| //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements bookkeeping for "interesting" users of expressions |
| // computed from induction variables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "iv-users" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| char IVUsers::ID = 0; |
| INITIALIZE_PASS_BEGIN(IVUsers, "iv-users", |
| "Induction Variable Users", false, true) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_END(IVUsers, "iv-users", |
| "Induction Variable Users", false, true) |
| |
| Pass *llvm::createIVUsersPass() { |
| return new IVUsers(); |
| } |
| |
| /// isInteresting - Test whether the given expression is "interesting" when |
| /// used by the given expression, within the context of analyzing the |
| /// given loop. |
| static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, |
| ScalarEvolution *SE, LoopInfo *LI) { |
| // An addrec is interesting if it's affine or if it has an interesting start. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| // Keep things simple. Don't touch loop-variant strides unless they're |
| // only used outside the loop and we can simplify them. |
| if (AR->getLoop() == L) |
| return AR->isAffine() || |
| (!L->contains(I) && |
| SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); |
| // Otherwise recurse to see if the start value is interesting, and that |
| // the step value is not interesting, since we don't yet know how to |
| // do effective SCEV expansions for addrecs with interesting steps. |
| return isInteresting(AR->getStart(), I, L, SE, LI) && |
| !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); |
| } |
| |
| // An add is interesting if exactly one of its operands is interesting. |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| bool AnyInterestingYet = false; |
| for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); |
| OI != OE; ++OI) |
| if (isInteresting(*OI, I, L, SE, LI)) { |
| if (AnyInterestingYet) |
| return false; |
| AnyInterestingYet = true; |
| } |
| return AnyInterestingYet; |
| } |
| |
| // Nothing else is interesting here. |
| return false; |
| } |
| |
| /// AddUsersIfInteresting - Inspect the specified instruction. If it is a |
| /// reducible SCEV, recursively add its users to the IVUsesByStride set and |
| /// return true. Otherwise, return false. |
| bool IVUsers::AddUsersIfInteresting(Instruction *I) { |
| if (!SE->isSCEVable(I->getType())) |
| return false; // Void and FP expressions cannot be reduced. |
| |
| // LSR is not APInt clean, do not touch integers bigger than 64-bits. |
| // Also avoid creating IVs of non-native types. For example, we don't want a |
| // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. |
| uint64_t Width = SE->getTypeSizeInBits(I->getType()); |
| if (Width > 64 || (TD && !TD->isLegalInteger(Width))) |
| return false; |
| |
| if (!Processed.insert(I)) |
| return true; // Instruction already handled. |
| |
| // Get the symbolic expression for this instruction. |
| const SCEV *ISE = SE->getSCEV(I); |
| |
| // If we've come to an uninteresting expression, stop the traversal and |
| // call this a user. |
| if (!isInteresting(ISE, I, L, SE, LI)) |
| return false; |
| |
| SmallPtrSet<Instruction *, 4> UniqueUsers; |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (!UniqueUsers.insert(User)) |
| continue; |
| |
| // Do not infinitely recurse on PHI nodes. |
| if (isa<PHINode>(User) && Processed.count(User)) |
| continue; |
| |
| // Descend recursively, but not into PHI nodes outside the current loop. |
| // It's important to see the entire expression outside the loop to get |
| // choices that depend on addressing mode use right, although we won't |
| // consider references outside the loop in all cases. |
| // If User is already in Processed, we don't want to recurse into it again, |
| // but do want to record a second reference in the same instruction. |
| bool AddUserToIVUsers = false; |
| if (LI->getLoopFor(User->getParent()) != L) { |
| if (isa<PHINode>(User) || Processed.count(User) || |
| !AddUsersIfInteresting(User)) { |
| DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' |
| << " OF SCEV: " << *ISE << '\n'); |
| AddUserToIVUsers = true; |
| } |
| } else if (Processed.count(User) || !AddUsersIfInteresting(User)) { |
| DEBUG(dbgs() << "FOUND USER: " << *User << '\n' |
| << " OF SCEV: " << *ISE << '\n'); |
| AddUserToIVUsers = true; |
| } |
| |
| if (AddUserToIVUsers) { |
| // Okay, we found a user that we cannot reduce. |
| IVUses.push_back(new IVStrideUse(this, User, I)); |
| IVStrideUse &NewUse = IVUses.back(); |
| // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. |
| // The regular return value here is discarded; instead of recording |
| // it, we just recompute it when we need it. |
| ISE = TransformForPostIncUse(NormalizeAutodetect, |
| ISE, User, I, |
| NewUse.PostIncLoops, |
| *SE, *DT); |
| DEBUG(if (SE->getSCEV(I) != ISE) |
| dbgs() << " NORMALIZED TO: " << *ISE << '\n'); |
| } |
| } |
| return true; |
| } |
| |
| IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { |
| IVUses.push_back(new IVStrideUse(this, User, Operand)); |
| return IVUses.back(); |
| } |
| |
| IVUsers::IVUsers() |
| : LoopPass(ID) { |
| initializeIVUsersPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) { |
| |
| L = l; |
| LI = &getAnalysis<LoopInfo>(); |
| DT = &getAnalysis<DominatorTree>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| TD = getAnalysisIfAvailable<TargetData>(); |
| |
| // Find all uses of induction variables in this loop, and categorize |
| // them by stride. Start by finding all of the PHI nodes in the header for |
| // this loop. If they are induction variables, inspect their uses. |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) |
| (void)AddUsersIfInteresting(I); |
| |
| return false; |
| } |
| |
| void IVUsers::print(raw_ostream &OS, const Module *M) const { |
| OS << "IV Users for loop "; |
| WriteAsOperand(OS, L->getHeader(), false); |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| OS << " with backedge-taken count " |
| << *SE->getBackedgeTakenCount(L); |
| } |
| OS << ":\n"; |
| |
| for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(), |
| E = IVUses.end(); UI != E; ++UI) { |
| OS << " "; |
| WriteAsOperand(OS, UI->getOperandValToReplace(), false); |
| OS << " = " << *getReplacementExpr(*UI); |
| for (PostIncLoopSet::const_iterator |
| I = UI->PostIncLoops.begin(), |
| E = UI->PostIncLoops.end(); I != E; ++I) { |
| OS << " (post-inc with loop "; |
| WriteAsOperand(OS, (*I)->getHeader(), false); |
| OS << ")"; |
| } |
| OS << " in "; |
| UI->getUser()->print(OS); |
| OS << '\n'; |
| } |
| } |
| |
| void IVUsers::dump() const { |
| print(dbgs()); |
| } |
| |
| void IVUsers::releaseMemory() { |
| Processed.clear(); |
| IVUses.clear(); |
| } |
| |
| /// getReplacementExpr - Return a SCEV expression which computes the |
| /// value of the OperandValToReplace. |
| const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { |
| return SE->getSCEV(IU.getOperandValToReplace()); |
| } |
| |
| /// getExpr - Return the expression for the use. |
| const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { |
| return |
| TransformForPostIncUse(Normalize, getReplacementExpr(IU), |
| IU.getUser(), IU.getOperandValToReplace(), |
| const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), |
| *SE, *DT); |
| } |
| |
| static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (AR->getLoop() == L) |
| return AR; |
| return findAddRecForLoop(AR->getStart(), L); |
| } |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| I != E; ++I) |
| if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) |
| return AR; |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { |
| if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) |
| return AR->getStepRecurrence(*SE); |
| return 0; |
| } |
| |
| void IVStrideUse::transformToPostInc(const Loop *L) { |
| PostIncLoops.insert(L); |
| } |
| |
| void IVStrideUse::deleted() { |
| // Remove this user from the list. |
| Parent->IVUses.erase(this); |
| // this now dangles! |
| } |