| // Copyright 2020 The Marl Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // This file contains a number of benchmarks that do not use marl. |
| // They exist to compare marl's performance against other simple scheduler |
| // approaches. |
| |
| #include "marl_bench.h" |
| |
| #include "benchmark/benchmark.h" |
| |
| #include <mutex> |
| #include <queue> |
| #include <thread> |
| |
| namespace { |
| |
| // Event provides a basic wait-and-signal synchronization primitive. |
| class Event { |
| public: |
| // wait blocks until the event is fired. |
| void wait() { |
| std::unique_lock<std::mutex> lock(mutex_); |
| cv_.wait(lock, [&] { return signalled_; }); |
| } |
| |
| // signal signals the Event, unblocking any calls to wait. |
| void signal() { |
| std::unique_lock<std::mutex> lock(mutex_); |
| signalled_ = true; |
| cv_.notify_all(); |
| } |
| |
| private: |
| std::condition_variable cv_; |
| std::mutex mutex_; |
| bool signalled_ = false; |
| }; |
| |
| } // anonymous namespace |
| |
| // A simple multi-thread, single-queue task executor that shares a single mutex |
| // across N threads. This implementation suffers from lock contention. |
| static void SingleQueueTaskExecutor(benchmark::State& state) { |
| using Task = std::function<uint32_t(uint32_t)>; |
| |
| auto const numTasks = Schedule::numTasks(state); |
| auto const numThreads = Schedule::numThreads(state); |
| |
| for (auto _ : state) { |
| state.PauseTiming(); |
| |
| std::mutex mutex; |
| // Set everything up with the mutex locked to prevent the threads from |
| // performing work while the timing is paused. |
| mutex.lock(); |
| |
| // Set up the tasks. |
| std::queue<Task> tasks; |
| for (int i = 0; i < numTasks; i++) { |
| tasks.push(Schedule::doSomeWork); |
| } |
| |
| auto taskRunner = [&] { |
| while (true) { |
| Task task; |
| |
| // Take the next task. |
| // Note that this lock is likely to block while waiting for other |
| // threads. |
| mutex.lock(); |
| if (tasks.size() > 0) { |
| task = tasks.front(); |
| tasks.pop(); |
| } |
| mutex.unlock(); |
| |
| if (task) { |
| task(123); |
| } else { |
| return; // done. |
| } |
| } |
| }; |
| |
| // Set up the threads. |
| std::vector<std::thread> threads; |
| for (int i = 0; i < numThreads; i++) { |
| threads.emplace_back(std::thread(taskRunner)); |
| } |
| |
| state.ResumeTiming(); |
| mutex.unlock(); // Go threads, go! |
| |
| if (numThreads > 0) { |
| // Wait for all threads to finish. |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| } else { |
| // Single-threaded test - just run the worker. |
| taskRunner(); |
| } |
| } |
| } |
| BENCHMARK(SingleQueueTaskExecutor)->Apply(Schedule::args); |
| |
| // A simple multi-thread, multi-queue task executor that avoids lock contention. |
| // Tasks queues are evenly balanced, and each should take an equal amount of |
| // time to execute. |
| static void MultiQueueTaskExecutor(benchmark::State& state) { |
| using Task = std::function<uint32_t(uint32_t)>; |
| using TaskQueue = std::vector<Task>; |
| |
| auto const numTasks = Schedule::numTasks(state); |
| auto const numThreads = Schedule::numThreads(state); |
| auto const numQueues = std::max(numThreads, 1); |
| |
| // Set up the tasks queues. |
| std::vector<TaskQueue> taskQueues(numQueues); |
| for (int i = 0; i < numTasks; i++) { |
| taskQueues[i % numQueues].emplace_back(Schedule::doSomeWork); |
| } |
| |
| for (auto _ : state) { |
| if (numThreads > 0) { |
| state.PauseTiming(); |
| Event start; |
| |
| // Set up the threads. |
| std::vector<std::thread> threads; |
| for (int i = 0; i < numThreads; i++) { |
| threads.emplace_back(std::thread([&, i] { |
| start.wait(); |
| for (auto& task : taskQueues[i]) { |
| task(123); |
| } |
| })); |
| } |
| |
| state.ResumeTiming(); |
| start.signal(); |
| |
| // Wait for all threads to finish. |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| } else { |
| // Single-threaded test - just run the tasks. |
| for (auto& task : taskQueues[0]) { |
| task(123); |
| } |
| } |
| } |
| } |
| BENCHMARK(MultiQueueTaskExecutor)->Apply(Schedule::args); |