| //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CCState class, used for lowering and implementing |
| // calling conventions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, |
| SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) |
| : CallingConv(CC), IsVarArg(isVarArg), MF(mf), |
| TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) { |
| // No stack is used. |
| StackOffset = 0; |
| MaxStackArgAlign = 1; |
| |
| clearByValRegsInfo(); |
| UsedRegs.resize((TRI.getNumRegs()+31)/32); |
| } |
| |
| /// Allocate space on the stack large enough to pass an argument by value. |
| /// The size and alignment information of the argument is encoded in |
| /// its parameter attribute. |
| void CCState::HandleByVal(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| int MinSize, int MinAlign, |
| ISD::ArgFlagsTy ArgFlags) { |
| unsigned Align = ArgFlags.getByValAlign(); |
| unsigned Size = ArgFlags.getByValSize(); |
| if (MinSize > (int)Size) |
| Size = MinSize; |
| if (MinAlign > (int)Align) |
| Align = MinAlign; |
| ensureMaxAlignment(Align); |
| MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align); |
| Size = unsigned(alignTo(Size, MinAlign)); |
| unsigned Offset = AllocateStack(Size, Align); |
| addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| } |
| |
| /// Mark a register and all of its aliases as allocated. |
| void CCState::MarkAllocated(unsigned Reg) { |
| for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) |
| UsedRegs[*AI/32] |= 1 << (*AI&31); |
| } |
| |
| bool CCState::IsShadowAllocatedReg(unsigned Reg) const { |
| if (!isAllocated(Reg)) |
| return false; |
| |
| for (auto const &ValAssign : Locs) { |
| if (ValAssign.isRegLoc()) { |
| for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true); |
| AI.isValid(); ++AI) { |
| if (*AI == Reg) |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /// Analyze an array of argument values, |
| /// incorporating info about the formals into this state. |
| void |
| CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, |
| CCAssignFn Fn) { |
| unsigned NumArgs = Ins.size(); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ArgVT = Ins[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; |
| if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Formal argument #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| /// Analyze the return values of a function, returning true if the return can |
| /// be performed without sret-demotion and false otherwise. |
| bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| CCAssignFn Fn) { |
| // Determine which register each value should be copied into. |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| MVT VT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Analyze the returned values of a return, |
| /// incorporating info about the result values into this state. |
| void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| CCAssignFn Fn) { |
| // Determine which register each value should be copied into. |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| MVT VT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Return operand #" << i << " has unhandled type " |
| << EVT(VT).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| /// Analyze the outgoing arguments to a call, |
| /// incorporating info about the passed values into this state. |
| void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| CCAssignFn Fn) { |
| unsigned NumOps = Outs.size(); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| MVT ArgVT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Call operand #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| /// Same as above except it takes vectors of types and argument flags. |
| void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, |
| SmallVectorImpl<ISD::ArgFlagsTy> &Flags, |
| CCAssignFn Fn) { |
| unsigned NumOps = ArgVTs.size(); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| MVT ArgVT = ArgVTs[i]; |
| ISD::ArgFlagsTy ArgFlags = Flags[i]; |
| if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Call operand #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| /// Analyze the return values of a call, incorporating info about the passed |
| /// values into this state. |
| void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, |
| CCAssignFn Fn) { |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| MVT VT = Ins[i].VT; |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Call result #" << i << " has unhandled type " |
| << EVT(VT).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| /// Same as above except it's specialized for calls that produce a single value. |
| void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { |
| if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Call result has unhandled type " |
| << EVT(VT).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { |
| if (VT.isVector()) |
| return true; // Assume -msse-regparm might be in effect. |
| if (!VT.isInteger()) |
| return false; |
| if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall) |
| return true; |
| return false; |
| } |
| |
| void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, |
| MVT VT, CCAssignFn Fn) { |
| unsigned SavedStackOffset = StackOffset; |
| unsigned SavedMaxStackArgAlign = MaxStackArgAlign; |
| unsigned NumLocs = Locs.size(); |
| |
| // Set the 'inreg' flag if it is used for this calling convention. |
| ISD::ArgFlagsTy Flags; |
| if (isValueTypeInRegForCC(CallingConv, VT)) |
| Flags.setInReg(); |
| |
| // Allocate something of this value type repeatedly until we get assigned a |
| // location in memory. |
| bool HaveRegParm = true; |
| while (HaveRegParm) { |
| if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { |
| #ifndef NDEBUG |
| dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() |
| << " while computing remaining regparms\n"; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| HaveRegParm = Locs.back().isRegLoc(); |
| } |
| |
| // Copy all the registers from the value locations we added. |
| assert(NumLocs < Locs.size() && "CC assignment failed to add location"); |
| for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) |
| if (Locs[I].isRegLoc()) |
| Regs.push_back(MCPhysReg(Locs[I].getLocReg())); |
| |
| // Clear the assigned values and stack memory. We leave the registers marked |
| // as allocated so that future queries don't return the same registers, i.e. |
| // when i64 and f64 are both passed in GPRs. |
| StackOffset = SavedStackOffset; |
| MaxStackArgAlign = SavedMaxStackArgAlign; |
| Locs.resize(NumLocs); |
| } |
| |
| void CCState::analyzeMustTailForwardedRegisters( |
| SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, |
| CCAssignFn Fn) { |
| // Oftentimes calling conventions will not user register parameters for |
| // variadic functions, so we need to assume we're not variadic so that we get |
| // all the registers that might be used in a non-variadic call. |
| SaveAndRestore<bool> SavedVarArg(IsVarArg, false); |
| SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true); |
| |
| for (MVT RegVT : RegParmTypes) { |
| SmallVector<MCPhysReg, 8> RemainingRegs; |
| getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); |
| const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); |
| const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); |
| for (MCPhysReg PReg : RemainingRegs) { |
| unsigned VReg = MF.addLiveIn(PReg, RC); |
| Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); |
| } |
| } |
| } |
| |
| bool CCState::resultsCompatible(CallingConv::ID CalleeCC, |
| CallingConv::ID CallerCC, MachineFunction &MF, |
| LLVMContext &C, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| CCAssignFn CalleeFn, CCAssignFn CallerFn) { |
| if (CalleeCC == CallerCC) |
| return true; |
| SmallVector<CCValAssign, 4> RVLocs1; |
| CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); |
| CCInfo1.AnalyzeCallResult(Ins, CalleeFn); |
| |
| SmallVector<CCValAssign, 4> RVLocs2; |
| CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); |
| CCInfo2.AnalyzeCallResult(Ins, CallerFn); |
| |
| if (RVLocs1.size() != RVLocs2.size()) |
| return false; |
| for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) { |
| const CCValAssign &Loc1 = RVLocs1[I]; |
| const CCValAssign &Loc2 = RVLocs2[I]; |
| if (Loc1.getLocInfo() != Loc2.getLocInfo()) |
| return false; |
| bool RegLoc1 = Loc1.isRegLoc(); |
| if (RegLoc1 != Loc2.isRegLoc()) |
| return false; |
| if (RegLoc1) { |
| if (Loc1.getLocReg() != Loc2.getLocReg()) |
| return false; |
| } else { |
| if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) |
| return false; |
| } |
| } |
| return true; |
| } |