterval = 0; |
| } |
| |
| /// Set the initiation interval for this schedule. |
| void setInitiationInterval(int ii) { InitiationInterval = ii; } |
| |
| /// Return the first cycle in the completed schedule. This |
| /// can be a negative value. |
| int getFirstCycle() const { return FirstCycle; } |
| |
| /// Return the last cycle in the finalized schedule. |
| int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } |
| |
| /// Return the cycle of the earliest scheduled instruction in the dependence |
| /// chain. |
| int earliestCycleInChain(const SDep &Dep); |
| |
| /// Return the cycle of the latest scheduled instruction in the dependence |
| /// chain. |
| int latestCycleInChain(const SDep &Dep); |
| |
| void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, |
| int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); |
| bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); |
| |
| /// Iterators for the cycle to instruction map. |
| using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; |
| using const_sched_iterator = |
| DenseMap<int, std::deque<SUnit *>>::const_iterator; |
| |
| /// Return true if the instruction is scheduled at the specified stage. |
| bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { |
| return (stageScheduled(SU) == (int)StageNum); |
| } |
| |
| /// Return the stage for a scheduled instruction. Return -1 if |
| /// the instruction has not been scheduled. |
| int stageScheduled(SUnit *SU) const { |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
| if (it == InstrToCycle.end()) |
| return -1; |
| return (it->second - FirstCycle) / InitiationInterval; |
| } |
| |
| /// Return the cycle for a scheduled instruction. This function normalizes |
| /// the first cycle to be 0. |
| unsigned cycleScheduled(SUnit *SU) const { |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
| assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); |
| return (it->second - FirstCycle) % InitiationInterval; |
| } |
| |
| /// Return the maximum stage count needed for this schedule. |
| unsigned getMaxStageCount() { |
| return (LastCycle - FirstCycle) / InitiationInterval; |
| } |
| |
| /// Return the max. number of stages/iterations that can occur between a |
| /// register definition and its uses. |
| unsigned getStagesForReg(int Reg, unsigned CurStage) { |
| std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) |
| return 1; |
| return Stages.first; |
| } |
| |
| /// The number of stages for a Phi is a little different than other |
| /// instructions. The minimum value computed in RegToStageDiff is 1 |
| /// because we assume the Phi is needed for at least 1 iteration. |
| /// This is not the case if the loop value is scheduled prior to the |
| /// Phi in the same stage. This function returns the number of stages |
| /// or iterations needed between the Phi definition and any uses. |
| unsigned getStagesForPhi(int Reg) { |
| std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| if (Stages.second) |
| return Stages.first; |
| return Stages.first - 1; |
| } |
| |
| /// Return the instructions that are scheduled at the specified cycle. |
| std::deque<SUnit *> &getInstructions(int cycle) { |
| return ScheduledInstrs[cycle]; |
| } |
| |
| bool isValidSchedule(SwingSchedulerDAG *SSD); |
| void finalizeSchedule(SwingSchedulerDAG *SSD); |
| void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, |
| std::deque<SUnit *> &Insts); |
| bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); |
| bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, |
| MachineOperand &MO); |
| void print(raw_ostream &os) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; |
| char MachinePipeliner::ID = 0; |
| #ifndef NDEBUG |
| int MachinePipeliner::NumTries = 0; |
| #endif |
| char &llvm::MachinePipelinerID = MachinePipeliner::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, |
| "Modulo Software Pipelining", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, |
| "Modulo Software Pipelining", false, false) |
| |
| /// The "main" function for implementing Swing Modulo Scheduling. |
| bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| |
| if (!EnableSWP) |
| return false; |
| |
| if (mf.getFunction().getAttributes().hasAttribute( |
| AttributeList::FunctionIndex, Attribute::OptimizeForSize) && |
| !EnableSWPOptSize.getPosition()) |
| return false; |
| |
| MF = &mf; |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| TII = MF->getSubtarget().getInstrInfo(); |
| RegClassInfo.runOnMachineFunction(*MF); |
| |
| for (auto &L : *MLI) |
| scheduleLoop(*L); |
| |
| return false; |
| } |
| |
| /// Attempt to perform the SMS algorithm on the specified loop. This function is |
| /// the main entry point for the algorithm. The function identifies candidate |
| /// loops, calculates the minimum initiation interval, and attempts to schedule |
| /// the loop. |
| bool MachinePipeliner::scheduleLoop(MachineLoop &L) { |
| bool Changed = false; |
| for (auto &InnerLoop : L) |
| Changed |= scheduleLoop(*InnerLoop); |
| |
| #ifndef NDEBUG |
| // Stop trying after reaching the limit (if any). |
| int Limit = SwpLoopLimit; |
| if (Limit >= 0) { |
| if (NumTries >= SwpLoopLimit) |
| return Changed; |
| NumTries++; |
| } |
| #endif |
| |
| if (!canPipelineLoop(L)) |
| return Changed; |
| |
| ++NumTrytoPipeline; |
| |
| Changed = swingModuloScheduler(L); |
| |
| return Changed; |
| } |
| |
| /// Return true if the loop can be software pipelined. The algorithm is |
| /// restricted to loops with a single basic block. Make sure that the |
| /// branch in the loop can be analyzed. |
| bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { |
| if (L.getNumBlocks() != 1) |
| return false; |
| |
| // Check if the branch can't be understood because we can't do pipelining |
| // if that's the case. |
| LI.TBB = nullptr; |
| LI.FBB = nullptr; |
| LI.BrCond.clear(); |
| if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) |
| return false; |
| |
| LI.LoopInductionVar = nullptr; |
| LI.LoopCompare = nullptr; |
| if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) |
| return false; |
| |
| if (!L.getLoopPreheader()) |
| return false; |
| |
| // Remove any subregisters from inputs to phi nodes. |
| preprocessPhiNodes(*L.getHeader()); |
| return true; |
| } |
| |
| void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); |
| |
| for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { |
| MachineOperand &DefOp = PI.getOperand(0); |
| assert(DefOp.getSubReg() == 0); |
| auto *RC = MRI.getRegClass(DefOp.getReg()); |
| |
| for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { |
| MachineOperand &RegOp = PI.getOperand(i); |
| if (RegOp.getSubReg() == 0) |
| continue; |
| |
| // If the operand uses a subregister, replace it with a new register |
| // without subregisters, and generate a copy to the new register. |
| unsigned NewReg = MRI.createVirtualRegister(RC); |
| MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); |
| MachineBasicBlock::iterator At = PredB.getFirstTerminator(); |
| const DebugLoc &DL = PredB.findDebugLoc(At); |
| auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) |
| .addReg(RegOp.getReg(), getRegState(RegOp), |
| RegOp.getSubReg()); |
| Slots.insertMachineInstrInMaps(*Copy); |
| RegOp.setReg(NewReg); |
| RegOp.setSubReg(0); |
| } |
| } |
| } |
| |
| /// The SMS algorithm consists of the following main steps: |
| /// 1. Computation and analysis of the dependence graph. |
| /// 2. Ordering of the nodes (instructions). |
| /// 3. Attempt to Schedule the loop. |
| bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { |
| assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); |
| |
| SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); |
| |
| MachineBasicBlock *MBB = L.getHeader(); |
| // The kernel should not include any terminator instructions. These |
| // will be added back later. |
| SMS.startBlock(MBB); |
| |
| // Compute the number of 'real' instructions in the basic block by |
| // ignoring terminators. |
| unsigned size = MBB->size(); |
| for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), |
| E = MBB->instr_end(); |
| I != E; ++I, --size) |
| ; |
| |
| SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); |
| SMS.schedule(); |
| SMS.exitRegion(); |
| |
| SMS.finishBlock(); |
| return SMS.hasNewSchedule(); |
| } |
| |
| /// We override the schedule function in ScheduleDAGInstrs to implement the |
| /// scheduling part of the Swing Modulo Scheduling algorithm. |
| void SwingSchedulerDAG::schedule() { |
| AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| buildSchedGraph(AA); |
| addLoopCarriedDependences(AA); |
| updatePhiDependences(); |
| Topo.InitDAGTopologicalSorting(); |
| postprocessDAG(); |
| changeDependences(); |
| LLVM_DEBUG({ |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| SUnits[su].dumpAll(this); |
| }); |
| |
| NodeSetType NodeSets; |
| findCircuits(NodeSets); |
| NodeSetType Circuits = NodeSets; |
| |
| // Calculate the MII. |
| unsigned ResMII = calculateResMII(); |
| unsigned RecMII = calculateRecMII(NodeSets); |
| |
| fuseRecs(NodeSets); |
| |
| // This flag is used for testing and can cause correctness problems. |
| if (SwpIgnoreRecMII) |
| RecMII = 0; |
| |
| MII = std::max(ResMII, RecMII); |
| LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII |
| << ", res=" << ResMII << ")\n"); |
| |
| // Can't schedule a loop without a valid MII. |
| if (MII == 0) |
| return; |
| |
| // Don't pipeline large loops. |
| if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) |
| return; |
| |
| computeNodeFunctions(NodeSets); |
| |
| registerPressureFilter(NodeSets); |
| |
| colocateNodeSets(NodeSets); |
| |
| checkNodeSets(NodeSets); |
| |
| LLVM_DEBUG({ |
| for (auto &I : NodeSets) { |
| dbgs() << " Rec NodeSet "; |
| I.dump(); |
| } |
| }); |
| |
| std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); |
| |
| groupRemainingNodes(NodeSets); |
| |
| removeDuplicateNodes(NodeSets); |
| |
| LLVM_DEBUG({ |
| for (auto &I : NodeSets) { |
| dbgs() << " NodeSet "; |
| I.dump(); |
| } |
| }); |
| |
| computeNodeOrder(NodeSets); |
| |
| // check for node order issues |
| checkValidNodeOrder(Circuits); |
| |
| SMSchedule Schedule(Pass.MF); |
| Scheduled = schedulePipeline(Schedule); |
| |
| if (!Scheduled) |
| return; |
| |
| unsigned numStages = Schedule.getMaxStageCount(); |
| // No need to generate pipeline if there are no overlapped iterations. |
| if (numStages == 0) |
| return; |
| |
| // Check that the maximum stage count is less than user-defined limit. |
| if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) |
| return; |
| |
| generatePipelinedLoop(Schedule); |
| ++NumPipelined; |
| } |
| |
| /// Clean up after the software pipeliner runs. |
| void SwingSchedulerDAG::finishBlock() { |
| for (MachineInstr *I : NewMIs) |
| MF.DeleteMachineInstr(I); |
| NewMIs.clear(); |
| |
| // Call the superclass. |
| ScheduleDAGInstrs::finishBlock(); |
| } |
| |
| /// Return the register values for the operands of a Phi instruction. |
| /// This function assume the instruction is a Phi. |
| static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, |
| unsigned &InitVal, unsigned &LoopVal) { |
| assert(Phi.isPHI() && "Expecting a Phi."); |
| |
| InitVal = 0; |
| LoopVal = 0; |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() != Loop) |
| InitVal = Phi.getOperand(i).getReg(); |
| else |
| LoopVal = Phi.getOperand(i).getReg(); |
| |
| assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); |
| } |
| |
| /// Return the Phi register value that comes from the incoming block. |
| static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() != LoopBB) |
| return Phi.getOperand(i).getReg(); |
| return 0; |
| } |
| |
| /// Return the Phi register value that comes the loop block. |
| static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() == LoopBB) |
| return Phi.getOperand(i).getReg(); |
| return 0; |
| } |
| |
| /// Return true if SUb can be reached from SUa following the chain edges. |
| static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { |
| SmallPtrSet<SUnit *, 8> Visited; |
| SmallVector<SUnit *, 8> Worklist; |
| Worklist.push_back(SUa); |
| while (!Worklist.empty()) { |
| const SUnit *SU = Worklist.pop_back_val(); |
| for (auto &SI : SU->Succs) { |
| SUnit *SuccSU = SI.getSUnit(); |
| if (SI.getKind() == SDep::Order) { |
| if (Visited.count(SuccSU)) |
| continue; |
| if (SuccSU == SUb) |
| return true; |
| Worklist.push_back(SuccSU); |
| Visited.insert(SuccSU); |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// Return true if the instruction causes a chain between memory |
| /// references before and after it. |
| static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { |
| return MI.isCall() || MI.hasUnmodeledSideEffects() || |
| (MI.hasOrderedMemoryRef() && |
| (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); |
| } |
| |
| /// Return the underlying objects for the memory references of an instruction. |
| /// This function calls the code in ValueTracking, but first checks that the |
| /// instruction has a memory operand. |
| static void getUnderlyingObjects(MachineInstr *MI, |
| SmallVectorImpl<Value *> &Objs, |
| const DataLayout &DL) { |
| if (!MI->hasOneMemOperand()) |
| return; |
| MachineMemOperand *MM = *MI->memoperands_begin(); |
| if (!MM->getValue()) |
| return; |
| GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); |
| for (Value *V : Objs) { |
| if (!isIdentifiedObject(V)) { |
| Objs.clear(); |
| return; |
| } |
| Objs.push_back(V); |
| } |
| } |
| |
| /// Add a chain edge between a load and store if the store can be an |
| /// alias of the load on a subsequent iteration, i.e., a loop carried |
| /// dependence. This code is very similar to the code in ScheduleDAGInstrs |
| /// but that code doesn't create loop carried dependences. |
| void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { |
| MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; |
| Value *UnknownValue = |
| UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); |
| for (auto &SU : SUnits) { |
| MachineInstr &MI = *SU.getInstr(); |
| if (isDependenceBarrier(MI, AA)) |
| PendingLoads.clear(); |
| else if (MI.mayLoad()) { |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); |
| if (Objs.empty()) |
| Objs.push_back(UnknownValue); |
| for (auto V : Objs) { |
| SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; |
| SUs.push_back(&SU); |
| } |
| } else if (MI.mayStore()) { |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); |
| if (Objs.empty()) |
| Objs.push_back(UnknownValue); |
| for (auto V : Objs) { |
| MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = |
| PendingLoads.find(V); |
| if (I == PendingLoads.end()) |
| continue; |
| for (auto Load : I->second) { |
| if (isSuccOrder(Load, &SU)) |
| continue; |
| MachineInstr &LdMI = *Load->getInstr(); |
| // First, perform the cheaper check that compares the base register. |
| // If they are the same and the load offset is less than the store |
| // offset, then mark the dependence as loop carried potentially. |
| unsigned BaseReg1, BaseReg2; |
| int64_t Offset1, Offset2; |
| if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && |
| TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { |
| if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { |
| assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && |
| "What happened to the chain edge?"); |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| } |
| // Second, the more expensive check that uses alias analysis on the |
| // base registers. If they alias, and the load offset is less than |
| // the store offset, the mark the dependence as loop carried. |
| if (!AA) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); |
| MachineMemOperand *MMO2 = *MI.memoperands_begin(); |
| if (!MMO1->getValue() || !MMO2->getValue()) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| if (MMO1->getValue() == MMO2->getValue() && |
| MMO1->getOffset() <= MMO2->getOffset()) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| AliasResult AAResult = AA->alias( |
| MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, |
| MMO1->getAAInfo()), |
| MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, |
| MMO2->getAAInfo())); |
| |
| if (AAResult != NoAlias) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer |
| /// processes dependences for PHIs. This function adds true dependences |
| /// from a PHI to a use, and a loop carried dependence from the use to the |
| /// PHI. The loop carried dependence is represented as an anti dependence |
| /// edge. This function also removes chain dependences between unrelated |
| /// PHIs. |
| void SwingSchedulerDAG::updatePhiDependences() { |
| SmallVector<SDep, 4> RemoveDeps; |
| const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); |
| |
| // Iterate over each DAG node. |
| for (SUnit &I : SUnits) { |
| RemoveDeps.clear(); |
| // Set to true if the instruction has an operand defined by a Phi. |
| unsigned HasPhiUse = 0; |
| unsigned HasPhiDef = 0; |
| MachineInstr *MI = I.getInstr(); |
| // Iterate over each operand, and we process the definitions. |
| for (MachineInstr::mop_iterator MOI = MI->operands_begin(), |
| MOE = MI->operands_end(); |
| MOI != MOE; ++MOI) { |
| if (!MOI->isReg()) |
| continue; |
| unsigned Reg = MOI->getReg(); |
| if (MOI->isDef()) { |
| // If the register is used by a Phi, then create an anti dependence. |
| for (MachineRegisterInfo::use_instr_iterator |
| UI = MRI.use_instr_begin(Reg), |
| UE = MRI.use_instr_end(); |
| UI != UE; ++UI) { |
| MachineInstr *UseMI = &*UI; |
| SUnit *SU = getSUnit(UseMI); |
| if (SU != nullptr && UseMI->isPHI()) { |
| if (!MI->isPHI()) { |
| SDep Dep(SU, SDep::Anti, Reg); |
| Dep.setLatency(1); |
| I.addPred(Dep); |
| } else { |
| HasPhiDef = Reg; |
| // Add a chain edge to a dependent Phi that isn't an existing |
| // predecessor. |
| if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) |
| I.addPred(SDep(SU, SDep::Barrier)); |
| } |
| } |
| } |
| } else if (MOI->isUse()) { |
| // If the register is defined by a Phi, then create a true dependence. |
| MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); |
| if (DefMI == nullptr) |
| continue; |
| SUnit *SU = getSUnit(DefMI); |
| if (SU != nullptr && DefMI->isPHI()) { |
| if (!MI->isPHI()) { |
| SDep Dep(SU, SDep::Data, Reg); |
| Dep.setLatency(0); |
| ST.adjustSchedDependency(SU, &I, Dep); |
| I.addPred(Dep); |
| } else { |
| HasPhiUse = Reg; |
| // Add a chain edge to a dependent Phi that isn't an existing |
| // predecessor. |
| if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) |
| I.addPred(SDep(SU, SDep::Barrier)); |
| } |
| } |
| } |
| } |
| // Remove order dependences from an unrelated Phi. |
| if (!SwpPruneDeps) |
| continue; |
| for (auto &PI : I.Preds) { |
| MachineInstr *PMI = PI.getSUnit()->getInstr(); |
| if (PMI->isPHI() && PI.getKind() == SDep::Order) { |
| if (I.getInstr()->isPHI()) { |
| if (PMI->getOperand(0).getReg() == HasPhiUse) |
| continue; |
| if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) |
| continue; |
| } |
| RemoveDeps.push_back(PI); |
| } |
| } |
| for (int i = 0, e = RemoveDeps.size(); i != e; ++i) |
| I.removePred(RemoveDeps[i]); |
| } |
| } |
| |
| /// Iterate over each DAG node and see if we can change any dependences |
| /// in order to reduce the recurrence MII. |
| void SwingSchedulerDAG::changeDependences() { |
| // See if an instruction can use a value from the previous iteration. |
| // If so, we update the base and offset of the instruction and change |
| // the dependences. |
| for (SUnit &I : SUnits) { |
| unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; |
| int64_t NewOffset = 0; |
| if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, |
| NewOffset)) |
| continue; |
| |
| // Get the MI and SUnit for the instruction that defines the original base. |
| unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); |
| MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); |
| if (!DefMI) |
| continue; |
| SUnit *DefSU = getSUnit(DefMI); |
| if (!DefSU) |
| continue; |
| // Get the MI and SUnit for the instruction that defins the new base. |
| MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); |
| if (!LastMI) |
| continue; |
| SUnit *LastSU = getSUnit(LastMI); |
| if (!LastSU) |
| continue; |
| |
| if (Topo.IsReachable(&I, LastSU)) |
| continue; |
| |
| // Remove the dependence. The value now depends on a prior iteration. |
| SmallVector<SDep, 4> Deps; |
| for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; |
| ++P) |
| if (P->getSUnit() == DefSU) |
| Deps.push_back(*P); |
| for (int i = 0, e = Deps.size(); i != e; i++) { |
| Topo.RemovePred(&I, Deps[i].getSUnit()); |
| I.removePred(Deps[i]); |
| } |
| // Remove the chain dependence between the instructions. |
| Deps.clear(); |
| for (auto &P : LastSU->Preds) |
| if (P.getSUnit() == &I && P.getKind() == SDep::Order) |
| Deps.push_back(P); |
| for (int i = 0, e = Deps.size(); i != e; i++) { |
| Topo.RemovePred(LastSU, Deps[i].getSUnit()); |
| LastSU->removePred(Deps[i]); |
| } |
| |
| // Add a dependence between the new instruction and the instruction |
| // that defines the new base. |
| SDep Dep(&I, SDep::Anti, NewBase); |
| LastSU->addPred(Dep); |
| |
| // Remember the base and offset information so that we can update the |
| // instruction during code generation. |
| InstrChanges[&I] = std::make_pair(NewBase, NewOffset); |
| } |
| } |
| |
| namespace { |
| |
| // FuncUnitSorter - Comparison operator used to sort instructions by |
| // the number of functional unit choices. |
| struct FuncUnitSorter { |
| const InstrItineraryData *InstrItins; |
| DenseMap<unsigned, unsigned> Resources; |
| |
| FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} |
| |
| // Compute the number of functional unit alternatives needed |
| // at each stage, and take the minimum value. We prioritize the |
| // instructions by the least number of choices first. |
| unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { |
| unsigned schedClass = Inst->getDesc().getSchedClass(); |
| unsigned min = UINT_MAX; |
| for (const InstrStage *IS = InstrItins->beginStage(schedClass), |
| *IE = InstrItins->endStage(schedClass); |
| IS != IE; ++IS) { |
| unsigned funcUnits = IS->getUnits(); |
| unsigned numAlternatives = countPopulation(funcUnits); |
| if (numAlternatives < min) { |
| min = numAlternatives; |
| F = funcUnits; |
| } |
| } |
| return min; |
| } |
| |
| // Compute the critical resources needed by the instruction. This |
| // function records the functional units needed by instructions that |
| // must use only one functional unit. We use this as a tie breaker |
| // for computing the resource MII. The instrutions that require |
| // the same, highly used, functional unit have high priority. |
| void calcCriticalResources(MachineInstr &MI) { |
| unsigned SchedClass = MI.getDesc().getSchedClass(); |
| for (const InstrStage *IS = InstrItins->beginStage(SchedClass), |
| *IE = InstrItins->endStage(SchedClass); |
| IS != IE; ++IS) { |
| unsigned FuncUnits = IS->getUnits(); |
| if (countPopulation(FuncUnits) == 1) |
| Resources[FuncUnits]++; |
| } |
| } |
| |
| /// Return true if IS1 has less priority than IS2. |
| bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { |
| unsigned F1 = 0, F2 = 0; |
| unsigned MFUs1 = minFuncUnits(IS1, F1); |
| unsigned MFUs2 = minFuncUnits(IS2, F2); |
| if (MFUs1 == 1 && MFUs2 == 1) |
| return Resources.lookup(F1) < Resources.lookup(F2); |
| return MFUs1 > MFUs2; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Calculate the resource constrained minimum initiation interval for the |
| /// specified loop. We use the DFA to model the resources needed for |
| /// each instruction, and we ignore dependences. A different DFA is created |
| /// for each cycle that is required. When adding a new instruction, we attempt |
| /// to add it to each existing DFA, until a legal space is found. If the |
| /// instruction cannot be reserved in an existing DFA, we create a new one. |
| unsigned SwingSchedulerDAG::calculateResMII() { |
| SmallVector<DFAPacketizer *, 8> Resources; |
| MachineBasicBlock *MBB = Loop.getHeader(); |
| Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); |
| |
| // Sort the instructions by the number of available choices for scheduling, |
| // least to most. Use the number of critical resources as the tie breaker. |
| FuncUnitSorter FUS = |
| FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); |
| for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), |
| E = MBB->getFirstTerminator(); |
| I != E; ++I) |
| FUS.calcCriticalResources(*I); |
| PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> |
| FuncUnitOrder(FUS); |
| |
| for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), |
| E = MBB->getFirstTerminator(); |
| I != E; ++I) |
| FuncUnitOrder.push(&*I); |
| |
| while (!FuncUnitOrder.empty()) { |
| MachineInstr *MI = FuncUnitOrder.top(); |
| FuncUnitOrder.pop(); |
| if (TII->isZeroCost(MI->getOpcode())) |
| continue; |
| // Attempt to reserve the instruction in an existing DFA. At least one |
| // DFA is needed for each cycle. |
| unsigned NumCycles = getSUnit(MI)->Latency; |
| unsigned ReservedCycles = 0; |
| SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); |
| SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); |
| for (unsigned C = 0; C < NumCycles; ++C) |
| while (RI != RE) { |
| if ((*RI++)->canReserveResources(*MI)) { |
| ++ReservedCycles; |
| break; |
| } |
| } |
| // Start reserving resources using existing DFAs. |
| for (unsigned C = 0; C < ReservedCycles; ++C) { |
| --RI; |
| (*RI)->reserveResources(*MI); |
| } |
| // Add new DFAs, if needed, to reserve resources. |
| for (unsigned C = ReservedCycles; C < NumCycles; ++C) { |
| DFAPacketizer *NewResource = |
| TII->CreateTargetScheduleState(MF.getSubtarget()); |
| assert(NewResource->canReserveResources(*MI) && "Reserve error."); |
| NewResource->reserveResources(*MI); |
| Resources.push_back(NewResource); |
| } |
| } |
| int Resmii = Resources.size(); |
| // Delete the memory for each of the DFAs that were created earlier. |
| for (DFAPacketizer *RI : Resources) { |
| DFAPacketizer *D = RI; |
| delete D; |
| } |
| Resources.clear(); |
| return Resmii; |
| } |
| |
| /// Calculate the recurrence-constrainted minimum initiation interval. |
| /// Iterate over each circuit. Compute the delay(c) and distance(c) |
| /// for each circuit. The II needs to satisfy the inequality |
| /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest |
| /// II that satisfies the inequality, and the RecMII is the maximum |
| /// of those values. |
| unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { |
| unsigned RecMII = 0; |
| |
| for (NodeSet &Nodes : NodeSets) { |
| if (Nodes.empty()) |
| continue; |
| |
| unsigned Delay = Nodes.getLatency(); |
| unsigned Distance = 1; |
| |
| // ii = ceil(delay / distance) |
| unsigned CurMII = (Delay + Distance - 1) / Distance; |
| Nodes.setRecMII(CurMII); |
| if (CurMII > RecMII) |
| RecMII = CurMII; |
| } |
| |
| return RecMII; |
| } |
| |
| /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, |
| /// but we do this to find the circuits, and then change them back. |
| static void swapAntiDependences(std::vector<SUnit> &SUnits) { |
| SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); |
| IP != EP; ++IP) { |
| if (IP->getKind() != SDep::Anti) |
| continue; |
| DepsAdded.push_back(std::make_pair(SU, *IP)); |
| } |
| } |
| for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), |
| E = DepsAdded.end(); |
| I != E; ++I) { |
| // Remove this anti dependency and add one in the reverse direction. |
| SUnit *SU = I->first; |
| SDep &D = I->second; |
| SUnit *TargetSU = D.getSUnit(); |
| unsigned Reg = D.getReg(); |
| unsigned Lat = D.getLatency(); |
| SU->removePred(D); |
| SDep Dep(SU, SDep::Anti, Reg); |
| Dep.setLatency(Lat); |
| TargetSU->addPred(Dep); |
| } |
| } |
| |
| /// Create the adjacency structure of the nodes in the graph. |
| void SwingSchedulerDAG::Circuits::createAdjacencyStructure( |
| SwingSchedulerDAG *DAG) { |
| BitVector Added(SUnits.size()); |
| DenseMap<int, int> OutputDeps; |
| for (int i = 0, e = SUnits.size(); i != e; ++i) { |
| Added.reset(); |
| // Add any successor to the adjacency matrix and exclude duplicates. |
| for (auto &SI : SUnits[i].Succs) { |
| // Only create a back-edge on the first and last nodes of a dependence |
| // chain. This records any chains and adds them later. |
| if (SI.getKind() == SDep::Output) { |
| int N = SI.getSUnit()->NodeNum; |
| int BackEdge = i; |
| auto Dep = OutputDeps.find(BackEdge); |
| if (Dep != OutputDeps.end()) { |
| BackEdge = Dep->second; |
| OutputDeps.erase(Dep); |
| } |
| OutputDeps[N] = BackEdge; |
| } |
| // Do not process a boundary node and a back-edge is processed only |
| // if it goes to a Phi. |
| if (SI.getSUnit()->isBoundaryNode() || |
| (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) |
| continue; |
| int N = SI.getSUnit()->NodeNum; |
| if (!Added.test(N)) { |
| AdjK[i].push_back(N); |
| Added.set(N); |
| } |
| } |
| // A chain edge between a store and a load is treated as a back-edge in the |
| // adjacency matrix. |
| for (auto &PI : SUnits[i].Preds) { |
| if (!SUnits[i].getInstr()->mayStore() || |
| !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) |
| continue; |
| if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { |
| int N = PI.getSUnit()->NodeNum; |
| if (!Added.test(N)) { |
| AdjK[i].push_back(N); |
| Added.set(N); |
| } |
| } |
| } |
| } |
| // Add back-eges in the adjacency matrix for the output dependences. |
| for (auto &OD : OutputDeps) |
| if (!Added.test(OD.second)) { |
| AdjK[OD.first].push_back(OD.second); |
| Added.set(OD.second); |
| } |
| } |
| |
| /// Identify an elementary circuit in the dependence graph starting at the |
| /// specified node. |
| bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, |
| bool HasBackedge) { |
| SUnit *SV = &SUnits[V]; |
| bool F = false; |
| Stack.insert(SV); |
| Blocked.set(V); |
| |
| for (auto W : AdjK[V]) { |
| if (NumPaths > MaxPaths) |
| break; |
| if (W < S) |
| continue; |
| if (W == S) { |
| if (!HasBackedge) |
| NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); |
| F = true; |
| ++NumPaths; |
| break; |
| } else if (!Blocked.test(W)) { |
| if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) |
| F = true; |
| } |
| } |
| |
| if (F) |
| unblock(V); |
| else { |
| for (auto W : AdjK[V]) { |
| if (W < S) |
| continue; |
| if (B[W].count(SV) == 0) |
| B[W].insert(SV); |
| } |
| } |
| Stack.pop_back(); |
| return F; |
| } |
| |
| /// Unblock a node in the circuit finding algorithm. |
| void SwingSchedulerDAG::Circuits::unblock(int U) { |
| Blocked.reset(U); |
| SmallPtrSet<SUnit *, 4> &BU = B[U]; |
| while (!BU.empty()) { |
| SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); |
| assert(SI != BU.end() && "Invalid B set."); |
| SUnit *W = *SI; |
| BU.erase(W); |
| if (Blocked.test(W->NodeNum)) |
| unblock(W->NodeNum); |
| } |
| } |
| |
| /// Identify all the elementary circuits in the dependence graph using |
| /// Johnson's circuit algorithm. |
| void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { |
| // Swap all the anti dependences in the DAG. That means it is no longer a DAG, |
| // but we do this to find the circuits, and then change them back. |
| swapAntiDependences(SUnits); |
| |
| Circuits Cir(SUnits); |
| // Create the adjacency structure. |
| Cir.createAdjacencyStructure(this); |
| for (int i = 0, e = SUnits.size(); i != e; ++i) { |
| Cir.reset(); |
| Cir.circuit(i, i, NodeSets); |
| } |
| |
| // Change the dependences back so that we've created a DAG again. |
| swapAntiDependences(SUnits); |
| } |
| |
| /// Return true for DAG nodes that we ignore when computing the cost functions. |
| /// We ignore the back-edge recurrence in order to avoid unbounded recursion |
| /// in the calculation of the ASAP, ALAP, etc functions. |
| static bool ignoreDependence(const SDep &D, bool isPred) { |
| if (D.isArtificial()) |
| return true; |
| return D.getKind() == SDep::Anti && isPred; |
| } |
| |
| /// Compute several functions need to order the nodes for scheduling. |
| /// ASAP - Earliest time to schedule a node. |
| /// ALAP - Latest time to schedule a node. |
| /// MOV - Mobility function, difference between ALAP and ASAP. |
| /// D - Depth of each node. |
| /// H - Height of each node. |
| void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { |
| ScheduleInfo.resize(SUnits.size()); |
| |
| LLVM_DEBUG({ |
| for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), |
| E = Topo.end(); |
| I != E; ++I) { |
| SUnit *SU = &SUnits[*I]; |
| SU->dump(this); |
| } |
| }); |
| |
| int maxASAP = 0; |
| // Compute ASAP and ZeroLatencyDepth. |
| for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), |
| E = Topo.end(); |
| I != E; ++I) { |
| int asap = 0; |
| int zeroLatencyDepth = 0; |
| SUnit *SU = &SUnits[*I]; |
| for (SUnit::const_pred_iterator IP = SU->Preds.begin(), |
| EP = SU->Preds.end(); |
| IP != EP; ++IP) { |
| SUnit *pred = IP->getSUnit(); |
| if (IP->getLatency() == 0) |
| zeroLatencyDepth = |
| std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); |
| if (ignoreDependence(*IP, true)) |
| continue; |
| asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - |
| getDistance(pred, SU, *IP) * MII)); |
| } |
| maxASAP = std::max(maxASAP, asap); |
| ScheduleInfo[*I].ASAP = asap; |
| ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; |
| } |
| |
| // Compute ALAP, ZeroLatencyHeight, and MOV. |
| for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), |
| E = Topo.rend(); |
| I != E; ++I) { |
| int alap = maxASAP; |
| int zeroLatencyHeight = 0; |
| SUnit *SU = &SUnits[*I]; |
| for (SUnit::const_succ_iterator IS = SU->Succs.begin(), |
| ES = SU->Succs.end(); |
| IS != ES; ++IS) { |
| SUnit *succ = IS->getSUnit(); |
| if (IS->getLatency() == 0) |
| zeroLatencyHeight = |
| std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); |
| if (ignoreDependence(*IS, true)) |
| continue; |
| alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + |
| getDistance(SU, succ, *IS) * MII)); |
| } |
| |
| ScheduleInfo[*I].ALAP = alap; |
| ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; |
| } |
| |
| // After computing the node functions, compute the summary for each node set. |
| for (NodeSet &I : NodeSets) |
| I.computeNodeSetInfo(this); |
| |
| LLVM_DEBUG({ |
| for (unsigned i = 0; i < SUnits.size(); i++) { |
| dbgs() << "\tNode " << i << ":\n"; |
| dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; |
| dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; |
| dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; |
| dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; |
| dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; |
| dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; |
| dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; |
| } |
| }); |
| } |
| |
| /// Compute the Pred_L(O) set, as defined in the paper. The set is defined |
| /// as the predecessors of the elements of NodeOrder that are not also in |
| /// NodeOrder. |
| static bool pred_L(SetVector<SUnit *> &NodeOrder, |
| SmallSetVector<SUnit *, 8> &Preds, |
| const NodeSet *S = nullptr) { |
| Preds.clear(); |
| for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); |
| I != E; ++I) { |
| for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); |
| PI != PE; ++PI) { |
| if (S && S->count(PI->getSUnit()) == 0) |
| continue; |
| if (ignoreDependence(*PI, true)) |
| continue; |
| if (NodeOrder.count(PI->getSUnit()) == 0) |
| Preds.insert(PI->getSUnit()); |
| } |
| // Back-edges are predecessors with an anti-dependence. |
| for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), |
| ES = (*I)->Succs.end(); |
| IS != ES; ++IS) { |
| if (IS->getKind() != SDep::Anti) |
| continue; |
| if (S && S->count(IS->getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(IS->getSUnit()) == 0) |
| Preds.insert(IS->getSUnit()); |
| } |
| } |
| return !Preds.empty(); |
| } |
| |
| /// Compute the Succ_L(O) set, as defined in the paper. The set is defined |
| /// as the successors of the elements of NodeOrder that are not also in |
| /// NodeOrder. |
| static bool succ_L(SetVector<SUnit *> &NodeOrder, |
| SmallSetVector<SUnit *, 8> &Succs, |
| const NodeSet *S = nullptr) { |
| Succs.clear(); |
| for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); |
| I != E; ++I) { |
| for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); |
| SI != SE; ++SI) { |
| if (S && S->count(SI->getSUnit()) == 0) |
| continue; |
| if (ignoreDependence(*SI, false)) |
| continue; |
| if (NodeOrder.count(SI->getSUnit()) == 0) |
| Succs.insert(SI->getSUnit()); |
| } |
| for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), |
| PE = (*I)->Preds.end(); |
| PI != PE; ++PI) { |
| if (PI->getKind() != SDep::Anti) |
| continue; |
| if (S && S->count(PI->getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(PI->getSUnit()) == 0) |
| Succs.insert(PI->getSUnit()); |
| } |
| } |
| return !Succs.empty(); |
| } |
| |
| /// Return true if there is a path from the specified node to any of the nodes |
| /// in DestNodes. Keep track and return the nodes in any path. |
| static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, |
| SetVector<SUnit *> &DestNodes, |
| SetVector<SUnit *> &Exclude, |
| SmallPtrSet<SUnit *, 8> &Visited) { |
| if (Cur->isBoundaryNode()) |
| return false; |
| if (Exclude.count(Cur) != 0) |
| return false; |
| if (DestNodes.count(Cur) != 0) |
| return true; |
| if (!Visited.insert(Cur).second) |
| return Path.count(Cur) != 0; |
| bool FoundPath = false; |
| for (auto &SI : Cur->Succs) |
| FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); |
| for (auto &PI : Cur->Preds) |
| if (PI.getKind() == SDep::Anti) |
| FoundPath |= |
| computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); |
| if (FoundPath) |
| Path.insert(Cur); |
| return FoundPath; |
| } |
| |
| /// Return true if Set1 is a subset of Set2. |
| template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { |
| for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) |
| if (Set2.count(*I) == 0) |
| return false; |
| return true; |
| } |
| |
| /// Compute the live-out registers for the instructions in a node-set. |
| /// The live-out registers are those that are defined in the node-set, |
| /// but not used. Except for use operands of Phis. |
| static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, |
| NodeSet &NS) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<RegisterMaskPair, 8> LiveOutRegs; |
| SmallSet<unsigned, 4> Uses; |
| for (SUnit *SU : NS) { |
| const MachineInstr *MI = SU->getInstr(); |
| if (MI->isPHI()) |
| continue; |
| for (const MachineOperand &MO : MI->operands()) |
| if (MO.isReg() && MO.isUse()) { |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| Uses.insert(Reg); |
| else if (MRI.isAllocatable(Reg)) |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) |
| Uses.insert(*Units); |
| } |
| } |
| for (SUnit *SU : NS) |
| for (const MachineOperand &MO : SU->getInstr()->operands()) |
| if (MO.isReg() && MO.isDef() && !MO.isDead()) { |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| if (!Uses.count(Reg)) |
| LiveOutRegs.push_back(RegisterMaskPair(Reg, |
| LaneBitmask::getNone())); |
| } else if (MRI.isAllocatable(Reg)) { |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) |
| if (!Uses.count(*Units)) |
| LiveOutRegs.push_back(RegisterMaskPair(*Units, |
| LaneBitmask::getNone())); |
| } |
| } |
| RPTracker.addLiveRegs(LiveOutRegs); |
| } |
| |
| /// A heuristic to filter nodes in recurrent node-sets if the register |
| /// pressure of a set is too high. |
| void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { |
| for (auto &NS : NodeSets) { |
| // Skip small node-sets since they won't cause register pressure problems. |
| if (NS.size() <= 2) |
| continue; |
| IntervalPressure RecRegPressure; |
| RegPressureTracker RecRPTracker(RecRegPressure); |
| RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); |
| computeLiveOuts(MF, RecRPTracker, NS); |
| RecRPTracker.closeBottom(); |
| |
| std::vector<SUnit *> SUnits(NS.begin(), NS.end()); |
| llvm::sort(SUnits.begin(), SUnits.end(), |
| [](const SUnit *A, const SUnit *B) { |
| return A->NodeNum > B->NodeNum; |
| }); |
| |
| for (auto &SU : SUnits) { |
| // Since we're computing the register pressure for a subset of the |
| // instructions in a block, we need to set the tracker for each |
| // instruction in the node-set. The tracker is set to the instruction |
| // just after the one we're interested in. |
| MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); |
| RecRPTracker.setPos(std::next(CurInstI)); |
| |
| RegPressureDelta RPDelta; |
| ArrayRef<PressureChange> CriticalPSets; |
| RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, |
| CriticalPSets, |
| RecRegPressure.MaxSetPressure); |
| if (RPDelta.Excess.isValid()) { |
| LLVM_DEBUG( |
| dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " |
| << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) |
| << ":" << RPDelta.Excess.getUnitInc()); |
| NS.setExceedPressure(SU); |
| break; |
| } |
| RecRPTracker.recede(); |
| } |
| } |
| } |
| |
| /// A heuristic to colocate node sets that have the same set of |
| /// successors. |
| void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { |
| unsigned Colocate = 0; |
| for (int i = 0, e = NodeSets.size(); i < e; ++i) { |
| NodeSet &N1 = NodeSets[i]; |
| SmallSetVector<SUnit *, 8> S1; |
| if (N1.empty() || !succ_L(N1, S1)) |
| continue; |
| for (int j = i + 1; j < e; ++j) { |
| NodeSet &N2 = NodeSets[j]; |
| if (N1.compareRecMII(N2) != 0) |
| continue; |
| SmallSetVector<SUnit *, 8> S2; |
| if (N2.empty() || !succ_L(N2, S2)) |
| continue; |
| if (isSubset(S1, S2) && S1.size() == S2.size()) { |
| N1.setColocate(++Colocate); |
| N2.setColocate(Colocate); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Check if the existing node-sets are profitable. If not, then ignore the |
| /// recurrent node-sets, and attempt to schedule all nodes together. This is |
| /// a heuristic. If the MII is large and all the recurrent node-sets are small, |
| /// then it's best to try to schedule all instructions together instead of |
| /// starting with the recurrent node-sets. |
| void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { |
| // Look for loops with a large MII. |
| if (MII < 17) |
| return; |
| // Check if the node-set contains only a simple add recurrence. |
| for (auto &NS : NodeSets) { |
| if (NS.getRecMII() > 2) |
| return; |
| if (NS.getMaxDepth() > MII) |
| return; |
| } |
| NodeSets.clear(); |
| LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); |
| return; |
| } |
| |
| /// Add the nodes that do not belong to a recurrence set into groups |
| /// based upon connected componenets. |
| void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { |
| SetVector<SUnit *> NodesAdded; |
| SmallPtrSet<SUnit *, 8> Visited; |
| // Add the nodes that are on a path between the previous node sets and |
| // the current node set. |
| for (NodeSet &I : NodeSets) { |
| SmallSetVector<SUnit *, 8> N; |
| // Add the nodes from the current node set to the previous node set. |
| if (succ_L(I, N)) { |
| SetVector<SUnit *> Path; |
| for (SUnit *NI : N) { |
| Visited.clear(); |
| computePath(NI, Path, NodesAdded, I, Visited); |
| } |
| if (!Path.empty()) |
| I.insert(Path.begin(), Path.end()); |
| } |
| // Add the nodes from the previous node set to the current node set. |
| N.clear(); |
| if (succ_L(NodesAdded, N)) { |
| SetVector<SUnit *> Path; |
| for (SUnit *NI : N) { |
| Visited.clear(); |
| computePath(NI, Path, I, NodesAdded, Visited); |
| } |
| if (!Path.empty()) |
| I.insert(Path.begin(), Path.end()); |
| } |
| NodesAdded.insert(I.begin(), I.end()); |
| } |
| |
| // Create a new node set with the connected nodes of any successor of a node |
| // in a recurrent set. |
| NodeSet NewSet; |
| SmallSetVector<SUnit *, 8> N; |
| if (succ_L(NodesAdded, N)) |
| for (SUnit *I : N) |
| addConnectedNodes(I, NewSet, NodesAdded); |
| if (!NewSet.empty()) |
| NodeSets.push_back(NewSet); |
| |
| // Create a new node set with the connected nodes of any predecessor of a node |
| // in a recurrent set. |
| NewSet.clear(); |
| if (pred_L(NodesAdded, N)) |
| for (SUnit *I : N) |
| addConnectedNodes(I, NewSet, NodesAdded); |
| if (!NewSet.empty()) |
| NodeSets.push_back(NewSet); |
| |
| // Create new nodes sets with the connected nodes any remaining node that |
| // has no predecessor. |
| for (unsigned i = 0; i < SUnits.size(); ++i) { |
| SUnit *SU = &SUnits[i]; |
| if (NodesAdded.count(SU) == 0) { |
| NewSet.clear(); |
| addConnectedNodes(SU, NewSet, NodesAdded); |
| if (!NewSet.empty()) |
| NodeSets.push_back(NewSet); |
| } |
| } |
| } |
| |
| /// Add the node to the set, and add all is its connected nodes to the set. |
| void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
| SetVector<SUnit *> &NodesAdded) { |
| NewSet.insert(SU); |
| NodesAdded.insert(SU); |
| for (auto &SI : SU->Succs) { |
| SUnit *Successor = SI.getSUnit(); |
| if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) |
| addConnectedNodes(Successor, NewSet, NodesAdded); |
| } |
| for (auto &PI : SU->Preds) { |
| SUnit *Predecessor = PI.getSUnit(); |
| if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) |
| addConnectedNodes(Predecessor, NewSet, NodesAdded); |
| } |
| } |
| |
| /// Return true if Set1 contains elements in Set2. The elements in common |
| /// are returned in a different container. |
| static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, |
| SmallSetVector<SUnit *, 8> &Result) { |
| Result.clear(); |
| for (unsigned i = 0, e = Set1.size(); i != e; ++i) { |
| SUnit *SU = Set1[i]; |
| if (Set2.count(SU) != 0) |
| Result.insert(SU); |
| } |
| return !Result.empty(); |
| } |
| |
| /// Merge the recurrence node sets that have the same initial node. |
| void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { |
| for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; |
| ++I) { |
| NodeSet &NI = *I; |
| for (NodeSetType::iterator J = I + 1; J != E;) { |
| NodeSet &NJ = *J; |
| if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { |
| if (NJ.compareRecMII(NI) > 0) |
| NI.setRecMII(NJ.getRecMII()); |
| for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; |
| ++NII) |
| I->insert(*NII); |
| NodeSets.erase(J); |
| E = NodeSets.end(); |
| } else { |
| ++J; |
| } |
| } |
| } |
| } |
| |
| /// Remove nodes that have been scheduled in previous NodeSets. |
| void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { |
| for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; |
| ++I) |
| for (NodeSetType::iterator J = I + 1; J != E;) { |
| J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); |
| |
| if (J->empty()) { |
| NodeSets.erase(J); |
| E = NodeSets.end(); |
| } else { |
| ++J; |
| } |
| } |
| } |
| |
| /// Compute an ordered list of the dependence graph nodes, which |
| /// indicates the order that the nodes will be scheduled. This is a |
| /// two-level algorithm. First, a partial order is created, which |
| /// consists of a list of sets ordered from highest to lowest priority. |
| void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { |
| SmallSetVector<SUnit *, 8> R; |
| NodeOrder.clear(); |
| |
| for (auto &Nodes : NodeSets) { |
| LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); |
| OrderKind Order; |
| SmallSetVector<SUnit *, 8> N; |
| if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { |
| R.insert(N.begin(), N.end()); |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << " Bottom up (preds) "); |
| } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { |
| R.insert(N.begin(), N.end()); |
| Order = TopDown; |
| LLVM_DEBUG(dbgs() << " Top down (succs) "); |
| } else if (isIntersect(N, Nodes, R)) { |
| // If some of the successors are in the existing node-set, then use the |
| // top-down ordering. |
| Order = TopDown; |
| LLVM_DEBUG(dbgs() << " Top down (intersect) "); |
| } else if (NodeSets.size() == 1) { |
| for (auto &N : Nodes) |
| if (N->Succs.size() == 0) |
| R.insert(N); |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << " Bottom up (all) "); |
| } else { |
| // Find the node with the highest ASAP. |
| SUnit *maxASAP = nullptr; |
| for (SUnit *SU : Nodes) { |
| if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || |
| (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) |
| maxASAP = SU; |
| } |
| R.insert(maxASAP); |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << " Bottom up (default) "); |
| } |
| |
| while (!R.empty()) { |
| if (Order == TopDown) { |
| // Choose the node with the maximum height. If more than one, choose |
| // the node wiTH the maximum ZeroLatencyHeight. If still more than one, |
| // choose the node with the lowest MOV. |
| while (!R.empty()) { |
| SUnit *maxHeight = nullptr; |
| for (SUnit *I : R) { |
| if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) |
| maxHeight = I; |
| else if (getHeight(I) == getHeight(maxHeight) && |
| getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) |
| maxHeight = I; |
| else if (getHeight(I) == getHeight(maxHeight) && |
| getZeroLatencyHeight(I) == |
| getZeroLatencyHeight(maxHeight) && |
| getMOV(I) < getMOV(maxHeight)) |
| maxHeight = I; |
| } |
| NodeOrder.insert(maxHeight); |
| LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); |
| R.remove(maxHeight); |
| for (const auto &I : maxHeight->Succs) { |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| if (ignoreDependence(I, false)) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| // Back-edges are predecessors with an anti-dependence. |
| for (const auto &I : maxHeight->Preds) { |
| if (I.getKind() != SDep::Anti) |
| continue; |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| } |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); |
| SmallSetVector<SUnit *, 8> N; |
| if (pred_L(NodeOrder, N, &Nodes)) |
| R.insert(N.begin(), N.end()); |
| } else { |
| // Choose the node with the maximum depth. If more than one, choose |
| // the node with the maximum ZeroLatencyDepth. If still more than one, |
| // choose the node with the lowest MOV. |
| while (!R.empty()) { |
| SUnit *maxDepth = nullptr; |
| for (SUnit *I : R) { |
| if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) |
| maxDepth = I; |
| else if (getDepth(I) == getDepth(maxDepth) && |
| getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) |
| maxDepth = I; |
| else if (getDepth(I) == getDepth(maxDepth) && |
| getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && |
| getMOV(I) < getMOV(maxDepth)) |
| maxDepth = I; |
| } |
| NodeOrder.insert(maxDepth); |
| LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); |
| R.remove(maxDepth); |
| if (Nodes.isExceedSU(maxDepth)) { |
| Order = TopDown; |
| R.clear(); |
| R.insert(Nodes.getNode(0)); |
| break; |
| } |
| for (const auto &I : maxDepth->Preds) { |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| // Back-edges are predecessors with an anti-dependence. |
| for (const auto &I : maxDepth->Succs) { |
| if (I.getKind() != SDep::Anti) |
| continue; |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| } |
| Order = TopDown; |
| LLVM_DEBUG(dbgs() << "\n Switching order to top down "); |
| SmallSetVector<SUnit *, 8> N; |
| if (succ_L(NodeOrder, N, &Nodes)) |
| R.insert(N.begin(), N.end()); |
| } |
| } |
| LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Node order: "; |
| for (SUnit *I : NodeOrder) |
| dbgs() << " " << I->NodeNum << " "; |
| dbgs() << "\n"; |
| }); |
| } |
| |
| /// Process the nodes in the computed order and create the pipelined schedule |
| /// of the instructions, if possible. Return true if a schedule is found. |
| bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { |
| if (NodeOrder.empty()) |
| return false; |
| |
| bool scheduleFound = false; |
| // Keep increasing II until a valid schedule is found. |
| for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { |
| Schedule.reset(); |
| Schedule.setInitiationInterval(II); |
| LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); |
| |
| SetVector<SUnit *>::iterator NI = NodeOrder.begin(); |
| SetVector<SUnit *>::iterator NE = NodeOrder.end(); |
| do { |
| SUnit *SU = *NI; |
| |
| // Compute the schedule time for the instruction, which is based |
| // upon the scheduled time for any predecessors/successors. |
| int EarlyStart = INT_MIN; |
| int LateStart = INT_MAX; |
| // These values are set when the size of the schedule window is limited |
| // due to chain dependences. |
| int SchedEnd = INT_MAX; |
| int SchedStart = INT_MIN; |
| Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, |
| II, this); |
| LLVM_DEBUG({ |
| dbgs() << "Inst (" << SU->NodeNum << ") "; |
| SU->getInstr()->dump(); |
| dbgs() << "\n"; |
| }); |
| LLVM_DEBUG({ |
| dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart |
| << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; |
| }); |
| |
| if (EarlyStart > LateStart || SchedEnd < EarlyStart || |
| SchedStart > LateStart) |
| scheduleFound = false; |
| else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { |
| SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); |
| scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); |
| } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { |
| SchedStart = std::max(SchedStart, LateStart - (int)II + 1); |
| scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); |
| } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { |
| SchedEnd = |
| std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); |
| // When scheduling a Phi it is better to start at the late cycle and go |
| // backwards. The default order may insert the Phi too far away from |
| // its first dependence. |
| if (SU->getInstr()->isPHI()) |
| scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); |
| else |
| scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); |
| } else { |
| int FirstCycle = Schedule.getFirstCycle(); |
| scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), |
| FirstCycle + getASAP(SU) + II - 1, II); |
| } |
| // Even if we find a schedule, make sure the schedule doesn't exceed the |
| // allowable number of stages. We keep trying if this happens. |
| if (scheduleFound) |
| if (SwpMaxStages > -1 && |
| Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) |
| scheduleFound = false; |
| |
| LLVM_DEBUG({ |
| if (!scheduleFound) |
| dbgs() << "\tCan't schedule\n"; |
| }); |
| } while (++NI != NE && scheduleFound); |
| |
| // If a schedule is found, check if it is a valid schedule too. |
| if (scheduleFound) |
| scheduleFound = Schedule.isValidSchedule(this); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); |
| |
| if (scheduleFound) |
| Schedule.finalizeSchedule(this); |
| else |
| Schedule.reset(); |
| |
| return scheduleFound && Schedule.getMaxStageCount() > 0; |
| } |
| |
| /// Given a schedule for the loop, generate a new version of the loop, |
| /// and replace the old version. This function generates a prolog |
| /// that contains the initial iterations in the pipeline, and kernel |
| /// loop, and the epilogue that contains the code for the final |
| /// iterations. |
| void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { |
| // Create a new basic block for the kernel and add it to the CFG. |
| MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); |
| |
| unsigned MaxStageCount = Schedule.getMaxStageCount(); |
| |
| // Remember the registers that are used in different stages. The index is |
| // the iteration, or stage, that the instruction is scheduled in. This is |
| // a map between register names in the original block and the names created |
| // in each stage of the pipelined loop. |
| ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; |
| InstrMapTy InstrMap; |
| |
| SmallVector<MachineBasicBlock *, 4> PrologBBs; |
| // Generate the prolog instructions that set up the pipeline. |
| generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); |
| MF.insert(BB->getIterator(), KernelBB); |
| |
| // Rearrange the instructions to generate the new, pipelined loop, |
| // and update register names as needed. |
| for (int Cycle = Schedule.getFirstCycle(), |
| LastCycle = Schedule.getFinalCycle(); |
| Cycle <= LastCycle; ++Cycle) { |
| std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); |
| // This inner loop schedules each instruction in the cycle. |
| for (SUnit *CI : CycleInstrs) { |
| if (CI->getInstr()->isPHI()) |
| continue; |
| unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); |
| MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); |
| updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); |
| KernelBB->push_back(NewMI); |
| InstrMap[NewMI] = CI->getInstr(); |
| } |
| } |
| |
| // Copy any terminator instructions to the new kernel, and update |
| // names as needed. |
| for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), |
| E = BB->instr_end(); |
| I != E; ++I) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(&*I); |
| updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); |
| KernelBB->push_back(NewMI); |
| InstrMap[NewMI] = &*I; |
| } |
| |
| KernelBB->transferSuccessors(BB); |
| KernelBB->replaceSuccessor(BB, KernelBB); |
| |
| generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, |
| VRMap, InstrMap, MaxStageCount, MaxStageCount, false); |
| generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, |
| InstrMap, MaxStageCount, MaxStageCount, false); |
| |
| LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); |
| |
| SmallVector<MachineBasicBlock *, 4> EpilogBBs; |
| // Generate the epilog instructions to complete the pipeline. |
| generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, |
| PrologBBs); |
| |
| // We need this step because the register allocation doesn't handle some |
| // situations well, so we insert copies to help out. |
| splitLifetimes(KernelBB, EpilogBBs, Schedule); |
| |
| // Remove dead instructions due to loop induction variables. |
| removeDeadInstructions(KernelBB, EpilogBBs); |
| |
| // Add branches between prolog and epilog blocks. |
| addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); |
| |
| // Remove the original loop since it's no longer referenced. |
| for (auto &I : *BB) |
| LIS.RemoveMachineInstrFromMaps(I); |
| BB->clear(); |
| BB->eraseFromParent(); |
| |
| delete[] VRMap; |
| } |
| |
| /// Generate the pipeline prolog code. |
| void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, |
| ValueMapTy *VRMap, |
| MBBVectorTy &PrologBBs) { |
| MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); |
| assert(PreheaderBB != nullptr && |
| "Need to add code to handle loops w/o preheader"); |
| MachineBasicBlock *PredBB = PreheaderBB; |
| InstrMapTy InstrMap; |
| |
| // Generate a basic block for each stage, not including the last stage, |
| // which will be generated in the kernel. Each basic block may contain |
| // instructions from multiple stages/iterations. |
| for (unsigned i = 0; i < LastStage; ++i) { |
| // Create and insert the prolog basic block prior to the original loop |
| // basic block. The original loop is removed later. |
| MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); |
| PrologBBs.push_back(NewBB); |
| MF.insert(BB->getIterator(), NewBB); |
| NewBB->transferSuccessors(PredBB); |
| PredBB->addSuccessor(NewBB); |
| PredBB = NewBB; |
| |
| // Generate instructions for each appropriate stage. Process instructions |
| // in original program order. |
| for (int StageNum = i; StageNum >= 0; --StageNum) { |
| for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| BBE = BB->getFirstTerminator(); |
| BBI != BBE; ++BBI) { |
| if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { |
| if (BBI->isPHI()) |
| continue; |
| MachineInstr *NewMI = |
| cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); |
| updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, |
| VRMap); |
| NewBB->push_back(NewMI); |
| InstrMap[NewMI] = &*BBI; |
| } |
| } |
| } |
| rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); |
| LLVM_DEBUG({ |
| dbgs() << "prolog:\n"; |
| NewBB->dump(); |
| }); |
| } |
| |
| PredBB->replaceSuccessor(BB, KernelBB); |
| |
| // Check if we need to remove the branch from the preheader to the original |
| // loop, and replace it with a branch to the new loop. |
| unsigned numBranches = TII->removeBranch(*PreheaderBB); |
| if (numBranches) { |
| SmallVector<MachineOperand, 0> Cond; |
| TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); |
| } |
| } |
| |
| /// Generate the pipeline epilog code. The epilog code finishes the iterations |
| /// that were started in either the prolog or the kernel. We create a basic |
| /// block for each stage that needs to complete. |
| void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, |
| ValueMapTy *VRMap, |
| MBBVectorTy &EpilogBBs, |
| MBBVectorTy &PrologBBs) { |
| // We need to change the branch from the kernel to the first epilog block, so |
| // this call to analyze branch uses the kernel rather than the original BB. |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); |
| assert(!checkBranch && "generateEpilog must be able to analyze the branch"); |
| if (checkBranch) |
| return; |
| |
| MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); |
| if (*LoopExitI == KernelBB) |
| ++LoopExitI; |
| assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); |
| MachineBasicBlock *LoopExitBB = *LoopExitI; |
| |
| MachineBasicBlock *PredBB = KernelBB; |
| MachineBasicBlock *EpilogStart = LoopExitBB; |
| InstrMapTy InstrMap; |
| |
| // Generate a basic block for each stage, not including the last stage, |
| // which was generated for the kernel. Each basic block may contain |
| // instructions from multiple stages/iterations. |
| int EpilogStage = LastStage + 1; |
| for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { |
| MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); |
| EpilogBBs.push_back(NewBB); |
| MF.insert(BB->getIterator(), NewBB); |
| |
| PredBB->replaceSuccessor(LoopExitBB, NewBB); |
| NewBB->addSuccessor(LoopExitBB); |
| |
| if (EpilogStart == LoopExitBB) |
| EpilogStart = NewBB; |
| |
| // Add instructions to the epilog depending on the current block. |
| // Process instructions in original program order. |
| for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { |
| for (auto &BBI : *BB) { |
| if (BBI.isPHI()) |
| continue; |
| MachineInstr *In = &BBI; |
| if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { |
| // Instructions with memoperands in the epilog are updated with |
| // conservative values. |
| MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); |
| updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); |
| NewBB->push_back(NewMI); |
| InstrMap[NewMI] = In; |
| } |
| } |
| } |
| generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, |
| VRMap, InstrMap, LastStage, EpilogStage, i == 1); |
| generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, |
| InstrMap, LastStage, EpilogStage, i == 1); |
| PredBB = NewBB; |
| |
| LLVM_DEBUG({ |
| dbgs() << "epilog:\n"; |
| NewBB->dump(); |
| }); |
| } |
| |
| // Fix any Phi nodes in the loop exit block. |
| for (MachineInstr &MI : *LoopExitBB) { |
| if (!MI.isPHI()) |
| break; |
| for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (MO.getMBB() == BB) |
| MO.setMBB(PredBB); |
| } |
| } |
| |
| // Create a branch to the new epilog from the kernel. |
| // Remove the original branch and add a new branch to the epilog. |
| TII->removeBranch(*KernelBB); |
| TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); |
| // Add a branch to the loop exit. |
| if (EpilogBBs.size() > 0) { |
| MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); |
| SmallVector<MachineOperand, 4> Cond1; |
| TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); |
| } |
| } |
| |
| /// Replace all uses of FromReg that appear outside the specified |
| /// basic block with ToReg. |
| static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, |
| MachineBasicBlock *MBB, |
| MachineRegisterInfo &MRI, |
| LiveIntervals &LIS) { |
| for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), |
| E = MRI.use_end(); |
| I != E;) { |
| MachineOperand &O = *I; |
| ++I; |
| if (O.getParent()->getParent() != MBB) |
| O.setReg(ToReg); |
| } |
| if (!LIS.hasInterval(ToReg)) |
| LIS.createEmptyInterval(ToReg); |
| } |
| |
| /// Return true if the register has a use that occurs outside the |
| /// specified loop. |
| static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, |
| MachineRegisterInfo &MRI) { |
| for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), |
| E = MRI.use_end(); |
| I != E; ++I) |
| if (I->getParent()->getParent() != BB) |
| return true; |
| return false; |
| } |
| |
| /// Generate Phis for the specific block in the generated pipelined code. |
| /// This function looks at the Phis from the original code to guide the |
| /// creation of new Phis. |
| void SwingSchedulerDAG::generateExistingPhis( |
| MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, |
| bool IsLast) { |
| // Compute the stage number for the initial value of the Phi, which |
| // comes from the prolog. The prolog to use depends on to which kernel/ |
| // epilog that we're adding the Phi. |
| unsigned PrologStage = 0; |
| unsigned PrevStage = 0; |
| bool InKernel = (LastStageNum == CurStageNum); |
| if (InKernel) { |
| PrologStage = LastStageNum - 1; |
| PrevStage = CurStageNum; |
| } else { |
| PrologStage = LastStageNum - (CurStageNum - LastStageNum); |
| PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; |
| } |
| |
| for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| BBE = BB->getFirstNonPHI(); |
| BBI != BBE; ++BBI) { |
| unsigned Def = BBI->getOperand(0).getReg(); |
| |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(*BBI, BB, InitVal, LoopVal); |
| |
| unsigned PhiOp1 = 0; |
| // The Phi value from the loop body typically is defined in the loop, but |
| // not always. So, we need to check if the value is defined in the loop. |
| unsigned PhiOp2 = LoopVal; |
| if (VRMap[LastStageNum].count(LoopVal)) |
| PhiOp2 = VRMap[LastStageNum][LoopVal]; |
| |
| int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); |
| int LoopValStage = |
| Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); |
| unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); |
| if (NumStages == 0) { |
| // We don't need to generate a Phi anymore, but we need to rename any uses |
| // of the Phi value. |
| unsigned NewReg = VRMap[PrevStage][LoopVal]; |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, |
| Def, InitVal, NewReg); |
| if (VRMap[CurStageNum].count(LoopVal)) |
| VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; |
| } |
| // Adjust the number of Phis needed depending on the number of prologs left, |
| // and the distance from where the Phi is first scheduled. The number of |
| // Phis cannot exceed the number of prolog stages. Each stage can |
| // potentially define two values. |
| unsigned MaxPhis = PrologStage + 2; |
| if (!InKernel && (int)PrologStage <= LoopValStage) |
| MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); |
| unsigned NumPhis = std::min(NumStages, MaxPhis); |
| |
| unsigned NewReg = 0; |
| unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; |
| // In the epilog, we may need to look back one stage to get the correct |
| // Phi name because the epilog and prolog blocks execute the same stage. |
| // The correct name is from the previous block only when the Phi has |
| // been completely scheduled prior to the epilog, and Phi value is not |
| // needed in multiple stages. |
| int StageDiff = 0; |
| if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && |
| NumPhis == 1) |
| StageDiff = 1; |
| // Adjust the computations below when the phi and the loop definition |
| // are scheduled in different stages. |
| if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) |
| StageDiff = StageScheduled - LoopValStage; |
| for (unsigned np = 0; np < NumPhis; ++np) { |
| // If the Phi hasn't been scheduled, then use the initial Phi operand |
| // value. Otherwise, use the scheduled version of the instruction. This |
| // is a little complicated when a Phi references another Phi. |
| if (np > PrologStage || StageScheduled >= (int)LastStageNum) |
| PhiOp1 = InitVal; |
| // Check if the Phi has already been scheduled in a prolog stage. |
| else if (PrologStage >= AccessStage + StageDiff + np && |
| VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) |
| PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; |
| // Check if the Phi has already been scheduled, but the loop intruction |
| // is either another Phi, or doesn't occur in the loop. |
| else if (PrologStage >= AccessStage + StageDiff + np) { |
| // If the Phi references another Phi, we need to examine the other |
| // Phi to get the correct value. |
| PhiOp1 = LoopVal; |
| MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); |
| int Indirects = 1; |
| while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { |
| int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); |
| if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) |
| PhiOp1 = getInitPhiReg(*InstOp1, BB); |
| else |
| PhiOp1 = getLoopPhiReg(*InstOp1, BB); |
| InstOp1 = MRI.getVRegDef(PhiOp1); |
| int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); |
| int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); |
| if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && |
| VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { |
| PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; |
| break; |
| } |
| ++Indirects; |
| } |
| } else |
| PhiOp1 = InitVal; |
| // If this references a generated Phi in the kernel, get the Phi operand |
| // from the incoming block. |
| if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) |
| if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) |
| PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); |
| |
| MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); |
| bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); |
| // In the epilog, a map lookup is needed to get the value from the kernel, |
| // or previous epilog block. How is does this depends on if the |
| // instruction is scheduled in the previous block. |
| if (!InKernel) { |
| int StageDiffAdj = 0; |
| if (LoopValStage != -1 && StageScheduled > LoopValStage) |
| StageDiffAdj = StageScheduled - LoopValStage; |
| // Use the loop value defined in the kernel, unless the kernel |
| // contains the last definition of the Phi. |
| if (np == 0 && PrevStage == LastStageNum && |
| (StageScheduled != 0 || LoopValStage != 0) && |
| VRMap[PrevStage - StageDiffAdj].count(LoopVal)) |
| PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; |
| // Use the value defined by the Phi. We add one because we switch |
| // from looking at the loop value to the Phi definition. |
| else if (np > 0 && PrevStage == LastStageNum && |
| VRMap[PrevStage - np + 1].count(Def)) |
| PhiOp2 = VRMap[PrevStage - np + 1][Def]; |
| // Use the loop value defined in the kernel. |
| else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && |
| VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) |
| PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; |
| // Use the value defined by the Phi, unless we're generating the first |
| // epilog and the Phi refers to a Phi in a different stage. |
| else if (VRMap[PrevStage - np].count(Def) && |
| (!LoopDefIsPhi || PrevStage != LastStageNum)) |
| PhiOp2 = VRMap[PrevStage - np][Def]; |
| } |
| |
| // Check if we can reuse an existing Phi. This occurs when a Phi |
| // references another Phi, and the other Phi is scheduled in an |
| // earlier stage. We can try to reuse an existing Phi up until the last |
| // stage of the current Phi. |
| if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) { |
| int LVNumStages = Schedule.getStagesForPhi(LoopVal); |
| int StageDiff = (StageScheduled - LoopValStage); |
| LVNumStages -= StageDiff; |
| // Make sure the loop value Phi has been processed already. |
| if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { |
| NewReg = PhiOp2; |
| unsigned ReuseStage = CurStageNum; |
| if (Schedule.isLoopCarried(this, *PhiInst)) |
| ReuseStage -= LVNumStages; |
| // Check if the Phi to reuse has been generated yet. If not, then |
| // there is nothing to reuse. |
| if (VRMap[ReuseStage - np].count(LoopVal)) { |
| NewReg = VRMap[ReuseStage - np][LoopVal]; |
| |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, |
| &*BBI, Def, NewReg); |
| // Update the map with the new Phi name. |
| VRMap[CurStageNum - np][Def] = NewReg; |
| PhiOp2 = NewReg; |
| if (VRMap[LastStageNum - np - 1].count(LoopVal)) |
| PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; |
| |
| if (IsLast && np == NumPhis - 1) |
| replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); |
| continue; |
| } |
| } else if (InKernel && StageDiff > 0 && |
| VRMap[CurStageNum - StageDiff - np].count(LoopVal)) |
| PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; |
| } |
| |
| const TargetRegisterClass *RC = MRI.getRegClass(Def); |
| NewReg = MRI.createVirtualRegister(RC); |
| |
| MachineInstrBuilder NewPhi = |
| BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), |
| TII->get(TargetOpcode::PHI), NewReg); |
| NewPhi.addReg(PhiOp1).addMBB(BB1); |
| NewPhi.addReg(PhiOp2).addMBB(BB2); |
| if (np == 0) |
| InstrMap[NewPhi] = &*BBI; |
| |
| // We define the Phis after creating the new pipelined code, so |
| // we need to rename the Phi values in scheduled instructions. |
| |
| unsigned PrevReg = 0; |
| if (InKernel && VRMap[PrevStage - np].count(LoopVal)) |
| PrevReg = VRMap[PrevStage - np][LoopVal]; |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, |
| Def, NewReg, PrevReg); |
| // If the Phi has been scheduled, use the new name for rewriting. |
| if (VRMap[CurStageNum - np].count(Def)) { |
| unsigned R = VRMap[CurStageNum - np][Def]; |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, |
| R, NewReg); |
| } |
| |
| // Check if we need to rename any uses that occurs after the loop. The |
| // register to replace depends on whether the Phi is scheduled in the |
| // epilog. |
| if (IsLast && np == NumPhis - 1) |
| replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); |
| |
| // In the kernel, a dependent Phi uses the value from this Phi. |
| if (InKernel) |
| PhiOp2 = NewReg; |
| |
| // Update the map with the new Phi name. |
| VRMap[CurStageNum - np][Def] = NewReg; |
| } |
| |
| while (NumPhis++ < NumStages) { |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, |
| &*BBI, Def, NewReg, 0); |
| } |
| |
| // Check if we need to rename a Phi that has been eliminated due to |
| // scheduling. |
| if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) |
| replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); |
| } |
| } |
| |
| /// Generate Phis for the specified block in the generated pipelined code. |
| /// These are new Phis needed because the definition is scheduled after the |
| /// use in the pipelined sequence. |
| void SwingSchedulerDAG::generatePhis( |
| MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, |
| bool IsLast) { |
| // Compute the stage number that contains the initial Phi value, and |
| // the Phi from the previous stage. |
| unsigned PrologStage = 0; |
| unsigned PrevStage = 0; |
| unsigned StageDiff = CurStageNum - LastStageNum; |
| bool InKernel = (StageDiff == 0); |
| if (InKernel) { |
| PrologStage = LastStageNum - 1; |
| PrevStage = CurStageNum; |
| } else { |
| PrologStage = LastStageNum - StageDiff; |
| PrevStage = LastStageNum + StageDiff - 1; |
| } |
| |
| for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), |
| BBE = BB->instr_end(); |
| BBI != BBE; ++BBI) { |
| for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = BBI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || |
| !TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; |
| |
| int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); |
| assert(StageScheduled != -1 && "Expecting scheduled instruction."); |
| unsigned Def = MO.getReg(); |
| unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); |
| // An instruction scheduled in stage 0 and is used after the loop |
| // requires a phi in the epilog for the last definition from either |
| // the kernel or prolog. |
| if (!InKernel && NumPhis == 0 && StageScheduled == 0 && |
| hasUseAfterLoop(Def, BB, MRI)) |
| NumPhis = 1; |
| if (!InKernel && (unsigned)StageScheduled > PrologStage) |
| continue; |
| |
| unsigned PhiOp2 = VRMap[PrevStage][Def]; |
| if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) |
| if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) |
| PhiOp2 = getLoopPhiReg(*InstOp2, BB2); |
| // The number of Phis can't exceed the number of prolog stages. The |
| // prolog stage number is zero based. |
| if (NumPhis > PrologStage + 1 - StageScheduled) |
| NumPhis = PrologStage + 1 - StageScheduled; |
| for (unsigned np = 0; np < NumPhis; ++np) { |
| unsigned PhiOp1 = VRMap[PrologStage][Def]; |
| if (np <= PrologStage) |
| PhiOp1 = VRMap[PrologStage - np][Def]; |
| if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { |
| if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) |
| PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); |
| if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) |
| PhiOp1 = getInitPhiReg(*InstOp1, NewBB); |
| } |
| if (!InKernel) |
| PhiOp2 = VRMap[PrevStage - np][Def]; |
| |
| const TargetRegisterClass *RC = MRI.getRegClass(Def); |
| unsigned NewReg = MRI.createVirtualRegister(RC); |
| |
| MachineInstrBuilder NewPhi = |
| BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), |
| TII->get(TargetOpcode::PHI), NewReg); |
| NewPhi.addReg(PhiOp1).addMBB(BB1); |
| NewPhi.addReg(PhiOp2).addMBB(BB2); |
| if (np == 0) |
| InstrMap[NewPhi] = &*BBI; |
| |
| // Rewrite uses and update the map. The actions depend upon whether |
| // we generating code for the kernel or epilog blocks. |
| if (InKernel) { |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, |
| &*BBI, PhiOp1, NewReg); |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, |
| &*BBI, PhiOp2, NewReg); |
| |
| PhiOp2 = NewReg; |
| VRMap[PrevStage - np - 1][Def] = NewReg; |
| } else { |
| VRMap[CurStageNum - np][Def] = NewReg; |
| if (np == NumPhis - 1) |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, |
| &*BBI, Def, NewReg); |
| } |
| if (IsLast && np == NumPhis - 1) |
| replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); |
| } |
| } |
| } |
| } |
| |
| /// Remove instructions that generate values with no uses. |
| /// Typically, these are induction variable operations that generate values |
| /// used in the loop itself. A dead instruction has a definition with |
| /// no uses, or uses that occur in the original loop only. |
| void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs) { |
| // For each epilog block, check that the value defined by each instruction |
| // is used. If not, delete it. |
| for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), |
| MBE = EpilogBBs.rend(); |
| MBB != MBE; ++MBB) |
| for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), |
| ME = (*MBB)->instr_rend(); |
| MI != ME;) { |
| // From DeadMachineInstructionElem. Don't delete inline assembly. |
| if (MI->isInlineAsm()) { |
| ++MI; |
| continue; |
| } |
| bool SawStore = false; |
| // Check if it's safe to remove the instruction due to side effects. |
| // We can, and want to, remove Phis here. |
| if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { |
| ++MI; |
| continue; |
| } |
| bool used = true; |
| for (MachineInstr::mop_iterator MOI = MI->operands_begin(), |
| MOE = MI->operands_end(); |
| MOI != MOE; ++MOI) { |
| if (!MOI->isReg() || !MOI->isDef()) |
| continue; |
| unsigned reg = MOI->getReg(); |
| // Assume physical registers are used, unless they are marked dead. |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) { |
| used = !MOI->isDead(); |
| if (used) |
| break; |
| continue; |
| } |
| unsigned realUses = 0; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), |
| EI = MRI.use_end(); |
| UI != EI; ++UI) { |
| // Check if there are any uses that occur only in the original |
| // loop. If so, that's not a real use. |
| if (UI->getParent()->getParent() != BB) { |
| realUses++; |
| used = true; |
| break; |
| } |
| } |
| if (realUses > 0) |
| break; |
| used = false; |
| } |
| if (!used) { |
| LIS.RemoveMachineInstrFromMaps(*MI); |
| MI++->eraseFromParent(); |
| continue; |
| } |
| ++MI; |
| } |
| // In the kernel block, check if we can remove a Phi that generates a value |
| // used in an instruction removed in the epilog block. |
| for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), |
| BBE = KernelBB->getFirstNonPHI(); |
| BBI != BBE;) { |
| MachineInstr *MI = &*BBI; |
| ++BBI; |
| unsigned reg = MI->getOperand(0).getReg(); |
| if (MRI.use_begin(reg) == MRI.use_end()) { |
| LIS.RemoveMachineInstrFromMaps(*MI); |
| MI->eraseFromParent(); |
| } |
| } |
| } |
| |
| /// For loop carried definitions, we split the lifetime of a virtual register |
| /// that has uses past the definition in the next iteration. A copy with a new |
| /// virtual register is inserted before the definition, which helps with |
| /// generating a better register assignment. |
| /// |
| /// v1 = phi(a, v2) v1 = phi(a, v2) |
| /// v2 = phi(b, v3) v2 = phi(b, v3) |
| /// v3 = .. v4 = copy v1 |
| /// .. = V1 v3 = .. |
| /// .. = v4 |
| void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs, |
| SMSchedule &Schedule) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| for (auto &PHI : KernelBB->phis()) { |
| unsigned Def = PHI.getOperand(0).getReg(); |
| // Check for any Phi definition that used as an operand of another Phi |
| // in the same block. |
| for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), |
| E = MRI.use_instr_end(); |
| I != E; ++I) { |
| if (I->isPHI() && I->getParent() == KernelBB) { |
| // Get the loop carried definition. |
| unsigned LCDef = getLoopPhiReg(PHI, KernelBB); |
| if (!LCDef) |
| continue; |
| MachineInstr *MI = MRI.getVRegDef(LCDef); |
| if (!MI || MI->getParent() != KernelBB || MI->isPHI()) |
| continue; |
| // Search through the rest of the block looking for uses of the Phi |
| // definition. If one occurs, then split the lifetime. |
| unsigned SplitReg = 0; |
| for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), |
| KernelBB->instr_end())) |
| if (BBJ.readsRegister(Def)) { |
| // We split the lifetime when we find the first use. |
| if (SplitReg == 0) { |
| SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); |
| BuildMI(*KernelBB, MI, MI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), SplitReg) |
| .addReg(Def); |
| } |
| BBJ.substituteRegister(Def, SplitReg, 0, *TRI); |
| } |
| if (!SplitReg) |
| continue; |
| // Search through each of the epilog blocks for any uses to be renamed. |
| for (auto &Epilog : EpilogBBs) |
| for (auto &I : *Epilog) |
| if (I.readsRegister(Def)) |
| I.substituteRegister(Def, SplitReg, 0, *TRI); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Remove the incoming block from the Phis in a basic block. |
| static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { |
| for (MachineInstr &MI : *BB) { |
| if (!MI.isPHI()) |
| break; |
| for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) |
| if (MI.getOperand(i + 1).getMBB() == Incoming) { |
| MI.RemoveOperand(i + 1); |
| MI.RemoveOperand(i); |
| break; |
| } |
| } |
| } |
| |
| /// Create branches from each prolog basic block to the appropriate epilog |
| /// block. These edges are needed if the loop ends before reaching the |
| /// kernel. |
| void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, |
| MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs, |
| SMSchedule &Schedule, ValueMapTy *VRMap) { |
| assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); |
| MachineInstr *IndVar = Pass.LI.LoopInductionVar; |
| MachineInstr *Cmp = Pass.LI.LoopCompare; |
| MachineBasicBlock *LastPro = KernelBB; |
| MachineBasicBlock *LastEpi = KernelBB; |
| |
| // Start from the blocks connected to the kernel and work "out" |
| // to the first prolog and the last epilog blocks. |
| SmallVector<MachineInstr *, 4> PrevInsts; |
| unsigned MaxIter = PrologBBs.size() - 1; |
| unsigned LC = UINT_MAX; |
| unsigned LCMin = UINT_MAX; |
| for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { |
| // Add branches to the prolog that go to the corresponding |
| // epilog, and the fall-thru prolog/kernel block. |
| MachineBasicBlock *Prolog = PrologBBs[j]; |
| MachineBasicBlock *Epilog = EpilogBBs[i]; |
| // We've executed one iteration, so decrement the loop count and check for |
| // the loop end. |
| SmallVector<MachineOperand, 4> Cond; |
| // Check if the LOOP0 has already been removed. If so, then there is no need |
| // to reduce the trip count. |
| if (LC != 0) |
| LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, |
| MaxIter); |
| |
| // Record the value of the first trip count, which is used to determine if |
| // branches and blocks can be removed for constant trip counts. |
| if (LCMin == UINT_MAX) |
| LCMin = LC; |
| |
| unsigned numAdded = 0; |
| if (TargetRegisterInfo::isVirtualRegister(LC)) { |
| Prolog->addSuccessor(Epilog); |
| numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); |
| } else if (j >= LCMin) { |
| Prolog->addSuccessor(Epilog); |
| Prolog->removeSuccessor(LastPro); |
| LastEpi->removeSuccessor(Epilog); |
| numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); |
| removePhis(Epilog, LastEpi); |
| // Remove the blocks that are no longer referenced. |
| if (LastPro != LastEpi) { |
| LastEpi->clear(); |
| LastEpi->eraseFromParent(); |
| } |
| LastPro->clear(); |
| LastPro->eraseFromParent(); |
| } else { |
| numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); |
| removePhis(Epilog, Prolog); |
| } |
| LastPro = Prolog; |
| LastEpi = Epilog; |
| for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), |
| E = Prolog->instr_rend(); |
| I != E && numAdded > 0; ++I, --numAdded) |
| updateInstruction(&*I, false, j, 0, Schedule, VRMap); |
| } |
| } |
| |
| /// Return true if we can compute the amount the instruction changes |
| /// during each iteration. Set Delta to the amount of the change. |
| bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| unsigned BaseReg; |
| int64_t Offset; |
| if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) |
| return false; |
| |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| // Check if there is a Phi. If so, get the definition in the loop. |
| MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); |
| if (BaseDef && BaseDef->isPHI()) { |
| BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); |
| BaseDef = MRI.getVRegDef(BaseReg); |
| } |
| if (!BaseDef) |
| return false; |
| |
| int D = 0; |
| if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) |
| return false; |
| |
| Delta = D; |
| return true; |
| } |
| |
| /// Update the memory operand with a new offset when the pipeliner |
| /// generates a new copy of the instruction that refers to a |
| /// different memory location. |
| void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, |
| MachineInstr &OldMI, unsigned Num) { |
| if (Num == 0) |
| return; |
| // If the instruction has memory operands, then adjust the offset |
| // when the instruction appears in different stages. |
| unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); |
| if (NumRefs == 0) |
| return; |
| MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); |
| unsigned Refs = 0; |
| for (MachineMemOperand *MMO : NewMI.memoperands()) { |
| if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || |
| (!MMO->getValue())) { |
| NewMemRefs[Refs++] = MMO; |
| continue; |
| } |
| unsigned Delta; |
| if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { |
| int64_t AdjOffset = Delta * Num; |
| NewMemRefs[Refs++] = |
| MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); |
| } else { |
| NewMI.dropMemRefs(); |
| return; |
| } |
| } |
| NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); |
| } |
| |
| /// Clone the instruction for the new pipelined loop and update the |
| /// memory operands, if needed. |
| MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, |
| unsigned CurStageNum, |
| unsigned InstStageNum) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); |
| // Check for tied operands in inline asm instructions. This should be handled |
| // elsewhere, but I'm not sure of the best solution. |
| if (OldMI->isInlineAsm()) |
| for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { |
| const auto &MO = OldMI->getOperand(i); |
| if (MO.isReg() && MO.isUse()) |
| break; |
| unsigned UseIdx; |
| if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) |
| NewMI->tieOperands(i, UseIdx); |
| } |
| updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); |
| return NewMI; |
| } |
| |
| /// Clone the instruction for the new pipelined loop. If needed, this |
| /// function updates the instruction using the values saved in the |
| /// InstrChanges structure. |
| MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, |
| unsigned CurStageNum, |
| unsigned InstStageNum, |
| SMSchedule &Schedule) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
| InstrChanges.find(getSUnit(OldMI)); |
| if (It != InstrChanges.end()) { |
| std::pair<unsigned, int64_t> RegAndOffset = It->second; |
| unsigned BasePos, OffsetPos; |
| if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) |
| return nullptr; |
| int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); |
| MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); |
| if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) |
| NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); |
| NewMI->getOperand(OffsetPos).setImm(NewOffset); |
| } |
| updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); |
| return NewMI; |
| } |
| |
| /// Update the machine instruction with new virtual registers. This |
| /// function may change the defintions and/or uses. |
| void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, |
| unsigned CurStageNum, |
| unsigned InstrStageNum, |
| SMSchedule &Schedule, |
| ValueMapTy *VRMap) { |
| for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = NewMI->getOperand(i); |
| if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; |
| unsigned reg = MO.getReg(); |
| if (MO.isDef()) { |
| // Create a new virtual register for the definition. |
| const TargetRegisterClass *RC = MRI.getRegClass(reg); |
| unsigned NewReg = MRI.createVirtualRegister(RC); |
| MO.setReg(NewReg); |
| VRMap[CurStageNum][reg] = NewReg; |
| if (LastDef) |
| replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); |
| } else if (MO.isUse()) { |
| MachineInstr *Def = MRI.getVRegDef(reg); |
| // Compute the stage that contains the last definition for instruction. |
| int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); |
| unsigned StageNum = CurStageNum; |
| if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { |
| // Compute the difference in stages between the defintion and the use. |
| unsigned StageDiff = (InstrStageNum - DefStageNum); |
| // Make an adjustment to get the last definition. |
| StageNum -= StageDiff; |
| } |
| if (VRMap[StageNum].count(reg)) |
| MO.setReg(VRMap[StageNum][reg]); |
| } |
| } |
| } |
| |
| /// Return the instruction in the loop that defines the register. |
| /// If the definition is a Phi, then follow the Phi operand to |
| /// the instruction in the loop. |
| MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { |
| SmallPtrSet<MachineInstr *, 8> Visited; |
| MachineInstr *Def = MRI.getVRegDef(Reg); |
| while (Def->isPHI()) { |
| if (!Visited.insert(Def).second) |
| break; |
| for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) |
| if (Def->getOperand(i + 1).getMBB() == BB) { |
| Def = MRI.getVRegDef(Def->getOperand(i).getReg()); |
| break; |
| } |
| } |
| return Def; |
| } |
| |
| /// Return the new name for the value from the previous stage. |
| unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, |
| unsigned LoopVal, unsigned LoopStage, |
| ValueMapTy *VRMap, |
| MachineBasicBlock *BB) { |
| unsigned PrevVal = 0; |
| if (StageNum > PhiStage) { |
| MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); |
| if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) |
| // The name is defined in the previous stage. |
| PrevVal = VRMap[StageNum - 1][LoopVal]; |
| else if (VRMap[StageNum].count(LoopVal)) |
| // The previous name is defined in the current stage when the instruction |
| // order is swapped. |
| PrevVal = VRMap[StageNum][LoopVal]; |
| else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) |
| // The loop value hasn't yet been scheduled. |
| PrevVal = LoopVal; |
| else if (StageNum == PhiStage + 1) |
| // The loop value is another phi, which has not been scheduled. |
| PrevVal = getInitPhiReg(*LoopInst, BB); |
| else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) |
| // The loop value is another phi, which has been scheduled. |
| PrevVal = |
| getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), |
| LoopStage, VRMap, BB); |
| } |
| return PrevVal; |
| } |
| |
| /// Rewrite the Phi values in the specified block to use the mappings |
| /// from the initial operand. Once the Phi is scheduled, we switch |
| /// to using the loop value instead of the Phi value, so those names |
| /// do not need to be rewritten. |
| void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, |
| unsigned StageNum, |
| SMSchedule &Schedule, |
| ValueMapTy *VRMap, |
| InstrMapTy &InstrMap) { |
| for (auto &PHI : BB->phis()) { |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(PHI, BB, InitVal, LoopVal); |
| unsigned PhiDef = PHI.getOperand(0).getReg(); |
| |
| unsigned PhiStage = |
| (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); |
| unsigned LoopStage = |
| (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); |
| unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); |
| if (NumPhis > StageNum) |
| NumPhis = StageNum; |
| for (unsigned np = 0; np <= NumPhis; ++np) { |
| unsigned NewVal = |
| getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); |
| if (!NewVal) |
| NewVal = InitVal; |
| rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, |
| PhiDef, NewVal); |
| } |
| } |
| } |
| |
| /// Rewrite a previously scheduled instruction to use the register value |
| /// from the new instruction. Make sure the instruction occurs in the |
| /// basic block, and we don't change the uses in the new instruction. |
| void SwingSchedulerDAG::rewriteScheduledInstr( |
| MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, |
| unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, |
| unsigned NewReg, unsigned PrevReg) { |
| bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); |
| int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; |
| // Rewrite uses that have been scheduled already to use the new |
| // Phi register. |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), |
| EI = MRI.use_end(); |
| UI != EI;) { |
| MachineOperand &UseOp = *UI; |
| MachineInstr *UseMI = UseOp.getParent(); |
| ++UI; |
| if (UseMI->getParent() != BB) |
| continue; |
| if (UseMI->isPHI()) { |
| if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) |
| continue; |
| if (getLoopPhiReg(*UseMI, BB) != OldReg) |
| continue; |
| } |
| InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); |
| assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); |
| SUnit *OrigMISU = getSUnit(OrigInstr->second); |
| int StageSched = Schedule.stageScheduled(OrigMISU); |
| int CycleSched = Schedule.cycleScheduled(OrigMISU); |
| unsigned ReplaceReg = 0; |
| // This is the stage for the scheduled instruction. |
| if (StagePhi == StageSched && Phi->isPHI()) { |
| int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); |
| if (PrevReg && InProlog) |
| ReplaceReg = PrevReg; |
| else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && |
| (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) |
| ReplaceReg = PrevReg; |
| else |
| ReplaceReg = NewReg; |
| } |
| // The scheduled instruction occurs before the scheduled Phi, and the |
| // Phi is not loop carried. |
| if (!InProlog && StagePhi + 1 == StageSched && |
| !Schedule.isLoopCarried(this, *Phi)) |
| ReplaceReg = NewReg; |
| if (StagePhi > StageSched && Phi->isPHI()) |
| ReplaceReg = NewReg; |
| if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) |
| ReplaceReg = NewReg; |
| if (ReplaceReg) { |
| MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); |
| UseOp.setReg(ReplaceReg); |
| } |
| } |
| } |
| |
| /// Check if we can change the instruction to use an offset value from the |
| /// previous iteration. If so, return true and set the base and offset values |
| /// so that we can rewrite the load, if necessary. |
| /// v1 = Phi(v0, v3) |
| /// v2 = load v1, 0 |
| /// v3 = post_store v1, 4, x |
| /// This function enables the load to be rewritten as v2 = load v3, 4. |
| bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, |
| unsigned &BasePos, |
| unsigned &OffsetPos, |
| unsigned &NewBase, |
| int64_t &Offset) { |
| // Get the load instruction. |
| if (TII->isPostIncrement(*MI)) |
| return false; |
| unsigned BasePosLd, OffsetPosLd; |
| if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) |
| return false; |
| unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); |
| |
| // Look for the Phi instruction. |
| MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); |
| MachineInstr *Phi = MRI.getVRegDef(BaseReg); |
| if (!Phi || !Phi->isPHI()) |
| return false; |
| // Get the register defined in the loop block. |
| unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); |
| if (!PrevReg) |
| return false; |
| |
| // Check for the post-increment load/store instruction. |
| MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); |
| if (!PrevDef || PrevDef == MI) |
| return false; |
| |
| if (!TII->isPostIncrement(*PrevDef)) |
| return false; |
| |
| unsigned BasePos1 = 0, OffsetPos1 = 0; |
| if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) |
| return false; |
| |
| // Make sure that the instructions do not access the same memory location in |
| // the next iteration. |
| int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); |
| int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); |
| MachineInstr *NewMI = MF.CloneMachineInstr(MI); |
| NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); |
| bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); |
| MF.DeleteMachineInstr(NewMI); |
| if (!Disjoint) |
| return false; |
| |
| // Set the return value once we determine that we return true. |
| BasePos = BasePosLd; |
| OffsetPos = OffsetPosLd; |
| NewBase = PrevReg; |
| Offset = StoreOffset; |
| return true; |
| } |
| |
| /// Apply changes to the instruction if needed. The changes are need |
| /// to improve the scheduling and depend up on the final schedule. |
| void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, |
| SMSchedule &Schedule) { |
| SUnit *SU = getSUnit(MI); |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
| InstrChanges.find(SU); |
| if (It != InstrChanges.end()) { |
| std::pair<unsigned, int64_t> RegAndOffset = It->second; |
| unsigned BasePos, OffsetPos; |
| if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) |
| return; |
| unsigned BaseReg = MI->getOperand(BasePos).getReg(); |
| MachineInstr *LoopDef = findDefInLoop(BaseReg); |
| int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); |
| int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); |
| int BaseStageNum = Schedule.stageScheduled(SU); |
| int BaseCycleNum = Schedule.cycleScheduled(SU); |
| if (BaseStageNum < DefStageNum) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(MI); |
| int OffsetDiff = DefStageNum - BaseStageNum; |
| if (DefCycleNum < BaseCycleNum) { |
| NewMI->getOperand(BasePos).setReg(RegAndOffset.first); |
| if (OffsetDiff > 0) |
| --OffsetDiff; |
| } |
| int64_t NewOffset = |
| MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; |
| NewMI->getOperand(OffsetPos).setImm(NewOffset); |
| SU->setInstr(NewMI); |
| MISUnitMap[NewMI] = SU; |
| NewMIs.insert(NewMI); |
| } |
| } |
| } |
| |
| /// Return true for an order or output dependence that is loop carried |
| /// potentially. A dependence is loop carried if the destination defines a valu |
| /// that may be used or defined by the source in a subsequent iteration. |
| bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, |
| bool isSucc) { |
| if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || |
| Dep.isArtificial()) |
| return false; |
| |
| if (!SwpPruneLoopCarried) |
| return true; |
| |
| if (Dep.getKind() == SDep::Output) |
| return true; |
| |
| MachineInstr *SI = Source->getInstr(); |
| MachineInstr *DI = Dep.getSUnit()->getInstr(); |
| if (!isSucc) |
| std::swap(SI, DI); |
| assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); |
| |
| // Assume ordered loads and stores may have a loop carried dependence. |
| if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || |
| SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) |
| return true; |
| |
| // Only chain dependences between a load and store can be loop carried. |
| if (!DI->mayStore() || !SI->mayLoad()) |
| return false; |
| |
| unsigned DeltaS, DeltaD; |
| if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) |
| return true; |
| |
| unsigned BaseRegS, BaseRegD; |
| int64_t OffsetS, OffsetD; |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || |
| !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) |
| return true; |
| |
| if (BaseRegS != BaseRegD) |
| return true; |
| |
| // Check that the base register is incremented by a constant value for each |
| // iteration. |
| MachineInstr *Def = MRI.getVRegDef(BaseRegS); |
| if (!Def || !Def->isPHI()) |
| return true; |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(*Def, BB, InitVal, LoopVal); |
| MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); |
| int D = 0; |
| if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) |
| return true; |
| |
| uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); |
| uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); |
| |
| // This is the main test, which checks the offset values and the loop |
| // increment value to determine if the accesses may be loop carried. |
| if (OffsetS >= OffsetD) |
| return OffsetS + AccessSizeS > DeltaS; |
| else |
| return OffsetD + AccessSizeD > DeltaD; |
| |
| return true; |
| } |
| |
| void SwingSchedulerDAG::postprocessDAG() { |
| for (auto &M : Mutations) |
| M->apply(this); |
| } |
| |
| /// Try to schedule the node at the specified StartCycle and continue |
| /// until the node is schedule or the EndCycle is reached. This function |
| /// returns true if the node is scheduled. This routine may search either |
| /// forward or backward for a place to insert the instruction based upon |
| /// the relative values of StartCycle and EndCycle. |
| bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { |
| bool forward = true; |
| if (StartCycle > EndCycle) |
| forward = false; |
| |
| // The terminating condition depends on the direction. |
| int termCycle = forward ? EndCycle + 1 : EndCycle - 1; |
| for (int curCycle = StartCycle; curCycle != termCycle; |
| forward ? ++curCycle : --curCycle) { |
| |
| // Add the already scheduled instructions at the specified cycle to the DFA. |
| Resources->clearResources(); |
| for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); |
| checkCycle <= LastCycle; checkCycle += II) { |
| std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; |
| |
| for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), |
| E = cycleInstrs.end(); |
| I != E; ++I) { |
| if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) |
| continue; |
| assert(Resources->canReserveResources(*(*I)->getInstr()) && |
| "These instructions have already been scheduled."); |
| Resources->reserveResources(*(*I)->getInstr()); |
| } |
| } |
| if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || |
| Resources->canReserveResources(*SU->getInstr())) { |
| LLVM_DEBUG({ |
| dbgs() << "\tinsert at cycle " << curCycle << " "; |
| SU->getInstr()->dump(); |
| }); |
| |
| ScheduledInstrs[curCycle].push_back(SU); |
| InstrToCycle.insert(std::make_pair(SU, curCycle)); |
| if (curCycle > LastCycle) |
| LastCycle = curCycle; |
| if (curCycle < FirstCycle) |
| FirstCycle = curCycle; |
| return true; |
| } |
| LLVM_DEBUG({ |
| dbgs() << "\tfailed to insert at cycle " << curCycle << " "; |
| SU->getInstr()->dump(); |
| }); |
| } |
| return false; |
| } |
| |
| // Return the cycle of the earliest scheduled instruction in the chain. |
| int SMSchedule::earliestCycleInChain(const SDep &Dep) { |
| SmallPtrSet<SUnit *, 8> Visited; |
| SmallVector<SDep, 8> Worklist; |
| Worklist.push_back(Dep); |
| int EarlyCycle = INT_MAX; |
| while (!Worklist.empty()) { |
| const SDep &Cur = Worklist.pop_back_val(); |
| SUnit *PrevSU = Cur.getSUnit(); |
| if (Visited.count(PrevSU)) |
| continue; |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); |
| if (it == InstrToCycle.end()) |
| continue; |
| EarlyCycle = std::min(EarlyCycle, it->second); |
| for (const auto &PI : PrevSU->Preds) |
| if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) |
| Worklist.push_back(PI); |
| Visited.insert(PrevSU); |
| } |
| return EarlyCycle; |
| } |
| |
| // Return the cycle of the latest scheduled instruction in the chain. |
| int SMSchedule::latestCycleInChain(const SDep &Dep) { |
| SmallPtrSet<SUnit *, 8> Visited; |
| SmallVector<SDep, 8> Worklist; |
| Worklist.push_back(Dep); |
| int LateCycle = INT_MIN; |
| while (!Worklist.empty()) { |
| const SDep &Cur = Worklist.pop_back_val(); |
| SUnit *SuccSU = Cur.getSUnit(); |
| if (Visited.count(SuccSU)) |
| continue; |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); |
| if (it == InstrToCycle.end()) |
| continue; |
| LateCycle = std::max(LateCycle, it->second); |
| for (const auto &SI : SuccSU->Succs) |
| if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) |
| Worklist.push_back(SI); |
| Visited.insert(SuccSU); |
| } |
| return LateCycle; |
| } |
| |
| /// If an instruction has a use that spans multiple iterations, then |
| /// return true. These instructions are characterized by having a back-ege |
| /// to a Phi, which contains a reference to another Phi. |
| static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { |
| for (auto &P : SU->Preds) |
| if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) |
| for (auto &S : P.getSUnit()->Succs) |
| if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) |
| return P.getSUnit(); |
| return nullptr; |
| } |
| |
| /// Compute the scheduling start slot for the instruction. The start slot |
| /// depends on any predecessor or successor nodes scheduled already. |
| void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, |
| int *MinEnd, int *MaxStart, int II, |
| SwingSchedulerDAG *DAG) { |
| // Iterate over each instruction that has been scheduled already. The start |
| // slot computation depends on whether the previously scheduled instruction |
| // is a predecessor or successor of the specified instruction. |
| for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { |
| |
| // Iterate over each instruction in the current cycle. |
| for (SUnit *I : getInstructions(cycle)) { |
| // Because we're processing a DAG for the dependences, we recognize |
| // the back-edge in recurrences by anti dependences. |
| for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { |
| const SDep &Dep = SU->Preds[i]; |
| if (Dep.getSUnit() == I) { |
| if (!DAG->isBackedge(SU, Dep)) { |
| int EarlyStart = cycle + Dep.getLatency() - |
| DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; |
| *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); |
| if (DAG->isLoopCarriedDep(SU, Dep, false)) { |
| int End = earliestCycleInChain(Dep) + (II - 1); |
| *MinEnd = std::min(*MinEnd, End); |
| } |
| } else { |
| int LateStart = cycle - Dep.getLatency() + |
| DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; |
| *MinLateStart = std::min(*MinLateStart, LateStart); |
| } |
| } |
| // For instruction that requires multiple iterations, make sure that |
| // the dependent instruction is not scheduled past the definition. |
| SUnit *BE = multipleIterations(I, DAG); |
| if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && |
| !SU->isPred(I)) |
| *MinLateStart = std::min(*MinLateStart, cycle); |
| } |
| for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { |
| if (SU->Succs[i].getSUnit() == I) { |
| const SDep &Dep = SU->Succs[i]; |
| if (!DAG->isBackedge(SU, Dep)) { |
| int LateStart = cycle - Dep.getLatency() + |
| DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; |
| *MinLateStart = std::min(*MinLateStart, LateStart); |
| if (DAG->isLoopCarriedDep(SU, Dep)) { |
| int Start = latestCycleInChain(Dep) + 1 - II; |
| *MaxStart = std::max(*MaxStart, Start); |
| } |
| } else { |
| int EarlyStart = cycle + Dep.getLatency() - |
| DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; |
| *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Order the instructions within a cycle so that the definitions occur |
| /// before the uses. Returns true if the instruction is added to the start |
| /// of the list, or false if added to the end. |
| void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, |
| std::deque<SUnit *> &Insts) { |
| MachineInstr *MI = SU->getInstr(); |
| bool OrderBeforeUse = false; |
| bool OrderAfterDef = false; |
| bool OrderBeforeDef = false; |
| unsigned MoveDef = 0; |
| unsigned MoveUse = 0; |
| int StageInst1 = stageScheduled(SU); |
| |
| unsigned Pos = 0; |
| for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; |
| ++I, ++Pos) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| unsigned BasePos, OffsetPos; |
| if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) |
| if (MI->getOperand(BasePos).getReg() == Reg) |
| if (unsigned NewReg = SSD->getInstrBaseReg(SU)) |
| Reg = NewReg; |
| bool Reads, Writes; |
| std::tie(Reads, Writes) = |
| (*I)->getInstr()->readsWritesVirtualRegister(Reg); |
| if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { |
| OrderBeforeUse = true; |
| if (MoveUse == 0) |
| MoveUse = Pos; |
| } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { |
| // Add the instruction after the scheduled instruction. |
| OrderAfterDef = true; |
| MoveDef = Pos; |
| } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { |
| if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { |
| OrderBeforeUse = true; |
| if (MoveUse == 0) |
| MoveUse = Pos; |
| } else { |
| OrderAfterDef = true; |
| MoveDef = Pos; |
| } |
| } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { |
| OrderBeforeUse = true; |
| if (MoveUse == 0) |
| MoveUse = Pos; |
| if (MoveUse != 0) { |
| OrderAfterDef = true; |
| MoveDef = Pos - 1; |
| } |
| } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { |
| // Add the instruction before the scheduled instruction. |
| OrderBeforeUse = true; |
| if (MoveUse == 0) |
| MoveUse = Pos; |
| } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && |
| isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { |
| if (MoveUse == 0) { |
| OrderBeforeDef = true; |
| MoveUse = Pos; |
| } |
| } |
| } |
| // Check for order dependences between instructions. Make sure the source |
| // is ordered before the destination. |
| for (auto &S : SU->Succs) { |
| if (S.getSUnit() != *I) |
| continue; |
| if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { |
| OrderBeforeUse = true; |
| if (Pos < MoveUse) |
| MoveUse = Pos; |
| } |
| } |
| for (auto &P : SU->Preds) { |
| if (P.getSUnit() != *I) |
| continue; |
| if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { |
| OrderAfterDef = true; |
| MoveDef = Pos; |
| } |
| } |
| } |
| |
| // A circular dependence. |
| if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) |
| OrderBeforeUse = false; |
| |
| // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due |
| // to a loop-carried dependence. |
| if (OrderBeforeDef) |
| OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); |
| |
| // The uncommon case when the instruction order needs to be updated because |
| // there is both a use and def. |
| if (OrderBeforeUse && OrderAfterDef) { |
| SUnit *UseSU = Insts.at(MoveUse); |
| SUnit *DefSU = Insts.at(MoveDef); |
| if (MoveUse > MoveDef) { |
| Insts.erase(Insts.begin() + MoveUse); |
| Insts.erase(Insts.begin() + MoveDef); |
| } else { |
| Insts.erase(Insts.begin() + MoveDef); |
| Insts.erase(Insts.begin() + MoveUse); |
| } |
| orderDependence(SSD, UseSU, Insts); |
| orderDependence(SSD, SU, Insts); |
| orderDependence(SSD, DefSU, Insts); |
| return; |
| } |
| // Put the new instruction first if there is a use in the list. Otherwise, |
| // put it at the end of the list. |
| if (OrderBeforeUse) |
| Insts.push_front(SU); |
| else |
| Insts.push_back(SU); |
| } |
| |
| /// Return true if the scheduled Phi has a loop carried operand. |
| bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { |
| if (!Phi.isPHI()) |
| return false; |
| assert(Phi.isPHI() && "Expecting a Phi."); |
| SUnit *DefSU = SSD->getSUnit(&Phi); |
| unsigned DefCycle = cycleScheduled(DefSU); |
| int DefStage = stageScheduled(DefSU); |
| |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); |
| SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); |
| if (!UseSU) |
| return true; |
| if (UseSU->getInstr()->isPHI()) |
| return true; |
| unsigned LoopCycle = cycleScheduled(UseSU); |
| int LoopStage = stageScheduled(UseSU); |
| return (LoopCycle > DefCycle) || (LoopStage <= DefStage); |
| } |
| |
| /// Return true if the instruction is a definition that is loop carried |
| /// and defines the use on the next iteration. |
| /// v1 = phi(v2, v3) |
| /// (Def) v3 = op v1 |
| /// (MO) = v1 |
| /// If MO appears before Def, then then v1 and v3 may get assigned to the same |
| /// register. |
| bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, |
| MachineInstr *Def, MachineOperand &MO) { |
| if (!MO.isReg()) |
| return false; |
| if (Def->isPHI()) |
| return false; |
| MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); |
| if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) |
| return false; |
| if (!isLoopCarried(SSD, *Phi)) |
| return false; |
| unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); |
| for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { |
| MachineOperand &DMO = Def->getOperand(i); |
| if (!DMO.isReg() || !DMO.isDef()) |
| continue; |
| if (DMO.getReg() == LoopReg) |
| return true; |
| } |
| return false; |
| } |
| |
| // Check if the generated schedule is valid. This function checks if |
| // an instruction that uses a physical register is scheduled in a |
| // different stage than the definition. The pipeliner does not handle |
| // physical register values that may cross a basic block boundary. |
| bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { |
| for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { |
| SUnit &SU = SSD->SUnits[i]; |
| if (!SU.hasPhysRegDefs) |
| continue; |
| int StageDef = stageScheduled(&SU); |
| assert(StageDef != -1 && "Instruction should have been scheduled."); |
| for (auto &SI : SU.Succs) |
| if (SI.isAssignedRegDep()) |
| if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) |
| if (stageScheduled(SI.getSUnit()) != StageDef) |
| return false; |
| } |
| return true; |
| } |
| |
| /// A property of the node order in swing-modulo-scheduling is |
| /// that for nodes outside circuits the following holds: |
| /// none of them is scheduled after both a successor and a |
| /// predecessor. |
| /// The method below checks whether the property is met. |
| /// If not, debug information is printed and statistics information updated. |
| /// Note that we do not use an assert statement. |
| /// The reason is that although an invalid node oder may prevent |
| /// the pipeliner from finding a pipelined schedule for arbitrary II, |
| /// it does not lead to the generation of incorrect code. |
| void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { |
| |
| // a sorted vector that maps each SUnit to its index in the NodeOrder |
| typedef std::pair<SUnit *, unsigned> UnitIndex; |
| std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); |
| |
| for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) |
| Indices.push_back(std::make_pair(NodeOrder[i], i)); |
| |
| auto CompareKey = [](UnitIndex i1, UnitIndex i2) { |
| return std::get<0>(i1) < std::get<0>(i2); |
| }; |
| |
| // sort, so that we can perform a binary search |
| llvm::sort(Indices.begin(), Indices.end(), CompareKey); |
| |
| bool Valid = true; |
| (void)Valid; |
| // for each SUnit in the NodeOrder, check whether |
| // it appears after both a successor and a predecessor |
| // of the SUnit. If this is the case, and the SUnit |
| // is not part of circuit, then the NodeOrder is not |
| // valid. |
| for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { |
| SUnit *SU = NodeOrder[i]; |
| unsigned Index = i; |
| |
| bool PredBefore = false; |
| bool SuccBefore = false; |
| |
| SUnit *Succ; |
| SUnit *Pred; |
| (void)Succ; |
| (void)Pred; |
| |
| for (SDep &PredEdge : SU->Preds) { |
| SUnit *PredSU = PredEdge.getSUnit(); |
| unsigned PredIndex = |
| std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), |
| std::make_pair(PredSU, 0), CompareKey)); |
| if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { |
| PredBefore = true; |
| Pred = PredSU; |
| break; |
| } |
| } |
| |
| for (SDep &SuccEdge : SU->Succs) { |
| SUnit *SuccSU = SuccEdge.getSUnit(); |
| unsigned SuccIndex = |
| std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), |
| std::make_pair(SuccSU, 0), CompareKey)); |
| if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { |
| SuccBefore = true; |
| Succ = SuccSU; |
| break; |
| } |
| } |
| |
| if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { |
| // instructions in circuits are allowed to be scheduled |
| // after both a successor and predecessor. |
| bool InCircuit = std::any_of( |
| Circuits.begin(), Circuits.end(), |
| [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); |
| if (InCircuit) |
| LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); |
| else { |
| Valid = false; |
| NumNodeOrderIssues++; |
| LLVM_DEBUG(dbgs() << "Predecessor ";); |
| } |
| LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum |
| << " are scheduled before node " << SU->NodeNum |
| << "\n";); |
| } |
| } |
| |
| LLVM_DEBUG({ |
| if (!Valid) |
| dbgs() << "Invalid node order found!\n"; |
| }); |
| } |
| |
| /// Attempt to fix the degenerate cases when the instruction serialization |
| /// causes the register lifetimes to overlap. For example, |
| /// p' = store_pi(p, b) |
| /// = load p, offset |
| /// In this case p and p' overlap, which means that two registers are needed. |
| /// Instead, this function changes the load to use p' and updates the offset. |
| void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { |
| unsigned OverlapReg = 0; |
| unsigned NewBaseReg = 0; |
| for (SUnit *SU : Instrs) { |
| MachineInstr *MI = SU->getInstr(); |
| for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| // Look for an instruction that uses p. The instruction occurs in the |
| // same cycle but occurs later in the serialized order. |
| if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { |
| // Check that the instruction appears in the InstrChanges structure, |
| // which contains instructions that can have the offset updated. |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
| InstrChanges.find(SU); |
| if (It != InstrChanges.end()) { |
| unsigned BasePos, OffsetPos; |
| // Update the base register and adjust the offset. |
| if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(MI); |
| NewMI->getOperand(BasePos).setReg(NewBaseReg); |
| int64_t NewOffset = |
| MI->getOperand(OffsetPos).getImm() - It->second.second; |
| NewMI->getOperand(OffsetPos).setImm(NewOffset); |
| SU->setInstr(NewMI); |
| MISUnitMap[NewMI] = SU; |
| NewMIs.insert(NewMI); |
| } |
| } |
| OverlapReg = 0; |
| NewBaseReg = 0; |
| break; |
| } |
| // Look for an instruction of the form p' = op(p), which uses and defines |
| // two virtual registers that get allocated to the same physical register. |
| unsigned TiedUseIdx = 0; |
| if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { |
| // OverlapReg is p in the example above. |
| OverlapReg = MI->getOperand(TiedUseIdx).getReg(); |
| // NewBaseReg is p' in the example above. |
| NewBaseReg = MI->getOperand(i).getReg(); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// After the schedule has been formed, call this function to combine |
| /// the instructions from the different stages/cycles. That is, this |
| /// function creates a schedule that represents a single iteration. |
| void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { |
| // Move all instructions to the first stage from later stages. |
| for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { |
| for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; |
| ++stage) { |
| std::deque<SUnit *> &cycleInstrs = |
| ScheduledInstrs[cycle + (stage * InitiationInterval)]; |
| for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), |
| E = cycleInstrs.rend(); |
| I != E; ++I) |
| ScheduledInstrs[cycle].push_front(*I); |
| } |
| } |
| // Iterate over the definitions in each instruction, and compute the |
| // stage difference for each use. Keep the maximum value. |
| for (auto &I : InstrToCycle) { |
| int DefStage = stageScheduled(I.first); |
| MachineInstr *MI = I.first->getInstr(); |
| for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| |
| unsigned Reg = Op.getReg(); |
| unsigned MaxDiff = 0; |
| bool PhiIsSwapped = false; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), |
| EI = MRI.use_end(); |
| UI != EI; ++UI) { |
| MachineOperand &UseOp = *UI; |
| MachineInstr *UseMI = UseOp.getParent(); |
| SUnit *SUnitUse = SSD->getSUnit(UseMI); |
| int UseStage = stageScheduled(SUnitUse); |
| unsigned Diff = 0; |
| if (UseStage != -1 && UseStage >= DefStage) |
| Diff = UseStage - DefStage; |
| if (MI->isPHI()) { |
| if (isLoopCarried(SSD, *MI)) |
| ++Diff; |
| else |
| PhiIsSwapped = true; |
| } |
| MaxDiff = std::max(Diff, MaxDiff); |
| } |
| RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); |
| } |
| } |
| |
| // Erase all the elements in the later stages. Only one iteration should |
| // remain in the scheduled list, and it contains all the instructions. |
| for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) |
| ScheduledInstrs.erase(cycle); |
| |
| // Change the registers in instruction as specified in the InstrChanges |
| // map. We need to use the new registers to create the correct order. |
| for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { |
| SUnit *SU = &SSD->SUnits[i]; |
| SSD->applyInstrChange(SU->getInstr(), *this); |
| } |
| |
| // Reorder the instructions in each cycle to fix and improve the |
| // generated code. |
| for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { |
| std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; |
| std::deque<SUnit *> newOrderPhi; |
| for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { |
| SUnit *SU = cycleInstrs[i]; |
| if (SU->getInstr()->isPHI()) |
| newOrderPhi.push_back(SU); |
| } |
| std::deque<SUnit *> newOrderI; |
| for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { |
| SUnit *SU = cycleInstrs[i]; |
| if (!SU->getInstr()->isPHI()) |
| orderDependence(SSD, SU, newOrderI); |
| } |
| // Replace the old order with the new order. |
| cycleInstrs.swap(newOrderPhi); |
| cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); |
| SSD->fixupRegisterOverlaps(cycleInstrs); |
| } |
| |
| LLVM_DEBUG(dump();); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the schedule information to the given output. |
| void SMSchedule::print(raw_ostream &os) const { |
| // Iterate over each cycle. |
| for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { |
| // Iterate over each instruction in the cycle. |
| const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); |
| for (SUnit *CI : cycleInstrs->second) { |
| os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; |
| os << "(" << CI->NodeNum << ") "; |
| CI->getInstr()->print(os); |
| os << "\n"; |
| } |
| } |
| } |
| |
| /// Utility function used for debugging to print the schedule. |
| LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } |
| #endif |