| //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the structures used for instruction |
| // itineraries, stages, and operand reads/writes. This is used by |
| // schedulers to determine instruction stages and latencies. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_MC_MCINSTRITINERARIES_H |
| #define LLVM_MC_MCINSTRITINERARIES_H |
| |
| #include <algorithm> |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| /// Instruction stage - These values represent a non-pipelined step in |
| /// the execution of an instruction. Cycles represents the number of |
| /// discrete time slots needed to complete the stage. Units represent |
| /// the choice of functional units that can be used to complete the |
| /// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many |
| /// cycles should elapse from the start of this stage to the start of |
| /// the next stage in the itinerary. A value of -1 indicates that the |
| /// next stage should start immediately after the current one. |
| /// For example: |
| /// |
| /// { 1, x, -1 } |
| /// indicates that the stage occupies FU x for 1 cycle and that |
| /// the next stage starts immediately after this one. |
| /// |
| /// { 2, x|y, 1 } |
| /// indicates that the stage occupies either FU x or FU y for 2 |
| /// consecuative cycles and that the next stage starts one cycle |
| /// after this stage starts. That is, the stage requirements |
| /// overlap in time. |
| /// |
| /// { 1, x, 0 } |
| /// indicates that the stage occupies FU x for 1 cycle and that |
| /// the next stage starts in this same cycle. This can be used to |
| /// indicate that the instruction requires multiple stages at the |
| /// same time. |
| /// |
| /// FU reservation can be of two different kinds: |
| /// - FUs which instruction actually requires |
| /// - FUs which instruction just reserves. Reserved unit is not available for |
| /// execution of other instruction. However, several instructions can reserve |
| /// the same unit several times. |
| /// Such two types of units reservation is used to model instruction domain |
| /// change stalls, FUs using the same resource (e.g. same register file), etc. |
| |
| struct InstrStage { |
| enum ReservationKinds { |
| Required = 0, |
| Reserved = 1 |
| }; |
| |
| unsigned Cycles_; ///< Length of stage in machine cycles |
| unsigned Units_; ///< Choice of functional units |
| int NextCycles_; ///< Number of machine cycles to next stage |
| ReservationKinds Kind_; ///< Kind of the FU reservation |
| |
| /// getCycles - returns the number of cycles the stage is occupied |
| unsigned getCycles() const { |
| return Cycles_; |
| } |
| |
| /// getUnits - returns the choice of FUs |
| unsigned getUnits() const { |
| return Units_; |
| } |
| |
| ReservationKinds getReservationKind() const { |
| return Kind_; |
| } |
| |
| /// getNextCycles - returns the number of cycles from the start of |
| /// this stage to the start of the next stage in the itinerary |
| unsigned getNextCycles() const { |
| return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_; |
| } |
| }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// Instruction itinerary - An itinerary represents the scheduling |
| /// information for an instruction. This includes a set of stages |
| /// occupies by the instruction, and the pipeline cycle in which |
| /// operands are read and written. |
| /// |
| struct InstrItinerary { |
| unsigned NumMicroOps; ///< # of micro-ops, 0 means it's variable |
| unsigned FirstStage; ///< Index of first stage in itinerary |
| unsigned LastStage; ///< Index of last + 1 stage in itinerary |
| unsigned FirstOperandCycle; ///< Index of first operand rd/wr |
| unsigned LastOperandCycle; ///< Index of last + 1 operand rd/wr |
| }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// Instruction itinerary Data - Itinerary data supplied by a subtarget to be |
| /// used by a target. |
| /// |
| class InstrItineraryData { |
| public: |
| const InstrStage *Stages; ///< Array of stages selected |
| const unsigned *OperandCycles; ///< Array of operand cycles selected |
| const unsigned *Forwardings; ///< Array of pipeline forwarding pathes |
| const InstrItinerary *Itineraries; ///< Array of itineraries selected |
| unsigned IssueWidth; ///< Max issue per cycle. 0=Unknown. |
| |
| /// Ctors. |
| /// |
| InstrItineraryData() : Stages(0), OperandCycles(0), Forwardings(0), |
| Itineraries(0), IssueWidth(0) {} |
| |
| InstrItineraryData(const InstrStage *S, const unsigned *OS, |
| const unsigned *F, const InstrItinerary *I) |
| : Stages(S), OperandCycles(OS), Forwardings(F), Itineraries(I), |
| IssueWidth(0) {} |
| |
| /// isEmpty - Returns true if there are no itineraries. |
| /// |
| bool isEmpty() const { return Itineraries == 0; } |
| |
| /// isEndMarker - Returns true if the index is for the end marker |
| /// itinerary. |
| /// |
| bool isEndMarker(unsigned ItinClassIndx) const { |
| return ((Itineraries[ItinClassIndx].FirstStage == ~0U) && |
| (Itineraries[ItinClassIndx].LastStage == ~0U)); |
| } |
| |
| /// beginStage - Return the first stage of the itinerary. |
| /// |
| const InstrStage *beginStage(unsigned ItinClassIndx) const { |
| unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage; |
| return Stages + StageIdx; |
| } |
| |
| /// endStage - Return the last+1 stage of the itinerary. |
| /// |
| const InstrStage *endStage(unsigned ItinClassIndx) const { |
| unsigned StageIdx = Itineraries[ItinClassIndx].LastStage; |
| return Stages + StageIdx; |
| } |
| |
| /// getStageLatency - Return the total stage latency of the given |
| /// class. The latency is the maximum completion time for any stage |
| /// in the itinerary. |
| /// |
| unsigned getStageLatency(unsigned ItinClassIndx) const { |
| // If the target doesn't provide itinerary information, use a simple |
| // non-zero default value for all instructions. Some target's provide a |
| // dummy (Generic) itinerary which should be handled as if it's itinerary is |
| // empty. We identify this by looking for a reference to stage zero (invalid |
| // stage). This is different from beginStage == endState != 0, which could |
| // be used for zero-latency pseudo ops. |
| if (isEmpty() || Itineraries[ItinClassIndx].FirstStage == 0) |
| return 1; |
| |
| // Calculate the maximum completion time for any stage. |
| unsigned Latency = 0, StartCycle = 0; |
| for (const InstrStage *IS = beginStage(ItinClassIndx), |
| *E = endStage(ItinClassIndx); IS != E; ++IS) { |
| Latency = std::max(Latency, StartCycle + IS->getCycles()); |
| StartCycle += IS->getNextCycles(); |
| } |
| |
| return Latency; |
| } |
| |
| /// getOperandCycle - Return the cycle for the given class and |
| /// operand. Return -1 if no cycle is specified for the operand. |
| /// |
| int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const { |
| if (isEmpty()) |
| return -1; |
| |
| unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle; |
| unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle; |
| if ((FirstIdx + OperandIdx) >= LastIdx) |
| return -1; |
| |
| return (int)OperandCycles[FirstIdx + OperandIdx]; |
| } |
| |
| /// hasPipelineForwarding - Return true if there is a pipeline forwarding |
| /// between instructions of itinerary classes DefClass and UseClasses so that |
| /// value produced by an instruction of itinerary class DefClass, operand |
| /// index DefIdx can be bypassed when it's read by an instruction of |
| /// itinerary class UseClass, operand index UseIdx. |
| bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx, |
| unsigned UseClass, unsigned UseIdx) const { |
| unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle; |
| unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle; |
| if ((FirstDefIdx + DefIdx) >= LastDefIdx) |
| return false; |
| if (Forwardings[FirstDefIdx + DefIdx] == 0) |
| return false; |
| |
| unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle; |
| unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle; |
| if ((FirstUseIdx + UseIdx) >= LastUseIdx) |
| return false; |
| |
| return Forwardings[FirstDefIdx + DefIdx] == |
| Forwardings[FirstUseIdx + UseIdx]; |
| } |
| |
| /// getOperandLatency - Compute and return the use operand latency of a given |
| /// itinerary class and operand index if the value is produced by an |
| /// instruction of the specified itinerary class and def operand index. |
| int getOperandLatency(unsigned DefClass, unsigned DefIdx, |
| unsigned UseClass, unsigned UseIdx) const { |
| if (isEmpty()) |
| return -1; |
| |
| int DefCycle = getOperandCycle(DefClass, DefIdx); |
| if (DefCycle == -1) |
| return -1; |
| |
| int UseCycle = getOperandCycle(UseClass, UseIdx); |
| if (UseCycle == -1) |
| return -1; |
| |
| UseCycle = DefCycle - UseCycle + 1; |
| if (UseCycle > 0 && |
| hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx)) |
| // FIXME: This assumes one cycle benefit for every pipeline forwarding. |
| --UseCycle; |
| return UseCycle; |
| } |
| |
| /// isMicroCoded - Return true if the instructions in the given class decode |
| /// to more than one micro-ops. |
| bool isMicroCoded(unsigned ItinClassIndx) const { |
| if (isEmpty()) |
| return false; |
| return Itineraries[ItinClassIndx].NumMicroOps != 1; |
| } |
| }; |
| |
| |
| } // End llvm namespace |
| |
| #endif |