blob: 15f4b5140e29ae807d5cbad92c03a206b900e671 [file] [log] [blame]
//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "ARMISelLowering.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMCallingConv.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMPerfectShuffle.h"
#include "ARMRegisterInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "arm-isel"
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
STATISTIC(NumConstpoolPromoted,
"Number of constants with their storage promoted into constant pools");
static cl::opt<bool>
ARMInterworking("arm-interworking", cl::Hidden,
cl::desc("Enable / disable ARM interworking (for debugging only)"),
cl::init(true));
static cl::opt<bool> EnableConstpoolPromotion(
"arm-promote-constant", cl::Hidden,
cl::desc("Enable / disable promotion of unnamed_addr constants into "
"constant pools"),
cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
static cl::opt<unsigned> ConstpoolPromotionMaxSize(
"arm-promote-constant-max-size", cl::Hidden,
cl::desc("Maximum size of constant to promote into a constant pool"),
cl::init(64));
static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
"arm-promote-constant-max-total", cl::Hidden,
cl::desc("Maximum size of ALL constants to promote into a constant pool"),
cl::init(128));
static cl::opt<unsigned>
MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
cl::desc("Maximum interleave factor for MVE VLDn to generate."),
cl::init(2));
// The APCS parameter registers.
static const MCPhysReg GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
MVT PromotedBitwiseVT) {
if (VT != PromotedLdStVT) {
setOperationAction(ISD::LOAD, VT, Promote);
AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
}
MVT ElemTy = VT.getVectorElementType();
if (ElemTy != MVT::f64)
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
if (ElemTy == MVT::i32) {
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
} else {
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
}
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (VT.isInteger()) {
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
}
// Promote all bit-wise operations.
if (VT.isInteger() && VT != PromotedBitwiseVT) {
setOperationAction(ISD::AND, VT, Promote);
AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
setOperationAction(ISD::OR, VT, Promote);
AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
setOperationAction(ISD::XOR, VT, Promote);
AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
}
// Neon does not support vector divide/remainder operations.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
if (!VT.isFloatingPoint() &&
VT != MVT::v2i64 && VT != MVT::v1i64)
for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
setOperationAction(Opcode, VT, Legal);
if (!VT.isFloatingPoint())
for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
setOperationAction(Opcode, VT, Legal);
}
void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
addRegisterClass(VT, &ARM::DPRRegClass);
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
}
void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
addRegisterClass(VT, &ARM::DPairRegClass);
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
}
void ARMTargetLowering::setAllExpand(MVT VT) {
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, VT, Expand);
// We support these really simple operations even on types where all
// the actual arithmetic has to be broken down into simpler
// operations or turned into library calls.
setOperationAction(ISD::BITCAST, VT, Legal);
setOperationAction(ISD::LOAD, VT, Legal);
setOperationAction(ISD::STORE, VT, Legal);
setOperationAction(ISD::UNDEF, VT, Legal);
}
void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
LegalizeAction Action) {
setLoadExtAction(ISD::EXTLOAD, From, To, Action);
setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
}
void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
for (auto VT : IntTypes) {
addRegisterClass(VT, &ARM::MQPRRegClass);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::CTLZ, VT, Legal);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::BITREVERSE, VT, Legal);
setOperationAction(ISD::BSWAP, VT, Legal);
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
// No native support for these.
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
// Vector reductions
setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
if (!HasMVEFP) {
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
}
// Pre and Post inc are supported on loads and stores
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
setIndexedMaskedLoadAction(im, VT, Legal);
setIndexedMaskedStoreAction(im, VT, Legal);
}
}
const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
for (auto VT : FloatTypes) {
addRegisterClass(VT, &ARM::MQPRRegClass);
if (!HasMVEFP)
setAllExpand(VT);
// These are legal or custom whether we have MVE.fp or not
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Legal);
// Pre and Post inc are supported on loads and stores
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
setIndexedMaskedLoadAction(im, VT, Legal);
setIndexedMaskedStoreAction(im, VT, Legal);
}
if (HasMVEFP) {
setOperationAction(ISD::FMINNUM, VT, Legal);
setOperationAction(ISD::FMAXNUM, VT, Legal);
setOperationAction(ISD::FROUND, VT, Legal);
// No native support for these.
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
}
}
// We 'support' these types up to bitcast/load/store level, regardless of
// MVE integer-only / float support. Only doing FP data processing on the FP
// vector types is inhibited at integer-only level.
const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
for (auto VT : LongTypes) {
addRegisterClass(VT, &ARM::MQPRRegClass);
setAllExpand(VT);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
}
// We can do bitwise operations on v2i64 vectors
setOperationAction(ISD::AND, MVT::v2i64, Legal);
setOperationAction(ISD::OR, MVT::v2i64, Legal);
setOperationAction(ISD::XOR, MVT::v2i64, Legal);
// It is legal to extload from v4i8 to v4i16 or v4i32.
addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
// It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
// Some truncating stores are legal too.
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
// Pre and Post inc on these are legal, given the correct extends
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
setIndexedMaskedLoadAction(im, VT, Legal);
setIndexedMaskedStoreAction(im, VT, Legal);
}
}
// Predicate types
const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
for (auto VT : pTypes) {
addRegisterClass(VT, &ARM::VCCRRegClass);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
}
}
ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
const ARMSubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
RegInfo = Subtarget->getRegisterInfo();
Itins = Subtarget->getInstrItineraryData();
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
!Subtarget->isTargetWatchOS()) {
bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
IsHFTarget ? CallingConv::ARM_AAPCS_VFP
: CallingConv::ARM_AAPCS);
}
if (Subtarget->isTargetMachO()) {
// Uses VFP for Thumb libfuncs if available.
if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Single-precision floating-point arithmetic.
{ RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
// Double-precision floating-point arithmetic.
{ RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
// Single-precision comparisons.
{ RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
{ RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
{ RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
{ RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
{ RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
{ RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
{ RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
// Double-precision comparisons.
{ RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
{ RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
{ RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
{ RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
{ RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
{ RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
{ RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
// Floating-point to integer conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
{ RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
// Conversions between floating types.
{ RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
// Integer to floating-point conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
// e.g., __floatunsidf vs. __floatunssidfvfp.
{ RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
}
}
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
// RTLIB
if (Subtarget->isAAPCS_ABI() &&
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Double-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 2
{ RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Double-precision floating-point comparison helper functions
// RTABI chapter 4.1.2, Table 3
{ RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
{ RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
// Single-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 4
{ RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Single-precision floating-point comparison helper functions
// RTABI chapter 4.1.2, Table 5
{ RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
{ RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
// Floating-point to integer conversions.
// RTABI chapter 4.1.2, Table 6
{ RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Conversions between floating types.
// RTABI chapter 4.1.2, Table 7
{ RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer to floating-point conversions.
// RTABI chapter 4.1.2, Table 8
{ RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Long long helper functions
// RTABI chapter 4.2, Table 9
{ RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer division functions
// RTABI chapter 4.3.1
{ RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
// EABI dependent RTLIB
if (TM.Options.EABIVersion == EABI::EABI4 ||
TM.Options.EABIVersion == EABI::EABI5) {
static const struct {
const RTLIB::Libcall Op;
const char *const Name;
const CallingConv::ID CC;
const ISD::CondCode Cond;
} MemOpsLibraryCalls[] = {
// Memory operations
// RTABI chapter 4.3.4
{ RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
};
for (const auto &LC : MemOpsLibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
}
}
if (Subtarget->isTargetWindows()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
// Use divmod compiler-rt calls for iOS 5.0 and later.
if (Subtarget->isTargetMachO() &&
!(Subtarget->isTargetIOS() &&
Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
}
// The half <-> float conversion functions are always soft-float on
// non-watchos platforms, but are needed for some targets which use a
// hard-float calling convention by default.
if (!Subtarget->isTargetWatchABI()) {
if (Subtarget->isAAPCS_ABI()) {
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
} else {
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
}
}
// In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
// a __gnu_ prefix (which is the default).
if (Subtarget->isTargetAEABI()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
{ RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
if (Subtarget->isThumb1Only())
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
else
addRegisterClass(MVT::i32, &ARM::GPRRegClass);
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
Subtarget->hasFPRegs()) {
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
addRegisterClass(MVT::f64, &ARM::DPRRegClass);
if (!Subtarget->hasVFP2Base())
setAllExpand(MVT::f32);
if (!Subtarget->hasFP64())
setAllExpand(MVT::f64);
}
if (Subtarget->hasFullFP16()) {
addRegisterClass(MVT::f16, &ARM::HPRRegClass);
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
}
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
addAllExtLoads(VT, InnerVT, Expand);
}
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
}
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
if (Subtarget->hasMVEIntegerOps())
addMVEVectorTypes(Subtarget->hasMVEFloatOps());
// Combine low-overhead loop intrinsics so that we can lower i1 types.
if (Subtarget->hasLOB()) {
setTargetDAGCombine(ISD::BRCOND);
setTargetDAGCombine(ISD::BR_CC);
}
if (Subtarget->hasNEON()) {
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
addDRTypeForNEON(MVT::v4i16);
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
addQRTypeForNEON(MVT::v16i8);
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
if (Subtarget->hasFullFP16()) {
addQRTypeForNEON(MVT::v8f16);
addDRTypeForNEON(MVT::v4f16);
}
}
if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
// none of Neon, MVE or VFP supports any arithmetic operations on it.
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
// FIXME: Code duplication: FDIV and FREM are expanded always, see
// ARMTargetLowering::addTypeForNEON method for details.
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
// FIXME: Create unittest.
// In another words, find a way when "copysign" appears in DAG with vector
// operands.
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
// FIXME: Code duplication: SETCC has custom operation action, see
// ARMTargetLowering::addTypeForNEON method for details.
setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
// FIXME: Create unittest for FNEG and for FABS.
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
// FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
setOperationAction(ISD::FMA, MVT::v2f64, Expand);
}
if (Subtarget->hasNEON()) {
// The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
// supported for v4f32.
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
// Mark v2f32 intrinsics.
setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
// Neon does not support some operations on v1i64 and v2i64 types.
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
// Custom handling for some quad-vector types to detect VMULL.
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
// Custom handling for some vector types to avoid expensive expansions
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
// Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
// a destination type that is wider than the source, and nor does
// it have a FP_TO_[SU]INT instruction with a narrower destination than
// source.
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
// NEON does not have single instruction CTPOP for vectors with element
// types wider than 8-bits. However, custom lowering can leverage the
// v8i8/v16i8 vcnt instruction.
setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
// NEON does not have single instruction CTTZ for vectors.
setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
// NEON only has FMA instructions as of VFP4.
if (!Subtarget->hasVFP4Base()) {
setOperationAction(ISD::FMA, MVT::v2f32, Expand);
setOperationAction(ISD::FMA, MVT::v4f32, Expand);
}
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::FP_TO_UINT);
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::LOAD);
// It is legal to extload from v4i8 to v4i16 or v4i32.
for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
MVT::v2i32}) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
}
}
}
if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
setTargetDAGCombine(ISD::BUILD_VECTOR);
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
}
if (!Subtarget->hasFP64()) {
// When targeting a floating-point unit with only single-precision
// operations, f64 is legal for the few double-precision instructions which
// are present However, no double-precision operations other than moves,
// loads and stores are provided by the hardware.
setOperationAction(ISD::FADD, MVT::f64, Expand);
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::FMUL, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FDIV, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
setOperationAction(ISD::FNEG, MVT::f64, Expand);
setOperationAction(ISD::FABS, MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f64, Expand);
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
setOperationAction(ISD::FEXP, MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
setOperationAction(ISD::FRINT, MVT::f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
}
if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
}
}
if (!Subtarget->hasFP16()) {
setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
}
computeRegisterProperties(Subtarget->getRegisterInfo());
// ARM does not have floating-point extending loads.
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
}
// ... or truncating stores
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
// ARM does not have i1 sign extending load.
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// ARM supports all 4 flavors of integer indexed load / store.
if (!Subtarget->isThumb1Only()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i1, Legal);
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i1, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
}
} else {
// Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
}
setOperationAction(ISD::SADDO, MVT::i32, Custom);
setOperationAction(ISD::UADDO, MVT::i32, Custom);
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
setOperationAction(ISD::USUBO, MVT::i32, Custom);
setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
if (Subtarget->hasDSP()) {
setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
}
if (Subtarget->hasBaseDSP()) {
setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
}
// i64 operation support.
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
}
if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
|| (Subtarget->isThumb2() && !Subtarget->hasDSP()))
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i64, Custom);
setOperationAction(ISD::SRA, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
// MVE lowers 64 bit shifts to lsll and lsrl
// assuming that ISD::SRL and SRA of i64 are already marked custom
if (Subtarget->hasMVEIntegerOps())
setOperationAction(ISD::SHL, MVT::i64, Custom);
// Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
}
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
// ARM does not have ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
}
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
}
// @llvm.readcyclecounter requires the Performance Monitors extension.
// Default to the 0 expansion on unsupported platforms.
// FIXME: Technically there are older ARM CPUs that have
// implementation-specific ways of obtaining this information.
if (Subtarget->hasPerfMon())
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
// Only ARMv6 has BSWAP.
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
: Subtarget->hasDivideInARMMode();
if (!hasDivide) {
// These are expanded into libcalls if the cpu doesn't have HW divider.
setOperationAction(ISD::SDIV, MVT::i32, LibCall);
setOperationAction(ISD::UDIV, MVT::i32, LibCall);
}
if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
setOperationAction(ISD::SDIV, MVT::i32, Custom);
setOperationAction(ISD::UDIV, MVT::i32, Custom);
setOperationAction(ISD::SDIV, MVT::i64, Custom);
setOperationAction(ISD::UDIV, MVT::i64, Custom);
}
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
// Register based DivRem for AEABI (RTABI 4.2)
if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
Subtarget->isTargetWindows()) {
setOperationAction(ISD::SREM, MVT::i64, Custom);
setOperationAction(ISD::UREM, MVT::i64, Custom);
HasStandaloneRem = false;
if (Subtarget->isTargetWindows()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
} else {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
} else {
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
}
if (Subtarget->getTargetTriple().isOSMSVCRT()) {
// MSVCRT doesn't have powi; fall back to pow
setLibcallName(RTLIB::POWI_F32, nullptr);
setLibcallName(RTLIB::POWI_F64, nullptr);
}
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// Use the default implementation.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->isTargetWindows())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
// the default expansion.
InsertFencesForAtomic = false;
if (Subtarget->hasAnyDataBarrier() &&
(!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
// ATOMIC_FENCE needs custom lowering; the others should have been expanded
// to ldrex/strex loops already.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
if (!Subtarget->isThumb() || !Subtarget->isMClass())
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
// On v8, we have particularly efficient implementations of atomic fences
// if they can be combined with nearby atomic loads and stores.
if (!Subtarget->hasAcquireRelease() ||
getTargetMachine().getOptLevel() == 0) {
// Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
InsertFencesForAtomic = true;
}
} else {
// If there's anything we can use as a barrier, go through custom lowering
// for ATOMIC_FENCE.
// If target has DMB in thumb, Fences can be inserted.
if (Subtarget->hasDataBarrier())
InsertFencesForAtomic = true;
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
Subtarget->hasAnyDataBarrier() ? Custom : Expand);
// Set them all for expansion, which will force libcalls.
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
// Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
// Unordered/Monotonic case.
if (!InsertFencesForAtomic) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
}
}
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
if (!Subtarget->hasV6Ops()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
!Subtarget->isThumb1Only()) {
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
// iff target supports vfp2.
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (Subtarget->useSjLjEH())
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::SETCC, MVT::f16, Expand);
setOperationAction(ISD::SELECT, MVT::f16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
}
setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
if (Subtarget->hasFullFP16())
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
// We don't support sin/cos/fmod/copysign/pow
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
!Subtarget->isThumb1Only()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
}
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
if (!Subtarget->hasVFP4Base()) {
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
}
// Various VFP goodness
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
// FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
}
// fp16 is a special v7 extension that adds f16 <-> f32 conversions.
if (!Subtarget->hasFP16()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
}
// Strict floating-point comparisons need custom lowering.
setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
}
// Use __sincos_stret if available.
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
// FP-ARMv8 implements a lot of rounding-like FP operations.
if (Subtarget->hasFPARMv8Base()) {
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
if (Subtarget->hasNEON()) {
setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
}
if (Subtarget->hasFP64()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
}
}
// FP16 often need to be promoted to call lib functions
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FREM, MVT::f16, Promote);
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
setOperationAction(ISD::FPOW, MVT::f16, Promote);
setOperationAction(ISD::FEXP, MVT::f16, Promote);
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
setOperationAction(ISD::FLOG, MVT::f16, Promote);
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::f16, Legal);
}
if (Subtarget->hasNEON()) {
// vmin and vmax aren't available in a scalar form, so we use
// a NEON instruction with an undef lane instead.
setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
}
}
// We have target-specific dag combine patterns for the following nodes:
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::XOR);
if (Subtarget->hasV6Ops())
setTargetDAGCombine(ISD::SRL);
if (Subtarget->isThumb1Only())
setTargetDAGCombine(ISD::SHL);
setStackPointerRegisterToSaveRestore(ARM::SP);
if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
!Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Hybrid);
//// temporary - rewrite interface to use type
MaxStoresPerMemset = 8;
MaxStoresPerMemsetOptSize = 4;
MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
MaxStoresPerMemcpyOptSize = 2;
MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
MaxStoresPerMemmoveOptSize = 2;
// On ARM arguments smaller than 4 bytes are extended, so all arguments
// are at least 4 bytes aligned.
setMinStackArgumentAlignment(Align(4));
// Prefer likely predicted branches to selects on out-of-order cores.
PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
if (Subtarget->isThumb() || Subtarget->isThumb2())
setTargetDAGCombine(ISD::ABS);
}
bool ARMTargetLowering::useSoftFloat() const {
return Subtarget->useSoftFloat();
}
// FIXME: It might make sense to define the representative register class as the
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
// SPR's representative would be DPR_VFP2. This should work well if register
// pressure tracking were modified such that a register use would increment the
// pressure of the register class's representative and all of it's super
// classes' representatives transitively. We have not implemented this because
// of the difficulty prior to coalescing of modeling operand register classes
// due to the common occurrence of cross class copies and subregister insertions
// and extractions.
std::pair<const TargetRegisterClass *, uint8_t>
ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
// Use DPR as representative register class for all floating point
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
// the cost is 1 for both f32 and f64.
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
RRC = &ARM::DPRRegClass;
// When NEON is used for SP, only half of the register file is available
// because operations that define both SP and DP results will be constrained
// to the VFP2 class (D0-D15). We currently model this constraint prior to
// coalescing by double-counting the SP regs. See the FIXME above.
if (Subtarget->useNEONForSinglePrecisionFP())
Cost = 2;
break;
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
RRC = &ARM::DPRRegClass;
Cost = 2;
break;
case MVT::v4i64:
RRC = &ARM::DPRRegClass;
Cost = 4;
break;
case MVT::v8i64:
RRC = &ARM::DPRRegClass;
Cost = 8;
break;
}
return std::make_pair(RRC, Cost);
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((ARMISD::NodeType)Opcode) {
case ARMISD::FIRST_NUMBER: break;
case ARMISD::Wrapper: return "ARMISD::Wrapper";
case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
case ARMISD::BRCOND: return "ARMISD::BRCOND";
case ARMISD::BR_JT: return "ARMISD::BR_JT";
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::CMN: return "ARMISD::CMN";
case ARMISD::CMPZ: return "ARMISD::CMPZ";
case ARMISD::CMPFP: return "ARMISD::CMPFP";
case ARMISD::CMPFPE: return "ARMISD::CMPFPE";
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
case ARMISD::CMPFPEw0: return "ARMISD::CMPFPEw0";
case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
case ARMISD::CMOV: return "ARMISD::CMOV";
case ARMISD::SUBS: return "ARMISD::SUBS";
case ARMISD::SSAT: return "ARMISD::SSAT";
case ARMISD::USAT: return "ARMISD::USAT";
case ARMISD::ASRL: return "ARMISD::ASRL";
case ARMISD::LSRL: return "ARMISD::LSRL";
case ARMISD::LSLL: return "ARMISD::LSLL";
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
case ARMISD::RRX: return "ARMISD::RRX";
case ARMISD::ADDC: return "ARMISD::ADDC";
case ARMISD::ADDE: return "ARMISD::ADDE";
case ARMISD::SUBC: return "ARMISD::SUBC";
case ARMISD::SUBE: return "ARMISD::SUBE";
case ARMISD::LSLS: return "ARMISD::LSLS";
case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
case ARMISD::VCMP: return "ARMISD::VCMP";
case ARMISD::VCMPZ: return "ARMISD::VCMPZ";
case ARMISD::VTST: return "ARMISD::VTST";
case ARMISD::VSHLs: return "ARMISD::VSHLs";
case ARMISD::VSHLu: return "ARMISD::VSHLu";
case ARMISD::VSHLIMM: return "ARMISD::VSHLIMM";
case ARMISD::VSHRsIMM: return "ARMISD::VSHRsIMM";
case ARMISD::VSHRuIMM: return "ARMISD::VSHRuIMM";
case ARMISD::VRSHRsIMM: return "ARMISD::VRSHRsIMM";
case ARMISD::VRSHRuIMM: return "ARMISD::VRSHRuIMM";
case ARMISD::VRSHRNIMM: return "ARMISD::VRSHRNIMM";
case ARMISD::VQSHLsIMM: return "ARMISD::VQSHLsIMM";
case ARMISD::VQSHLuIMM: return "ARMISD::VQSHLuIMM";
case ARMISD::VQSHLsuIMM: return "ARMISD::VQSHLsuIMM";
case ARMISD::VQSHRNsIMM: return "ARMISD::VQSHRNsIMM";
case ARMISD::VQSHRNuIMM: return "ARMISD::VQSHRNuIMM";
case ARMISD::VQSHRNsuIMM: return "ARMISD::VQSHRNsuIMM";
case ARMISD::VQRSHRNsIMM: return "ARMISD::VQRSHRNsIMM";
case ARMISD::VQRSHRNuIMM: return "ARMISD::VQRSHRNuIMM";
case ARMISD::VQRSHRNsuIMM: return "ARMISD::VQRSHRNsuIMM";
case ARMISD::VSLIIMM: return "ARMISD::VSLIIMM";
case ARMISD::VSRIIMM: return "ARMISD::VSRIIMM";
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
case ARMISD::VDUP: return "ARMISD::VDUP";
case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
case ARMISD::VEXT: return "ARMISD::VEXT";
case ARMISD::VREV64: return "ARMISD::VREV64";
case ARMISD::VREV32: return "ARMISD::VREV32";
case ARMISD::VREV16: return "ARMISD::VREV16";
case ARMISD::VZIP: return "ARMISD::VZIP";
case ARMISD::VUZP: return "ARMISD::VUZP";
case ARMISD::VTRN: return "ARMISD::VTRN";
case ARMISD::VTBL1: return "ARMISD::VTBL1";
case ARMISD::VTBL2: return "ARMISD::VTBL2";
case ARMISD::VMOVN: return "ARMISD::VMOVN";
case ARMISD::VMULLs: return "ARMISD::VMULLs";
case ARMISD::VMULLu: return "ARMISD::VMULLu";
case ARMISD::UMAAL: return "ARMISD::UMAAL";
case ARMISD::UMLAL: return "ARMISD::UMLAL";
case ARMISD::SMLAL: return "ARMISD::SMLAL";
case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
case ARMISD::SMULWB: return "ARMISD::SMULWB";
case ARMISD::SMULWT: return "ARMISD::SMULWT";
case ARMISD::SMLALD: return "ARMISD::SMLALD";
case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
case ARMISD::QADD16b: return "ARMISD::QADD16b";
case ARMISD::QSUB16b: return "ARMISD::QSUB16b";
case ARMISD::QADD8b: return "ARMISD::QADD8b";
case ARMISD::QSUB8b: return "ARMISD::QSUB8b";
case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
case ARMISD::BFI: return "ARMISD::BFI";
case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
case ARMISD::VBSL: return "ARMISD::VBSL";
case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
case ARMISD::WLS: return "ARMISD::WLS";
case ARMISD::LE: return "ARMISD::LE";
case ARMISD::LOOP_DEC: return "ARMISD::LOOP_DEC";
case ARMISD::CSINV: return "ARMISD::CSINV";
case ARMISD::CSNEG: return "ARMISD::CSNEG";
case ARMISD::CSINC: return "ARMISD::CSINC";
}
return nullptr;
}
EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
// MVE has a predicate register.
if (Subtarget->hasMVEIntegerOps() &&
(VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
return VT.changeVectorElementTypeToInteger();
}
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
const TargetRegisterClass *
ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
(void)isDivergent;
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
// load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
// MVE Q registers.
if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
if (VT == MVT::v4i64)
return &ARM::QQPRRegClass;
if (VT == MVT::v8i64)
return &ARM::QQQQPRRegClass;
}
return TargetLowering::getRegClassFor(VT);
}
// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
// source/dest is aligned and the copy size is large enough. We therefore want
// to align such objects passed to memory intrinsics.
bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
unsigned &PrefAlign) const {
if (!isa<MemIntrinsic>(CI))
return false;
MinSize = 8;
// On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
// cycle faster than 4-byte aligned LDM.
PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
return true;
}
// Create a fast isel object.
FastISel *
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return ARM::createFastISel(funcInfo, libInfo);
}
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
unsigned NumVals = N->getNumValues();
if (!NumVals)
return Sched::RegPressure;
for (unsigned i = 0; i != NumVals; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Glue || VT == MVT::Other)
continue;
if (VT.isFloatingPoint() || VT.isVector())
return Sched::ILP;
}
if (!N->isMachineOpcode())
return Sched::RegPressure;
// Load are scheduled for latency even if there instruction itinerary
// is not available.
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
if (MCID.getNumDefs() == 0)
return Sched::RegPressure;
if (!Itins->isEmpty() &&
Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
return Sched::ILP;
return Sched::RegPressure;
}
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
static bool isSRL16(const SDValue &Op) {
if (Op.getOpcode() != ISD::SRL)
return false;
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return Const->getZExtValue() == 16;
return false;
}
static bool isSRA16(const SDValue &Op) {
if (Op.getOpcode() != ISD::SRA)
return false;
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return Const->getZExtValue() == 16;
return false;
}
static bool isSHL16(const SDValue &Op) {
if (Op.getOpcode() != ISD::SHL)
return false;
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return Const->getZExtValue() == 16;
return false;
}
// Check for a signed 16-bit value. We special case SRA because it makes it
// more simple when also looking for SRAs that aren't sign extending a
// smaller value. Without the check, we'd need to take extra care with
// checking order for some operations.
static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
if (isSRA16(Op))
return isSHL16(Op.getOperand(0));
return DAG.ComputeNumSignBits(Op) == 17;
}
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::HS;
case ISD::SETULT: return ARMCC::LO;
case ISD::SETULE: return ARMCC::LS;
}
}
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
CondCode2 = ARMCC::AL;
switch (CC) {
default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = ARMCC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
case ISD::SETOLE: CondCode = ARMCC::LS; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
case ISD::SETUGT: CondCode = ARMCC::HI; break;
case ISD::SETUGE: CondCode = ARMCC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = ARMCC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = ARMCC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// getEffectiveCallingConv - Get the effective calling convention, taking into
/// account presence of floating point hardware and calling convention
/// limitations, such as support for variadic functions.
CallingConv::ID
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
bool isVarArg) const {
switch (CC) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::ARM_AAPCS:
case CallingConv::ARM_APCS:
case CallingConv::GHC:
case CallingConv::CFGuard_Check:
return CC;
case CallingConv::PreserveMost:
return CallingConv::PreserveMost;
case CallingConv::ARM_AAPCS_VFP:
case CallingConv::Swift:
return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
case CallingConv::C:
if (!Subtarget->isAAPCS_ABI())
return CallingConv::ARM_APCS;
else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
!isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
case CallingConv::Fast:
case CallingConv::CXX_FAST_TLS:
if (!Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
return CallingConv::Fast;
return CallingConv::ARM_APCS;
} else if (Subtarget->hasVFP2Base() &&
!Subtarget->isThumb1Only() && !isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
}
}
CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool isVarArg) const {
return CCAssignFnForNode(CC, false, isVarArg);
}
CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
bool isVarArg) const {
return CCAssignFnForNode(CC, true, isVarArg);
}
/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
/// CallingConvention.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
bool Return,
bool isVarArg) const {
switch (getEffectiveCallingConv(CC, isVarArg)) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
case CallingConv::Fast:
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
case CallingConv::GHC:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
case CallingConv::PreserveMost:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::CFGuard_Check:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue ARMTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Pass 'this' value directly from the argument to return value, to avoid
// reg unit interference
if (i == 0 && isThisReturn) {
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
"unexpected return calling convention register assignment");
InVals.push_back(ThisVal);
continue;
}
SDValue Val;
if (VA.needsCustom()) {
// Handle f64 or half of a v2f64.
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
if (VA.getLocVT() == MVT::v2f64) {
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(0, dl, MVT::i32));
VA = RVLocs[++i]; // skip ahead to next loc
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(1, dl, MVT::i32));
}
} else {
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
/// LowerMemOpCallTo - Store the argument to the stack.
SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
SDValue Arg, const SDLoc &dl,
SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, PtrOff);
return DAG.getStore(
Chain, dl, Arg, PtrOff,
MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
}
void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVectorImpl<SDValue> &MemOpChains,
ISD::ArgFlagsTy Flags) const {
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
unsigned id = Subtarget->isLittle() ? 0 : 1;
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
if (NextVA.isRegLoc())
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
else {
assert(NextVA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
getPointerTy(DAG.getDataLayout()));
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
dl, DAG, NextVA,
Flags));
}
}
/// LowerCall - Lowering a call into a callseq_start <-
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
/// nodes.
SDValue
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool doesNotRet = CLI.DoesNotReturn;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
MachineFunction::CallSiteInfo CSInfo;
bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
bool isThisReturn = false;
bool PreferIndirect = false;
// Disable tail calls if they're not supported.
if (!Subtarget->supportsTailCall())
isTailCall = false;
if (isa<GlobalAddressSDNode>(Callee)) {
// If we're optimizing for minimum size and the function is called three or
// more times in this block, we can improve codesize by calling indirectly
// as BLXr has a 16-bit encoding.
auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
if (CLI.CS) {
auto *BB = CLI.CS.getParent();
PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
count_if(GV->users(), [&BB](const User *U) {
return isa<Instruction>(U) &&
cast<Instruction>(U)->getParent() == BB;
}) > 2;
}
}
if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(
Callee, CallConv, isVarArg, isStructRet,
MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
PreferIndirect);
if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// We don't support GuaranteedTailCallOpt for ARM, only automatically
// detected sibcalls.
if (isTailCall)
++NumTailCalls;
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
if (isTailCall) {
// For tail calls, memory operands are available in our caller's stack.
NumBytes = 0;
} else {
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
}
SDValue StackPtr =
DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
RegsToPassVector RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization, arguments are handled later.
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, dl, MVT::i32));
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, dl, MVT::i32));
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
VA = ArgLocs[++i]; // skip ahead to next loc
if (VA.isRegLoc()) {
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
} else {
assert(VA.isMemLoc());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
dl, DAG, VA, Flags));
}
} else {
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, Flags);
}
} else if (VA.isRegLoc()) {
if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
Outs[0].VT == MVT::i32) {
assert(VA.getLocVT() == MVT::i32 &&
"unexpected calling convention register assignment");
assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
"unexpected use of 'returned'");
isThisReturn = true;
}
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.EnableDebugEntryValues)
CSInfo.emplace_back(VA.getLocReg(), i);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else if (isByVal) {
assert(VA.isMemLoc());
unsigned offset = 0;
// True if this byval aggregate will be split between registers
// and memory.
unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
if (CurByValIdx < ByValArgsCount) {
unsigned RegBegin, RegEnd;
CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
EVT PtrVT =
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
unsigned int i, j;
for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
MachinePointerInfo(),
DAG.InferPtrAlignment(AddArg));
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(j, Load));
}
// If parameter size outsides register area, "offset" value
// helps us to calculate stack slot for remained part properly.
offset = RegEnd - RegBegin;
CCInfo.nextInRegsParam();
}
if (Flags.getByValSize() > 4*offset) {
auto PtrVT = getPointerTy(DAG.getDataLayout());
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
MVT::i32);
SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
MVT::i32);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
Ops));
}
} else if (!isTailCall) {
assert(VA.isMemLoc());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool isDirect = false;
const TargetMachine &TM = getTargetMachine();
const Module *Mod = MF.getFunction().getParent();
const GlobalValue *GV = nullptr;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
GV = G->getGlobal();
bool isStub =
!TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
bool isLocalARMFunc = false;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
auto PtrVt = getPointerTy(DAG.getDataLayout());
if (Subtarget->genLongCalls()) {
assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
"long-calls codegen is not position independent!");
// Handle a global address or an external symbol. If it's not one of
// those, the target's already in a register, so we don't need to do
// anything extra.
if (isa<GlobalAddressSDNode>(Callee)) {
// Create a constant pool entry for the callee address
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
// Create a constant pool entry for the callee address
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
ARMPCLabelIndex, 0);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
} else if (isa<GlobalAddressSDNode>(Callee)) {
if (!PreferIndirect) {
isDirect = true;
bool isDef = GV->isStrongDefinitionForLinker();
// ARM call to a local ARM function is predicable.
isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
// tBX takes a register source operand.
if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
Callee = DAG.getNode(
ARMISD::WrapperPIC, dl, PtrVt,
DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
/* Alignment = */ 0, MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
} else if (Subtarget->isTargetCOFF()) {
assert(Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target");
unsigned TargetFlags = ARMII::MO_NO_FLAG;
if (GV->hasDLLImportStorageClass())
TargetFlags = ARMII::MO_DLLIMPORT;
else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
TargetFlags = ARMII::MO_COFFSTUB;
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
TargetFlags);
if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
Callee =
DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
} else {
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
}
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
isDirect = true;
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
ARMPCLabelIndex, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
} else {
Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
}
}
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = ARMISD::CALL;
} else {
if (!isDirect && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
// Emit regular call when code size is the priority
!Subtarget->hasMinSize())
// "mov lr, pc; b _foo" to avoid confusing the RSP
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
if (!isTailCall) {
const uint32_t *Mask;
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
if (isThisReturn) {
// For 'this' returns, use the R0-preserving mask if applicable
Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
if (!Mask) {
// Set isThisReturn to false if the calling convention is not one that
// allows 'returned' to be modeled in this way, so LowerCallResult does
// not try to pass 'this' straight through
isThisReturn = false;
Mask = ARI->getCallPreservedMask(MF, CallConv);
}
} else
Mask = ARI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
}
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (isTailCall) {
MF.getFrameInfo().setHasTailCall();
SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
return Ret;
}
// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
InVals, isThisReturn,
isThisReturn ? OutVals[0] : SDValue());
}
/// HandleByVal - Every parameter *after* a byval parameter is passed
/// on the stack. Remember the next parameter register to allocate,
/// and then confiscate the rest of the parameter registers to insure
/// this.
void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
unsigned Align) const {
// Byval (as with any stack) slots are always at least 4 byte aligned.
Align = std::max(Align, 4U);
unsigned Reg = State->AllocateReg(GPRArgRegs);
if (!Reg)
return;
unsigned AlignInRegs = Align / 4;
unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
for (unsigned i = 0; i < Waste; ++i)
Reg = State->AllocateReg(GPRArgRegs);
if (!Reg)
return;
unsigned Excess = 4 * (ARM::R4 - Reg);
// Special case when NSAA != SP and parameter size greater than size of
// all remained GPR regs. In that case we can't split parameter, we must
// send it to stack. We also must set NCRN to R4, so waste all
// remained registers.
const unsigned NSAAOffset = State->getNextStackOffset();
if (NSAAOffset != 0 && Size > Excess) {
while (State->AllocateReg(GPRArgRegs))
;
return;
}
// First register for byval parameter is the first register that wasn't
// allocated before this method call, so it would be "reg".
// If parameter is small enough to be saved in range [reg, r4), then
// the end (first after last) register would be reg + param-size-in-regs,
// else parameter would be splitted between registers and stack,
// end register would be r4 in this case.
unsigned ByValRegBegin = Reg;
unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
// Note, first register is allocated in the beginning of function already,
// allocate remained amount of registers we need.
for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
State->AllocateReg(GPRArgRegs);
// A byval parameter that is split between registers and memory needs its
// size truncated here.
// In the case where the entire structure fits in registers, we set the
// size in memory to zero.
Size = std::max<int>(Size - Excess, 0);
}
/// MatchingStackOffset - Return true if the given stack call argument is
/// already available in the same position (relatively) of the caller's
/// incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
const TargetInstrInfo *TII) {
unsigned Bytes = Arg.getValueSizeInBits() / 8;
int FI = std::numeric_limits<int>::max();
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!Register::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(*Def, FI))
return false;
} else {
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else
return false;
assert(FI != std::numeric_limits<int>::max());
if (!MFI.isFixedObjectIndex(FI))
return false;
return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool ARMTargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
bool isCalleeStructRet, bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
const bool isIndirect) const {
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
assert(Subtarget->supportsTailCall());
// Indirect tail calls cannot be optimized for Thumb1 if the args
// to the call take up r0-r3. The reason is that there are no legal registers
// left to hold the pointer to the function to be called.
if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
(!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
return false;
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Exception-handling functions need a special set of instructions to indicate
// a return to the hardware. Tail-calling another function would probably
// break this.
if (CallerF.hasFnAttribute("interrupt"))
return false;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// Externally-defined functions with weak linkage should not be
// tail-called on ARM when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
const Triple &TT = getTargetMachine().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
return false;
}
// Check that the call results are passed in the same way.
LLVMContext &C = *DAG.getContext();
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
CCAssignFnForReturn(CalleeCC, isVarArg),
CCAssignFnForReturn(CallerCC, isVarArg)))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (CalleeCC != CallerCC) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// If Caller's vararg or byval argument has been split between registers and
// stack, do not perform tail call, since part of the argument is in caller's
// local frame.
const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
if (AFI_Caller->getArgRegsSaveSize())
return false;
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
if (CCInfo.getNextStackOffset()) {
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo &MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (VA.needsCustom()) {
// f64 and vector types are split into multiple registers or
// register/stack-slot combinations. The types will not match
// the registers; give up on memory f64 refs until we figure
// out what to do about this.
if (!VA.isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
return false;
if (RegVT == MVT::v2f64) {
if (!ArgLocs[++i].isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
return false;
}
} else if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII))
return false;
}
}
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
}
return true;
}
bool
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
}
static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
const SDLoc &DL, SelectionDAG &DAG) {
const MachineFunction &MF = DAG.getMachineFunction();
const Function &F = MF.getFunction();
StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
// See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
// version of the "preferred return address". These offsets affect the return
// instruction if this is a return from PL1 without hypervisor extensions.
// IRQ/FIQ: +4 "subs pc, lr, #4"
// SWI: 0 "subs pc, lr, #0"
// ABORT: +4 "subs pc, lr, #4"
// UNDEF: +4/+2 "subs pc, lr, #0"
// UNDEF varies depending on where the exception came from ARM or Thumb
// mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
int64_t LROffset;
if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
IntKind == "ABORT")
LROffset = 4;
else if (IntKind == "SWI" || IntKind == "UNDEF")
LROffset = 0;
else
report_fatal_error("Unsupported interrupt attribute. If present, value "
"must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
RetOps.insert(RetOps.begin() + 1,
DAG.getConstant(LROffset, DL, MVT::i32, false));
return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
}
SDValue
ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
SDValue Flag;
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
bool isLittleEndian = Subtarget->isLittle();
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
AFI->setReturnRegsCount(RVLocs.size());
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[realRVLocIdx];
bool ReturnF16 = false;
if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
// Half-precision return values can be returned like this:
//
// t11 f16 = fadd ...
// t12: i16 = bitcast t11
// t13: i32 = zero_extend t12
// t14: f32 = bitcast t13 <~~~~~~~ Arg
//
// to avoid code generation for bitcasts, we simply set Arg to the node
// that produces the f16 value, t11 in this case.
//
if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
SDValue ZE = Arg.getOperand(0);
if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
SDValue BC = ZE.getOperand(0);
if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
Arg = BC.getOperand(0);
ReturnF16 = true;
}
}
}
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
if (!ReturnF16)
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
// Extract the first half and return it in two registers.
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, dl, MVT::i32));
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Half);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(isLittleEndian ? 0 : 1),
Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(isLittleEndian ? 1 : 0),
Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
// Extract the 2nd half and fall through to handle it as an f64 value.
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, dl, MVT::i32));
}
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
// available.
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
fmrrd.getValue(isLittleEndian ? 0 : 1),
Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
fmrrd.getValue(isLittleEndian ? 1 : 0),
Flag);
} else
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
// Guarantee that all emitted copies are
// stuck together, avoiding something bad.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(),
ReturnF16 ? MVT::f16 : VA.getLocVT()));
}
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (ARM::GPRRegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
else if (ARM::DPRRegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
// CPUs which aren't M-class use a special sequence to return from
// exceptions (roughly, any instruction setting pc and cpsr simultaneously,
// though we use "subs pc, lr, #N").
//
// M-class CPUs actually use a normal return sequence with a special
// (hardware-provided) value in LR, so the normal code path works.
if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
!Subtarget->isMClass()) {
if (Subtarget->isThumb1Only())
report_fatal_error("interrupt attribute is not supported in Thumb1");
return LowerInterruptReturn(RetOps, dl, DAG);
}
return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
}
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1)
return false;
if (!N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
SDNode *VMov = Copy;
// f64 returned in a pair of GPRs.
SmallPtrSet<SDNode*, 2> Copies;
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != ISD::CopyToReg)
return false;
Copies.insert(*UI);
}
if (Copies.size() > 2)
return false;
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
UI != UE; ++UI) {
SDValue UseChain = UI->getOperand(0);
if (Copies.count(UseChain.getNode()))
// Second CopyToReg
Copy = *UI;
else {
// We are at the top of this chain.
// If the copy has a glue operand, we conservatively assume it
// isn't safe to perform a tail call.
if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
// First CopyToReg
TCChain = UseChain;
}
}
} else if (Copy->getOpcode() == ISD::BITCAST) {
// f32 returned in a single GPR.
if (!Copy->hasOneUse())
return false;
Copy = *Copy->use_begin();
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
return false;
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else {
return false;
}
bool HasRet = false;
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != ARMISD::RET_FLAG &&
UI->getOpcode() != ARMISD::INTRET_FLAG)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
if (!Subtarget->supportsTailCall())
return false;
if (!CI->isTailCall())
return false;
return true;
}
// Trying to write a 64 bit value so need to split into two 32 bit values first,
// and pass the lower and high parts through.
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue WriteValue = Op->getOperand(2);
// This function is only supposed to be called for i64 type argument.
assert(WriteValue.getValueType() == MVT::i64
&& "LowerWRITE_REGISTER called for non-i64 type argument.");
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(1, DL, MVT::i32));
SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVi.
SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
// FIXME there is no actual debug info here
SDLoc dl(Op);
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Res;
// When generating execute-only code Constant Pools must be promoted to the
// global data section. It's a bit ugly that we can't share them across basic
// blocks, but this way we guarantee that execute-only behaves correct with
// position-independent addressing modes.
if (Subtarget->genExecuteOnly()) {
auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
auto T = const_cast<Type*>(CP->getType());
auto C = const_cast<Constant*>(CP->getConstVal());
auto M = const_cast<Module*>(DAG.getMachineFunction().
getFunction().getParent());
auto GV = new GlobalVariable(
*M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
Twine(AFI->createPICLabelUId())
);
SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
dl, PtrVT);
return LowerGlobalAddress(GA, DAG);
}
if (CP->isMachineConstantPoolEntry())
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment());
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
}
unsigned ARMTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = 0;
SDLoc DL(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue CPAddr;
bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
if (!IsPositionIndependent) {
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
} else {
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
ARMCP::CPBlockAddress, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
if (!IsPositionIndependent)
return Result;
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
}
/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address for Darwin, and return an
/// SDValue containing the final node.
/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
/// + "extern __thread" declaration.
/// + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i32] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first word, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "r0".
///
/// Since this descriptor may be in a different unit, in general access must
/// proceed along the usual ARM rules. A common sequence to produce is:
///
/// movw rT1, :lower16:_var$non_lazy_ptr
/// movt rT1, :upper16:_var$non_lazy_ptr
/// ldr r0, [rT1]
/// ldr rT2, [r0]
/// blx rT2
/// [...address now in r0...]
SDValue
ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() &&
"This function expects a Darwin target");
SDLoc DL(Op);
// First step is to get the address of the actua global symbol. This is where
// the TLS descriptor lives.
SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
// The first entry in the descriptor is a function pointer that we must call
// to obtain the address of the variable.
SDValue Chain = DAG.getEntryNode();
SDValue FuncTLVGet = DAG.getLoad(
MVT::i32, DL, Chain, DescAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
/* Alignment = */ 4,
MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
Chain = FuncTLVGet.getValue(1);
MachineFunction &F = DAG.getMachineFunction();
MachineFrameInfo &MFI = F.getFrameInfo();
MFI.setAdjustsStack(true);
// TLS calls preserve all registers except those that absolutely must be
// trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
// silly).
auto TRI =
getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
// Finally, we can make the call. This is just a degenerate version of a
// normal AArch64 call node: r0 takes the address of the descriptor, and
// returns the address of the variable in this thread.
Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
Chain =
DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
DAG.getRegisterMask(Mask), Chain.getValue(1));
return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
// Load the current TEB (thread environment block)
SDValue Ops[] = {Chain,
DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
DAG.getTargetConstant(15, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(13, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(2, DL, MVT::i32)};
SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
DAG.getVTList(MVT::i32, MVT::Other), Ops);
SDValue TEB = CurrentTEB.getValue(0);
Chain = CurrentTEB.getValue(1);
// Load the ThreadLocalStoragePointer from the TEB
// A pointer to the TLS array is located at offset 0x2c from the TEB.
SDValue TLSArray =
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
// The pointer to the thread's TLS data area is at the TLS Index scaled by 4
// offset into the TLSArray.
// Load the TLS index from the C runtime
SDValue TLSIndex =
DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
DAG.getConstant(2, DL, MVT::i32));
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
MachinePointerInfo());
// Get the offset of the start of the .tls section (section base)
const auto *GA = cast<GlobalAddressSDNode>(Op);
auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
SDValue Offset = DAG.getLoad(
PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
DAG.getTargetConstantPool(CPV, PtrVT, 4)),
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
SDValue
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
Argument = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), Argument,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue Chain = Argument.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
// call __tls_get_addr.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
Args.push_back(Entry);
// FIXME: is there useful debug info available here?
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.first;
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or
// "local exec" model.
SDValue
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
TLSModel::Model model) const {
const GlobalValue *GV = GA->getGlobal();
SDLoc dl(GA);
SDValue Offset;
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// Get the Thread Pointer
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
if (model == TLSModel::InitialExec) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
// Initial exec model.
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
true);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Chain = Offset.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
} else {
// local exec model
assert(model == TLSModel::LocalExec);
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
if (Subtarget->isTargetDarwin())
return LowerGlobalTLSAddressDarwin(Op, DAG);
if (Subtarget->isTargetWindows())
return LowerGlobalTLSAddressWindows(Op, DAG);
// TODO: implement the "local dynamic" model
assert(Subtarget->isTargetELF() && "Only ELF implemented here");
TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic:
return LowerToTLSGeneralDynamicModel(GA, DAG);
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModels(GA, DAG, model);
}
llvm_unreachable("bogus TLS model");
}
/// Return true if all users of V are within function F, looking through
/// ConstantExprs.
static bool allUsersAreInFunction(const Value *V, const Function *F) {
SmallVector<const User*,4> Worklist;
for (auto *U : V->users())
Worklist.push_back(U);
while (!Worklist.empty()) {
auto *U = Worklist.pop_back_val();
if (isa<ConstantExpr>(U)) {
for (auto *UU : U->users())
Worklist.push_back(UU);
continue;
}
auto *I = dyn_cast<Instruction>(U);
if (!I || I->getParent()->getParent() != F)
return false;
}
return true;
}
static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
const GlobalValue *GV, SelectionDAG &DAG,
EVT PtrVT, const SDLoc &dl) {
// If we're creating a pool entry for a constant global with unnamed address,
// and the global is small enough, we can emit it inline into the constant pool
// to save ourselves an indirection.
//
// This is a win if the constant is only used in one function (so it doesn't
// need to be duplicated) or duplicating the constant wouldn't increase code
// size (implying the constant is no larger than 4 bytes).
const Function &F = DAG.getMachineFunction().getFunction();
// We rely on this decision to inline being idemopotent and unrelated to the
// use-site. We know that if we inline a variable at one use site, we'll
// inline it elsewhere too (and reuse the constant pool entry). Fast-isel
// doesn't know about this optimization, so bail out if it's enabled else
// we could decide to inline here (and thus never emit the GV) but require
// the GV from fast-isel generated code.
if (!EnableConstpoolPromotion ||
DAG.getMachineFunction().getTarget().Options.EnableFastISel)
return SDValue();
auto *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar || !GVar->hasInitializer() ||
!GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
!GVar->hasLocalLinkage())
return SDValue();
// If we inline a value that contains relocations, we move the relocations
// from .data to .text. This is not allowed in position-independent code.
auto *Init = GVar->getInitializer();
if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
Init->needsRelocation())
return SDValue();
// The constant islands pass can only really deal with alignment requests
// <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
// any type wanting greater alignment requirements than 4 bytes. We also
// can only promote constants that are multiples of 4 bytes in size or
// are paddable to a multiple of 4. Currently we only try and pad constants
// that are strings for simplicity.
auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
unsigned RequiredPadding = 4 - (Size % 4);
bool PaddingPossible =
RequiredPadding == 4 || (CDAInit && CDAInit->isString());
if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
Size == 0)
return SDValue();
unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We can't bloat the constant pool too much, else the ConstantIslands pass
// may fail to converge. If we haven't promoted this global yet (it may have
// multiple uses), and promoting it would increase the constant pool size (Sz
// > 4), ensure we have space to do so up to MaxTotal.
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
ConstpoolPromotionMaxTotal)
return SDValue();
// This is only valid if all users are in a single function; we can't clone
// the constant in general. The LLVM IR unnamed_addr allows merging
// constants, but not cloning them.
//
// We could potentially allow cloning if we could prove all uses of the
// constant in the current function don't care about the address, like
// printf format strings. But that isn't implemented for now.
if (!allUsersAreInFunction(GVar, &F))
return SDValue();
// We're going to inline this global. Pad it out if needed.
if (RequiredPadding != 4) {
StringRef S = CDAInit->getAsString();
SmallVector<uint8_t,16> V(S.size());
std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
while (RequiredPadding--)
V.push_back(0);
Init = ConstantDataArray::get(*DAG.getContext(), V);
}
auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
SDValue CPAddr =
DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
AFI->markGlobalAsPromotedToConstantPool(GVar);
AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
PaddedSize - 4);
}
++NumConstpoolPromoted;
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
}
bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
if (!(GV = GA->getBaseObject()))
return false;
if (const auto *V = dyn_cast<GlobalVariable>(GV))
return V->isConstant();
return isa<Function>(GV);
}
SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
switch (Subtarget->getTargetTriple().getObjectFormat()) {
default: llvm_unreachable("unknown object format");
case Triple::COFF:
return LowerGlobalAddressWindows(Op, DAG);
case Triple::ELF:
return LowerGlobalAddressELF(Op, DAG);
case Triple::MachO:
return LowerGlobalAddressDarwin(Op, DAG);
}
}
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
const TargetMachine &TM = getTargetMachine();
bool IsRO = isReadOnly(GV);
// promoteToConstantPool only if not generating XO text section
if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
return V;
if (isPositionIndependent()) {
bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
UseGOT_PREL ? ARMII::MO_GOT : 0);
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
if (UseGOT_PREL)
Result =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
} else if (Subtarget->isROPI() && IsRO) {
// PC-relative.
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
return Result;
} else if (Subtarget->isRWPI() && !IsRO) {
// SB-relative.
SDValue RelAddr;
if (Subtarget->useMovt()) {
++NumMovwMovt;
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
} else { // use literal pool for address constant
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
RelAddr = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
return Result;
}
// If we have T2 ops, we can materialize the address directly via movt/movw
// pair. This is always cheaper.
if (Subtarget->useMovt()) {
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes.
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
} else {
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
return DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
}
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported for Darwin");
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
if (Subtarget->useMovt())
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into multiple nodes
unsigned Wrapper =
isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
if (Subtarget->isGVIndirectSymbol(GV))
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
assert(Subtarget->useMovt() &&
"Windows on ARM expects to use movw/movt");
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported for Windows");
const TargetMachine &TM = getTargetMachine();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
if (GV->hasDLLImportStorageClass())
TargetFlags = ARMII::MO_DLLIMPORT;
else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
TargetFlags = ARMII::MO_COFFSTUB;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
SDLoc DL(Op);
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes.
Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
TargetFlags));
if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Val = DAG.getConstant(0, dl, MVT::i32);
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
Op.getOperand(1), Val);
}
SDValue
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
}
SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
Op.getOperand(0));
}
SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
unsigned IntNo =
cast<ConstantSDNode>(
Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
->getZExtValue();
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::arm_gnu_eabi_mcount: {
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
// call "\01__gnu_mcount_nc"
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
const uint32_t *Mask =
ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
// Mark LR an implicit live-in.
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
SDValue ReturnAddress =
DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
std::vector<EVT> ResultTys = {MVT::Other, MVT::Glue};
SDValue Callee =
DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
SDValue RegisterMask = DAG.getRegisterMask(Mask);
if (Subtarget->isThumb())
return SDValue(
DAG.getMachineNode(
ARM::tBL_PUSHLR, dl, ResultTys,
{ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
0);
return SDValue(
DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
{ReturnAddress, Callee, RegisterMask, Chain}),
0);
}
}
}
SDValue
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
}
case Intrinsic::arm_cls: {
const SDValue &Operand = Op.getOperand(1);
const EVT VTy = Op.getValueType();
SDValue SRA =
DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
SDValue SHL =
DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
SDValue OR =
DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
return Result;
}
case Intrinsic::arm_cls64: {
// cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
// else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
const SDValue &Operand = Op.getOperand(1);
const EVT VTy = Op.getValueType();
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
DAG.getConstant(1, dl, VTy));
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
DAG.getConstant(0, dl, VTy));
SDValue Constant0 = DAG.getConstant(0, dl, VTy);
SDValue Constant1 = DAG.getConstant(1, dl, VTy);
SDValue Constant31 = DAG.getConstant(31, dl, VTy);
SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
SDValue CheckLo =
DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
SDValue HiIsZero =
DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
SDValue AdjustedLo =
DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
SDValue Result =
DAG.getSelect(dl, VTy, CheckLo,
DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
return Result;
}
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue CPAddr;
bool IsPositionIndependent = isPositionIndependent();
unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
ARMCP::CPLSDA, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
if (IsPositionIndependent) {
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
return Result;
}
case Intrinsic::arm_neon_vabs:
return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::arm_neon_vmulls:
case Intrinsic::arm_neon_vmullu: {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
? ARMISD::VMULLs : ARMISD::VMULLu;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vminnm:
case Intrinsic::arm_neon_vmaxnm: {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
? ISD::FMINNUM : ISD::FMAXNUM;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vminu:
case Intrinsic::arm_neon_vmaxu: {
if (Op.getValueType().isFloatingPoint())
return SDValue();
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
? ISD::UMIN : ISD::UMAX;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vmins:
case Intrinsic::arm_neon_vmaxs: {
// v{min,max}s is overloaded between signed integers and floats.
if (!Op.getValueType().isFloatingPoint()) {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
? ISD::SMIN : ISD::SMAX;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
? ISD::FMINIMUM : ISD::FMAXIMUM;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vtbl1:
return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::arm_neon_vtbl2:
return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::arm_mve_pred_i2v:
case Intrinsic::arm_mve_pred_v2i:
return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
}
}
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
SDLoc dl(Op);
ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
if (SSID == SyncScope::SingleThread)
return Op;
if (!Subtarget->hasDataBarrier()) {
// Some ARMv6 cpus can support data barriers with an mcr instruction.
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
// here.
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
}
ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
ARM_MB::MemBOpt Domain = ARM_MB::ISH;
if (Subtarget->isMClass()) {
// Only a full system barrier exists in the M-class architectures.
Domain = ARM_MB::SY;
} else if (Subtarget->preferISHSTBarriers() &&
Ord == AtomicOrdering::Release) {
// Swift happens to implement ISHST barriers in a way that's compatible with
// Release semantics but weaker than ISH so we'd be fools not to use
// it. Beware: other processors probably don't!
Domain = ARM_MB::ISHST;
}
return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
DAG.getConstant(Domain, dl, MVT::i32));
}
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
// ARM pre v5TE and Thumb1 does not have preload instructions.
if (!(Subtarget->isThumb2() ||
(!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
// Just preserve the chain.
return Op.getOperand(0);
SDLoc dl(Op);
unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
if (!isRead &&
(!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
// ARMv7 with MP extension has PLDW.
return Op.getOperand(0);
unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (Subtarget->isThumb()) {
// Invert the bits.
isRead = ~isRead & 1;
isData = ~isData & 1;
}
return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
DAG.getConstant(isData, dl, MVT::i32));
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc dl(Op);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
CCValAssign &NextVA,
SDValue &Root,
SelectionDAG &DAG,
const SDLoc &dl) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const TargetRegisterClass *RC;
if (AFI->isThumb1OnlyFunction())
RC = &ARM::tGPRRegClass;
else
RC = &ARM::GPRRegClass;
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
SDValue ArgValue2;
if (NextVA.isMemLoc()) {
MachineFrameInfo &MFI = MF.getFrameInfo();
int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
// Create load node to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
ArgValue2 = DAG.getLoad(
MVT::i32, dl, Root, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
} else {
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
}
if (!Subtarget->isLittle())
std::swap (ArgValue, ArgValue2);
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
}
// The remaining GPRs hold either the beginning of variable-argument
// data, or the beginning of an aggregate passed by value (usually
// byval). Either way, we allocate stack slots adjacent to the data
// provided by our caller, and store the unallocated registers there.
// If this is a variadic function, the va_list pointer will begin with
// these values; otherwise, this reassembles a (byval) structure that
// was split between registers and memory.
// Return: The frame index registers were stored into.
int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
const Value *OrigArg,
unsigned InRegsParamRecordIdx,
int ArgOffset, unsigned ArgSize) const {
// Currently, two use-cases possible:
// Case #1. Non-var-args function, and we meet first byval parameter.
// Setup first unallocated register as first byval register;
// eat all remained registers
// (these two actions are performed by HandleByVal method).
// Then, here, we initialize stack frame with
// "store-reg" instructions.
// Case #2. Var-args function, that doesn't contain byval parameters.
// The same: eat all remained unallocated registers,
// initialize stack frame.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned RBegin, REnd;
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
} else {
unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
REnd = ARM::R4;
}
if (REnd != RBegin)
ArgOffset = -4 * (ARM::R4 - RBegin);
auto PtrVT = getPointerTy(DAG.getDataLayout());
int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
SmallVector<SDValue, 4> MemOps;
const TargetRegisterClass *RC =
AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
unsigned VReg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(OrigArg, 4 * i));
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return FrameIndex;
}
// Setup stack frame, the va_list pointer will start from.
void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
unsigned ArgOffset,
unsigned TotalArgRegsSaveSize,
bool ForceMutable) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Try to store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by dereferencing
// the result of va_next.
// If there is no regs to be stored, just point address after last
// argument passed via stack.
int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
CCInfo.getInRegsParamsCount(),
CCInfo.getNextStackOffset(),
std::max(4U, TotalArgRegsSaveSize));
AFI->setVarArgsFrameIndex(FrameIndex);
}
SDValue ARMTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
SmallVector<SDValue, 16> ArgValues;
SDValue ArgValue;
Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
unsigned CurArgIdx = 0;
// Initially ArgRegsSaveSize is zero.
// Then we increase this value each time we meet byval parameter.
// We also increase this value in case of varargs function.
AFI->setArgRegsSaveSize(0);
// Calculate the amount of stack space that we need to allocate to store
// byval and variadic arguments that are passed in registers.
// We need to know this before we allocate the first byval or variadic
// argument, as they will be allocated a stack slot below the CFA (Canonical
// Frame Address, the stack pointer at entry to the function).
unsigned ArgRegBegin = ARM::R4;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
break;
CCValAssign &VA = ArgLocs[i];
unsigned Index = VA.getValNo();
ISD::ArgFlagsTy Flags = Ins[Index].Flags;
if (!Flags.isByVal())
continue;
assert(VA.isMemLoc() && "unexpected byval pointer in reg");
unsigned RBegin, REnd;
CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
ArgRegBegin = std::min(ArgRegBegin, RBegin);
CCInfo.nextInRegsParam();
}
CCInfo.rewindByValRegsInfo();
int lastInsIndex = -1;
if (isVarArg && MFI.hasVAStart()) {
unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
if (RegIdx != array_lengthof(GPRArgRegs))
ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
}
unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
auto PtrVT = getPointerTy(DAG.getDataLayout());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (Ins[VA.getValNo()].isOrigArg()) {
std::advance(CurOrigArg,
Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
}
// Arguments stored in registers.
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (VA.needsCustom()) {
// f64 and vector types are split up into multiple registers or
// combinations of registers and stack slots.
if (VA.getLocVT() == MVT::v2f64) {
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
Chain, DAG, dl);
VA = ArgLocs[++i]; // skip ahead to next loc
SDValue ArgValue2;
if (VA.isMemLoc()) {
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI));
} else {
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
Chain, DAG, dl);
}
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue1,
DAG.getIntPtrConstant(0, dl));
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue2,
DAG.getIntPtrConstant(1, dl));
} else
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
} else {
const TargetRegisterClass *RC;
if (RegVT == MVT::f16)
RC = &ARM::HPRRegClass;
else if (RegVT == MVT::f32)
RC = &ARM::SPRRegClass;
else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
RC = &ARM::DPRRegClass;
else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
RC = &ARM::QPRRegClass;
else if (RegVT == MVT::i32)
RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass;
else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this value is passed in r0 and has the returned attribute (e.g.
// C++ 'structors), record this fact for later use.
if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
AFI->setPreservesR0();
}
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::ZExt:
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// sanity check
assert(VA.isMemLoc());
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
int index = VA.getValNo();
// Some Ins[] entries become multiple ArgLoc[] entries.
// Process them only once.
if (index != lastInsIndex)
{
ISD::ArgFlagsTy Flags = Ins[index].Flags;
// FIXME: For now, all byval parameter objects are marked mutable.
// This can be changed with more analysis.
// In case of tail call optimization mark all arguments mutable.
// Since they could be overwritten by lowering of arguments in case of
// a tail call.
if (Flags.isByVal()) {
assert(Ins[index].isOrigArg() &&
"Byval arguments cannot be implicit");
unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
int FrameIndex = StoreByValRegs(
CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
VA.getLocMemOffset(), Flags.getByValSize());
InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
CCInfo.nextInRegsParam();
} else {
unsigned FIOffset = VA.getLocMemOffset();
int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
FIOffset, true);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI)));
}
lastInsIndex = index;
}
}
}
// varargs
if (isVarArg && MFI.hasVAStart())
VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
CCInfo.getNextStackOffset(),
TotalArgRegsSaveSize);
AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
return Chain;
}
/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isPosZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isPosZero();
}
} else if (Op->getOpcode() == ISD::BITCAST &&
Op->getValueType(0) == MVT::f64) {
// Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
// created by LowerConstantFP().
SDValue BitcastOp = Op->getOperand(0);
if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
isNullConstant(BitcastOp->getOperand(0)))
return true;
}
return false;
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMcc, SelectionDAG &DAG,
const SDLoc &dl) const {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
unsigned C = RHSC->getZExtValue();
if (!isLegalICmpImmediate((int32_t)C)) {
// Constant does not fit, try adjusting it by one.
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if (C != 0 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
}
break;
}
}
} else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
(ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
// In ARM and Thumb-2, the compare instructions can shift their second
// operand.
CC = ISD::getSetCCSwappedOperands(CC);
std::swap(LHS, RHS);
}
// Thumb1 has very limited immediate modes, so turning an "and" into a
// shift can save multiple instructions.
//
// If we have (x & C1), and C1 is an appropriate mask, we can transform it
// into "((x << n) >> n)". But that isn't necessarily profitable on its
// own. If it's the operand to an unsigned comparison with an immediate,
// we can eliminate one of the shifts: we transform
// "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
//
// We avoid transforming cases which aren't profitable due to encoding
// details:
//
// 1. C2 fits into the immediate field of a cmp, and the transformed version
// would not; in that case, we're essentially trading one immediate load for
// another.
// 2. C1 is 255 or 65535, so we can use uxtb or uxth.
// 3. C2 is zero; we have other code for this special case.
//
// FIXME: Figure out profitability for Thumb2; we usually can't save an
// instruction, since the AND is always one instruction anyway, but we could
// use narrow instructions in some cases.
if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
!isSignedIntSetCC(CC)) {
unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
uint64_t RHSV = RHSC->getZExtValue();
if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
unsigned ShiftBits = countLeadingZeros(Mask);
if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
}
}
}
// The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
// single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
// way a cmp would.
// FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
// some tweaks to the heuristics for the previous and->shift transform.
// FIXME: Optimize cases where the LHS isn't a shift.
if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(RHS) &&
cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
unsigned ShiftAmt =
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
DAG.getVTList(MVT::i32, MVT::i32),
LHS.getOperand(0),
DAG.getConstant(ShiftAmt, dl, MVT::i32));
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
Shift.getValue(1), SDValue());
ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
return Chain.getValue(1);
}
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
// If the RHS is a constant zero then the V (overflow) flag will never be
// set. This can allow us to simplify GE to PL or LT to MI, which can be
// simpler for other passes (like the peephole optimiser) to deal with.
if (isNullConstant(RHS)) {
switch (CondCode) {
default: break;
case ARMCC::GE:
CondCode = ARMCC::PL;
break;
case ARMCC::LT:
CondCode = ARMCC::MI;
break;
}
}
ARMISD::NodeType CompareType;
switch (CondCode) {
default:
CompareType = ARMISD::CMP;
break;
case ARMCC::EQ:
case ARMCC::NE:
// Uses only Z Flag
CompareType = ARMISD::CMPZ;
break;
}
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
SelectionDAG &DAG, const SDLoc &dl,
bool Signaling) const {
assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
SDValue Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
dl, MVT::Glue, LHS, RHS);
else
Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
dl, MVT::Glue, LHS);
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
}
/// duplicateCmp - Glue values can have only one use, so this function
/// duplicates a comparison node.
SDValue
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
unsigned Opc = Cmp.getOpcode();
SDLoc DL(Cmp);
if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
Cmp = Cmp.getOperand(0);
Opc = Cmp.getOpcode();
if (Opc == ARMISD::CMPFP)
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
else {
assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
}
return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
}
// This function returns three things: the arithmetic computation itself
// (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
// comparison and the condition code define the case in which the arithmetic
// computation *does not* overflow.
std::pair<SDValue, SDValue>
ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
SDValue &ARMcc) const {
assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
SDValue Value, OverflowCmp;
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl(Op);
// FIXME: We are currently always generating CMPs because we don't support
// generating CMN through the backend. This is not as good as the natural
// CMP case because it causes a register dependency and cannot be folded
// later.
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::SADDO:
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
break;
case ISD::UADDO:
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
// We use ADDC here to correspond to its use in LowerUnsignedALUO.
// We do not use it in the USUBO case as Value may not be used.
Value = DAG.getNode(ARMISD::ADDC, dl,
DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
.getValue(0);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
break;
case ISD::SSUBO:
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
break;
case ISD::USUBO:
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
break;
case ISD::UMULO:
// We generate a UMUL_LOHI and then check if the high word is 0.
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
Value = DAG.getNode(ISD::UMUL_LOHI, dl,
DAG.getVTList(Op.getValueType(), Op.getValueType()),
LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
DAG.getConstant(0, dl, MVT::i32));
Value = Value.getValue(0); // We only want the low 32 bits for the result.
break;
case ISD::SMULO:
// We generate a SMUL_LOHI and then check if all the bits of the high word
// are the same as the sign bit of the low word.
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
Value = DAG.getNode(ISD::SMUL_LOHI, dl,
DAG.getVTList(Op.getValueType(), Op.getValueType()),
LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
DAG.getNode(ISD::SRA, dl, Op.getValueType(),
Value.getValue(0),
DAG.getConstant(31, dl, MVT::i32)));
Value = Value.getValue(0); // We only want the low 32 bits for the result.
break;
} // switch (...)
return std::make_pair(Value, OverflowCmp);
}
SDValue
ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDLoc dl(Op);
// We use 0 and 1 as false and true values.
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
EVT VT = Op.getValueType();
SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
ARMcc, CCR, OverflowCmp);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
SelectionDAG &DAG) {
SDLoc DL(BoolCarry);
EVT CarryVT = BoolCarry.getValueType();
// This converts the boolean value carry into the carry flag by doing
// ARMISD::SUBC Carry, 1
SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
DAG.getVTList(CarryVT, MVT::i32),
BoolCarry, DAG.getConstant(1, DL, CarryVT));
return Carry.getValue(1);
}
static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
SelectionDAG &DAG) {
SDLoc DL(Flags);
// Now convert the carry flag into a boolean carry. We do this
// using ARMISD:ADDE 0, 0, Carry
return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32), Flags);
}
SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
SelectionDAG &DAG) const {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Value;
SDValue Overflow;
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::UADDO:
Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
// Convert the carry flag into a boolean value.
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
break;
case ISD::USUBO: {
Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
// Convert the carry flag into a boolean value.
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
// ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
// value. So compute 1 - C.
Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(1, dl, MVT::i32), Overflow);
break;
}
}
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
EVT VT = Op.getValueType();
if (!Subtarget->hasDSP())
return SDValue();
if (!VT.isSimple())
return SDValue();
unsigned NewOpcode;
bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
switch (VT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::i8:
NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
break;
case MVT::i16:
NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
break;
}
SDLoc dl(Op);
SDValue Add =
DAG.getNode(NewOpcode, dl, MVT::i32,
DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
}
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = Op.getOperand(0);
SDValue SelectTrue = Op.getOperand(1);
SDValue SelectFalse = Op.getOperand(2);
SDLoc dl(Op);
unsigned Opc = Cond.getOpcode();
if (Cond.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO)) {
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
return SDValue();
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
EVT VT = Op.getValueType();
return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
OverflowCmp, DAG);
}
// Convert:
//
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
//
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
const ConstantSDNode *CMOVTrue =
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
const ConstantSDNode *CMOVFalse =
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (CMOVTrue && CMOVFalse) {
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
SDValue True;
SDValue False;
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
True = SelectTrue;
False = SelectFalse;
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
True = SelectFalse;
False = SelectTrue;
}
if (True.getNode() && False.getNode()) {
EVT VT = Op.getValueType();
SDValue ARMcc = Cond.getOperand(2);
SDValue CCR = Cond.getOperand(3);
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
assert(True.getValueType() == VT);
return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
}
}
}
// ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
// undefined bits before doing a full-word comparison with zero.
Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
DAG.getConstant(1, dl, Cond.getValueType()));
return DAG.getSelectCC(dl, Cond,
DAG.getConstant(0, dl, Cond.getValueType()),
SelectTrue, SelectFalse, ISD::SETNE);
}
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
bool &swpCmpOps, bool &swpVselOps) {
// Start by selecting the GE condition code for opcodes that return true for
// 'equality'
if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
CondCode = ARMCC::GE;
// and GT for opcodes that return false for 'equality'.
else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
CondCode = ARMCC::GT;
// Since we are constrained to GE/GT, if the opcode contains 'less', we need
// to swap the compare operands.
if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
swpCmpOps = true;
// Both GT and GE are ordered comparisons, and return false for 'unordered'.
// If we have an unordered opcode, we need to swap the operands to the VSEL
// instruction (effectively negating the condition).
//
// This also has the effect of swapping which one of 'less' or 'greater'
// returns true, so we also swap the compare operands. It also switches
// whether we return true for 'equality', so we compensate by picking the
// opposite condition code to our original choice.
if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
CC == ISD::SETUGT) {
swpCmpOps = !swpCmpOps;
swpVselOps = !swpVselOps;
CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
}
// 'ordered' is 'anything but unordered', so use the VS condition code and
// swap the VSEL operands.
if (CC == ISD::SETO) {
CondCode = ARMCC::VS;
swpVselOps = true;
}
// 'unordered or not equal' is 'anything but equal', so use the EQ condition
// code and swap the VSEL operands. Also do this if we don't care about the
// unordered case.
if (CC == ISD::SETUNE || CC == ISD::SETNE) {
CondCode = ARMCC::EQ;
swpVselOps = true;
}
}
SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
SDValue TrueVal, SDValue ARMcc, SDValue CCR,
SDValue Cmp, SelectionDAG &DAG) const {
if (!Subtarget->hasFP64() && VT == MVT::f64) {
FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
SDValue TrueLow = TrueVal.getValue(0);
SDValue TrueHigh = TrueVal.getValue(1);
SDValue FalseLow = FalseVal.getValue(0);
SDValue FalseHigh = FalseVal.getValue(1);
SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
ARMcc, CCR, Cmp);
SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
ARMcc, CCR, duplicateCmp(Cmp, DAG));
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
} else {
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
Cmp);
}
}
static bool isGTorGE(ISD::CondCode CC) {
return CC == ISD::SETGT || CC == ISD::SETGE;
}
static bool isLTorLE(ISD::CondCode CC) {
return CC == ISD::SETLT || CC == ISD::SETLE;
}
// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
// All of these conditions (and their <= and >= counterparts) will do:
// x < k ? k : x
// x > k ? x : k
// k < x ? x : k
// k > x ? k : x
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
const SDValue TrueVal, const SDValue FalseVal,
const ISD::CondCode CC, const SDValue K) {
return (isGTorGE(CC) &&
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
(isLTorLE(CC) &&
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
}
// Similar to isLowerSaturate(), but checks for upper-saturating conditions.
static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
const SDValue TrueVal, const SDValue FalseVal,
const ISD::CondCode CC, const SDValue K) {
return (isGTorGE(CC) &&
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
(isLTorLE(CC) &&
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
}
// Check if two chained conditionals could be converted into SSAT or USAT.
//
// SSAT can replace a set of two conditional selectors that bound a number to an
// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
//
// x < -k ? -k : (x > k ? k : x)
// x < -k ? -k : (x < k ? x : k)
// x > -k ? (x > k ? k : x) : -k
// x < k ? (x < -k ? -k : x) : k
// etc.
//
// USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
// a power of 2.
//
// It returns true if the conversion can be done, false otherwise.
// Additionally, the variable is returned in parameter V, the constant in K and
// usat is set to true if the conditional represents an unsigned saturation
static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
uint64_t &K, bool &usat) {
SDValue LHS1 = Op.getOperand(0);
SDValue RHS1 = Op.getOperand(1);
SDValue TrueVal1 = Op.getOperand(2);
SDValue FalseVal1 = Op.getOperand(3);
ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
if (Op2.getOpcode() != ISD::SELECT_CC)
return false;
SDValue LHS2 = Op2.getOperand(0);
SDValue RHS2 = Op2.getOperand(1);
SDValue TrueVal2 = Op2.getOperand(2);
SDValue FalseVal2 = Op2.getOperand(3);
ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
// Find out which are the constants and which are the variables
// in each conditional
SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
? &RHS1
: nullptr;
SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
? &RHS2
: nullptr;
SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
// We must detect cases where the original operations worked with 16- or
// 8-bit values. In such case, V2Tmp != V2 because the comparison operations
// must work with sign-extended values but the select operations return
// the original non-extended value.
SDValue V2TmpReg = V2Tmp;
if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
V2TmpReg = V2Tmp->getOperand(0);
// Check that the registers and the constants have the correct values
// in both conditionals
if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
V2TmpReg != V2)
return false;
// Figure out which conditional is saturating the lower/upper bound.
const SDValue *LowerCheckOp =
isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
? &Op
: isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
? &Op2
: nullptr;
const SDValue *UpperCheckOp =
isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
? &Op
: isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
? &Op2
: nullptr;
if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
return false;
// Check that the constant in the lower-bound check is
// the opposite of the constant in the upper-bound check
// in 1's complement.
int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
int64_t PosVal = std::max(Val1, Val2);
int64_t NegVal = std::min(Val1, Val2);
if (((Val1 > Val2 && UpperCheckOp == &Op) ||
(Val1 < Val2 && UpperCheckOp == &Op2)) &&
isPowerOf2_64(PosVal + 1)) {
// Handle the difference between USAT (unsigned) and SSAT (signed) saturation
if (Val1 == ~Val2)
usat = false;
else if (NegVal == 0)
usat = true;
else
return false;
V = V2;
K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
return true;
}
return false;
}
// Check if a condition of the type x < k ? k : x can be converted into a
// bit operation instead of conditional moves.
// Currently this is allowed given:
// - The conditions and values match up
// - k is 0 or -1 (all ones)
// This function will not check the last condition, thats up to the caller
// It returns true if the transformation can be made, and in such case
// returns x in V, and k in SatK.
static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
SDValue &SatK)
{
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
? &RHS
: nullptr;
// No constant operation in comparison, early out
if (!K)
return false;
SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
V = (KTmp == TrueVal) ? FalseVal : TrueVal;
SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
// If the constant on left and right side, or variable on left and right,
// does not match, early out
if (*K != KTmp || V != VTmp)
return false;
if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
SatK = *K;
return true;
}
return false;
}
bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
if (VT == MVT::f32)
return !Subtarget->hasVFP2Base();
if (VT == MVT::f64)
return !Subtarget->hasFP64();
if (VT == MVT::f16)
return !Subtarget->hasFullFP16();
return false;
}
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
// Try to convert two saturating conditional selects into a single SSAT
SDValue SatValue;
uint64_t SatConstant;
bool SatUSat;
if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
if (SatUSat)
return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
else
return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
}
// Try to convert expressions of the form x < k ? k : x (and similar forms)
// into more efficient bit operations, which is possible when k is 0 or -1
// On ARM and Thumb-2 which have flexible operand 2 this will result in
// single instructions. On Thumb the shift and the bit operation will be two
// instructions.
// Only allow this transformation on full-width (32-bit) operations
SDValue LowerSatConstant;
if (VT == MVT::i32 &&
isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
DAG.getConstant(31, dl, VT));
if (isNullConstant(LowerSatConstant)) {
SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
DAG.getAllOnesConstant(dl, VT));
return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
} else if (isAllOnesConstant(LowerSatConstant))
return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
}
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
unsigned TVal = CTVal->getZExtValue();
unsigned FVal = CFVal->getZExtValue();
unsigned Opcode = 0;
if (TVal == ~FVal) {
Opcode = ARMISD::CSINV;
} else if (TVal == ~FVal + 1) {
Opcode = ARMISD::CSNEG;
} else if (TVal + 1 == FVal) {
Opcode = ARMISD::CSINC;
} else if (TVal == FVal + 1) {
Opcode = ARMISD::CSINC;
std::swap(TrueVal, FalseVal);
std::swap(TVal, FVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
if (Opcode) {
// If one of the constants is cheaper than another, materialise the
// cheaper one and let the csel generate the other.
if (Opcode != ARMISD::CSINC &&
HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
std::swap(TrueVal, FalseVal);
std::swap(TVal, FVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
// Attempt to use ZR checking TVal is 0, possibly inverting the condition
// to get there. CSINC not is invertable like the other two (~(~a) == a,
// -(-a) == a, but (a+1)+1 != a).
if (FVal == 0 && Opcode != ARMISD::CSINC) {
std::swap(TrueVal, FalseVal);
std::swap(TVal, FVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
if (TVal == 0)
TrueVal = DAG.getRegister(ARM::ZR, MVT::i32);
// Drops F's value because we can get it by inverting/negating TVal.
FalseVal = TrueVal;
SDValue ARMcc;
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
EVT VT = TrueVal.getValueType();
return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
}
}
if (isUnsupportedFloatingType(LHS.getValueType())) {
DAG.getTargetLoweringInfo().softenSetCCOperands(
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands only returned one value, we should compare it to
// zero.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType() == MVT::i32) {
// Try to generate VSEL on ARMv8.
// The VSEL instruction can't use all the usual ARM condition
// codes: it only has two bits to select the condition code, so it's
// constrained to use only GE, GT, VS and EQ.
//
// To implement all the various ISD::SETXXX opcodes, we sometimes need to
// swap the operands of the previous compare instruction (effectively
// inverting the compare condition, swapping 'less' and 'greater') and
// sometimes need to swap the operands to the VSEL (which inverts the
// condition in the sense of firing whenever the previous condition didn't)
if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
TrueVal.getValueType() == MVT::f32 ||
TrueVal.getValueType() == MVT::f64)) {
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
std::swap(TrueVal, FalseVal);
}
}
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
// Choose GE over PL, which vsel does now support
if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
// Normalize the fp compare. If RHS is zero we prefer to keep it there so we
// match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
// must use VSEL (limited condition codes), due to not having conditional f16
// moves.
if (Subtarget->hasFPARMv8Base() &&
!(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
(TrueVal.getValueType() == MVT::f16 ||
TrueVal.getValueType() == MVT::f32 ||
TrueVal.getValueType() == MVT::f64)) {
bool swpCmpOps = false;
bool swpVselOps = false;
checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
if (swpCmpOps)
std::swap(LHS, RHS);
if (swpVselOps)
std::swap(TrueVal, FalseVal);
}
}
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
if (CondCode2 != ARMCC::AL) {
SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
}
return Result;
}
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
/// to morph to an integer compare sequence.
static bool canChangeToInt(SDValue Op, bool &SeenZero,
const ARMSubtarget *Subtarget) {
SDNode *N = Op.getNode();
if (!N->hasOneUse())
// Otherwise it requires moving the value from fp to integer registers.
return false;
if (!N->getNumValues())
return false;
EVT VT = Op.getValueType();
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
// vmrs are very slow, e.g. cortex-a8.
return false;
if (isFloatingPointZero(Op)) {
SeenZero = true;
return true;
}
return ISD::isNormalLoad(N);
}
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
if (isFloatingPointZero(Op))
return DAG.getConstant(0, SDLoc(Op), MVT::i32);
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
llvm_unreachable("Unknown VFP cmp argument!");
}
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
SDValue &RetVal1, SDValue &RetVal2) {
SDLoc dl(Op);
if (isFloatingPointZero(Op)) {
RetVal1 = DAG.getConstant(0, dl, MVT::i32);
RetVal2 = DAG.getConstant(0, dl, MVT::i32);
return;
}
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
SDValue Ptr = Ld->getBasePtr();
RetVal1 =
DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
Ld->getAlignment(), Ld->getMemOperand()->getFlags());
EVT PtrType = Ptr.getValueType();
unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
Ld->getPointerInfo().getWithOffset(4), NewAlign,
Ld->getMemOperand()->getFlags());
return;
}
llvm_unreachable("Unknown VFP cmp argument!");
}
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
/// f32 and even f64 comparisons to integer ones.
SDValue
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
bool LHSSeenZero = false;
bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
bool RHSSeenZero = false;
bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
// If unsafe fp math optimization is enabled and there are no other uses of
// the CMP operands, and the condition code is EQ or NE, we can optimize it
// to an integer comparison.
if (CC == ISD::SETOEQ)
CC = ISD::SETEQ;
else if (CC == ISD::SETUNE)
CC = ISD::SETNE;
SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
SDValue ARMcc;
if (LHS.getValueType() == MVT::f32) {
LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
bitcastf32Toi32(LHS, DAG), Mask);
RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
bitcastf32Toi32(RHS, DAG), Mask);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMcc, CCR, Cmp);
}
SDValue LHS1, LHS2;
SDValue RHS1, RHS2;
expandf64Toi32(LHS, DAG, LHS1, LHS2);
expandf64Toi32(RHS, DAG, RHS1, RHS2);
LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
}
return SDValue();
}
SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
SDLoc dl(Op);
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
// instruction.
unsigned Opc = Cond.getOpcode();
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
!Subtarget->isThumb1Only();
if (Cond.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO || OptimizeMul)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
return SDValue();
// The actual operation with overflow check.
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
// Reverse the condition code.
ARMCC::CondCodes CondCode =
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
CondCode = ARMCC::getOppositeCondition(CondCode);
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
OverflowCmp);
}
return SDValue();
}
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
if (isUnsupportedFloatingType(LHS.getValueType())) {
DAG.getTargetLoweringInfo().softenSetCCOperands(
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands only returned one value, we should compare it to
// zero.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
// instruction.
unsigned Opc = LHS.getOpcode();
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
!Subtarget->isThumb1Only();
if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO || OptimizeMul) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
return SDValue();
// The actual operation with overflow check.
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
// Reverse the condition code.
ARMCC::CondCodes CondCode =
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
CondCode = ARMCC::getOppositeCondition(CondCode);
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
}
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
OverflowCmp);
}
if (LHS.getValueType() == MVT::i32) {
SDValue ARMcc;
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMcc, CCR, Cmp);
}
if (getTargetMachine().Options.UnsafeFPMath &&
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
CC == ISD::SETNE || CC == ISD::SETUNE)) {
if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
return Result;
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
if (CondCode2 != ARMCC::AL) {
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
}
return Res;
}
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc dl(Op);
EVT PTy = getPointerTy(DAG.getDataLayout());
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
// Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
// which does another jump to the destination. This also makes it easier
// to translate it to TBB / TBH later (Thumb2 only).
// FIXME: This might not work if the function is extremely large.
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
Addr, Op.getOperand(2), JTI);
}
if (isPositionIndependent() || Subtarget->isROPI()) {
Addr =
DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
Chain = Addr.getValue(1);
Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
} else {
Addr =
DAG.getLoad(PTy, dl, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
Chain = Addr.getValue(1);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
}
}
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (Op.getValueType().getVectorElementType() == MVT::i32) {
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
const bool HasFullFP16 =
static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
EVT NewTy;
const EVT OpTy = Op.getOperand(0).getValueType();
if (OpTy == MVT::v4f32)
NewTy = MVT::v4i32;
else if (OpTy == MVT::v4f16 && HasFullFP16)
NewTy = MVT::v4i16;
else if (OpTy == MVT::v8f16 && HasFullFP16)
NewTy = MVT::v8i16;
else
llvm_unreachable("Invalid type for custom lowering!");
if (VT != MVT::v4i16 && VT != MVT::v8i16)
return DAG.UnrollVectorOp(Op.getNode());
Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
}
SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorFP_TO_INT(Op, DAG);
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
if (isUnsupportedFloatingType(SrcVal.getValueType())) {
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::FP_TO_SINT ||
Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
Op.getValueType());
else
LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
Op.getValueType());
SDLoc Loc(Op);
MakeLibCallOptions CallOptions;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
SDValue Result;
std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
CallOptions, Loc, Chain);
return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
}
// FIXME: Remove this when we have strict fp instruction selection patterns
if (IsStrict) {
SDLoc Loc(Op);
SDValue Result =
DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
: ISD::FP_TO_UINT,
Loc, Op.getValueType(), SrcVal);
return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
}
return Op;
}
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
if (VT.getVectorElementType() == MVT::f32)
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
Op.getOperand(0).getValueType() == MVT::v8i16) &&
"Invalid type for custom lowering!");
const bool HasFullFP16 =
static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
EVT DestVecType;
if (VT == MVT::v4f32)
DestVecType = MVT::v4i32;
else if (VT == MVT::v4f16 && HasFullFP16)
DestVecType = MVT::v4i16;
else if (VT == MVT::v8f16 && HasFullFP16)
DestVecType = MVT::v8i16;
else
return DAG.UnrollVectorOp(Op.getNode());
unsigned CastOpc;
unsigned Opc;
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid opcode!");
case ISD::SINT_TO_FP:
CastOpc = ISD::SIGN_EXTEND;
Opc = ISD::SINT_TO_FP;
break;
case ISD::UINT_TO_FP:
CastOpc = ISD::ZERO_EXTEND;
Opc = ISD::UINT_TO_FP;
break;
}
Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
return DAG.getNode(Opc, dl, VT, Op);
}
SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorINT_TO_FP(Op, DAG);
if (isUnsupportedFloatingType(VT)) {
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::SINT_TO_FP)
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
Op.getValueType());
else
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
Op.getValueType());
MakeLibCallOptions CallOptions;
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
CallOptions, SDLoc(Op)).first;
}
return Op;
}
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
// Implement fcopysign with a fabs and a conditional fneg.
SDValue Tmp0 = Op.getOperand(0);
SDValue Tmp1 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT SrcVT = Tmp1.getValueType();
bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
Tmp0.getOpcode() == ARMISD::VMOVDRR;
bool UseNEON = !InGPR && Subtarget->hasNEON();
if (UseNEON) {
// Use VBSL to copy the sign bit.
unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
if (VT == MVT::f64)
Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
DAG.getConstant(32, dl, MVT::i32));
else /*if (VT == MVT::f32)*/
Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
if (SrcVT == MVT::f32) {
Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
if (VT == MVT::f64)
Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
DAG.getConstant(32, dl, MVT::i32));
} else if (VT == MVT::f32)
Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
DAG.getConstant(32, dl, MVT::i32));
Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
dl, MVT::i32);
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
if (VT == MVT::f32) {
Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
DAG.getConstant(0, dl, MVT::i32));
} else {
Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
}
return Res;
}
// Bitcast operand 1 to i32.
if (SrcVT == MVT::f64)
Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
Tmp1).getValue(1);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
// Or in the signbit with integer operations.
SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
if (VT == MVT::f32) {
Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
}
// f64: Or the high part with signbit and then combine two parts.
Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
Tmp0);
SDValue Lo = Tmp0.getValue(0);
SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
}
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return LR, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
const ARMBaseRegisterInfo &ARI =
*static_cast<const ARMBaseRegisterInfo*>(RegInfo);
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
Register FrameReg = ARI.getFrameRegister(MF);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = StringSwitch<unsigned>(RegName)
.Case("sp", ARM::SP)
.Default(0);
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
}
// Result is 64 bit value so split into two 32 bit values and return as a
// pair of values.
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
SDLoc DL(N);
// This function is only supposed to be called for i64 type destination.
assert(N->getValueType(0) == MVT::i64
&& "ExpandREAD_REGISTER called for non-i64 type result.");
SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
N->getOperand(0),
N->getOperand(1));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
Read.getValue(1)));
Results.push_back(Read.getOperand(0));
}
/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
/// When \p DstVT, the destination type of \p BC, is on the vector
/// register bank and the source of bitcast, \p Op, operates on the same bank,
/// it might be possible to combine them, such that everything stays on the
/// vector register bank.
/// \p return The node that would replace \p BT, if the combine
/// is possible.
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
SelectionDAG &DAG) {
SDValue Op = BC->getOperand(0);
EVT DstVT = BC->getValueType(0);
// The only vector instruction that can produce a scalar (remember,
// since the bitcast was about to be turned into VMOVDRR, the source
// type is i64) from a vector is EXTRACT_VECTOR_ELT.
// Moreover, we can do this combine only if there is one use.
// Finally, if the destination type is not a vector, there is not
// much point on forcing everything on the vector bank.
if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!Op.hasOneUse())
return SDValue();
// If the index is not constant, we will introduce an additional
// multiply that will stick.
// Give up in that case.
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Index)
return SDValue();
unsigned DstNumElt = DstVT.getVectorNumElements();
// Compute the new index.
const APInt &APIntIndex = Index->getAPIntValue();
APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
NewIndex *= APIntIndex;
// Check if the new constant index fits into i32.
if (NewIndex.getBitWidth() > 32)
return SDValue();
// vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
// vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
SDLoc dl(Op);
SDValue ExtractSrc = Op.getOperand(0);
EVT VecVT = EVT::getVectorVT(
*DAG.getContext(), DstVT.getScalarType(),
ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
}
/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
/// vectors), since the legalizer won't know what to do with that.
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
SDValue Op = N->getOperand(0);
// This function is only supposed to be called for i64 types, either as the
// source or destination of the bit convert.
EVT SrcVT = Op.getValueType();
EVT DstVT = N->getValueType(0);
const bool HasFullFP16 = Subtarget->hasFullFP16();
if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
// FullFP16: half values are passed in S-registers, and we don't
// need any of the bitcast and moves:
//
// t2: f32,ch = CopyFromReg t0, Register:f32 %0
// t5: i32 = bitcast t2
// t18: f16 = ARMISD::VMOVhr t5
if (Op.getOpcode() != ISD::CopyFromReg ||
Op.getValueType() != MVT::f32)
return SDValue();
auto Move = N->use_begin();
if (Move->getOpcode() != ARMISD::VMOVhr)
return SDValue();
SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
DAG.ReplaceAllUsesWith(*Move, &Copy);
return Copy;
}
if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
if (!HasFullFP16)
return SDValue();
// SoftFP: read half-precision arguments:
//
// t2: i32,ch = ...
// t7: i16 = truncate t2 <~~~~ Op
// t8: f16 = bitcast t7 <~~~~ N
//
if (Op.getOperand(0).getValueType() == MVT::i32)
return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
MVT::f16, Op.getOperand(0));
return SDValue();
}
// Half-precision return values
if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
if (!HasFullFP16)
return SDValue();
//
// t11: f16 = fadd t8, t10
// t12: i16 = bitcast t11 <~~~ SDNode N
// t13: i32 = zero_extend t12
// t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
// t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
//
// transform this into:
//
// t20: i32 = ARMISD::VMOVrh t11
// t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
//
auto ZeroExtend = N->use_begin();
if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
ZeroExtend->getValueType(0) != MVT::i32)
return SDValue();
auto Copy = ZeroExtend->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg &&
Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
return Cvt;
}
return SDValue();
}
if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
return SDValue();
// Turn i64->f64 into VMOVDRR.
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
// Do not force values to GPRs (this is what VMOVDRR does for the inputs)
// if we can combine the bitcast with its source.
if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
return Val;
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, DstVT,
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
}
// Turn f64->i64 into VMOVRRD.
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
SDValue Cvt;
if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
SrcVT.getVectorNumElements() > 1)
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32),
DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
else
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Op);
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
}
return SDValue();
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
/// Zero vectors are used to represent vector negation and in those cases
/// will be implemented with the NEON VNEG instruction. However, VNEG does
/// not support i64 elements, so sometimes the zero vectors will need to be
/// explicitly constructed. Regardless, use a canonical VMOV to create the
/// zero vector.
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert(VT.isVector() && "Expected a vector type");
// The canonical modified immediate encoding of a zero vector is....0!
SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
ARMcc, CCR, CmpLo);
SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue HiBigShift = Opc == ISD::SRA
? DAG.getNode(Opc, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, VT))
: DAG.getConstant(0, dl, VT);
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
ARMcc, CCR, CmpHi);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
assert(Op.getOpcode() == ISD::SHL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
ARMcc, CCR, CmpHi);
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
// The rounding mode is in bits 23:22 of the FPSCR.
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
// so that the shift + and get folded into a bitfield extract.
SDLoc dl(Op);
SDValue Ops[] = { DAG.getEntryNode(),
DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
DAG.getConstant(1U << 22, dl, MVT::i32));
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
DAG.getConstant(22, dl, MVT::i32));
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
DAG.getConstant(3, dl, MVT::i32));
}
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
if (VT.isVector() && ST->hasNEON()) {
// Compute the least significant set bit: LSB = X & -X
SDValue X = N->getOperand(0);
SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
EVT ElemTy = VT.getVectorElementType();
if (ElemTy == MVT::i8) {
// Compute with: cttz(x) = ctpop(lsb - 1)
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(1, dl, ElemTy));
SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
}
if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
(N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
// Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
unsigned NumBits = ElemTy.getSizeInBits();
SDValue WidthMinus1 =
DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
}
// Compute with: cttz(x) = ctpop(lsb - 1)
// Compute LSB - 1.
SDValue Bits;
if (ElemTy == MVT::i64) {
// Load constant 0xffff'ffff'ffff'ffff to register.
SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(0x1eff, dl, MVT::i32));
Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
} else {
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(1, dl, ElemTy));
Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
}
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
}
if (!ST->hasV6T2Ops())
return SDValue();
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
}
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc DL(N);
assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
"Unexpected type for custom ctpop lowering");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
// Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
unsigned EltSize = 8;
unsigned NumElts = VT.is64BitVector() ? 8 : 16;
while (EltSize != VT.getScalarSizeInBits()) {
SmallVector<SDValue, 8> Ops;
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
TLI.getPointerTy(DAG.getDataLayout())));
Ops.push_back(Res);
EltSize *= 2;
NumElts /= 2;
MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
}
return Res;
}
/// Getvshiftimm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN ||
!BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. For a shift opcode, the value
/// is positive, but for an intrinsic the value count must be negative. The
/// absolute value must be in the range:
/// 1 <= |Value| <= ElementBits for a right shift; or
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
if (!isIntrinsic)
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
Cnt = -Cnt;
return true;
}
return false;
}
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
int64_t Cnt;
if (!VT.isVector())
return SDValue();
// We essentially have two forms here. Shift by an immediate and shift by a
// vector register (there are also shift by a gpr, but that is just handled
// with a tablegen pattern). We cannot easily match shift by an immediate in
// tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
// For shifting by a vector, we don't have VSHR, only VSHL (which can be
// signed or unsigned, and a negative shift indicates a shift right).
if (N->getOpcode() == ISD::SHL) {
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
N->getOperand(1));
}
assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
"unexpected vector shift opcode");
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
unsigned VShiftOpc =
(N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
}
// Other right shifts we don't have operations for (we use a shift left by a
// negative number).
EVT ShiftVT = N->getOperand(1).getValueType();
SDValue NegatedCount = DAG.getNode(
ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
unsigned VShiftOpc =
(N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
}
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
// We can get here for a node like i32 = ISD::SHL i32, i64
if (VT != MVT::i64)
return SDValue();
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
N->getOpcode() == ISD::SHL) &&
"Unknown shift to lower!");
unsigned ShOpc = N->getOpcode();
if (ST->hasMVEIntegerOps()) {
SDValue ShAmt = N->getOperand(1);
unsigned ShPartsOpc = ARMISD::LSLL;
ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
// If the shift amount is greater than 32 or has a greater bitwidth than 64
// then do the default optimisation
if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
(Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
return SDValue();
// Extract the lower 32 bits of the shift amount if it's not an i32
if (ShAmt->getValueType(0) != MVT::i32)
ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
if (ShOpc == ISD::SRL) {
if (!Con)
// There is no t2LSRLr instruction so negate and perform an lsll if the
// shift amount is in a register, emulating a right shift.
ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(0, dl, MVT::i32), ShAmt);
else
// Else generate an lsrl on the immediate shift amount
ShPartsOpc = ARMISD::LSRL;
} else if (ShOpc == ISD::SRA)
ShPartsOpc = ARMISD::ASRL;
// Lower 32 bits of the destination/source
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
// Upper 32 bits of the destination/source
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
// Generate the shift operation as computed above
Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
ShAmt);
// The upper 32 bits come from the second return value of lsll
Hi = SDValue(Lo.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
// We only lower SRA, SRL of 1 here, all others use generic lowering.
if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
return SDValue();
// If we are in thumb mode, we don't have RRX.
if (ST->isThumb1Only())
return SDValue();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
bool Invert = false;
bool Swap = false;
unsigned Opc = ARMCC::AL;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
SDLoc dl(Op);
EVT CmpVT;
if (ST->hasNEON())
CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
else {
assert(ST->hasMVEIntegerOps() &&
"No hardware support for integer vector comparison!");
if (Op.getValueType().getVectorElementType() != MVT::i1)
return SDValue();
// Make sure we expand floating point setcc to scalar if we do not have
// mve.fp, so that we can handle them from there.
if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
return SDValue();
CmpVT = VT;
}
if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
(SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
// Special-case integer 64-bit equality comparisons. They aren't legal,
// but they can be lowered with a few vector instructions.
unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
DAG.getCondCode(ISD::SETEQ));
SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
if (SetCCOpcode == ISD::SETNE)
Merged = DAG.getNOT(dl, Merged, CmpVT);
Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
return Merged;
}
if (CmpVT.getVectorElementType() == MVT::i64)
// 64-bit comparisons are not legal in general.
return SDValue();
if (Op1.getValueType().isFloatingPoint()) {
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal FP comparison");
case ISD::SETUNE:
case ISD::SETNE:
if (ST->hasMVEFloatOps()) {
Opc = ARMCC::NE; break;
} else {
Invert = true; LLVM_FALLTHROUGH;
}
case ISD::SETOEQ:
case ISD::SETEQ: Opc = ARMCC::EQ; break;
case ISD::SETOLT:
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT: Opc = ARMCC::GT; break;
case ISD::SETOLE:
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETOGE:
case ISD::SETGE: Opc = ARMCC::GE; break;
case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETONE: {
// Expand this to (OLT | OGT).
SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETO: {
// Expand this to (OLT | OGE).
SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
DAG.getConstant(ARMCC::GE, dl, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
}
} else {
// Integer comparisons.
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal integer comparison");
case ISD::SETNE:
if (ST->hasMVEIntegerOps()) {
Opc = ARMCC::NE; break;
} else {
Invert = true; LLVM_FALLTHROUGH;
}
case ISD::SETEQ: Opc = ARMCC::EQ; break;
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETGT: Opc = ARMCC::GT; break;
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETGE: Opc = ARMCC::GE; break;
case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGT: Opc = ARMCC::HI; break;
case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGE: Opc = ARMCC::HS; break;
}
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
if (ST->hasNEON() && Opc == ARMCC::EQ) {
SDValue AndOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
AndOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
AndOp = Op1;
// Ignore bitconvert.
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
AndOp = AndOp.getOperand(0);
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
if (!Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
}
}
if (Swap)
std::swap(Op0, Op1);
// If one of the operands is a constant vector zero, attempt to fold the
// comparison to a specialized compare-against-zero form.
SDValue SingleOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
SingleOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
if (Opc == ARMCC::GE)
Opc = ARMCC::LE;
else if (Opc == ARMCC::GT)
Opc = ARMCC::LT;
SingleOp = Op1;
}
SDValue Result;
if (SingleOp.getNode()) {
Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
DAG.getConstant(Opc, dl, MVT::i32));
} else {
Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
DAG.getConstant(Opc, dl, MVT::i32));
}
Result = DAG.getSExtOrTrunc(Result, dl, VT);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Carry = Op.getOperand(2);
SDValue Cond = Op.getOperand(3);
SDLoc DL(Op);
assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
// ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
// have to invert the carry first.
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32), Carry);
// This converts the boolean value carry into the carry flag.
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
SDValue ARMcc = DAG.getConstant(
IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
Cmp.getValue(1), SDValue());
return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
CCR, Chain.getValue(1));
}
/// isVMOVModifiedImm - Check if the specified splat value corresponds to a
/// valid vector constant for a NEON or MVE instruction with a "modified
/// immediate" operand (e.g., VMOV). If so, return the encoded value.
static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
unsigned SplatBitSize, SelectionDAG &DAG,
const SDLoc &dl, EVT &VT, bool is128Bits,
VMOVModImmType type) {
unsigned OpCmode, Imm;
// SplatBitSize is set to the smallest size that splats the vector, so a
// zero vector will always have SplatBitSize == 8. However, NEON modified
// immediate instructions others than VMOV do not support the 8-bit encoding
// of a zero vector, and the default encoding of zero is supposed to be the
// 32-bit version.
if (SplatBits == 0)
SplatBitSize = 32;
switch (SplatBitSize) {
case 8:
if (type != VMOVModImm)
return SDValue();
// Any 1-byte value is OK. Op=0, Cmode=1110.
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
OpCmode = 0xe;
Imm = SplatBits;
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
break;
case 16:
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x00nn: Op=x, Cmode=100x.
OpCmode = 0x8;
Imm = SplatBits;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0xnn00: Op=x, Cmode=101x.
OpCmode = 0xa;
Imm = SplatBits >> 8;
break;
}
return SDValue();
case 32:
// NEON's 32-bit VMOV supports splat values where:
// * only one byte is nonzero, or
// * the least significant byte is 0xff and the second byte is nonzero, or
// * the least significant 2 bytes are 0xff and the third is nonzero.
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x000000nn: Op=x, Cmode=000x.
OpCmode = 0;
Imm = SplatBits;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0x0000nn00: Op=x, Cmode=001x.
OpCmode = 0x2;
Imm = SplatBits >> 8;
break;
}
if ((SplatBits & ~0xff0000) == 0) {
// Value = 0x00nn0000: Op=x, Cmode=010x.
OpCmode = 0x4;
Imm = SplatBits >> 16;
break;
}
if ((SplatBits & ~0xff000000) == 0) {
// Value = 0xnn000000: Op=x, Cmode=011x.
OpCmode = 0x6;
Imm = SplatBits >> 24;
break;
}
// cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
if (type == OtherModImm) return SDValue();
if ((SplatBits & ~0xffff) == 0 &&
((SplatBits | SplatUndef) & 0xff) == 0xff) {
// Value = 0x0000nnff: Op=x, Cmode=1100.
OpCmode = 0xc;
Imm = SplatBits >> 8;
break;
}
// cmode == 0b1101 is not supported for MVE VMVN
if (type == MVEVMVNModImm)
return SDValue();
if ((SplatBits & ~0xffffff) == 0 &&
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
// Value = 0x00nnffff: Op=x, Cmode=1101.
OpCmode = 0xd;
Imm = SplatBits >> 16;
break;
}
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
// VMOV.I32. A (very) minor optimization would be to replicate the value
// and fall through here to test for a valid 64-bit splat. But, then the
// caller would also need to check and handle the change in size.
return SDValue();
case 64: {
if (type != VMOVModImm)
return SDValue();
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
uint64_t BitMask = 0xff;
unsigned ImmMask = 1;
Imm = 0;
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
Imm |= ImmMask;
} else if ((SplatBits & BitMask) != 0) {
return SDValue();
}
BitMask <<= 8;
ImmMask <<= 1;
}
if (DAG.getDataLayout().isBigEndian())
// swap higher and lower 32 bit word
Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
// Op=1, Cmode=1110.
OpCmode = 0x1e;
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
break;
}
default:
llvm_unreachable("unexpected size for isVMOVModifiedImm");
}
unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
}
SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const {
EVT VT = Op.getValueType();
bool IsDouble = (VT == MVT::f64);
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
const APFloat &FPVal = CFP->getValueAPF();
// Prevent floating-point constants from using literal loads
// when execute-only is enabled.
if (ST->genExecuteOnly()) {
// If we can represent the constant as an immediate, don't lower it
if (isFPImmLegal(FPVal, VT))
return Op;
// Otherwise, construct as integer, and move to float register
APInt INTVal = FPVal.bitcastToAPInt();
SDLoc DL(CFP);
switch (VT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("Unknown floating point type!");
break;
case MVT::f64: {
SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
if (!ST->isLittle())
std::swap(Lo, Hi);
return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
}
case MVT::f32:
return DAG.getNode(ARMISD::VMOVSR, DL, VT,
DAG.getConstant(INTVal, DL, MVT::i32));
}
}
if (!ST->hasVFP3Base())
return SDValue();
// Use the default (constant pool) lowering for double constants when we have
// an SP-only FPU
if (IsDouble && !Subtarget->hasFP64())
return SDValue();
// Try splatting with a VMOV.f32...
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
if (ImmVal != -1) {
if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
// We have code in place to select a valid ConstantFP already, no need to
// do any mangling.
return Op;
}
// It's a float and we are trying to use NEON operations where
// possible. Lower it to a splat followed by an extract.
SDLoc DL(Op);
SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
NewVal);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
DAG.getConstant(0, DL, MVT::i32));
}
// The rest of our options are NEON only, make sure that's allowed before
// proceeding..
if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
return SDValue();
EVT VMovVT;
uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
// It wouldn't really be worth bothering for doubles except for one very
// important value, which does happen to match: 0.0. So make sure we don't do
// anything stupid.
if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
return SDValue();
// Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
VMovVT, false, VMOVModImm);
if (NewVal != SDValue()) {
SDLoc DL(Op);
SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
NewVal);
if (IsDouble)
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
// It's a float: cast and extract a vector element.
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
VecConstant);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
DAG.getConstant(0, DL, MVT::i32));
}
// Finally, try a VMVN.i32
NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
false, VMVNModImm);
if (NewVal != SDValue()) {
SDLoc DL(Op);
SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
if (IsDouble)
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
// It's a float: cast and extract a vector element.
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
VecConstant);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
DAG.getConstant(0, DL, MVT::i32));
}
return SDValue();
}
// check if an VEXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, just follow it
// back to index zero and keep going.
++ExpectedElt;
if (ExpectedElt == NumElts)
ExpectedElt = 0;
if (M[i] < 0) continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
return true;
}
static bool isVEXTMask(ArrayRef<int> M, EVT VT,
bool &ReverseVEXT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
ReverseVEXT = false;
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, it may still be
// a VEXT but the source vectors must be swapped.
ExpectedElt += 1;
if (ExpectedElt == NumElts * 2) {
ExpectedElt = 0;
ReverseVEXT = true;
}
if (M[i] < 0) continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
// Adjust the index value if the source operands will be swapped.
if (ReverseVEXT)
Imm -= NumElts;
return true;
}
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
/// instruction with the specified blocksize. (The order of the elements
/// within each block of the vector is reversed.)
static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
"Only possible block sizes for VREV are: 16, 32, 64");
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
unsigned BlockElts = M[0] + 1;
// If the first shuffle index is UNDEF, be optimistic.
if (M[0] < 0)
BlockElts = BlockSize / EltSz;
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
if (M[i] < 0) continue; // ignore UNDEF indices
if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
return false;
}
return true;
}
static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
// We can handle <8 x i8> vector shuffles. If the index in the mask is out of
// range, then 0 is placed into the resulting vector. So pretty much any mask
// of 8 elements can work here.
return VT == MVT::v8i8 && M.size() == 8;
}
static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
unsigned Index) {
if (Mask.size() == Elements * 2)
return Index / Elements;
return Mask[Index] == 0 ? 0 : 1;
}
// Checks whether the shuffle mask represents a vector transpose (VTRN) by
// checking that pairs of elements in the shuffle mask represent the same index
// in each vector, incrementing the expected index by 2 at each step.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
// v2={e,f,g,h}
// WhichResult gives the offset for each element in the mask based on which
// of the two results it belongs to.
//
// The transpose can be represented either as:
// result1 = shufflevector v1, v2, result1_shuffle_mask
// result2 = shufflevector v1, v2, result2_shuffle_mask
// where v1/v2 and the shuffle masks have the same number of elements
// (here WhichResult (see below) indicates which result is being checked)
//
// or as:
// results = shufflevector v1, v2, shuffle_mask
// where both results are returned in one vector and the shuffle mask has twice
// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
// want to check the low half and high half of the shuffle mask as if it were
// the other case
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
// If the mask is twice as long as the input vector then we need to check the
// upper and lower parts of the mask with a matching value for WhichResult
// FIXME: A mask with only even values will be rejected in case the first
// element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
// M[0] is used to determine WhichResult
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
return true;
}
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
return true;
}
// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
// that the mask elements are either all even and in steps of size 2 or all odd
// and in steps of size 2.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
// v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with
// respect the how results are returned.
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; ++j) {
if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
unsigned Half = NumElts / 2;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; j += Half) {
unsigned Idx = WhichResult;
for (unsigned k = 0; k < Half; ++k) {
int MIdx = M[i + j + k];
if (MIdx >= 0 && (unsigned) MIdx != Idx)
return false;
Idx += 2;
}
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
// that pairs of elements of the shufflemask represent the same index in each
// vector incrementing sequentially through the vectors.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
// v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with respect the how results
// are returned.
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
return false;
Idx += 1;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
return false;
Idx += 1;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
unsigned &WhichResult,
bool &isV_UNDEF) {
isV_UNDEF = false;
if (isVTRNMask(ShuffleMask, VT, WhichResult))
return ARMISD::VTRN;
if (isVUZPMask(ShuffleMask, VT, WhichResult))
return ARMISD::VUZP;
if (isVZIPMask(ShuffleMask, VT, WhichResult))
return ARMISD::VZIP;
isV_UNDEF = true;
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VTRN;
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VUZP;
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VZIP;
return 0;
}
/// \return true if this is a reverse operation on an vector.
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
unsigned NumElts = VT.getVectorNumElements();
// Make sure the mask has the right size.
if (NumElts != M.size())
return false;
// Look for <15, ..., 3, -1, 1, 0>.
for (unsigned i = 0; i != NumElts; ++i)
if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
return false;
return true;
}
static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top) {
unsigned NumElts = VT.getVectorNumElements();
// Make sure the mask has the right size.
if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
return false;
// If Top
// Look for <0, N, 2, N+2, 4, N+4, ..>.
// This inserts Input2 into Input1
// else if not Top
// Look for <0, N+1, 2, N+3, 4, N+5, ..>
// This inserts Input1 into Input2
unsigned Offset = Top ? 0 : 1;
for (unsigned i = 0; i < NumElts; i+=2) {
if (M[i] >= 0 && M[i] != (int)i)
return false;
if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset))
return false;
}
return true;
}
// If N is an integer constant that can be moved into a register in one
// instruction, return an SDValue of such a constant (will become a MOV
// instruction). Otherwise return null.
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
const ARMSubtarget *ST, const SDLoc &dl) {
uint64_t Val;
if (!isa<ConstantSDNode>(N))
return SDValue();
Val = cast<ConstantSDNode>(N)->getZExtValue();
if (ST->isThumb1Only()) {
if (Val <= 255 || ~Val <= 255)
return DAG.getConstant(Val, dl, MVT::i32);
} else {
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
return DAG.getConstant(Val, dl, MVT::i32);
}
return SDValue();
}
static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
unsigned NumElts = VT.getVectorNumElements();
unsigned BoolMask;
unsigned BitsPerBool;
if (NumElts == 4) {
BitsPerBool = 4;
BoolMask = 0xf;
} else if (NumElts == 8) {
BitsPerBool = 2;
BoolMask = 0x3;
} else if (NumElts == 16) {
BitsPerBool = 1;
BoolMask = 0x1;
} else
return SDValue();
// If this is a single value copied into all lanes (a splat), we can just sign
// extend that single value
SDValue FirstOp = Op.getOperand(0);
if (!isa<ConstantSDNode>(FirstOp) &&
std::all_of(std::next(Op->op_begin()), Op->op_end(),
[&FirstOp](SDUse &U) {
return U.get().isUndef() || U.get() == FirstOp;
})) {
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
DAG.getValueType(MVT::i1));
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
}
// First create base with bits set where known
unsigned Bits32 = 0;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (!isa<ConstantSDNode>(V) && !V.isUndef())
continue;
bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
if (BitSet)
Bits32 |= BoolMask << (i * BitsPerBool);
}
// Add in unknown nodes
SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
DAG.getConstant(Bits32, dl, MVT::i32));
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (isa<ConstantSDNode>(V) || V.isUndef())
continue;
Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
DAG.getConstant(i, dl, MVT::i32));
}
return Base;
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc dl(Op);
EVT VT = Op.getValueType();
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
return LowerBUILD_VECTOR_i1(Op, DAG, ST);
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatUndef.isAllOnesValue())
return DAG.getUNDEF(VT);
if ((ST->hasNEON() && SplatBitSize <= 64) ||
(ST->hasMVEIntegerOps() && SplatBitSize <= 32)) {
// Check if an immediate VMOV works.
EVT VmovVT;
SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VmovVT, VT.is128BitVector(),
VMOVModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Try an immediate VMVN.
uint64_t NegatedImm = (~SplatBits).getZExtValue();
Val = isVMOVModifiedImm(
NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VmovVT, VT.is128BitVector(),
ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Use vmov.f32 to materialize other v2f32 and v4f32 splats.
if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
int ImmVal = ARM_AM::getFP32Imm(SplatBits);
if (ImmVal != -1) {
SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
}
}
}
}
// Scan through the operands to see if only one value is used.
//
// As an optimisation, even if more than one value is used it may be more
// profitable to splat with one value then change some lanes.
//
// Heuristically we decide to do this if the vector has a "dominant" value,
// defined as splatted to more than half of the lanes.
unsigned NumElts = VT.getVectorNumElements();
bool isOnlyLowElement = true;
bool usesOnlyOneValue = true;
bool hasDominantValue = false;
bool isConstant = true;
// Map of the number of times a particular SDValue appears in the
// element list.
DenseMap<SDValue, unsigned> ValueCounts;
SDValue Value;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
ValueCounts.insert(std::make_pair(V, 0));
unsigned &Count = ValueCounts[V];
// Is this value dominant? (takes up more than half of the lanes)
if (++Count > (NumElts / 2)) {
hasDominantValue = true;
Value = V;
}
}
if (ValueCounts.size() != 1)
usesOnlyOneValue = false;
if (!Value.getNode() && !ValueCounts.empty())
Value = ValueCounts.begin()->first;
if (ValueCounts.empty())
return DAG.getUNDEF(VT);
// Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
// Keep going if we are hitting this case.
if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
unsigned EltSize = VT.getScalarSizeInBits();
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
// i32 and try again.
if (hasDominantValue && EltSize <= 32) {
if (!isConstant) {
SDValue N;
// If we are VDUPing a value that comes directly from a vector, that will
// cause an unnecessary move to and from a GPR, where instead we could
// just use VDUPLANE. We can only do this if the lane being extracted
// is at a constant index, as the VDUP from lane instructions only have
// constant-index forms.
ConstantSDNode *constIndex;
if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
(constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
// We need to create a new undef vector to use for the VDUPLANE if the
// size of the vector from which we get the value is different than the
// size of the vector that we need to create. We will insert the element
// such that the register coalescer will remove unnecessary copies.
if (VT != Value->getOperand(0).getValueType()) {
unsigned index = constIndex->getAPIntValue().getLimitedValue() %
VT.getVectorNumElements();
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
Value, DAG.getConstant(index, dl, MVT::i32)),
DAG.getConstant(index, dl, MVT::i32));
} else
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
Value->getOperand(0), Value->getOperand(1));
} else
N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
if (!usesOnlyOneValue) {
// The dominant value was splatted as 'N', but we now have to insert
// all differing elements.
for (unsigned I = 0; I < NumElts; ++I) {
if (Op.getOperand(I) == Value)
continue;
SmallVector<SDValue, 3> Ops;
Ops.push_back(N);
Ops.push_back(Op.getOperand(I));
Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
}
}
return N;
}
if (VT.getVectorElementType().isFloatingPoint()) {
SmallVector<SDValue, 8> Ops;
MVT FVT = VT.getVectorElementType().getSimpleVT();
assert(FVT == MVT::f32 || FVT == MVT::f16);
MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
Op.getOperand(i)));
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
Val = LowerBUILD_VECTOR(Val, DAG, ST);
if (Val.getNode())
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
if (usesOnlyOneValue) {
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
if (isConstant && Val.getNode())
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
}
}
// If all elements are constants and the case above didn't get hit, fall back
// to the default expansion, which will generate a load from the constant
// pool.
if (isConstant)
return SDValue();
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
if (NumElts >= 4) {
SDValue shuffle = ReconstructShuffle(Op, DAG);
if (shuffle != SDValue())
return shuffle;
}
if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
// If we haven't found an efficient lowering, try splitting a 128-bit vector
// into two 64-bit vectors; we might discover a better way to lower it.
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
EVT ExtVT = VT.getVectorElementType();
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
SDValue Lower =
DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
if (Lower.getOpcode() == ISD::BUILD_VECTOR)
Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
SDValue Upper = DAG.getBuildVector(
HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
if (Upper.getOpcode() == ISD::BUILD_VECTOR)
Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
if (Lower && Upper)
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
}
// Vectors with 32- or 64-bit elements can be built by directly assigning
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
// will be legalized.
if (EltSize >= 32) {
// Do the expansion with floating-point types, since that is what the VFP
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
// know the default expansion would otherwise fall back on something even
// worse. For a vector with one or two non-undef values, that's
// scalar_to_vector for the elements followed by a shuffle (provided the
// shuffle is valid for the target) and materialization element by element
// on the stack followed by a load for everything else.
if (!isConstant && !usesOnlyOneValue) {
SDValue Vec = DAG.getUNDEF(VT);
for (unsigned i = 0 ; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
}
return Vec;
}
return SDValue();
}
// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
struct ShuffleSourceInfo {
SDValue Vec;
unsigned MinElt = std::numeric_limits<unsigned>::max();
unsigned MaxElt = 0;
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
// be compatible with the shuffle we intend to construct. As a result
// ShuffleVec will be some sliding window into the original Vec.
SDValue ShuffleVec;
// Code should guarantee that element i in Vec starts at element "WindowBase
// + i * WindowScale in ShuffleVec".
int WindowBase = 0;
int WindowScale = 1;
ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
};
// First gather all vectors used as an immediate source for this BUILD_VECTOR
// node.
SmallVector<ShuffleSourceInfo, 2> Sources;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
// A shuffle can only come from building a vector from various
// elements of other vectors.
return SDValue();
} else if (!isa<ConstantSDNode>(V.getOperand(1))) {
// Furthermore, shuffles require a constant mask, whereas extractelts
// accept variable indices.
return SDValue();
}
// Add this element source to the list if it's not already there.
SDValue SourceVec = V.getOperand(0);
auto Source = llvm::find(Sources, SourceVec);
if (Source == Sources.end())
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
// Update the minimum and maximum lane number seen.
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
Source->MinElt = std::min(Source->MinElt, EltNo);
Source->MaxElt = std::max(Source->MaxElt, EltNo);
}
// Currently only do something sane when at most two source vectors
// are involved.
if (Sources.size() > 2)
return SDValue();
// Find out the smallest element size among result and two sources, and use
// it as element size to build the shuffle_vector.
EVT SmallestEltTy = VT.getVectorElementType();
for (auto &Source : Sources) {
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
if (SrcEltTy.bitsLT(SmallestEltTy))
SmallestEltTy = SrcEltTy;
}
unsigned ResMultiplier =
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
// If the source vector is too wide or too narrow, we may nevertheless be able
// to construct a compatible shuffle either by concatenating it with UNDEF or
// extracting a suitable range of elements.
for (auto &Src : Sources) {
EVT SrcVT = Src.ShuffleVec.getValueType();
if (SrcVT.getSizeInBits() == VT.getSizeInBits())
continue;
// This stage of the search produces a source with the same element type as
// the original, but with a total width matching the BUILD_VECTOR output.
EVT EltVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// We can pad out the smaller vector for free, so if it's part of a
// shuffle...
Src.ShuffleVec =
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
continue;
}
if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
return SDValue();
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
// Span too large for a VEXT to cope
return SDValue();
}
if (Src.MinElt >= NumSrcElts) {
// The extraction can just take the second half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i32));
Src.WindowBase = -NumSrcElts;
} else if (Src.MaxElt < NumSrcElts) {
// The extraction can just take the first half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i32));
} else {
// An actual VEXT is needed
SDValue VEXTSrc1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i32));
SDValue VEXTSrc2 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i32));
Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
VEXTSrc2,
DAG.getConstant(Src.MinElt, dl, MVT::i32));
Src.WindowBase = -Src.MinElt;
}
}
// Another possible incompatibility occurs from the vector element types. We
// can fix this by bitcasting the source vectors to the same type we intend
// for the shuffle.
for (auto &Src : Sources) {
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
if (SrcEltTy == SmallestEltTy)
continue;
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
Src.WindowBase *= Src.WindowScale;
}
// Final sanity check before we try to actually produce a shuffle.
LLVM_DEBUG(for (auto Src
: Sources)
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
// The stars all align, our next step is to produce the mask for the shuffle.
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
SDValue Entry = Op.getOperand(i);
if (Entry.isUndef())
continue;
auto Src = llvm::find(Sources, Entry.getOperand(0));
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
// segment.
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
VT.getScalarSizeInBits());
int LanesDefined = BitsDefined / BitsPerShuffleLane;
// This source is expected to fill ResMultiplier lanes of the final shuffle,
// starting at the appropriate offset.
int *LaneMask = &Mask[i * ResMultiplier];
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
ExtractBase += NumElts * (Src - Sources.begin());
for (int j = 0; j < LanesDefined; ++j)
LaneMask[j] = ExtractBase + j;
}
// We can't handle more than two sources. This should have already
// been checked before this point.
assert(Sources.size() <= 2 && "Too many sources!");
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
for (unsigned i = 0; i < Sources.size(); ++i)
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
ShuffleOps[1], Mask, DAG);
if (!Shuffle)
return SDValue();
return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}
enum ShuffleOpCodes {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VREV,
OP_VDUP0,
OP_VDUP1,
OP_VDUP2,
OP_VDUP3,
OP_VEXT1,
OP_VEXT2,
OP_VEXT3,
OP_VUZPL, // VUZP, left result
OP_VUZPR, // VUZP, right result
OP_VZIPL, // VZIP, left result
OP_VZIPR, // VZIP, right result
OP_VTRNL, // VTRN, left result
OP_VTRNR // VTRN, right result
};
static bool isLegalMVEShuffleOp(unsigned PFEntry) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
switch (OpNum) {
case OP_COPY:
case OP_VREV:
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3:
return true;
}
return false;
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (M[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = M[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
return true;
}
bool ReverseVEXT, isV_UNDEF;
unsigned Imm, WhichResult;
unsigned EltSize = VT.getScalarSizeInBits();
if (EltSize >= 32 ||
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
ShuffleVectorInst::isIdentityMask(M) ||
isVREVMask(M, VT, 64) ||
isVREVMask(M, VT, 32) ||
isVREVMask(M, VT, 16))
return true;
else if (Subtarget->hasNEON() &&
(isVEXTMask(M, VT, ReverseVEXT, Imm) ||
isVTBLMask(M, VT) ||
isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
return true;
else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
isReverseMask(M, VT))
return true;
else if (Subtarget->hasMVEIntegerOps() &&
(isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1)))
return true;
else
return false;
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
switch (OpNum) {
default: llvm_unreachable("Unknown shuffle opcode!");
case OP_VREV:
// VREV divides the vector in half and swaps within the half.
if (VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::f32)
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
// vrev <4 x i16> -> VREV32
if (VT.getVectorElementType() == MVT::i16)
return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
// vrev <4 x i8> -> VREV16
assert(VT.getVectorElementType() == MVT::i8);
return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3:
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
case OP_VEXT1:
case OP_VEXT2:
case OP_VEXT3:
return DAG.getNode(ARMISD::VEXT, dl, VT,
OpLHS, OpRHS,
DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
case OP_VUZPL:
case OP_VUZPR:
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
case OP_VZIPL:
case OP_VZIPR:
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
case OP_VTRNL:
case OP_VTRNR:
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
}
}
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Check to see if we can use the VTBL instruction.
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc DL(Op);
SmallVector<SDValue, 8> VTBLMask;
for (ArrayRef<int>::iterator
I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
if (V2.getNode()->isUndef())
return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
}
static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue OpLHS = Op.getOperand(0);
EVT VT = OpLHS.getValueType();
assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
"Expect an v8i16/v16i8 type");
OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
// For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
// extract the first 8 bytes into the top double word and the last 8 bytes
// into the bottom double word. The v8i16 case is similar.
unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
DAG.getConstant(ExtractNum, DL, MVT::i32));
}
static EVT getVectorTyFromPredicateVector(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
case MVT::v4i1:
return MVT::v4i32;
case MVT::v8i1:
return MVT::v8i16;
case MVT::v16i1:
return MVT::v16i8;
default:
llvm_unreachable("Unexpected vector predicate type");
}
}
static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
SelectionDAG &DAG) {
// Converting from boolean predicates to integers involves creating a vector
// of all ones or all zeroes and selecting the lanes based upon the real
// predicate.
SDValue AllOnes =
DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
SDValue AllZeroes =
DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
// Get full vector type from predicate type
EVT NewVT = getVectorTyFromPredicateVector(VT);
SDValue RecastV1;
// If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
// this to a v16i1. This cannot be done with an ordinary bitcast because the
// sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
// since we know in hardware the sizes are really the same.
if (VT != MVT::v16i1)
RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
else
RecastV1 = Pred;
// Select either all ones or zeroes depending upon the real predicate bits.
SDValue PredAsVector =
DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
// Recast our new predicate-as-integer v16i8 vector into something
// appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
}
static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
ArrayRef<int> ShuffleMask = SVN->getMask();
assert(ST->hasMVEIntegerOps() &&
"No support for vector shuffle of boolean predicates");
SDValue V1 = Op.getOperand(0);
SDLoc dl(Op);
if (isReverseMask(ShuffleMask, VT)) {
SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
DAG.getConstant(16, dl, MVT::i32));
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
}
// Until we can come up with optimised cases for every single vector
// shuffle in existence we have chosen the least painful strategy. This is
// to essentially promote the boolean predicate to a 8-bit integer, where
// each predicate represents a byte. Then we fall back on a normal integer
// vector shuffle and convert the result back into a predicate vector. In
// many cases the generated code might be even better than scalar code
// operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
// fields in a register into 8 other arbitrary 2-bit fields!
SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
EVT NewVT = PredAsVector.getValueType();
// Do the shuffle!
SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
DAG.getUNDEF(NewVT), ShuffleMask);
// Now return the result of comparing the shuffled vector with zero,
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}
static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Attempt to lower the vector shuffle using as many whole register movs as
// possible. This is useful for types smaller than 32bits, which would
// often otherwise become a series for grp movs.
SDLoc dl(Op);
EVT VT = Op.getValueType();
if (VT.getScalarSizeInBits() >= 32)
return SDValue();
assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
"Unexpected vector type");
int NumElts = VT.getVectorNumElements();
int QuarterSize = NumElts / 4;
// The four final parts of the vector, as i32's
SDValue Parts[4];
// Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
// <u,u,u,u>), returning the vmov lane index
auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
// Detect which mov lane this would be from the first non-undef element.
int MovIdx = -1;
for (int i = 0; i < Length; i++) {
if (ShuffleMask[Start + i] >= 0) {
if (ShuffleMask[Start + i] % Length != i)
return -1;
MovIdx = ShuffleMask[Start + i] / Length;
break;
}
}
// If all items are undef, leave this for other combines
if (MovIdx == -1)
return -1;
// Check the remaining values are the correct part of the same mov
for (int i = 1; i < Length; i++) {
if (ShuffleMask[Start + i] >= 0 &&
(ShuffleMask[Start + i] / Length != MovIdx ||
ShuffleMask[Start + i] % Length != i))
return -1;
}
return MovIdx;
};
for (int Part = 0; Part < 4; ++Part) {
// Does this part look like a mov
int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
if (Elt != -1) {
SDValue Input = Op->getOperand(0);
if (Elt >= 4) {
Input = Op->getOperand(1);
Elt -= 4;
}
SDValue BitCast = DAG.getBitcast(MVT::v4i32, Input);
Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast,
DAG.getConstant(Elt, dl, MVT::i32));
}
}
// Nothing interesting found, just return
if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
return SDValue();
// The other parts need to be built with the old shuffle vector, cast to a
// v4i32 and extract_vector_elts
if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
SmallVector<int, 16> NewShuffleMask;
for (int Part = 0; Part < 4; ++Part)
for (int i = 0; i < QuarterSize; i++)
NewShuffleMask.push_back(
Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
SDValue NewShuffle = DAG.getVectorShuffle(
VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
SDValue BitCast = DAG.getBitcast(MVT::v4i32, NewShuffle);
for (int Part = 0; Part < 4; ++Part)
if (!Parts[Part])
Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
BitCast, DAG.getConstant(Part, dl, MVT::i32));
}
// Build a vector out of the various parts and bitcast it back to the original
// type.
SDValue NewVec = DAG.getBuildVector(MVT::v4i32, dl, Parts);
return DAG.getBitcast(VT, NewVec);
}
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
unsigned EltSize = VT.getScalarSizeInBits();
if (ST->hasMVEIntegerOps() && EltSize == 1)
return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
// FIXME: floating-point vectors should be canonicalized to integer vectors
// of the same time so that they get CSEd properly.
ArrayRef<int> ShuffleMask = SVN->getMask();
if (EltSize <= 32) {
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1) Lane = 0;
// Test if V1 is a SCALAR_TO_VECTOR.
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
// reaches it).
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(V1.getOperand(0))) {
bool IsScalarToVector = true;
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
if (!V1.getOperand(i).isUndef()) {
IsScalarToVector = false;
break;
}
if (IsScalarToVector)
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
DAG.getConstant(Lane, dl, MVT::i32));
}
bool ReverseVEXT = false;
unsigned Imm = 0;
if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
if (ReverseVEXT)
std::swap(V1, V2);
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
DAG.getConstant(Imm, dl, MVT::i32));
}
if (isVREVMask(ShuffleMask, VT, 64))
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 32))
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 16))
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
DAG.getConstant(Imm, dl, MVT::i32));
}
// Check for Neon shuffles that modify both input vectors in place.
// If both results are used, i.e., if there are two shuffles with the same
// source operands and with masks corresponding to both results of one of
// these operations, DAG memoization will ensure that a single node is
// used for both shuffles.
unsigned WhichResult = 0;
bool isV_UNDEF = false;
if (ST->hasNEON()) {
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
ShuffleMask, VT, WhichResult, isV_UNDEF)) {
if (isV_UNDEF)
V2 = V1;
return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
.getValue(WhichResult);
}
}
if (ST->hasMVEIntegerOps()) {
if (isVMOVNMask(ShuffleMask, VT, 0))
return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
DAG.getConstant(0, dl, MVT::i32));
if (isVMOVNMask(ShuffleMask, VT, 1))
return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
DAG.getConstant(1, dl, MVT::i32));
}
// Also check for these shuffles through CONCAT_VECTORS: we canonicalize
// shuffles that produce a result larger than their operands with:
// shuffle(concat(v1, undef), concat(v2, undef))
// ->
// shuffle(concat(v1, v2), undef)
// because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
//
// This is useful in the general case, but there are special cases where
// native shuffles produce larger results: the two-result ops.
//
// Look through the concat when lowering them:
// shuffle(concat(v1, v2), undef)
// ->
// concat(VZIP(v1, v2):0, :1)
//
if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
SDValue SubV1 = V1->getOperand(0);
SDValue SubV2 = V1->getOperand(1);
EVT SubVT = SubV1.getValueType();
// We expect these to have been canonicalized to -1.
assert(llvm::all_of(ShuffleMask, [&](int i) {
return i < (int)VT.getVectorNumElements();
}) && "Unexpected shuffle index into UNDEF operand!");
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
if (isV_UNDEF)
SubV2 = SubV1;
assert((WhichResult == 0) &&
"In-place shuffle of concat can only have one result!");
SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
SubV1, SubV2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
Res.getValue(1));
}
}
}
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
unsigned NumElts = VT.getVectorNumElements();
if (NumElts == 4) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (ShuffleMask[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = ShuffleMask[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4) {
if (ST->hasNEON())
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
else if (isLegalMVEShuffleOp(PFEntry)) {
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
}
}
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
if (EltSize >= 32) {
// Do the expansion with floating-point types, since that is what the VFP
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i) {
if (ShuffleMask[i] < 0)
Ops.push_back(DAG.getUNDEF(EltVT));
else
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
ShuffleMask[i] < (int)NumElts ? V1 : V2,
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
dl, MVT::i32)));
}
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
if (ST->hasNEON() && VT == MVT::v8i8)
if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
return NewOp;
if (ST->hasMVEIntegerOps())
if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
return NewOp;
return SDValue();
}
static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VecVT = Op.getOperand(0).getValueType();
SDLoc dl(Op);
assert(ST->hasMVEIntegerOps() &&
"LowerINSERT_VECTOR_ELT_i1 called without MVE!");
SDValue Conv =
DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned LaneWidth =
getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
Op.getOperand(1), DAG.getValueType(MVT::i1));
SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
DAG.getConstant(~Mask, dl, MVT::i32));
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
}
SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
// INSERT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(2);
if (!isa<ConstantSDNode>(Lane))
return SDValue();
SDValue Elt = Op.getOperand(1);
EVT EltVT = Elt.getValueType();
if (Subtarget->hasMVEIntegerOps() &&
Op.getValueType().getScalarSizeInBits() == 1)
return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
if (getTypeAction(*DAG.getContext(), EltVT) ==
TargetLowering::TypePromoteFloat) {
// INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
// but the type system will try to do that if we don't intervene.
// Reinterpret any such vector-element insertion as one with the
// corresponding integer types.
SDLoc dl(Op);
EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
assert(getTypeAction(*DAG.getContext(), IEltVT) !=
TargetLowering::TypePromoteFloat);
SDValue VecIn = Op.getOperand(0);
EVT VecVT = VecIn.getValueType();
EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
VecVT.getVectorNumElements());
SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
IVecIn, IElt, Lane);
return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
}
return Op;
}
static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VecVT = Op.getOperand(0).getValueType();
SDLoc dl(Op);
assert(ST->hasMVEIntegerOps() &&
"LowerINSERT_VECTOR_ELT_i1 called without MVE!");
SDValue Conv =
DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
unsigned LaneWidth =
getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
return Shift;
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
// EXTRACT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(1);
if (!isa<ConstantSDNode>(Lane))
return SDValue();
SDValue Vec = Op.getOperand(0);
EVT VT = Vec.getValueType();
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
SDLoc dl(Op);
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
}
return Op;
}
static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT Op1VT = V1.getValueType();
EVT Op2VT = V2.getValueType();
unsigned NumElts = VT.getVectorNumElements();
assert(Op1VT == Op2VT && "Operand types don't match!");
assert(VT.getScalarSizeInBits() == 1 &&
"Unexpected custom CONCAT_VECTORS lowering");
assert(ST->hasMVEIntegerOps() &&
"CONCAT_VECTORS lowering only supported for MVE");
SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
// We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
// promoted to v8i16, etc.
MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
// Extract the vector elements from Op1 and Op2 one by one and truncate them
// to be the right size for the destination. For example, if Op1 is v4i1 then
// the promoted vector is v4i32. The result of concatentation gives a v8i1,
// which when promoted is v8i16. That means each i32 element from Op1 needs
// truncating to i16 and inserting in the result.
EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
EVT NewVT = NewV.getValueType();
EVT ConcatVT = ConVec.getValueType();
for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
DAG.getIntPtrConstant(i, dl));
ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
DAG.getConstant(j, dl, MVT::i32));
}
return ConVec;
};
unsigned j = 0;
ConVec = ExractInto(NewV1, ConVec, j);
ConVec = ExractInto(NewV2, ConVec, j);
// Now return the result of comparing the subvector with zero,
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = Op->getValueType(0);
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
// The only time a CONCAT_VECTORS operation can have legal types is when
// two 64-bit vectors are concatenated to a 128-bit vector.
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
"unexpected CONCAT_VECTORS");
SDLoc dl(Op);
SDValue Val = DAG.getUNDEF(MVT::v2f64);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (!Op0.isUndef())
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
DAG.getIntPtrConstant(0, dl));
if (!Op1.isUndef())
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
DAG.getIntPtrConstant(1, dl));
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
}
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT Op1VT = V1.getValueType();
unsigned NumElts = VT.getVectorNumElements();
unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
assert(VT.getScalarSizeInBits() == 1 &&
"Unexpected custom EXTRACT_SUBVECTOR lowering");
assert(ST->hasMVEIntegerOps() &&
"EXTRACT_SUBVECTOR lowering only supported for MVE");
SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
// We now have Op1 promoted to a vector of integers, where v8i1 gets
// promoted to v8i16, etc.
MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
EVT SubVT = MVT::getVectorVT(ElType, NumElts);
SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
DAG.getIntPtrConstant(i, dl));
SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
DAG.getConstant(j, dl, MVT::i32));
}
// Now return the result of comparing the subvector with zero,
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
/// element has been zero/sign-extended, depending on the isSigned parameter,
/// from an integer type half its size.
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
bool isSigned) {
// A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
EVT VT = N->getValueType(0);
if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
SDNode *BVN = N->getOperand(0).getNode();
if (BVN->getValueType(0) != MVT::v4i32 ||
BVN->getOpcode() != ISD::BUILD_VECTOR)
return false;
unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
unsigned HiElt = 1 - LoElt;
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
return false;
if (isSigned) {
if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
return true;
} else {
if (Hi0->isNullValue() && Hi1->isNullValue())
return true;
}
return false;
}
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *Elt = N->getOperand(i).getNode();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
unsigned EltSize = VT.getScalarSizeInBits();
unsigned HalfSize = EltSize / 2;
if (isSigned) {
if (!isIntN(HalfSize, C->getSExtValue()))
return false;
} else {
if (!isUIntN(HalfSize, C->getZExtValue()))
return false;
}
continue;
}
return false;
}
return true;
}
/// isSignExtended - Check if a node is a vector value that is sign-extended
/// or a constant BUILD_VECTOR with sign-extended elements.
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
return true;
if (isExtendedBUILD_VECTOR(N, DAG, true))
return true;
return false;
}
/// isZeroExtended - Check if a node is a vector value that is zero-extended
/// or a constant BUILD_VECTOR with zero-extended elements.
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
return true;
if (isExtendedBUILD_VECTOR(N, DAG, false))
return true;
return false;
}
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
if (OrigVT.getSizeInBits() >= 64)
return OrigVT;
assert(OrigVT.isSimple() && "Expecting a simple value type");
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
switch (OrigSimpleTy) {
default: llvm_unreachable("Unexpected Vector Type");
case MVT::v2i8:
case MVT::v2i16:
return MVT::v2i32;
case MVT::v4i8:
return MVT::v4i16;
}
}
/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
/// We insert the required extension here to get the vector to fill a D register.
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
const EVT &OrigTy,
const EVT &ExtTy,
unsigned ExtOpcode) {
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
// 64-bits we need to insert a new extension so that it will be 64-bits.
assert(ExtTy.is128BitVector() && "Unexpected extension size");
if (OrigTy.getSizeInBits() >= 64)
return N;
// Must extend size to at least 64 bits to be used as an operand for VMULL.
EVT NewVT = getExtensionTo64Bits(OrigTy);
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}
/// SkipLoadExtensionForVMULL - return a load of the original vector size that
/// does not do any sign/zero extension. If the original vector is less
/// than 64 bits, an appropriate extension will be added after the load to
/// reach a total size of 64 bits. We have to add the extension separately
/// because ARM does not have a sign/zero extending load for vectors.
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
// The load already has the right type.
if (ExtendedTy == LD->getMemoryVT())
return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
LD->getBasePtr(), LD->getPointerInfo(),
LD->getAlignment(), LD->getMemOperand()->getFlags());
// We need to create a zextload/sextload. We cannot just create a load
// followed by a zext/zext node because LowerMUL is also run during normal
// operation legalization where we can't create illegal types.
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
LD->getMemoryVT(), LD->getAlignment(),
LD->getMemOperand()->getFlags());
}
/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
/// extending load, or BUILD_VECTOR with extended elements, return the
/// unextended value. The unextended vector should be 64 bits so that it can
/// be used as an operand to a VMULL instruction. If the original vector size
/// before extension is less than 64 bits we add a an extension to resize
/// the vector to 64 bits.
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
N->getOperand(0)->getValueType(0),
N->getValueType(0),
N->getOpcode());
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
"Expected extending load");
SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue extLoad =
DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
return newLoad;
}
// Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
// have been legalized as a BITCAST from v4i32.
if (N->getOpcode() == ISD::BITCAST) {
SDNode *BVN = N->getOperand(0).getNode();
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
return DAG.getBuildVector(
MVT::v2i32, SDLoc(N),
{BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
}
// Construct a new BUILD_VECTOR with elements truncated to half the size.
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
EVT VT = N->getValueType(0);
unsigned EltSize = VT.getScalarSizeInBits() / 2;
unsigned NumElts = VT.getVectorNumElements();
MVT TruncVT = MVT::getIntegerVT(EltSize);
SmallVector<SDValue, 8> Ops;
SDLoc dl(N);
for (unsigned i = 0; i != NumElts; ++i) {
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
const APInt &CInt = C->getAPIntValue();
// Element types smaller than 32 bits are not legal, so use i32 elements.
// The values are implicitly truncated so sext vs. zext doesn't matter.
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
}
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
}
return false;
}
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
}
return false;
}
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
// Multiplications are only custom-lowered for 128-bit vectors so that
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
EVT VT = Op.getValueType();
assert(VT.is128BitVector() && VT.isInteger() &&
"unexpected type for custom-lowering ISD::MUL");
SDNode *N0 = Op.getOperand(0).getNode();
SDNode *N1 = Op.getOperand(1).getNode();
unsigned NewOpc = 0;
bool isMLA = false;
bool isN0SExt = isSignExtended(N0, DAG);
bool isN1SExt = isSignExtended(N1, DAG);
if (isN0SExt && isN1SExt)
NewOpc = ARMISD::VMULLs;
else {
bool isN0ZExt = isZeroExtended(N0, DAG);
bool isN1ZExt = isZeroExtended(N1, DAG);
if (isN0ZExt && isN1ZExt)
NewOpc = ARMISD::VMULLu;
else if (isN1SExt || isN1ZExt) {
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
if (isN1SExt && isAddSubSExt(N0, DAG)) {
NewOpc = ARMISD::VMULLs;
isMLA = true;
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
NewOpc = ARMISD::VMULLu;
isMLA = true;
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
std::swap(N0, N1);
NewOpc = ARMISD::VMULLu;
isMLA = true;
}
}
if (!NewOpc) {
if (VT == MVT::v2i64)
// Fall through to expand this. It is not legal.
return SDValue();
else
// Other vector multiplications are legal.
return Op;
}
}
// Legalize to a VMULL instruction.
SDLoc DL(Op);
SDValue Op0;
SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
if (!isMLA) {
Op0 = SkipExtensionForVMULL(N0, DAG);
assert(Op0.getValueType().is64BitVector() &&
Op1.getValueType().is64BitVector() &&
"unexpected types for extended operands to VMULL");
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
}
// Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
// isel lowering to take advantage of no-stall back to back vmul + vmla.
// vmull q0, d4, d6
// vmlal q0, d5, d6
// is faster than
// vaddl q0, d4, d5
// vmovl q1, d6
// vmul q0, q0, q1
SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
EVT Op1VT = Op1.getValueType();
return DAG.getNode(N0->getOpcode(), DL, VT,
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
// Convert to float
// float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
// float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
// Get reciprocal estimate.
// float4 recip = vrecpeq_f32(yf);
Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
Y);
// Because char has a smaller range than uchar, we can actually get away
// without any newton steps. This requires that we use a weird bias
// of 0xb000, however (again, this has been exhaustively tested).
// float4 result = as_float4(as_int4(xf*recip) + 0xb000);
X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
// Convert back to short.
X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
return X;
}
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
SDValue N2;
// Convert to float.
// float4 yf = vcvt_f32_s32(vmovl_s16(y));
// float4 xf = vcvt_f32_s32(vmovl_s16(x));
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
// Use reciprocal estimate and one refinement step.
// float4 recip = vrecpeq_f32(yf);
// recip *= vrecpsq_f32(yf, recip);
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
N1);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
N1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
// Because short has a smaller range than ushort, we can actually get away
// with only a single newton step. This requires that we use a weird bias
// of 89, however (again, this has been exhaustively tested).
// float4 result = as_float4(as_int4(xf*recip) + 0x89);
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
// Convert back to integer and return.
// return vmovn_s32(vcvt_s32_f32(result));
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
return N0;
}
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = Op.getValueType();
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
"unexpected type for custom-lowering ISD::SDIV");
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2, N3;
if (VT == MVT::v8i8) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(4, dl));
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(4, dl));
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(0, dl));
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(0, dl));
N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
return N0;
}
return LowerSDIV_v4i16(N0, N1, dl, DAG);
}
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
// TODO: Should this propagate fast-math-flags?
EVT VT = Op.getValueType();
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
"unexpected type for custom-lowering ISD::UDIV");
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2, N3;
if (VT == MVT::v8i8) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(4, dl));
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(4, dl));
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(0, dl));
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(0, dl));
N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
MVT::i32),
N0);
return N0;
}
// v4i16 sdiv ... Convert to float.
// float4 yf = vcvt_f32_s32(vmovl_u16(y));
// float4 xf = vcvt_f32_s32(vmovl_u16(x));
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
// Use reciprocal estimate and two refinement steps.
// float4 recip = vrecpeq_f32(yf);
// recip *= vrecpsq_f32(yf, recip);
// recip *= vrecpsq_f32(yf, recip);
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
BN1);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
BN1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
BN1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
// Simply multiplying by the reciprocal estimate can leave us a few ulps
// too low, so we add 2 ulps (exhaustive testing shows that this is enough,
// and that it will never cause us to return an answer too large).
// float4 result = as_float4(as_int4(xf*recip) + 2);
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
N1 = DAG.getConstant(2, dl, MVT::v4i32);
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
// Convert back to integer and return.
// return vmovn_u32(vcvt_s32_f32(result));
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
return N0;
}
static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
SDNode *N = Op.getNode();
EVT VT = N->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Carry = Op.getOperand(2);
SDLoc DL(Op);
SDValue Result;
if (Op.getOpcode() == ISD::ADDCARRY) {
// This converts the boolean value carry into the carry flag.
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
// Do the addition proper using the carry flag we wanted.
Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
Op.getOperand(1), Carry);
// Now convert the carry flag into a boolean value.
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
} else {
// ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
// have to invert the carry first.
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32), Carry);
// This converts the boolean value carry into the carry flag.
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
// Do the subtraction proper using the carry flag we wanted.
Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
Op.getOperand(1), Carry);
// Now convert the carry flag into a boolean value.
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
// But the carry returned by ARMISD::SUBE is not a borrow as expected
// by ISD::SUBCARRY, so compute 1 - C.
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32), Carry);
}
// Return both values.
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
}
SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin());
// For iOS, we want to call an alternative entry point: __sincos_stret,
// return values are passed via sret.
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
auto PtrVT = getPointerTy(DAG.getDataLayout());
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Pair of floats / doubles used to pass the result.
Type *RetTy = StructType::get(ArgTy, ArgTy);
auto &DL = DAG.getDataLayout();
ArgListTy Args;
bool ShouldUseSRet = Subtarget->isAPCS_ABI();
SDValue SRet;
if (ShouldUseSRet) {
// Create stack object for sret.
const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
ArgListEntry Entry;
Entry.Node = SRet;
Entry.Ty = RetTy->getPointerTo();
Entry.IsSExt = false;
Entry.IsZExt = false;
Entry.IsSRet = true;
Args.push_back(Entry);
RetTy = Type::getVoidTy(*DAG.getContext());
}
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
RTLIB::Libcall LC =
(ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
const char *LibcallName = getLibcallName(LC);
CallingConv::ID CC = getLibcallCallingConv(LC);
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setCallee(CC, RetTy, Callee, std::move(Args))
.setDiscardResult(ShouldUseSRet);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
if (!ShouldUseSRet)
return CallResult.first;
SDValue LoadSin =
DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
// Address of cos field.
SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
SDValue LoadCos =
DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
LoadSin.getValue(0), LoadCos.getValue(0));
}
SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
bool Signed,
SDValue &Chain) const {
EVT VT = Op.getValueType();
assert((VT == MVT::i32 || VT == MVT::i64) &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
const auto &DL = DAG.getDataLayout();
const auto &TLI = DAG.getTargetLoweringInfo();
const char *Name = nullptr;
if (Signed)
Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
else
Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
ARMTargetLowering::ArgListTy Args;
for (auto AI : {1, 0}) {
ArgListEntry Arg;
Arg.Node = Op.getOperand(AI);
Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
Args.push_back(Arg);
}
CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
ES, std::move(Args));
return LowerCallTo(CLI).first;
}
// This is a code size optimisation: return the original SDIV node to
// DAGCombiner when we don't want to expand SDIV into a sequence of
// instructions, and an empty node otherwise which will cause the
// SDIV to be expanded in DAGCombine.
SDValue
ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
// TODO: Support SREM
if (N->getOpcode() != ISD::SDIV)
return SDValue();
const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
const bool MinSize = ST.hasMinSize();
const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
: ST.hasDivideInARMMode();
// Don't touch vector types; rewriting this may lead to scalarizing
// the int divs.
if (N->getOperand(0).getValueType().isVector())
return SDValue();
// Bail if MinSize is not set, and also for both ARM and Thumb mode we need
// hwdiv support for this to be really profitable.
if (!(MinSize && HasDivide))
return SDValue();
// ARM mode is a bit simpler than Thumb: we can handle large power
// of 2 immediates with 1 mov instruction; no further checks required,
// just return the sdiv node.
if (!ST.isThumb())
return SDValue(N, 0);
// In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
// and thus lose the code size benefits of a MOVS that requires only 2.
// TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
// but as it's doing exactly this, it's not worth the trouble to get TTI.
if (Divisor.sgt(128))
return SDValue();
return SDValue(N, 0);
}
SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
assert(Op.getValueType() == MVT::i32 &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
DAG.getEntryNode(), Op.getOperand(1));
return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
}
static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
SDLoc DL(N);
SDValue Op = N->getOperand(1);
if (N->getValueType(0) == MVT::i32)
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
DAG.getConstant(1, DL, MVT::i32));
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
}
void ARMTargetLowering::ExpandDIV_Windows(
SDValue Op, SelectionDAG &DAG, bool Signed,
SmallVectorImpl<SDValue> &Results) const {
const auto &DL = DAG.getDataLayout();
const auto &TLI = DAG.getTargetLoweringInfo();
assert(Op.getValueType() == MVT::i64 &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
Results.push_back(Lower);
Results.push_back(Upper);
}
static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
EVT MemVT = LD->getMemoryVT();
assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
"Expected a predicate type!");
assert(MemVT == Op.getValueType());
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
"Expected a non-extending load");
assert(LD->isUnindexed() && "Expected a unindexed load");
// The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
// predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
// need to make sure that 8/4 bits are actually loaded into the correct
// place, which means loading the value and then shuffling the values into
// the bottom bits of the predicate.
// Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
// for BE).
SDLoc dl(Op);
SDValue Load = DAG.getExtLoad(
ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
LD->getMemOperand());
SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load);
if (MemVT != MVT::v16i1)
Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
DAG.getConstant(0, dl, MVT::i32));
return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
}
static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
EVT MemVT = ST->getMemoryVT();
assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
"Expected a predicate type!");
assert(MemVT == ST->getValue().getValueType());
assert(!ST->isTruncatingStore() && "Expected a non-extending store");
assert(ST->isUnindexed() && "Expected a unindexed store");
// Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
// unset and a scalar store.
SDLoc dl(Op);
SDValue Build = ST->getValue();
if (MemVT != MVT::v16i1) {
SmallVector<SDValue, 16> Ops;
for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
DAG.getConstant(I, dl, MVT::i32)));
for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
Ops.push_back(DAG.getUNDEF(MVT::i32));
Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
}
SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
return DAG.getTruncStore(
ST->getChain(), dl, GRP, ST->getBasePtr(),
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
ST->getMemOperand());
}
static bool isZeroVector(SDValue N) {
return (ISD::isBuildVectorAllZeros(N.getNode()) ||
(N->getOpcode() == ARMISD::VMOVIMM &&
isNullConstant(N->getOperand(0))));
}
static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
MVT VT = Op.getSimpleValueType();
SDValue Mask = N->getMask();
SDValue PassThru = N->getPassThru();
SDLoc dl(Op);
if (isZeroVector(PassThru))
return Op;
// MVE Masked loads use zero as the passthru value. Here we convert undef to
// zero too, and other values are lowered to a select.
SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(0, dl, MVT::i32));
SDValue NewLoad = DAG.getMaskedLoad(
VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
N->getExtensionType(), N->isExpandingLoad());
SDValue Combo = NewLoad;
if (!PassThru.isUndef() &&
(PassThru.getOpcode() != ISD::BITCAST ||
!isZeroVector(PassThru->getOperand(0))))
Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
}
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
// Acquire/Release load/store is not legal for targets without a dmb or
// equivalent available.
return SDValue();
// Monotonic load/store is legal for all targets.
return Op;
}
static void ReplaceREADCYCLECOUNTER(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
SDLoc DL(N);
// Under Power Management extensions, the cycle-count is:
// mrc p15, #0, <Rt>, c9, c13, #0
SDValue Ops[] = { N->getOperand(0), // Chain
DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
DAG.getTargetConstant(15, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(9, DL, MVT::i32),
DAG.getTargetConstant(13, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32)
};
SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
DAG.getVTList(MVT::i32, MVT::Other), Ops);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
DAG.getConstant(0, DL, MVT::i32)));
Results.push_back(Cycles32.getValue(1));
}
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
SDLoc dl(V.getNode());
SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
SDValue VHi = DAG.getAnyExtOrTrunc(
DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
dl, MVT::i32);
bool isBigEndian = DAG.getDataLayout().isBigEndian();
if (isBigEndian)
std::swap (VLo, VHi);
SDValue RegClass =
DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
return SDValue(
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}
static void ReplaceCMP_SWAP_64Results(SDNode *N,
SmallVectorImpl<SDValue> & Results,
SelectionDAG &DAG) {
assert(N->getValueType(0) == MVT::i64 &&
"AtomicCmpSwap on types less than 64 should be legal");
SDValue Ops[] = {N->getOperand(1),
createGPRPairNode(DAG, N->getOperand(2)),
createGPRPairNode(DAG, N->getOperand(3)),
N->getOperand(0)};
SDNode *CmpSwap = DAG.getMachineNode(
ARM::CMP_SWAP_64, SDLoc(N),
DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
bool isBigEndian = DAG.getDataLayout().isBigEndian();
Results.push_back(
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
Results.push_back(
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
Results.push_back(SDValue(CmpSwap, 2));
}
SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDValue Chain = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
// If we don't have instructions of this float type then soften to a libcall
// and use SETCC instead.
if (isUnsupportedFloatingType(LHS.getValueType())) {
DAG.getTargetLoweringInfo().softenSetCCOperands(
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
DAG.getCondCode(CC));
return DAG.getMergeValues({Result, Chain}, dl);
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
// FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
// in CMPFP and CMPFPE, but instead it should be made explicit by these
// instructions using a chain instead of glue. This would also fix the problem
// here (and also in LowerSELECT_CC) where we generate two comparisons when
// CondCode2 != AL.
SDValue True = DAG.getConstant(1, dl, VT);
SDValue False = DAG.getConstant(0, dl, VT);
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
if (CondCode2 != ARMCC::AL) {
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
}
return DAG.getMergeValues({Result, Chain}, dl);
}
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
Subtarget);
case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
case ISD::SHL:
case ISD::SRL:
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
case ISD::SREM: return LowerREM(Op.getNode(), DAG);
case ISD::UREM: return LowerREM(Op.getNode(), DAG);
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
case ISD::SRL_PARTS:
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::SDIV:
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
return LowerDIV_Windows(Op, DAG, /* Signed */ true);
return LowerSDIV(Op, DAG, Subtarget);
case ISD::UDIV:
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
return LowerDIV_Windows(Op, DAG, /* Signed */ false);
return LowerUDIV(Op, DAG, Subtarget);
case ISD::ADDCARRY:
case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
case ISD::SADDO:
case ISD::SSUBO:
return LowerSignedALUO(Op, DAG);
case ISD::UADDO:
case ISD::USUBO:
return LowerUnsignedALUO(Op, DAG);
case ISD::SADDSAT:
case ISD::SSUBSAT:
return LowerSADDSUBSAT(Op, DAG, Subtarget);
case ISD::LOAD:
return LowerPredicateLoad(Op, DAG);
case ISD::STORE:
return LowerPredicateStore(Op, DAG);
case ISD::MLOAD:
return LowerMLOAD(Op, DAG);
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
case ISD::SDIVREM:
case ISD::UDIVREM: return LowerDivRem(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
if (Subtarget->isTargetWindows())
return LowerDYNAMIC_STACKALLOC(Op, DAG);
llvm_unreachable("Don't know how to custom lower this!");
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
case ARMISD::WIN__DBZCHK: return SDValue();
}
}
static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Opc = 0;
if (IntNo == Intrinsic::arm_smlald)
Opc = ARMISD::SMLALD;
else if (IntNo == Intrinsic::arm_smlaldx)
Opc = ARMISD::SMLALDX;
else if (IntNo == Intrinsic::arm_smlsld)
Opc = ARMISD::SMLSLD;
else if (IntNo == Intrinsic::arm_smlsldx)
Opc = ARMISD::SMLSLDX;
else
return;
SDLoc dl(N);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(3),
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(3),
DAG.getConstant(1, dl, MVT::i32));
SDValue LongMul = DAG.getNode(Opc, dl,
DAG.getVTList(MVT::i32, MVT::i32),
N->getOperand(1), N->getOperand(2),
Lo, Hi);
Results.push_back(LongMul.getValue(0));
Results.push_back(LongMul.getValue(1));
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res;
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
case ISD::READ_REGISTER:
ExpandREAD_REGISTER(N, Results, DAG);
break;
case ISD::BITCAST:
Res = ExpandBITCAST(N, DAG, Subtarget);
break;
case ISD::SRL:
case ISD::SRA:
case ISD::SHL:
Res = Expand64BitShift(N, DAG, Subtarget);
break;
case ISD::SREM:
case ISD::UREM:
Res = LowerREM(N, DAG);
break;
case ISD::SDIVREM:
case ISD::UDIVREM:
Res = LowerDivRem(SDValue(N, 0), DAG);
assert(Res.getNumOperands() == 2 && "DivRem needs two values");
Results.push_back(Res.getValue(0));
Results.push_back(Res.getValue(1));
return;
case ISD::SADDSAT:
case ISD::SSUBSAT:
Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
break;
case ISD::READCYCLECOUNTER:
ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
return;
case ISD::UDIV:
case ISD::SDIV:
assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
Results);
case ISD::ATOMIC_CMP_SWAP:
ReplaceCMP_SWAP_64Results(N, Results, DAG);
return;
case ISD::INTRINSIC_WO_CHAIN:
return ReplaceLongIntrinsic(N, Results, DAG);
case ISD::ABS:
lowerABS(N, Results, DAG);
return ;
}
if (Res.getNode())
Results.push_back(Res);
}
//===----------------------------------------------------------------------===//
// ARM Scheduler Hooks
//===----------------------------------------------------------------------===//
/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
/// registers the function context.
void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB,
int FI) const {
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported with SjLj");
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineConstantPool *MCP = MF->getConstantPool();
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
const Function &F = MF->getFunction();
bool isThumb = Subtarget->isThumb();
bool isThumb2 = Subtarget->isThumb2();
unsigned PCLabelId = AFI->createPICLabelUId();
unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
ARMConstantPoolValue *CPV =
ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
: &ARM::GPRRegClass;
// Grab constant pool and fixed stack memory operands.
MachineMemOperand *CPMMO =
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
MachineMemOperand::MOLoad, 4, 4);
MachineMemOperand *FIMMOSt =
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOStore, 4, 4);
// Load the address of the dispatch MBB into the jump buffer.
if (isThumb2) {
// Incoming value: jbuf
// ldr.n r5, LCPI1_1
// orr r5, r5, #1
// add r5, pc
// str r5, [$jbuf, #+4] ; &jbuf[1]
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
.addConstantPoolIndex(CPI)
.addMemOperand(CPMMO)
.add(predOps(ARMCC::AL));
// Set the low bit because of thumb mode.
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(0x01)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
.addReg(NewVReg2, RegState::Kill)
.addImm(PCLabelId);
BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
.addReg(NewVReg3, RegState::Kill)
.addFrameIndex(FI)
.addImm(36) // &jbuf[1] :: pc
.addMemOperand(FIMMOSt)
.add(predOps(ARMCC::AL));
} else if (isThumb) {
// Incoming value: jbuf
// ldr.n r1, LCPI1_4
// add r1, pc
// mov r2, #1
// orrs r1, r2
// add r2, $jbuf, #+4 ; &jbuf[1]
// str r1, [r2]
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
.addConstantPoolIndex(CPI)
.addMemOperand(CPMMO)
.add(predOps(ARMCC::AL));
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(PCLabelId);
// Set the low bit because of thumb mode.
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
.addReg(ARM::CPSR, RegState::Define)
.addImm(1)
.add(predOps(ARMCC::AL));
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3, RegState::Kill)
.add(predOps(ARMCC::AL));
Register NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
.addFrameIndex(FI)
.addImm(36); // &jbuf[1] :: pc
BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg5, RegState::Kill)
.addImm(0)
.addMemOperand(FIMMOSt)
.add(predOps(ARMCC::AL));
} else {
// Incoming value: jbuf
// ldr r1, LCPI1_1
// add r1, pc, r1
// str r1, [$jbuf, #+4] ; &jbuf[1]
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
.addConstantPoolIndex(CPI)
.addImm(0)
.addMemOperand(CPMMO)
.add(predOps(ARMCC::AL));
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(PCLabelId)
.add(predOps(ARMCC::AL));
BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
.addReg(NewVReg2, RegState::Kill)
.addFrameIndex(FI)
.addImm(36) // &jbuf[1] :: pc
.addMemOperand(FIMMOSt)
.add(predOps(ARMCC::AL));
}
}
void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineFrameInfo &MFI = MF->getFrameInfo();
int FI = MFI.getFunctionContextIndex();
const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
: &ARM::GPRnopcRegClass;
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
unsigned MaxCSNum = 0;
for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
++BB) {
if (!BB->isEHPad()) continue;
// FIXME: We should assert that the EH_LABEL is the first MI in the landing
// pad.
for (MachineBasicBlock::iterator
II = BB->begin(), IE = BB->end(); II != IE; ++II) {
if (!II->isEHLabel()) continue;
MCSymbol *Sym = II->getOperand(0).getMCSymbol();
if (!MF->hasCallSiteLandingPad(Sym)) continue;
SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
for (SmallVectorImpl<unsigned>::iterator
CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
CSI != CSE; ++CSI) {
CallSiteNumToLPad[*CSI].push_back(&*BB);
MaxCSNum = std::max(MaxCSNum, *CSI);
}
break;
}
}
// Get an ordered list of the machine basic blocks for the jump table.
std::vector<MachineBasicBlock*> LPadList;
SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
LPadList.reserve(CallSiteNumToLPad.size());
for (unsigned I = 1; I <= MaxCSNum; ++I) {
SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
for (SmallVectorImpl<MachineBasicBlock*>::iterator
II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
LPadList.push_back(*II);
InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
}
}
assert(!LPadList.empty() &&
"No landing pad destinations for the dispatch jump table!");
// Create the jump table and associated information.
MachineJumpTableInfo *JTI =
MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
// Create the MBBs for the dispatch code.
// Shove the dispatch's address into the return slot in the function context.
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
DispatchBB->setIsEHPad();
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
unsigned trap_opcode;
if (Subtarget->isThumb())
trap_opcode = ARM::tTRAP;
else
trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
BuildMI(TrapBB, dl, TII->get(trap_opcode));
DispatchBB->addSuccessor(TrapBB);
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(DispContBB);
// Insert and MBBs.
MF->insert(MF->end(), DispatchBB);
MF->insert(MF->end(), DispContBB);
MF->insert(MF->end(), TrapBB);
// Insert code into the entry block that creates and registers the function
// context.
SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
MachineInstrBuilder MIB;
MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
// Add a register mask with no preserved registers. This results in all
// registers being marked as clobbered. This can't work if the dispatch block
// is in a Thumb1 function and is linked with ARM code which uses the FP
// registers, as there is no way to preserve the FP registers in Thumb1 mode.
MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
bool IsPositionIndependent = isPositionIndependent();
unsigned NumLPads = LPadList.size();
if (Subtarget->isThumb2()) {
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(FIMMOLd)
.add(predOps(ARMCC::AL));
if (NumLPads < 256) {
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
.addReg(NewVReg1)
.addImm(LPadList.size())
.add(predOps(ARMCC::AL));
} else {
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
.addImm(NumLPads & 0xFFFF)
.add(predOps(ARMCC::AL));
unsigned VReg2 = VReg1;
if ((NumLPads & 0xFFFF0000) != 0) {
VReg2 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
.addReg(VReg1)
.addImm(NumLPads >> 16)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
.addReg(NewVReg1)
.addReg(VReg2)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
.addJumpTableIndex(MJTI)
.add(predOps(ARMCC::AL));
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
.addReg(NewVReg3, RegState::Kill)
.addReg(NewVReg1)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg1)
.addJumpTableIndex(MJTI);
} else if (Subtarget->isThumb()) {
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
.addFrameIndex(FI)
.addImm(1)
.addMemOperand(FIMMOLd)
.add(predOps(ARMCC::AL));
if (NumLPads < 256) {
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
.addReg(NewVReg1)
.addImm(NumLPads)
.add(predOps(ARMCC::AL));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
if (Align == 0)
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
.addReg(VReg1, RegState::Define)
.addConstantPoolIndex(Idx)
.add(predOps(ARMCC::AL));
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
.addReg(NewVReg1)
.addReg(VReg1)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg1)
.addImm(2)
.add(predOps(ARMCC::AL));
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
.addJumpTableIndex(MJTI)
.add(predOps(ARMCC::AL));
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3)
.add(predOps(ARMCC::AL));
MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
Register NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
.addReg(NewVReg4, RegState::Kill)
.addImm(0)
.addMemOperand(JTMMOLd)
.add(predOps(ARMCC::AL));
unsigned NewVReg6 = NewVReg5;
if (IsPositionIndependent) {
NewVReg6 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg5, RegState::Kill)
.addReg(NewVReg3)
.add(predOps(ARMCC::AL));
}
BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
.addReg(NewVReg6, RegState::Kill)
.addJumpTableIndex(MJTI);
} else {
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(FIMMOLd)
.add(predOps(ARMCC::AL));
if (NumLPads < 256) {
BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
.addReg(NewVReg1)
.addImm(NumLPads)
.add(predOps(ARMCC::AL));
} else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
.addImm(NumLPads & 0xFFFF)
.add(predOps(ARMCC::AL));
unsigned VReg2 = VReg1;
if ((NumLPads & 0xFFFF0000) != 0) {
VReg2 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
.addReg(VReg1)
.addImm(NumLPads >> 16)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
.addReg(NewVReg1)
.addReg(VReg2)
.add(predOps(ARMCC::AL));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
if (Align == 0)
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
.addReg(VReg1, RegState::Define)
.addConstantPoolIndex(Idx)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
.addReg(NewVReg1)
.addReg(VReg1, RegState::Kill)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
.addReg(NewVReg1)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
.addJumpTableIndex(MJTI)
.add(predOps(ARMCC::AL));
MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
Register NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
.addReg(NewVReg3, RegState::Kill)
.addReg(NewVReg4)
.addImm(0)
.addMemOperand(JTMMOLd)
.add(predOps(ARMCC::AL));
if (IsPositionIndependent) {
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
.addReg(NewVReg5, RegState::Kill)
.addReg(NewVReg4)
.addJumpTableIndex(MJTI);
} else {
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
.addReg(NewVReg5, RegState::Kill)
.addJumpTableIndex(MJTI);
}
}
// Add the jump table entries as successors to the MBB.
SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
for (std::vector<MachineBasicBlock*>::iterator
I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
MachineBasicBlock *CurMBB = *I;
if (SeenMBBs.insert(CurMBB).second)
DispContBB->addSuccessor(CurMBB);
}
// N.B. the order the invoke BBs are processed in doesn't matter here.
const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
SmallVector<MachineBasicBlock*, 64> MBBLPads;
for (MachineBasicBlock *BB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
BB->succ_end());
while (!Successors.empty()) {
MachineBasicBlock *SMBB = Successors.pop_back_val();
if (SMBB->isEHPad()) {
BB->removeSuccessor(SMBB);
MBBLPads.push_back(SMBB);
}
}
BB->addSuccessor(DispatchBB, BranchProbability::getZero());
BB->normalizeSuccProbs();
// Find the invoke call and mark all of the callee-saved registers as
// 'implicit defined' so that they're spilled. This prevents code from
// moving instructions to before the EH block, where they will never be
// executed.
for (MachineBasicBlock::reverse_iterator
II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (!II->isCall()) continue;
DenseMap<unsigned, bool> DefRegs;
for (MachineInstr::mop_iterator
OI = II->operands_begin(), OE = II->operands_end();
OI != OE; ++OI) {
if (!OI->isReg()) continue;
DefRegs[OI->getReg()] = true;
}
MachineInstrBuilder MIB(*MF, &*II);
for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
unsigned Reg = SavedRegs[i];
if (Subtarget->isThumb2() &&
!ARM::tGPRRegClass.contains(Reg) &&
!ARM::hGPRRegClass.contains(Reg))
continue;
if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
continue;
if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
continue;
if (!DefRegs[Reg])
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
}
break;
}
}
// Mark all former landing pads as non-landing pads. The dispatch is the only
// landing pad now.
for (SmallVectorImpl<MachineBasicBlock*>::iterator
I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
(*I)->setIsEHPad(false);
// The instruction is gone now.
MI.eraseFromParent();
}
static
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I)
if (*I != Succ)
return *I;
llvm_unreachable("Expecting a BB with two successors!");
}
/// Return the load opcode for a given load size. If load size >= 8,
/// neon opcode will be returned.
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
if (LdSize >= 8)
return LdSize == 16 ? ARM::VLD1q32wb_fixed
: LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
if (IsThumb1)
return LdSize == 4 ? ARM::tLDRi
: LdSize == 2 ? ARM::tLDRHi
: LdSize == 1 ? ARM::tLDRBi : 0;
if (IsThumb2)
return LdSize == 4 ? ARM::t2LDR_POST
: LdSize == 2 ? ARM::t2LDRH_POST
: LdSize == 1 ? ARM::t2LDRB_POST : 0;
return LdSize == 4 ? ARM::LDR_POST_IMM
: LdSize == 2 ? ARM::LDRH_POST
: LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
}
/// Return the store opcode for a given store size. If store size >= 8,
/// neon opcode will be returned.
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
if (StSize >= 8)
return StSize == 16 ? ARM::VST1q32wb_fixed
: StSize == 8 ? ARM::VST1d32wb_fixed : 0;
if (IsThumb1)
return StSize == 4 ? ARM::tSTRi
: StSize == 2 ? ARM::tSTRHi
: StSize == 1 ? ARM::tSTRBi : 0;
if (IsThumb2)
return StSize == 4 ? ARM::t2STR_POST
: StSize == 2 ? ARM::t2STRH_POST
: StSize == 1 ? ARM::t2STRB_POST : 0;
return StSize == 4 ? ARM::STR_POST_IMM
: StSize == 2 ? ARM::STRH_POST
: StSize == 1 ? ARM::STRB_POST_IMM : 0;
}
/// Emit a post-increment load operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
const TargetInstrInfo *TII, const DebugLoc &dl,
unsigned LdSize, unsigned Data, unsigned AddrIn,
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
assert(LdOpc != 0 && "Should have a load opcode");
if (LdSize >= 8) {
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define)
.addReg(AddrIn)
.addImm(0)
.add(predOps(ARMCC::AL));
} else if (IsThumb1) {
// load + update AddrIn
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrIn)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
.add(t1CondCodeOp())
.addReg(AddrIn)
.addImm(LdSize)
.add(predOps(ARMCC::AL));
} else if (IsThumb2) {
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define)
.addReg(AddrIn)
.addImm(LdSize)
.add(predOps(ARMCC::AL));
} else { // arm
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define)
.addReg(AddrIn)
.addReg(0)
.addImm(LdSize)
.add(predOps(ARMCC::AL));
}
}
/// Emit a post-increment store operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
const TargetInstrInfo *TII, const DebugLoc &dl,
unsigned StSize, unsigned Data, unsigned AddrIn,
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
assert(StOpc != 0 && "Should have a store opcode");
if (StSize >= 8) {
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(AddrIn)
.addImm(0)
.addReg(Data)
.add(predOps(ARMCC::AL));
} else if (IsThumb1) {
// store + update AddrIn
BuildMI(*BB, Pos, dl, TII->get(StOpc))
.addReg(Data)
.addReg(AddrIn)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
.add(t1CondCodeOp())
.addReg(AddrIn)
.addImm(StSize)
.add(predOps(ARMCC::AL));
} else if (IsThumb2) {
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(Data)
.addReg(AddrIn)
.addImm(StSize)
.add(predOps(ARMCC::AL));
} else { // arm
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(Data)
.addReg(AddrIn)
.addReg(0)
.addImm(StSize)
.add(predOps(ARMCC::AL));
}
}
MachineBasicBlock *
ARMTargetLowering::EmitStructByval(MachineInstr &MI,
MachineBasicBlock *BB) const {
// This pseudo instruction has 3 operands: dst, src, size
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
// Otherwise, we will generate unrolled scalar copies.
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
Register dest = MI.getOperand(0).getReg();
Register src = MI.getOperand(1).getReg();
unsigned SizeVal = MI.getOperand(2).getImm();
unsigned Align = MI.getOperand(3).getImm();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned UnitSize = 0;
const TargetRegisterClass *TRC = nullptr;
const TargetRegisterClass *VecTRC = nullptr;
bool IsThumb1 = Subtarget->isThumb1Only();
bool IsThumb2 = Subtarget->isThumb2();
bool IsThumb = Subtarget->isThumb();
if (Align & 1) {
UnitSize = 1;
} else if (Align & 2) {
UnitSize = 2;
} else {
// Check whether we can use NEON instructions.
if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
Subtarget->hasNEON()) {
if ((Align % 16 == 0) && SizeVal >= 16)
UnitSize = 16;
else if ((Align % 8 == 0) && SizeVal >= 8)
UnitSize = 8;
}
// Can't use NEON instructions.
if (UnitSize == 0)
UnitSize = 4;
}
// Select the correct opcode and register class for unit size load/store
bool IsNeon = UnitSize >= 8;
TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
if (IsNeon)
VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
: UnitSize == 8 ? &ARM::DPRRegClass
: nullptr;
unsigned BytesLeft = SizeVal % UnitSize;
unsigned LoopSize = SizeVal - BytesLeft;
if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
// Use LDR and STR to copy.
// [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
// [destOut] = STR_POST(scratch, destIn, UnitSize)
unsigned srcIn = src;
unsigned destIn = dest;
for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
Register srcOut = MRI.createVirtualRegister(TRC);
Register destOut = MRI.createVirtualRegister(TRC);
Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
// Handle the leftover bytes with LDRB and STRB.
// [scratch, srcOut] = LDRB_POST(srcIn, 1)
// [destOut] = STRB_POST(scratch, destIn, 1)
for (unsigned i = 0; i < BytesLeft; i++) {
Register srcOut = MRI.createVirtualRegister(TRC);
Register destOut = MRI.createVirtualRegister(TRC);
Register scratch = MRI.createVirtualRegister(TRC);
emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
// Expand the pseudo op to a loop.
// thisMBB:
// ...
// movw varEnd, # --> with thumb2
// movt varEnd, #
// ldrcp varEnd, idx --> without thumb2
// fallthrough --> loopMBB
// loopMBB:
// PHI varPhi, varEnd, varLoop
// PHI srcPhi, src, srcLoop
// PHI destPhi, dst, destLoop
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
// [destLoop] = STR_POST(scratch, destPhi, UnitSize)
// subs varLoop, varPhi, #UnitSize
// bne loopMBB
// fallthrough --> exitMBB
// exitMBB:
// epilogue to handle left-over bytes
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
// [destOut] = STRB_POST(scratch, destLoop, 1)
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// Load an immediate to varEnd.
Register varEnd = MRI.createVirtualRegister(TRC);
if (Subtarget->useMovt()) {
unsigned Vtmp = varEnd;
if ((LoopSize & 0xFFFF0000) != 0)
Vtmp = MRI.createVirtualRegister(TRC);
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
.addImm(LoopSize & 0xFFFF)
.add(predOps(ARMCC::AL));
if ((LoopSize & 0xFFFF0000) != 0)
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
.addReg(Vtmp)
.addImm(LoopSize >> 16)
.add(predOps(ARMCC::AL));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
// MachineConstantPool wants an explicit alignment.
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
if (Align == 0)
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
MachineMemOperand *CPMMO =
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
MachineMemOperand::MOLoad, 4, 4);
if (IsThumb)
BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
.addReg(varEnd, RegState::Define)
.addConstantPoolIndex(Idx)
.add(predOps(ARMCC::AL))
.addMemOperand(CPMMO);
else
BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
.addReg(varEnd, RegState::Define)
.addConstantPoolIndex(Idx)
.addImm(0)
.add(predOps(ARMCC::AL))
.addMemOperand(CPMMO);
}
BB->addSuccessor(loopMBB);
// Generate the loop body:
// varPhi = PHI(varLoop, varEnd)
// srcPhi = PHI(srcLoop, src)
// destPhi = PHI(destLoop, dst)
MachineBasicBlock *entryBB = BB;
BB = loopMBB;
Register varLoop = MRI.createVirtualRegister(TRC);
Register varPhi = MRI.createVirtualRegister(TRC);
Register srcLoop = MRI.createVirtualRegister(TRC);
Register srcPhi = MRI.createVirtualRegister(TRC);
Register destLoop = MRI.createVirtualRegister(TRC);
Register destPhi = MRI.createVirtualRegister(TRC);
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
.addReg(varLoop).addMBB(loopMBB)
.addReg(varEnd).addMBB(entryBB);
BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
.addReg(srcLoop).addMBB(loopMBB)
.addReg(src).addMBB(entryBB);
BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
.addReg(destLoop).addMBB(loopMBB)
.addReg(dest).addMBB(entryBB);
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
// [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
IsThumb1, IsThumb2);
emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
IsThumb1, IsThumb2);
// Decrement loop variable by UnitSize.
if (IsThumb1) {
BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
.add(t1CondCodeOp())
.addReg(varPhi)
.addImm(UnitSize)
.add(predOps(ARMCC::AL));
} else {
MachineInstrBuilder MIB =
BuildMI(*BB, BB->end(), dl,
TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
MIB.addReg(varPhi)
.addImm(UnitSize)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
MIB->getOperand(5).setReg(ARM::CPSR);
MIB->getOperand(5).setIsDef(true);
}
BuildMI(*BB, BB->end(), dl,
TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
// loopMBB can loop back to loopMBB or fall through to exitMBB.
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// Add epilogue to handle BytesLeft.
BB = exitMBB;
auto StartOfExit = exitMBB->begin();
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
// [destOut] = STRB_POST(scratch, destLoop, 1)
unsigned srcIn = srcLoop;
unsigned destIn = destLoop;
for (unsigned i = 0; i < BytesLeft; i++) {
Register srcOut = MRI.createVirtualRegister(TRC);
Register destOut = MRI.createVirtualRegister(TRC);
Register scratch = MRI.createVirtualRegister(TRC);
emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetMachine &TM = getTargetMachine();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
assert(Subtarget->isTargetWindows() &&
"__chkstk is only supported on Windows");
assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
// __chkstk takes the number of words to allocate on the stack in R4, and
// returns the stack adjustment in number of bytes in R4. This will not
// clober any other registers (other than the obvious lr).
//
// Although, technically, IP should be considered a register which may be
// clobbered, the call itself will not touch it. Windows on ARM is a pure
// thumb-2 environment, so there is no interworking required. As a result, we
// do not expect a veneer to be emitted by the linker, clobbering IP.
//
// Each module receives its own copy of __chkstk, so no import thunk is
// required, again, ensuring that IP is not clobbered.
//
// Finally, although some linkers may theoretically provide a trampoline for
// out of range calls (which is quite common due to a 32M range limitation of
// branches for Thumb), we can generate the long-call version via
// -mcmodel=large, alleviating the need for the trampoline which may clobber
// IP.
switch (TM.getCodeModel()) {
case CodeModel::Tiny:
llvm_unreachable("Tiny code model not available on ARM.");
case CodeModel::Small:
case CodeModel::Medium:
case CodeModel::Kernel:
BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
.add(predOps(ARMCC::AL))
.addExternalSymbol("__chkstk")
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
.addReg(ARM::R12,
RegState::Implicit | RegState::Define | RegState::Dead)
.addReg(ARM::CPSR,
RegState::Implicit | RegState::Define | RegState::Dead);
break;
case CodeModel::Large: {
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
.addExternalSymbol("__chkstk");
BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
.add(predOps(ARMCC::AL))
.addReg(Reg, RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
.addReg(ARM::R12,
RegState::Implicit | RegState::Define | RegState::Dead)
.addReg(ARM::CPSR,
RegState::Implicit | RegState::Define | RegState::Dead);
break;
}
}
BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
.addReg(ARM::SP, RegState::Kill)
.addReg(ARM::R4, RegState::Kill)
.setMIFlags(MachineInstr::FrameSetup)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
MI.eraseFromParent();
return MBB;
}
MachineBasicBlock *
ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
MF->insert(++MBB->getIterator(), ContBB);
ContBB->splice(ContBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
ContBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(ContBB);
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
MF->push_back(TrapBB);
MBB->addSuccessor(TrapBB);
BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
.addReg(MI.getOperand(0).getReg())
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::EQ)
.addReg(ARM::CPSR);
MI.eraseFromParent();
return ContBB;
}
// The CPSR operand of SelectItr might be missing a kill marker
// because there were multiple uses of CPSR, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock* BB,
const TargetRegisterInfo* TRI) {
// Scan forward through BB for a use/def of CPSR.
MachineBasicBlock::iterator miI(std::next(SelectItr));
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(ARM::CPSR))
return false;
if (mi.definesRegister(ARM::CPSR))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether CPSR is live into a
// successor.
if (miI == BB->end()) {
for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
sEnd = BB->succ_end();
sItr != sEnd; ++sItr) {
MachineBasicBlock* succ = *sItr;
if (succ->isLiveIn(ARM::CPSR))
return false;
}
}
// We found a def, or hit the end of the basic block and CPSR wasn't live
// out. SelectMI should have a kill flag on CPSR.
SelectItr->addRegisterKilled(ARM::CPSR, TRI);
return true;
}
MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
switch (MI.getOpcode()) {
default: {
MI.print(errs());
llvm_unreachable("Unexpected instr type to insert");
}
// Thumb1 post-indexed loads are really just single-register LDMs.
case ARM::tLDR_postidx: {
MachineOperand Def(MI.getOperand(1));
BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
.add(Def) // Rn_wb
.add(MI.getOperand(2)) // Rn
.add(MI.getOperand(3)) // PredImm
.add(MI.getOperand(4)) // PredReg
.add(MI.getOperand(0)) // Rt
.cloneMemRefs(MI);
MI.eraseFromParent();
return BB;
}
// The Thumb2 pre-indexed stores have the same MI operands, they just
// define them differently in the .td files from the isel patterns, so
// they need pseudos.
case ARM::t2STR_preidx:
MI.setDesc(TII->get(ARM::t2STR_PRE));
return BB;
case ARM::t2STRB_preidx:
MI.setDesc(TII->get(ARM::t2STRB_PRE));
return BB;
case ARM::t2STRH_preidx:
MI.setDesc(TII->get(ARM::t2STRH_PRE));
return BB;
case ARM::STRi_preidx:
case ARM::STRBi_preidx: {
unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
: ARM::STRB_PRE_IMM;
// Decode the offset.
unsigned Offset = MI.getOperand(4).getImm();
bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
Offset = ARM_AM::getAM2Offset(Offset);
if (isSub)
Offset = -Offset;
MachineMemOperand *MMO = *MI.memoperands_begin();
BuildMI(*BB, MI, dl, TII->get(NewOpc))
.add(MI.getOperand(0)) // Rn_wb
.add(MI.getOperand(1)) // Rt
.add(MI.getOperand(2)) // Rn
.addImm(Offset) // offset (skip GPR==zero_reg)
.add(MI.getOperand(5)) // pred
.add(MI.getOperand(6))
.addMemOperand(MMO);
MI.eraseFromParent();
return BB;
}
case ARM::STRr_preidx:
case ARM::STRBr_preidx:
case ARM::STRH_preidx: {
unsigned NewOpc;
switch (MI.getOpcode()) {
default: llvm_unreachable("unexpected opcode!");
case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
}
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
for (unsigned i = 0; i < MI.getNumOperands(); ++i)
MIB.add(MI.getOperand(i));
MI.eraseFromParent();
return BB;
}
case ARM::tMOVCCr_pseudo: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Check whether CPSR is live past the tMOVCCr_pseudo.
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
if (!MI.killsRegister(ARM::CPSR) &&
!checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
copy0MBB->addLiveIn(ARM::CPSR);
sinkMBB->addLiveIn(ARM::CPSR);
}
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII->get(ARM::tBcc))
.addMBB(sinkMBB)
.addImm(MI.getOperand(3).getImm())
.addReg(MI.getOperand(4).getReg());
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(1).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
case ARM::BCCi64:
case ARM::BCCZi64: {
// If there is an unconditional branch to the other successor, remove it.
BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
// Compare both parts that make up the double comparison separately for
// equality.
bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
Register LHS1 = MI.getOperand(1).getReg();
Register LHS2 = MI.getOperand(2).getReg();
if (RHSisZero) {
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(LHS1)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(LHS2).addImm(0)
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
} else {
Register RHS1 = MI.getOperand(3).getReg();
Register RHS2 = MI.getOperand(4).getReg();
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(LHS1)
.addReg(RHS1)
.add(predOps(ARMCC::AL));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(LHS2).addReg(RHS2)
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
}
MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
if (MI.getOperand(0).getImm() == ARMCC::NE)
std::swap(destMBB, exitMBB);
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
if (isThumb2)
BuildMI(BB, dl, TII->get(ARM::t2B))
.addMBB(exitMBB)
.add(predOps(ARMCC::AL));
else
BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
case ARM::Int_eh_sjlj_setjmp:
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
return BB;
case ARM::Int_eh_sjlj_setup_dispatch:
EmitSjLjDispatchBlock(MI, BB);
return BB;
case ARM::ABS:
case ARM::t2ABS: {
// To insert an ABS instruction, we have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// source vreg to test against 0, the destination vreg to set,
// the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
// It transforms
// V1 = ABS V0
// into
// V2 = MOVS V0
// BCC (branch to SinkBB if V0 >= 0)
// RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
// SinkBB: V1 = PHI(V2, V3)
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator BBI = ++BB->getIterator();
MachineFunction *Fn = BB->getParent();
MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
Fn->insert(BBI, RSBBB);
Fn->insert(BBI, SinkBB);
Register ABSSrcReg = MI.getOperand(1).getReg();
Register ABSDstReg = MI.getOperand(0).getReg();
bool ABSSrcKIll = MI.getOperand(1).isKill();
bool isThumb2 = Subtarget->isThumb2();
MachineRegisterInfo &MRI = Fn->getRegInfo();
// In Thumb mode S must not be specified if source register is the SP or
// PC and if destination register is the SP, so restrict register class
Register NewRsbDstReg = MRI.createVirtualRegister(
isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
// Transfer the remainder of BB and its successor edges to sinkMBB.
SinkBB->splice(SinkBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
SinkBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(RSBBB);
BB->addSuccessor(SinkBB);
// fall through to SinkMBB
RSBBB->addSuccessor(SinkBB);
// insert a cmp at the end of BB
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(ABSSrcReg)
.addImm(0)
.add(predOps(ARMCC::AL));
// insert a bcc with opposite CC to ARMCC::MI at the end of BB
BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
.addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
// insert rsbri in RSBBB
// Note: BCC and rsbri will be converted into predicated rsbmi
// by if-conversion pass
BuildMI(*RSBBB, RSBBB->begin(), dl,
TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
.addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
.addImm(0)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
// insert PHI in SinkBB,
// reuse ABSDstReg to not change uses of ABS instruction
BuildMI(*SinkBB, SinkBB->begin(), dl,
TII->get(ARM::PHI), ABSDstReg)
.addReg(NewRsbDstReg).addMBB(RSBBB)
.addReg(ABSSrcReg).addMBB(BB);
// remove ABS instruction
MI.eraseFromParent();
// return last added BB
return SinkBB;
}
case ARM::COPY_STRUCT_BYVAL_I32:
++NumLoopByVals;
return EmitStructByval(MI, BB);
case ARM::WIN__CHKSTK:
return EmitLowered__chkstk(MI, BB);
case ARM::WIN__DBZCHK:
return EmitLowered__dbzchk(MI, BB);
}
}
/// Attaches vregs to MEMCPY that it will use as scratch registers
/// when it is expanded into LDM/STM. This is done as a post-isel lowering
/// instead of as a custom inserter because we need the use list from the SDNode.
static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
MachineInstr &MI, const SDNode *Node) {
bool isThumb1 = Subtarget->isThumb1Only();
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineInstrBuilder MIB(*MF, MI);
// If the new dst/src is unused mark it as dead.
if (!Node->hasAnyUseOfValue(0)) {
MI.getOperand(0).setIsDead(true);
}
if (!Node->hasAnyUseOfValue(1)) {
MI.getOperand(1).setIsDead(true);
}
// The MEMCPY both defines and kills the scratch registers.
for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
: &ARM::GPRRegClass);
MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
}
}
void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
if (MI.getOpcode() == ARM::MEMCPY) {
attachMEMCPYScratchRegs(Subtarget, MI, Node);
return;
}
const MCInstrDesc *MCID = &MI.getDesc();
// Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
// RSC. Coming out of isel, they have an implicit CPSR def, but the optional
// operand is still set to noreg. If needed, set the optional operand's
// register to CPSR, and remove the redundant implicit def.
//
// e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
// Rename pseudo opcodes.
unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
unsigned ccOutIdx;
if (NewOpc) {
const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
MCID = &TII->get(NewOpc);
assert(MCID->getNumOperands() ==
MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
&& "converted opcode should be the same except for cc_out"
" (and, on Thumb1, pred)");
MI.setDesc(*MCID);
// Add the optional cc_out operand
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
// On Thumb1, move all input operands to the end, then add the predicate
if (Subtarget->isThumb1Only()) {
for (unsigned c = MCID->getNumOperands() - 4; c--;) {
MI.addOperand(MI.getOperand(1));
MI.RemoveOperand(1);
}
// Restore the ties
for (unsigned i = MI.getNumOperands(); i--;) {
const MachineOperand& op = MI.getOperand(i);
if (op.isReg() && op.isUse()) {
int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
if (DefIdx != -1)
MI.tieOperands(DefIdx, i);
}
}
MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
ccOutIdx = 1;
} else
ccOutIdx = MCID->getNumOperands() - 1;
} else
ccOutIdx = MCID->getNumOperands() - 1;
// Any ARM instruction that sets the 's' bit should specify an optional
// "cc_out" operand in the last operand position.
if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
assert(!NewOpc && "Optional cc_out operand required");
return;
}
// Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
// since we already have an optional CPSR def.
bool definesCPSR = false;
bool deadCPSR = false;
for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
definesCPSR = true;
if (MO.isDead())
deadCPSR = true;
MI.RemoveOperand(i);
break;
}
}
if (!definesCPSR) {
assert(!NewOpc && "Optional cc_out operand required");
return;
}
assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
if (deadCPSR) {
assert(!MI.getOperand(ccOutIdx).getReg() &&
"expect uninitialized optional cc_out operand");
// Thumb1 instructions must have the S bit even if the CPSR is dead.
if (!Subtarget->isThumb1Only())
return;
}
// If this instruction was defined with an optional CPSR def and its dag node
// had a live implicit CPSR def, then activate the optional CPSR def.
MachineOperand &MO = MI.getOperand(ccOutIdx);
MO.setReg(ARM::CPSR);
MO.setIsDef(true);
}
//===----------------------------------------------------------------------===//
// ARM Optimization Hooks
//===----------------------------------------------------------------------===//
// Helper function that checks if N is a null or all ones constant.
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
}
// Return true if N is conditionally 0 or all ones.
// Detects these expressions where cc is an i1 value:
//
// (select cc 0, y) [AllOnes=0]
// (select cc y, 0) [AllOnes=0]
// (zext cc) [AllOnes=0]
// (sext cc) [AllOnes=0/1]
// (select cc -1, y) [AllOnes=1]
// (select cc y, -1) [AllOnes=1]
//
// Invert is set when N is the null/all ones constant when CC is false.
// OtherOp is set to the alternative value of N.
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
SDValue &CC, bool &Invert,
SDValue &OtherOp,
SelectionDAG &DAG) {
switch (N->getOpcode()) {
default: return false;
case ISD::SELECT: {
CC = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
if (isZeroOrAllOnes(N1, AllOnes)) {
Invert = false;
OtherOp = N2;
return true;
}
if (isZeroOrAllOnes(N2, AllOnes)) {
Invert = true;
OtherOp = N1;
return true;
}
return false;
}
case ISD::ZERO_EXTEND:
// (zext cc) can never be the all ones value.
if (AllOnes)
return false;
LLVM_FALLTHROUGH;
case ISD::SIGN_EXTEND: {
SDLoc dl(N);
EVT VT = N->getValueType(0);
CC = N->getOperand(0);
if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
return false;
Invert = !AllOnes;
if (AllOnes)
// When looking for an AllOnes constant, N is an sext, and the 'other'
// value is 0.
OtherOp = DAG.getConstant(0, dl, VT);
else if (N->getOpcode() == ISD::ZERO_EXTEND)
// When looking for a 0 constant, N can be zext or sext.
OtherOp = DAG.getConstant(1, dl, VT);
else
OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
VT);
return true;
}
}
}
// Combine a constant select operand into its use:
//
// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
//
// The transform is rejected if the select doesn't have a constant operand that
// is null, or all ones when AllOnes is set.
//
// Also recognize sext/zext from i1:
//
// (add (zext cc), x) -> (select cc (add x, 1), x)
// (add (sext cc), x) -> (select cc (add x, -1), x)
//
// These transformations eventually create predicated instructions.
//
// @param N The node to transform.
// @param Slct The N operand that is a select.
// @param OtherOp The other N operand (x above).
// @param DCI Context.
// @param AllOnes Require the select constant to be all ones instead of null.
// @returns The new node, or SDValue() on failure.
static
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
TargetLowering::DAGCombinerInfo &DCI,
bool AllOnes = false) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDValue NonConstantVal;
SDValue CCOp;
bool SwapSelectOps;
if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
NonConstantVal, DAG))
return SDValue();
// Slct is now know to be the desired identity constant when CC is true.
SDValue TrueVal = OtherOp;
SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
OtherOp, NonConstantVal);
// Unless SwapSelectOps says CC should be false.
if (SwapSelectOps)
std::swap(TrueVal, FalseVal);
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
CCOp, TrueVal, FalseVal);
}
// Attempt combineSelectAndUse on each operand of a commutative operator N.
static
SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
return Result;
if (N1.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
return Result;
return SDValue();
}
static bool IsVUZPShuffleNode(SDNode *N) {
// VUZP shuffle node.
if (N->getOpcode() == ARMISD::VUZP)
return true;
// "VUZP" on i32 is an alias for VTRN.
if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
return true;
return false;
}
static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Look for ADD(VUZP.0, VUZP.1).
if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
N0 == N1)
return SDValue();
// Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
if (!N->getValueType(0).is64BitVector())
return SDValue();
// Generate vpadd.
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
SDNode *Unzip = N0.getNode();
EVT VT = N->getValueType(0);
SmallVector<SDValue, 8> Ops;
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
TLI.getPointerTy(DAG.getDataLayout())));
Ops.push_back(Unzip->getOperand(0));
Ops.push_back(Unzip->getOperand(1));
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
}
static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Check for two extended operands.
if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
N1.getOpcode() == ISD::SIGN_EXTEND) &&
!(N0.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOpcode() == ISD::ZERO_EXTEND))
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N10 = N1.getOperand(0);
// Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
N00 == N10)
return SDValue();
// We only recognize Q register paddl here; this can't be reached until
// after type legalization.
if (!N00.getValueType().is64BitVector() ||
!N0.getValueType().is128BitVector())
return SDValue();
// Generate vpaddl.
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
EVT VT = N->getValueType(0);
SmallVector<SDValue, 8> Ops;
// Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
unsigned Opcode;
if (N0.getOpcode() == ISD::SIGN_EXTEND)
Opcode = Intrinsic::arm_neon_vpaddls;
else
Opcode = Intrinsic::arm_neon_vpaddlu;
Ops.push_back(DAG.getConstant(Opcode, dl,
TLI.getPointerTy(DAG.getDataLayout())));
EVT ElemTy = N00.getValueType().getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
N00.getOperand(0), N00.getOperand(1));
Ops.push_back(Concat);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
}
// FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
// an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
// much easier to match.
static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Only perform optimization if after legalize, and if NEON is available. We
// also expected both operands to be BUILD_VECTORs.
if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
|| N0.getOpcode() != ISD::BUILD_VECTOR
|| N1.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// Check output type since VPADDL operand elements can only be 8, 16, or 32.
EVT VT = N->getValueType(0);
if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
return SDValue();
// Check that the vector operands are of the right form.
// N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
// operands, where N is the size of the formed vector.
// Each EXTRACT_VECTOR should have the same input vector and odd or even
// index such that we have a pair wise add pattern.
// Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Vec = N0->getOperand(0)->getOperand(0);
SDNode *V = Vec.getNode();
unsigned nextIndex = 0;
// For each operands to the ADD which are BUILD_VECTORs,
// check to see if each of their operands are an EXTRACT_VECTOR with
// the same vector and appropriate index.
for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&& N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue ExtVec0 = N0->getOperand(i);
SDValue ExtVec1 = N1->getOperand(i);
// First operand is the vector, verify its the same.
if (V != ExtVec0->getOperand(0).getNode() ||
V != ExtVec1->getOperand(0).getNode())
return SDValue();
// Second is the constant, verify its correct.
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
// For the constant, we want to see all the even or all the odd.
if (!C0 || !C1 || C0->getZExtValue() != nextIndex
|| C1->getZExtValue() != nextIndex+1)
return SDValue();
// Increment index.
nextIndex+=2;
} else
return SDValue();
}
// Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
// we're using the entire input vector, otherwise there's a size/legality
// mismatch somewhere.
if (nextIndex != Vec.getValueType().getVectorNumElements() ||
Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
return SDValue();
// Create VPADDL node.
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
// Build operand list.
SmallVector<SDValue, 8> Ops;
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
TLI.getPointerTy(DAG.getDataLayout())));
// Input is the vector.
Ops.push_back(Vec);
// Get widened type and narrowed type.
MVT widenType;
unsigned numElem = VT.getVectorNumElements();
EVT inputLaneType = Vec.getValueType().getVectorElementType();
switch (inputLaneType.getSimpleVT().SimpleTy) {
case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
default:
llvm_unreachable("Invalid vector element type for padd optimization.");
}
SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
return DAG.getNode(ExtOp, dl, VT, tmp);
}
static SDValue findMUL_LOHI(SDValue V) {
if (V->getOpcode() == ISD::UMUL_LOHI ||
V->getOpcode() == ISD::SMUL_LOHI)
return V;
return SDValue();
}
static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasBaseDSP())
return SDValue();
// SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
// accumulates the product into a 64-bit value. The 16-bit values will
// be sign extended somehow or SRA'd into 32-bit values
// (addc (adde (mul 16bit, 16bit), lo), hi)
SDValue Mul = AddcNode->getOperand(0);
SDValue Lo = AddcNode->getOperand(1);
if (Mul.getOpcode() != ISD::MUL) {
Lo = AddcNode->getOperand(0);
Mul = AddcNode->getOperand(1);
if (Mul.getOpcode() != ISD::MUL)
return SDValue();
}
SDValue SRA = AddeNode->getOperand(0);
SDValue Hi = AddeNode->getOperand(1);
if (SRA.getOpcode() != ISD::SRA) {
SRA = AddeNode->getOperand(1);
Hi = AddeNode->getOperand(0);
if (SRA.getOpcode() != ISD::SRA)
return SDValue();
}
if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
if (Const->getZExtValue() != 31)
return SDValue();
} else
return SDValue();
if (SRA.getOperand(0) != Mul)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(AddcNode);
unsigned Opcode = 0;
SDValue Op0;
SDValue Op1;
if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
Opcode = ARMISD::SMLALBB;
Op0 = Mul.getOperand(0);
Op1 = Mul.getOperand(1);
} else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
Opcode = ARMISD::SMLALBT;
Op0 = Mul.getOperand(0);
Op1 = Mul.getOperand(1).getOperand(0);
} else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
Opcode = ARMISD::SMLALTB;
Op0 = Mul.getOperand(0).getOperand(0);
Op1 = Mul.getOperand(1);
} else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
Opcode = ARMISD::SMLALTT;
Op0 = Mul->getOperand(0).getOperand(0);
Op1 = Mul->getOperand(1).getOperand(0);
}
if (!Op0 || !Op1)
return SDValue();
SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
Op0, Op1, Lo, Hi);
// Replace the ADDs' nodes uses by the MLA node's values.
SDValue HiMLALResult(SMLAL.getNode(), 1);
SDValue LoMLALResult(SMLAL.getNode(), 0);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
// Return original node to notify the driver to stop replacing.
SDValue resNode(AddcNode, 0);
return resNode;
}
static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Look for multiply add opportunities.
// The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
// each add nodes consumes a value from ISD::UMUL_LOHI and there is
// a glue link from the first add to the second add.
// If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
// a S/UMLAL instruction.
// UMUL_LOHI
// / :lo \ :hi
// V \ [no multiline comment]
// loAdd -> ADDC |
// \ :carry /
// V V
// ADDE <- hiAdd
//
// In the special case where only the higher part of a signed result is used
// and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
// a constant with the exact value of 0x80000000, we recognize we are dealing
// with a "rounded multiply and add" (or subtract) and transform it into
// either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
"Expect an ADDE or SUBE");
assert(AddeSubeNode->getNumOperands() == 3 &&
AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
"ADDE node has the wrong inputs");
// Check that we are chained to the right ADDC or SUBC node.
SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
(AddeSubeNode->getOpcode() == ARMISD::SUBE &&
AddcSubcNode->getOpcode() != ARMISD::SUBC))
return SDValue();
SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
// Check if the two operands are from the same mul_lohi node.
if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
return SDValue();
assert(AddcSubcNode->getNumValues() == 2 &&
AddcSubcNode->getValueType(0) == MVT::i32 &&
"Expect ADDC with two result values. First: i32");
// Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
// maybe a SMLAL which multiplies two 16-bit values.
if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
// Check for the triangle shape.
SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
// Make sure that the ADDE/SUBE operands are not coming from the same node.
if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
return SDValue();
// Find the MUL_LOHI node walking up ADDE/SUBE's operands.
bool IsLeftOperandMUL = false;
SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
if (MULOp == SDValue())
MULOp = findMUL_LOHI(AddeSubeOp1);
else
IsLeftOperandMUL = true;
if (MULOp == SDValue())
return SDValue();
// Figure out the right opcode.
unsigned Opc = MULOp->getOpcode();
unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
// Figure out the high and low input values to the MLAL node.
SDValue *HiAddSub = nullptr;
SDValue *LoMul = nullptr;
SDValue *LowAddSub = nullptr;
// Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
return SDValue();
if (IsLeftOperandMUL)
HiAddSub = &AddeSubeOp1;
else
HiAddSub = &AddeSubeOp0;
// Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
// whose low result is fed to the ADDC/SUBC we are checking.
if (AddcSubcOp0 == MULOp.getValue(0)) {
LoMul = &AddcSubcOp0;
LowAddSub = &AddcSubcOp1;
}
if (AddcSubcOp1 == MULOp.getValue(0)) {
LoMul = &AddcSubcOp1;
LowAddSub = &AddcSubcOp0;
}
if (!LoMul)
return SDValue();
// If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
// the replacement below will create a cycle.
if (AddcSubcNode == HiAddSub->getNode() ||
AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
return SDValue();
// Create the merged node.
SelectionDAG &DAG = DCI.DAG;
// Start building operand list.
SmallVector<SDValue, 8> Ops;
Ops.push_back(LoMul->getOperand(0));
Ops.push_back(LoMul->getOperand(1));
// Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
// the case, we must be doing signed multiplication and only use the higher
// part of the result of the MLAL, furthermore the LowAddSub must be a constant
// addition or subtraction with the value of 0x800000.
if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
LowAddSub->getNode()->getOpcode() == ISD::Constant &&
static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
0x80000000) {
Ops.push_back(*HiAddSub);
if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
FinalOpc = ARMISD::SMMLSR;
} else {
FinalOpc = ARMISD::SMMLAR;
}
SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
return SDValue(AddeSubeNode, 0);
} else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
// SMMLS is generated during instruction selection and the rest of this
// function can not handle the case where AddcSubcNode is a SUBC.
return SDValue();
// Finish building the operand list for {U/S}MLAL
Ops.push_back(*LowAddSub);
Ops.push_back(*HiAddSub);
SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
DAG.getVTList(MVT::i32, MVT::i32), Ops);
// Replace the ADDs' nodes uses by the MLA node's values.
SDValue HiMLALResult(MLALNode.getNode(), 1);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
SDValue LoMLALResult(MLALNode.getNode(), 0);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
// Return original node to notify the driver to stop replacing.
return SDValue(AddeSubeNode, 0);
}
static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// UMAAL is similar to UMLAL except that it adds two unsigned values.
// While trying to combine for the other MLAL nodes, first search for the
// chance to use UMAAL. Check if Addc uses a node which has already
// been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
// as the addend, and it's handled in PerformUMLALCombine.
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
// Check that we have a glued ADDC node.
SDNode* AddcNode = AddeNode->getOperand(2).getNode();
if (AddcNode->getOpcode() != ARMISD::ADDC)
return SDValue();
// Find the converted UMAAL or quit if it doesn't exist.
SDNode *UmlalNode = nullptr;
SDValue AddHi;
if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
UmlalNode = AddcNode->getOperand(0).getNode();
AddHi = AddcNode->getOperand(1);
} else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
UmlalNode = AddcNode->getOperand(1).getNode();
AddHi = AddcNode->getOperand(0);
} else {
return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
}
// The ADDC should be glued to an ADDE node, which uses the same UMLAL as
// the ADDC as well as Zero.
if (!isNullConstant(UmlalNode->getOperand(3)))
return SDValue();
if ((isNullConstant(AddeNode->getOperand(0)) &&
AddeNode->getOperand(1).getNode() == UmlalNode) ||
(AddeNode->getOperand(0).getNode() == UmlalNode &&
isNullConstant(AddeNode->getOperand(1)))) {
SelectionDAG &DAG = DCI.DAG;
SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
UmlalNode->getOperand(2), AddHi };
SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
DAG.getVTList(MVT::i32, MVT::i32), Ops);
// Replace the ADDs' nodes uses by the UMAAL node's values.
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
// Return original node to notify the driver to stop replacing.
return SDValue(AddeNode, 0);
}
return SDValue();
}
static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
return SDValue();
// Check that we have a pair of ADDC and ADDE as operands.
// Both addends of the ADDE must be zero.
SDNode* AddcNode = N->getOperand(2).getNode();
SDNode* AddeNode = N->getOperand(3).getNode();
if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
(AddeNode->getOpcode() == ARMISD::ADDE) &&
isNullConstant(AddeNode->getOperand(0)) &&
isNullConstant(AddeNode->getOperand(1)) &&
(AddeNode->getOperand(2).getNode() == AddcNode))
return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
DAG.getVTList(MVT::i32, MVT::i32),
{N->getOperand(0), N->getOperand(1),
AddcNode->getOperand(0), AddcNode->getOperand(1)});
else
return SDValue();
}
static SDValue PerformAddcSubcCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SelectionDAG &DAG(DCI.DAG);
if (N->getOpcode() == ARMISD::SUBC) {
// (SUBC (ADDE 0, 0, C), 1) -> C
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS->getOpcode() == ARMISD::ADDE &&
isNullConstant(LHS->getOperand(0)) &&
isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
}
}
if (Subtarget->isThumb1Only()) {
SDValue RHS = N->getOperand(1);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
int32_t imm = C->getSExtValue();
if (imm < 0 && imm > std::numeric_limits<int>::min()) {
SDLoc DL(N);
RHS = DAG.getConstant(-imm, DL, MVT::i32);
unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
: ARMISD::ADDC;
return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
}
}
}
return SDValue();
}
static SDValue PerformAddeSubeCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (Subtarget->isThumb1Only()) {
SelectionDAG &DAG = DCI.DAG;
SDValue RHS = N->getOperand(1);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
int64_t imm = C->getSExtValue();
if (imm < 0) {
SDLoc DL(N);
// The with-carry-in form matches bitwise not instead of the negation.
// Effectively, the inverse interpretation of the carry flag already
// accounts for part of the negation.
RHS = DAG.getConstant(~imm, DL, MVT::i32);
unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
: ARMISD::ADDE;
return DAG.getNode(Opcode, DL, N->getVTList(),
N->getOperand(0), RHS, N->getOperand(2));
}
}
} else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
return AddCombineTo64bitMLAL(N, DCI, Subtarget);
}
return SDValue();
}
static SDValue PerformABSCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SDValue res;
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
return SDValue();
if (!TLI.expandABS(N, res, DAG))
return SDValue();
return res;
}
/// PerformADDECombine - Target-specific dag combine transform from
/// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
/// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
static SDValue PerformADDECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Only ARM and Thumb2 support UMLAL/SMLAL.
if (Subtarget->isThumb1Only())
return PerformAddeSubeCombine(N, DCI, Subtarget);
// Only perform the checks after legalize when the pattern is available.
if (DCI.isBeforeLegalize()) return SDValue();
return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
}
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
/// operands N0 and N1. This is a helper for PerformADDCombine that is
/// called with the default operands, and if that fails, with commuted
/// operands.
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget){
// Attempt to create vpadd for this add.
if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
return Result;
// Attempt to create vpaddl for this add.
if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
return Result;
if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
Subtarget))
return Result;
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
if (N0.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
return Result;
return SDValue();
}
bool
ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const {
if (Level == BeforeLegalizeTypes)
return true;
if (N->getOpcode() != ISD::SHL)
return true;
if (Subtarget->isThumb1Only()) {
// Avoid making expensive immediates by commuting shifts. (This logic
// only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
// for free.)
if (N->getOpcode() != ISD::SHL)
return true;
SDValue N1 = N->getOperand(0);
if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
return true;
if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
if (Const->getAPIntValue().ult(256))
return false;
if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
Const->getAPIntValue().sgt(-256))
return false;
}
return true;
}
// Turn off commute-with-shift transform after legalization, so it doesn't
// conflict with PerformSHLSimplify. (We could try to detect when
// PerformSHLSimplify would trigger more precisely, but it isn't
// really necessary.)
return false;
}
bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
const SDNode *N, CombineLevel Level) const {
if (!Subtarget->isThumb1Only())
return true;
if (Level == BeforeLegalizeTypes)
return true;
return false;
}
bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
if (!Subtarget->hasNEON()) {
if (Subtarget->isThumb1Only())
return VT.getScalarSizeInBits() <= 32;
return true;
}
return VT.isScalarInteger();
}
static SDValue PerformSHLSimplify(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *ST) {
// Allow the generic combiner to identify potential bswaps.
if (DCI.isBeforeLegalize())
return SDValue();
// DAG combiner will fold:
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
// Other code patterns that can be also be modified have the following form:
// b + ((a << 1) | 510)
// b + ((a << 1) & 510)
// b + ((a << 1) ^ 510)
// b + ((a << 1) + 510)
// Many instructions can perform the shift for free, but it requires both
// the operands to be registers. If c1 << c2 is too large, a mov immediate
// instruction will needed. So, unfold back to the original pattern if:
// - if c1 and c2 are small enough that they don't require mov imms.
// - the user(s) of the node can perform an shl
// No shifted operands for 16-bit instructions.
if (ST->isThumb() && ST->isThumb1Only())
return SDValue();
// Check that all the users could perform the shl themselves.
for (auto U : N->uses()) {
switch(U->getOpcode()) {
default:
return SDValue();
case ISD::SUB:
case ISD::ADD:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SETCC:
case ARMISD::CMP:
// Check that the user isn't already using a constant because there
// aren't any instructions that support an immediate operand and a
// shifted operand.
if (isa<ConstantSDNode>(U->getOperand(0)) ||
isa<ConstantSDNode>(U->getOperand(1)))
return SDValue();
// Check that it's not already using a shift.
if (U->getOperand(0).getOpcode() == ISD::SHL ||
U->getOperand(1).getOpcode() == ISD::SHL)
return SDValue();
break;
}
}
if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
return SDValue();
if (N->getOperand(0).getOpcode() != ISD::SHL)
return SDValue();
SDValue SHL = N->getOperand(0);
auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
if (!C1ShlC2 || !C2)
return SDValue();
APInt C2Int = C2->getAPIntValue();
APInt C1Int = C1ShlC2->getAPIntValue();
// Check that performing a lshr will not lose any information.
APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
C2Int.getBitWidth() - C2->getZExtValue());
if ((C1Int & Mask) != C1Int)
return SDValue();
// Shift the first constant.
C1Int.lshrInPlace(C2Int);
// The immediates are encoded as an 8-bit value that can be rotated.
auto LargeImm = [](const APInt &Imm) {
unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
return Imm.getBitWidth() - Zeros > 8;
};
if (LargeImm(C1Int) || LargeImm(C2Int))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue X = SHL.getOperand(0);
SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
DAG.getConstant(C1Int, dl, MVT::i32));
// Shift left to compensate for the lshr of C1Int.
SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
SHL.dump(); N->dump());
LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
return Res;
}
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
///
static SDValue PerformADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Only works one way, because it needs an immediate operand.
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
return Result;
// First try with the default operand order.
if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
return Result;
// If that didn't work, try again with the operands commuted.
return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
}
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
///
static SDValue PerformSUBCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
if (N1.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
return Result;
if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
return SDValue();
// Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
// so that we can readily pattern match more mve instructions which can use
// a scalar operand.
SDValue VDup = N->getOperand(1);
if (VDup->getOpcode() != ARMISD::VDUP)
return SDValue();
SDValue VMov = N->getOperand(0);
if (VMov->getOpcode() == ISD::BITCAST)
VMov = VMov->getOperand(0);
if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
return SDValue();
SDLoc dl(N);
SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
DCI.DAG.getConstant(0, dl, MVT::i32),
VDup->getOperand(0));
return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
}
/// PerformVMULCombine
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
/// special multiplier accumulator forwarding.
/// vmul d3, d0, d2
/// vmla d3, d1, d2
/// is faster than
/// vadd d3, d0, d1
/// vmul d3, d3, d2
// However, for (A + B) * (A + B),
// vadd d2, d0, d1
// vmul d3, d0, d2
// vmla d3, d1, d2
// is slower than
// vadd d2, d0, d1
// vmul d3, d2, d2
static SDValue PerformVMULCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasVMLxForwarding())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
unsigned Opcode = N0.getOpcode();
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
Opcode != ISD::FADD && Opcode != ISD::FSUB) {
Opcode = N1.getOpcode();
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
Opcode != ISD::FADD && Opcode != ISD::FSUB)
return SDValue();
std::swap(N0, N1);
}
if (N0 == N1)
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
return DAG.getNode(Opcode, DL, VT,
DAG.getNode(ISD::MUL, DL, VT, N00, N1),
DAG.getNode(ISD::MUL, DL, VT, N01, N1));
}
static SDValue PerformMULCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
if (Subtarget->isThumb1Only())
return SDValue();
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
EVT VT = N->getValueType(0);
if (VT.is64BitVector() || VT.is128BitVector())
return PerformVMULCombine(N, DCI, Subtarget);
if (VT != MVT::i32)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
int64_t MulAmt = C->getSExtValue();
unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
ShiftAmt = ShiftAmt & (32 - 1);
SDValue V = N->getOperand(0);
SDLoc DL(N);
SDValue Res;
MulAmt >>= ShiftAmt;
if (MulAmt >= 0) {
if (isPowerOf2_32(MulAmt - 1)) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
Res = DAG.getNode(ISD::ADD, DL, VT,
V,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmt - 1), DL,
MVT::i32)));
} else if (isPowerOf2_32(MulAmt + 1)) {
// (mul x, 2^N - 1) => (sub (shl x, N), x)
Res = DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmt + 1), DL,
MVT::i32)),
V);
} else
return SDValue();
} else {
uint64_t MulAmtAbs = -MulAmt;
if (isPowerOf2_32(MulAmtAbs + 1)) {
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
Res = DAG.getNode(ISD::SUB, DL, VT,
V,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
MVT::i32)));
} else if (isPowerOf2_32(MulAmtAbs - 1)) {
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
Res = DAG.getNode(ISD::ADD, DL, VT,
V,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
MVT::i32)));
Res = DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, MVT::i32), Res);
} else
return SDValue();
}
if (ShiftAmt != 0)
Res = DAG.getNode(ISD::SHL, DL, VT,
Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
return SDValue();
}
static SDValue CombineANDShift(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Allow DAGCombine to pattern-match before we touch the canonical form.
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
if (N->getValueType(0) != MVT::i32)
return SDValue();
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!N1C)
return SDValue();
uint32_t C1 = (uint32_t)N1C->getZExtValue();
// Don't transform uxtb/uxth.
if (C1 == 255 || C1 == 65535)
return SDValue();
SDNode *N0 = N->getOperand(0).getNode();
if (!N0->hasOneUse())
return SDValue();
if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
return SDValue();
bool LeftShift = N0->getOpcode() == ISD::SHL;
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
if (!N01C)
return SDValue();
uint32_t C2 = (uint32_t)N01C->getZExtValue();
if (!C2 || C2 >= 32)
return SDValue();
// Clear irrelevant bits in the mask.
if (LeftShift)
C1 &= (-1U << C2);
else
C1 &= (-1U >> C2);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
// We have a pattern of the form "(and (shl x, c2) c1)" or
// "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
// transform to a pair of shifts, to save materializing c1.
// First pattern: right shift, then mask off leading bits.
// FIXME: Use demanded bits?
if (!LeftShift && isMask_32(C1)) {
uint32_t C3 = countLeadingZeros(C1);
if (C2 < C3) {
SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
DAG.getConstant(C3 - C2, DL, MVT::i32));
return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
DAG.getConstant(C3, DL, MVT::i32));
}
}
// First pattern, reversed: left shift, then mask off trailing bits.
if (LeftShift && isMask_32(~C1)) {
uint32_t C3 = countTrailingZeros(C1);
if (C2 < C3) {
SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
DAG.getConstant(C3 - C2, DL, MVT::i32));
return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
DAG.getConstant(C3, DL, MVT::i32));
}
}
// Second pattern: left shift, then mask off leading bits.
// FIXME: Use demanded bits?
if (LeftShift && isShiftedMask_32(C1)) {
uint32_t Trailing = countTrailingZeros(C1);
uint32_t C3 = countLeadingZeros(C1);
if (Trailing == C2 && C2 + C3 < 32) {
SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
DAG.getConstant(C2 + C3, DL, MVT::i32));
return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
DAG.getConstant(C3, DL, MVT::i32));
}
}
// Second pattern, reversed: right shift, then mask off trailing bits.
// FIXME: Handle other patterns of known/demanded bits.
if (!LeftShift && isShiftedMask_32(C1)) {
uint32_t Leading = countLeadingZeros(C1);
uint32_t C3 = countTrailingZeros(C1);
if (Leading == C2 && C2 + C3 < 32) {
SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
DAG.getConstant(C2 + C3, DL, MVT::i32));
return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
DAG.getConstant(C3, DL, MVT::i32));
}
}
// FIXME: Transform "(and (shl x, c2) c1)" ->
// "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
// c1.
return SDValue();
}
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Attempt to use immediate-form VBIC
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
SDLoc dl(N);
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN && Subtarget->hasNEON() &&
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatBitSize <= 64) {
EVT VbicVT;
SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VbicVT, VT.is128BitVector(),
OtherModImm);
if (Val.getNode()) {
SDValue Input =
DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
}
}
}
if (!Subtarget->isThumb1Only()) {
// fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
return Result;
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
return Result;
}
if (Subtarget->isThumb1Only())
if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
return Result;
return SDValue();
}
// Try combining OR nodes to SMULWB, SMULWT.
static SDValue PerformORCombineToSMULWBT(SDNode *OR,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasV6Ops() ||
(Subtarget->isThumb() &&
(!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
return SDValue();
SDValue SRL = OR->getOperand(0);
SDValue SHL = OR->getOperand(1);
if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
SRL = OR->getOperand(1);
SHL = OR->getOperand(0);
}
if (!isSRL16(SRL) || !isSHL16(SHL))
return SDValue();
// The first operands to the shifts need to be the two results from the
// same smul_lohi node.
if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
return SDValue();
SDNode *SMULLOHI = SRL.getOperand(0).getNode();
if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
SHL.getOperand(0) != SDValue(SMULLOHI, 1))
return SDValue();
// Now we have:
// (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
// For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
// For SMUWB the 16-bit value will signed extended somehow.
// For SMULWT only the SRA is required.
// Check both sides of SMUL_LOHI
SDValue OpS16 = SMULLOHI->getOperand(0);
SDValue OpS32 = SMULLOHI->getOperand(1);
SelectionDAG &DAG = DCI.DAG;
if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
OpS16 = OpS32;
OpS32 = SMULLOHI->getOperand(0);
}
SDLoc dl(OR);
unsigned Opcode = 0;
if (isS16(OpS16, DAG))
Opcode = ARMISD::SMULWB;
else if (isSRA16(OpS16)) {
Opcode = ARMISD::SMULWT;
OpS16 = OpS16->getOperand(0);
}
else
return SDValue();
SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
return SDValue(OR, 0);
}
static SDValue PerformORCombineToBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// BFI is only available on V6T2+
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
return SDValue();
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
// 1) or (and A, mask), val => ARMbfi A, val, mask
// iff (val & mask) == val
//
// 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
// 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
// && mask == ~mask2
// 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
// && ~mask == mask2
// (i.e., copy a bitfield value into another bitfield of the same width)
if (VT != MVT::i32)
return SDValue();
SDValue N00 = N0.getOperand(0);
// The value and the mask need to be constants so we can verify this is
// actually a bitfield set. If the mask is 0xffff, we can do better
// via a movt instruction, so don't use BFI in that case.
SDValue MaskOp = N0.getOperand(1);
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
if (!MaskC)
return SDValue();
unsigned Mask = MaskC->getZExtValue();
if (Mask == 0xffff)
return SDValue();
SDValue Res;
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N1C) {
unsigned Val = N1C->getZExtValue();
if ((Val & ~Mask) != Val)
return SDValue();
if (ARM::isBitFieldInvertedMask(Mask)) {
Val >>= countTrailingZeros(~Mask);
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
DAG.getConstant(Val, DL, MVT::i32),
DAG.getConstant(Mask, DL, MVT::i32));
DCI.CombineTo(N, Res, false);
// Return value from the original node to inform the combiner than N is
// now dead.
return SDValue(N, 0);
}
} else if (N1.getOpcode() == ISD::AND) {
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C)
return SDValue();
unsigned Mask2 = N11C->getZExtValue();
// Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
// as is to match.
if (ARM::isBitFieldInvertedMask(Mask) &&
(Mask == ~Mask2)) {
// The pack halfword instruction works better for masks that fit it,
// so use that when it's available.
if (Subtarget->hasDSP() &&
(Mask == 0xffff || Mask == 0xffff0000))
return SDValue();
// 2a
unsigned amt = countTrailingZeros(Mask2);
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
DAG.getConstant(amt, DL, MVT::i32));
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
DAG.getConstant(Mask, DL, MVT::i32));
DCI.CombineTo(N, Res, false);
// Return value from the original node to inform the combiner than N is
// now dead.
return SDValue(N, 0);
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
(~Mask == Mask2)) {
// The pack halfword instruction works better for masks that fit it,
// so use that when it's available.
if (Subtarget->hasDSP() &&
(Mask2 == 0xffff || Mask2 == 0xffff0000))
return SDValue();
// 2b
unsigned lsb = countTrailingZeros(Mask);
Res = DAG.getNode(ISD::SRL, DL, VT, N00,
DAG.getConstant(lsb, DL, MVT::i32));
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
DAG.getConstant(Mask2, DL, MVT::i32));
DCI.CombineTo(N, Res, false);
// Return value from the original node to inform the combiner than N is
// now dead.
return SDValue(N, 0);
}
}
if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
ARM::isBitFieldInvertedMask(~Mask)) {
// Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
// where lsb(mask) == #shamt and masked bits of B are known zero.
SDValue ShAmt = N00.getOperand(1);
unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
unsigned LSB = countTrailingZeros(Mask);
if (ShAmtC != LSB)
return SDValue();
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
DAG.getConstant(~Mask, DL, MVT::i32));
DCI.CombineTo(N, Res, false);
// Return value from the original node to inform the combiner than N is
// now dead.
return SDValue(N, 0);
}
return SDValue();
}
static bool isValidMVECond(unsigned CC, bool IsFloat) {
switch (CC) {
case ARMCC::EQ:
case ARMCC::NE:
case ARMCC::LE:
case ARMCC::GT:
case ARMCC::GE:
case ARMCC::LT:
return true;
case ARMCC::HS:
case ARMCC::HI:
return !IsFloat;
default:
return false;
};
}
static SDValue PerformORCombine_i1(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
// together with predicates
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ARMCC::CondCodes CondCode0 = ARMCC::AL;
ARMCC::CondCodes CondCode1 = ARMCC::AL;
if (N0->getOpcode() == ARMISD::VCMP)
CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(2))
->getZExtValue();
else if (N0->getOpcode() == ARMISD::VCMPZ)
CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(1))
->getZExtValue();
if (N1->getOpcode() == ARMISD::VCMP)
CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(2))
->getZExtValue();
else if (N1->getOpcode() == ARMISD::VCMPZ)
CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(1))
->getZExtValue();
if (CondCode0 == ARMCC::AL || CondCode1 == ARMCC::AL)
return SDValue();
unsigned Opposite0 = ARMCC::getOppositeCondition(CondCode0);
unsigned Opposite1 = ARMCC::getOppositeCondition(CondCode1);
if (!isValidMVECond(Opposite0,
N0->getOperand(0)->getValueType(0).isFloatingPoint()) ||
!isValidMVECond(Opposite1,
N1->getOperand(0)->getValueType(0).isFloatingPoint()))
return SDValue();
SmallVector<SDValue, 4> Ops0;
Ops0.push_back(N0->getOperand(0));
if (N0->getOpcode() == ARMISD::VCMP)
Ops0.push_back(N0->getOperand(1));
Ops0.push_back(DCI.DAG.getConstant(Opposite0, SDLoc(N0), MVT::i32));
SmallVector<SDValue, 4> Ops1;
Ops1.push_back(N1->getOperand(0));
if (N1->getOpcode() == ARMISD::VCMP)
Ops1.push_back(N1->getOperand(1));
Ops1.push_back(DCI.DAG.getConstant(Opposite1, SDLoc(N1), MVT::i32));
SDValue NewN0 = DCI.DAG.getNode(N0->getOpcode(), SDLoc(N0), VT, Ops0);
SDValue NewN1 = DCI.DAG.getNode(N1->getOpcode(), SDLoc(N1), VT, Ops1);
SDValue And = DCI.DAG.getNode(ISD::AND, SDLoc(N), VT, NewN0, NewN1);
return DCI.DAG.getNode(ISD::XOR, SDLoc(N), VT, And,
DCI.DAG.getAllOnesConstant(SDLoc(N), VT));
}
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Attempt to use immediate-form VORR
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
SDLoc dl(N);
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN && Subtarget->hasNEON() &&
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatBitSize <= 64) {
EVT VorrVT;
SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VorrVT, VT.is128BitVector(),
OtherModImm);
if (Val.getNode()) {
SDValue Input =
DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
}
}
}
if (!Subtarget->isThumb1Only()) {
// fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
return Result;
if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
return Result;
}
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
// The code below optimizes (or (and X, Y), Z).
// The AND operand needs to have a single user to make these optimizations
// profitable.
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
return SDValue();
APInt SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
APInt SplatBits0, SplatBits1;
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
// Ensure that the second operand of both ands are constants
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
HasAnyUndefs) && !HasAnyUndefs) {
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
HasAnyUndefs) && !HasAnyUndefs) {
// Ensure that the bit width of the constants are the same and that
// the splat arguments are logical inverses as per the pattern we
// are trying to simplify.
if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
SplatBits0 == ~SplatBits1) {
// Canonicalize the vector type to make instruction selection
// simpler.
EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
N0->getOperand(1),
N0->getOperand(0),
N1->getOperand(0));
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
}
}
}
}
if (Subtarget->hasMVEIntegerOps() &&
(VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
return PerformORCombine_i1(N, DCI, Subtarget);
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
// reasonable.
if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
return Res;
}
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
return Result;
return SDValue();
}
static SDValue PerformXORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
if (!Subtarget->isThumb1Only()) {
// fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
return Result;
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
return Result;
}
return SDValue();
}
// ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
// and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
// their position in "to" (Rd).
static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
assert(N->getOpcode() == ARMISD::BFI);
SDValue From = N->getOperand(1);
ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
// If the Base came from a SHR #C, we can deduce that it is really testing bit
// #C in the base of the SHR.
if (From->getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(From->getOperand(1))) {
APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
assert(Shift.getLimitedValue() < 32 && "Shift too large!");
FromMask <<= Shift.getLimitedValue(31);
From = From->getOperand(0);
}
return From;
}
// If A and B contain one contiguous set of bits, does A | B == A . B?
//
// Neither A nor B must be zero.
static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
unsigned LastActiveBitInA = A.countTrailingZeros();
unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
return LastActiveBitInA - 1 == FirstActiveBitInB;
}
static SDValue FindBFIToCombineWith(SDNode *N) {
// We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
// if one exists.
APInt ToMask, FromMask;
SDValue From = ParseBFI(N, ToMask, FromMask);
SDValue To = N->getOperand(0);
// Now check for a compatible BFI to merge with. We can pass through BFIs that
// aren't compatible, but not if they set the same bit in their destination as
// we do (or that of any BFI we're going to combine with).
SDValue V = To;
APInt CombinedToMask = ToMask;
while (V.getOpcode() == ARMISD::BFI) {
APInt NewToMask, NewFromMask;
SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
if (NewFrom != From) {
// This BFI has a different base. Keep going.
CombinedToMask |= NewToMask;
V = V.getOperand(0);
continue;
}
// Do the written bits conflict with any we've seen so far?
if ((NewToMask & CombinedToMask).getBoolValue())
// Conflicting bits - bail out because going further is unsafe.
return SDValue();
// Are the new bits contiguous when combined with the old bits?
if (BitsProperlyConcatenate(ToMask, NewToMask) &&
BitsProperlyConcatenate(FromMask, NewFromMask))
return V;
if (BitsProperlyConcatenate(NewToMask, ToMask) &&
BitsProperlyConcatenate(NewFromMask, FromMask))
return V;
// We've seen a write to some bits, so track it.
CombinedToMask |= NewToMask;
// Keep going...
V = V.getOperand(0);
}
return SDValue();
}
static SDValue PerformBFICombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N1 = N->getOperand(1);
if (N1.getOpcode() == ISD::AND) {
// (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
// the bits being cleared by the AND are not demanded by the BFI.
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C)
return SDValue();
unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
unsigned LSB = countTrailingZeros(~InvMask);
unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
assert(Width <
static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
"undefined behavior");
unsigned Mask = (1u << Width) - 1;
unsigned Mask2 = N11C->getZExtValue();
if ((Mask & (~Mask2)) == 0)
return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
N->getOperand(0), N1.getOperand(0),
N->getOperand(2));
} else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
// We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
// Keep track of any consecutive bits set that all come from the same base
// value. We can combine these together into a single BFI.
SDValue CombineBFI = FindBFIToCombineWith(N);
if (CombineBFI == SDValue())
return SDValue();
// We've found a BFI.
APInt ToMask1, FromMask1;
SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
APInt ToMask2, FromMask2;
SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
assert(From1 == From2);
(void)From2;
// First, unlink CombineBFI.
DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
// Then create a new BFI, combining the two together.
APInt NewFromMask = FromMask1 | FromMask2;
APInt NewToMask = ToMask1 | ToMask2;
EVT VT = N->getValueType(0);
SDLoc dl(N);
if (NewFromMask[0] == 0)
From1 = DCI.DAG.getNode(
ISD::SRL, dl, VT, From1,
DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
DCI.DAG.getConstant(~NewToMask, dl, VT));
}
return SDValue();
}
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVRRD.
static SDValue PerformVMOVRRDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// vmovrrd(vmovdrr x, y) -> x,y
SDValue InDouble = N->getOperand(0);
if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
// vmovrrd(load f64) -> (load i32), (load i32)
SDNode *InNode = InDouble.getNode();
if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
InNode->getValueType(0) == MVT::f64 &&
InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
!cast<LoadSDNode>(InNode)->isVolatile()) {
// TODO: Should this be done for non-FrameIndex operands?
LoadSDNode *LD = cast<LoadSDNode>(InNode);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(LD);
SDValue BasePtr = LD->getBasePtr();
SDValue NewLD1 =
DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
LD->getAlignment(), LD->getMemOperand()->getFlags());
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(4, DL, MVT::i32));
SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
LD->getPointerInfo().getWithOffset(4),
std::min(4U, LD->getAlignment()),
LD->getMemOperand()->getFlags());
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
if (DCI.DAG.getDataLayout().isBigEndian())
std::swap (NewLD1, NewLD2);
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
return Result;
}
return SDValue();
}
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
// N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() == ISD::BITCAST)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::BITCAST)
Op1 = Op1.getOperand(0);
if (Op0.getOpcode() == ARMISD::VMOVRRD &&
Op0.getNode() == Op1.getNode() &&
Op0.getResNo() == 0 && Op1.getResNo() == 1)
return DAG.getNode(ISD::BITCAST, SDLoc(N),
N->getValueType(0), Op0.getOperand(0));
return SDValue();
}
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
/// are normal, non-volatile loads. If so, it is profitable to bitcast an
/// i64 vector to have f64 elements, since the value can then be loaded
/// directly into a VFP register.
static bool hasNormalLoadOperand(SDNode *N) {
unsigned NumElts = N->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
SDNode *Elt = N->getOperand(i).getNode();
if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
return true;
}
return false;
}
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
/// ISD::BUILD_VECTOR.
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
// into a pair of GPRs, which is fine when the value is used as a scalar,
// but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
SelectionDAG &DAG = DCI.DAG;
if (N->getNumOperands() == 2)
if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
return RV;
// Load i64 elements as f64 values so that type legalization does not split
// them up into i32 values.
EVT VT = N->getValueType(0);
if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
return SDValue();
SDLoc dl(N);
SmallVector<SDValue, 8> Ops;
unsigned NumElts = VT.getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
Ops.push_back(V);
// Make the DAGCombiner fold the bitcast.
DCI.AddToWorklist(V.getNode());
}
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, BV);
}
/// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
static SDValue
PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
// ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
// At that time, we may have inserted bitcasts from integer to float.
// If these bitcasts have survived DAGCombine, change the lowering of this
// BUILD_VECTOR in something more vector friendly, i.e., that does not
// force to use floating point types.
// Make sure we can change the type of the vector.
// This is possible iff:
// 1. The vector is only used in a bitcast to a integer type. I.e.,
// 1.1. Vector is used only once.
// 1.2. Use is a bit convert to an integer type.
// 2. The size of its operands are 32-bits (64-bits are not legal).
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
// Check 1.1. and 2.
if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
return SDValue();
// By construction, the input type must be float.
assert(EltVT == MVT::f32 && "Unexpected type!");
// Check 1.2.
SDNode *Use = *N->use_begin();
if (Use->getOpcode() != ISD::BITCAST ||
Use->getValueType(0).isFloatingPoint())
return SDValue();
// Check profitability.
// Model is, if more than half of the relevant operands are bitcast from
// i32, turn the build_vector into a sequence of insert_vector_elt.
// Relevant operands are everything that is not statically
// (i.e., at compile time) bitcasted.
unsigned NumOfBitCastedElts = 0;
unsigned NumElts = VT.getVectorNumElements();
unsigned NumOfRelevantElts = NumElts;
for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
SDValue Elt = N->getOperand(Idx);
if (Elt->getOpcode() == ISD::BITCAST) {
// Assume only bit cast to i32 will go away.
if (Elt->getOperand(0).getValueType() == MVT::i32)
++NumOfBitCastedElts;
} else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
// Constants are statically casted, thus do not count them as
// relevant operands.
--NumOfRelevantElts;
}
// Check if more than half of the elements require a non-free bitcast.
if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
// Create the new vector type.
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
// Check if the type is legal.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(VecVT))
return SDValue();
// Combine:
// ARMISD::BUILD_VECTOR E1, E2, ..., EN.
// => BITCAST INSERT_VECTOR_ELT
// (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
// (BITCAST EN), N.
SDValue Vec = DAG.getUNDEF(VecVT);
SDLoc dl(N);
for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
SDValue V = N->getOperand(Idx);
if (V.isUndef())
continue;
if (V.getOpcode() == ISD::BITCAST &&
V->getOperand(0).getValueType() == MVT::i32)
// Fold obvious case.
V = V.getOperand(0);
else {
V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(V.getNode());
}
SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
}
Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(Vec.getNode());
return Vec;
}
static SDValue
PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
SDLoc dl(N);
// PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
// If the valuetypes are the same, we can remove the cast entirely.
if (Op->getOperand(0).getValueType() == VT)
return Op->getOperand(0);
return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl,
Op->getOperand(0).getValueType(), Op->getOperand(0));
}
return SDValue();
}
static SDValue PerformVCMPCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasMVEIntegerOps())
return SDValue();
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
ARMCC::CondCodes Cond =
(ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
SDLoc dl(N);
// vcmp X, 0, cc -> vcmpz X, cc
if (isZeroVector(Op1))
return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0,
N->getOperand(2));
unsigned SwappedCond = getSwappedCondition(Cond);
if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
// vcmp 0, X, cc -> vcmpz X, reversed(cc)
if (isZeroVector(Op0))
return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
// vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
}
return SDValue();
}
/// PerformInsertEltCombine - Target-specific dag combine xforms for
/// ISD::INSERT_VECTOR_ELT.
static SDValue PerformInsertEltCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// Bitcast an i64 load inserted into a vector to f64.
// Otherwise, the i64 value will be legalized to a pair of i32 values.
EVT VT = N->getValueType(0);
SDNode *Elt = N->getOperand(1).getNode();
if (VT.getVectorElementType() != MVT::i64 ||
!ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
VT.getVectorNumElements());
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(Vec.getNode());
DCI.AddToWorklist(V.getNode());
SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
Vec, V, N->getOperand(2));
return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
}
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
/// ISD::VECTOR_SHUFFLE.
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
// The LLVM shufflevector instruction does not require the shuffle mask
// length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
// have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
// operands do not match the mask length, they are extended by concatenating
// them with undef vectors. That is probably the right thing for other
// targets, but for NEON it is better to concatenate two double-register
// size vector operands into a single quad-register size vector. Do that
// transformation here:
// shuffle(concat(v1, undef), concat(v2, undef)) ->
// shuffle(concat(v1, v2), undef)
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
Op1.getOpcode() != ISD::CONCAT_VECTORS ||
Op0.getNumOperands() != 2 ||
Op1.getNumOperands() != 2)
return SDValue();
SDValue Concat0Op1 = Op0.getOperand(1);
SDValue Concat1Op1 = Op1.getOperand(1);
if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
return SDValue();
// Skip the transformation if any of the types are illegal.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
if (!TLI.isTypeLegal(VT) ||
!TLI.isTypeLegal(Concat0Op1.getValueType()) ||
!TLI.isTypeLegal(Concat1Op1.getValueType()))
return SDValue();
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
Op0.getOperand(0), Op1.getOperand(0));
// Translate the shuffle mask.
SmallVector<int, 16> NewMask;
unsigned NumElts = VT.getVectorNumElements();
unsigned HalfElts = NumElts/2;
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
for (unsigned n = 0; n < NumElts; ++n) {
int MaskElt = SVN->getMaskElt(n);
int NewElt = -1;
if (MaskElt < (int)HalfElts)
NewElt = MaskElt;
else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
NewElt = HalfElts + MaskElt - NumElts;
NewMask.push_back(NewElt);
}
return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
DAG.getUNDEF(VT), NewMask);
}
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
/// NEON load/store intrinsics, and generic vector load/stores, to merge
/// base address updates.
/// For generic load/stores, the memory type is assumed to be a vector.
/// The caller is assumed to have checked legality.
static SDValue CombineBaseUpdate(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
const bool isStore = N->getOpcode() == ISD::STORE;
const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
SDValue Addr = N->getOperand(AddrOpIdx);
MemSDNode *MemN = cast<MemSDNode>(N);
SDLoc dl(N);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD ||
UI.getUse().getResNo() != Addr.getResNo())
continue;
// Check that the add is independent of the load/store. Otherwise, folding
// it would create a cycle. We can avoid searching through Addr as it's a
// predecessor to both.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Visited.insert(Addr.getNode());
Worklist.push_back(N);
Worklist.push_back(User);
if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
SDNode::hasPredecessorHelper(User, Visited, Worklist))
continue;
// Find the new opcode for the updating load/store.
bool isLoadOp = true;
bool isLaneOp = false;
unsigned NewOpc = 0;
unsigned NumVecs = 0;
if (isIntrinsic) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
NumVecs = 1; break;
case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
NumVecs = 2; break;
case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
NumVecs = 3; break;
case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
NumVecs = 4; break;
case Intrinsic::arm_neon_vld2dup:
case Intrinsic::arm_neon_vld3dup:
case Intrinsic::arm_neon_vld4dup:
// TODO: Support updating VLDxDUP nodes. For now, we just skip
// combining base updates for such intrinsics.
continue;
case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
NumVecs = 2; isLaneOp = true; break;
case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
NumVecs = 3; isLaneOp = true; break;
case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
NumVecs = 4; isLaneOp = true; break;
case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
NumVecs = 1; isLoadOp = false; break;
case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
NumVecs = 2; isLoadOp = false; break;
case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
NumVecs = 3; isLoadOp = false; break;
case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
NumVecs = 4; isLoadOp = false; break;
case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
}
} else {
isLaneOp = true;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode for Neon base update");
case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
NumVecs = 1; isLaneOp = false; break;
case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
}
}
// Find the size of memory referenced by the load/store.
EVT VecTy;
if (isLoadOp) {
VecTy = N->getValueType(0);
} else if (isIntrinsic) {
VecTy = N->getOperand(AddrOpIdx+1).getValueType();
} else {
assert(isStore && "Node has to be a load, a store, or an intrinsic!");
VecTy = N->getOperand(1).getValueType();
}
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (isLaneOp)
NumBytes /= VecTy.getVectorNumElements();
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
// VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
// separate instructions that make it harder to use a non-constant update.
continue;
}
// OK, we found an ADD we can fold into the base update.
// Now, create a _UPD node, taking care of not breaking alignment.
EVT AlignedVecTy = VecTy;
unsigned Alignment = MemN->getAlignment();
// If this is a less-than-standard-aligned load/store, change the type to
// match the standard alignment.
// The alignment is overlooked when selecting _UPD variants; and it's
// easier to introduce bitcasts here than fix that.
// There are 3 ways to get to this base-update combine:
// - intrinsics: they are assumed to be properly aligned (to the standard
// alignment of the memory type), so we don't need to do anything.
// - ARMISD::VLDx nodes: they are only generated from the aforementioned
// intrinsics, so, likewise, there's nothing to do.
// - generic load/store instructions: the alignment is specified as an
// explicit operand, rather than implicitly as the standard alignment
// of the memory type (like the intrisics). We need to change the
// memory type to match the explicit alignment. That way, we don't
// generate non-standard-aligned ARMISD::VLDx nodes.
if (isa<LSBaseSDNode>(N)) {
if (Alignment == 0)
Alignment = 1;
if (Alignment < VecTy.getScalarSizeInBits() / 8) {
MVT EltTy = MVT::getIntegerVT(Alignment * 8);
assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
assert(!isLaneOp && "Unexpected generic load/store lane.");
unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
}
// Don't set an explicit alignment on regular load/stores that we want
// to transform to VLD/VST 1_UPD nodes.
// This matches the behavior of regular load/stores, which only get an
// explicit alignment if the MMO alignment is larger than the standard
// alignment of the memory type.
// Intrinsics, however, always get an explicit alignment, set to the
// alignment of the MMO.
Alignment = 1;
}
// Create the new updating load/store node.
// First, create an SDVTList for the new updating node's results.
EVT Tys[6];
unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
unsigned n;
for (n = 0; n < NumResultVecs; ++n)
Tys[n] = AlignedVecTy;
Tys[n++] = MVT::i32;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
// Then, gather the new node's operands.
SmallVector<SDValue, 8> Ops;
Ops.push_back(N->getOperand(0)); // incoming chain
Ops.push_back(N->getOperand(AddrOpIdx));
Ops.push_back(Inc);
if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
// Try to match the intrinsic's signature
Ops.push_back(StN->getValue());
} else {
// Loads (and of course intrinsics) match the intrinsics' signature,
// so just add all but the alignment operand.
for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
Ops.push_back(N->getOperand(i));
}
// For all node types, the alignment operand is always the last one.
Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
// If this is a non-standard-aligned STORE, the penultimate operand is the
// stored value. Bitcast it to the aligned type.
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
SDValue &StVal = Ops[Ops.size()-2];
StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
}
EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
MemN->getMemOperand());
// Update the uses.
SmallVector<SDValue, 5> NewResults;
for (unsigned i = 0; i < NumResultVecs; ++i)
NewResults.push_back(SDValue(UpdN.getNode(), i));
// If this is an non-standard-aligned LOAD, the first result is the loaded
// value. Bitcast it to the expected result type.
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
SDValue &LdVal = NewResults[0];
LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
}
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
DCI.CombineTo(N, NewResults);
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
break;
}
return SDValue();
}
static SDValue PerformVLDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
return CombineBaseUpdate(N, DCI);
}
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
/// return true.
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// vldN-dup instructions only support 64-bit vectors for N > 1.
if (!VT.is64BitVector())
return false;
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
SDNode *VLD = N->getOperand(0).getNode();
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
unsigned NumVecs = 0;
unsigned NewOpc = 0;
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
if (IntNo == Intrinsic::arm_neon_vld2lane) {
NumVecs = 2;
NewOpc = ARMISD::VLD2DUP;
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
NumVecs = 3;
NewOpc = ARMISD::VLD3DUP;
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
NumVecs = 4;
NewOpc = ARMISD::VLD4DUP;
} else {
return false;
}
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
// numbers match the load.
unsigned VLDLaneNo =
cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
// Ignore uses of the chain result.
if (UI.getUse().getResNo() == NumVecs)
continue;
SDNode *User = *UI;
if (User->getOpcode() != ARMISD::VDUPLANE ||
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
return false;
}
// Create the vldN-dup node.
EVT Tys[5];
unsigned n;
for (n = 0; n < NumVecs; ++n)
Tys[n] = VT;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
Ops, VLDMemInt->getMemoryVT(),
VLDMemInt->getMemOperand());
// Update the uses.
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
unsigned ResNo = UI.getUse().getResNo();
// Ignore uses of the chain result.
if (ResNo == NumVecs)
continue;
SDNode *User = *UI;
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
}
// Now the vldN-lane intrinsic is dead except for its chain result.
// Update uses of the chain.
std::vector<SDValue> VLDDupResults;
for (unsigned n = 0; n < NumVecs; ++n)
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
DCI.CombineTo(VLD, VLDDupResults);
return true;
}
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
/// ARMISD::VDUPLANE.
static SDValue PerformVDUPLANECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue Op = N->getOperand(0);
// If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
// of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
if (CombineVLDDUP(N, DCI))
return SDValue(N, 0);
// If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
// redundant. Ignore bit_converts for now; element sizes are checked below.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
return SDValue();
// Make sure the VMOV element size is not bigger than the VDUPLANE elements.
unsigned EltSize = Op.getScalarValueSizeInBits();
// The canonical VMOV for a zero vector uses a 32-bit element size.
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned EltBits;
if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
EltSize = 8;
EVT VT = N->getValueType(0);
if (EltSize > VT.getScalarSizeInBits())
return SDValue();
return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}
/// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
static SDValue PerformVDUPCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
SDValue Op = N->getOperand(0);
if (!Subtarget->hasNEON())
return SDValue();
// Match VDUP(LOAD) -> VLD1DUP.
// We match this pattern here rather than waiting for isel because the
// transform is only legal for unindexed loads.
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
if (LD && Op.hasOneUse() && LD->isUnindexed() &&
LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
Ops, LD->getMemoryVT(),
LD->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
return VLDDup;
}
return SDValue();
}
static SDValue PerformLOADCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
// If this is a legal vector load, try to combine it into a VLD1_UPD.
if (ISD::isNormalLoad(N) && VT.isVector() &&
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
return CombineBaseUpdate(N, DCI);
return SDValue();
}
// Optimize trunc store (of multiple scalars) to shuffle and store. First,
// pack all of the elements in one place. Next, store to memory in fewer
// chunks.
static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
SelectionDAG &DAG) {
SDValue StVal = St->getValue();
EVT VT = StVal.getValueType();
if (!St->isTruncatingStore() || !VT.isVector())
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT StVT = St->getMemoryVT();
unsigned NumElems = VT.getVectorNumElements();
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromEltSz = VT.getScalarSizeInBits();
unsigned ToEltSz = StVT.getScalarSizeInBits();
// From, To sizes and ElemCount must be pow of two
if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
return SDValue();
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
if (0 != (NumElems * FromEltSz) % ToEltSz)
return SDValue();
unsigned SizeRatio = FromEltSz / ToEltSz;
assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle.
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
NumElems * SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDLoc DL(St);
SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i < NumElems; ++i)
ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
: i * SizeRatio;
// Can't shuffle using an illegal type.
if (!TLI.isTypeLegal(WideVecVT))
return SDValue();
SDValue Shuff = DAG.getVectorShuffle(
WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.
// Find the largest store unit
MVT StoreType = MVT::i8;
for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
StoreType = Tp;
}
// Didn't find a legal store type.
if (!TLI.isTypeLegal(StoreType))
return SDValue();
// Bitcast the original vector into a vector of store-size units
EVT StoreVecVT =
EVT::getVectorVT(*DAG.getContext(), StoreType,
VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
SmallVector<SDValue, 8> Chains;
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
TLI.getPointerTy(DAG.getDataLayout()));
SDValue BasePtr = St->getBasePtr();
// Perform one or more big stores into memory.
unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
for (unsigned I = 0; I < E; I++) {
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
ShuffWide, DAG.getIntPtrConstant(I, DL));
SDValue Ch =
DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
St->getAlignment(), St->getMemOperand()->getFlags());
BasePtr =
DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
Chains.push_back(Ch);
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
// Try taking a single vector store from an truncate (which would otherwise turn
// into an expensive buildvector) and splitting it into a series of narrowing
// stores.
static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
SelectionDAG &DAG) {
if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
return SDValue();
SDValue Trunc = St->getValue();
if (Trunc->getOpcode() != ISD::TRUNCATE)
return SDValue();
EVT FromVT = Trunc->getOperand(0).getValueType();
EVT ToVT = Trunc.getValueType();
if (!ToVT.isVector())
return SDValue();
assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
EVT ToEltVT = ToVT.getVectorElementType();
EVT FromEltVT = FromVT.getVectorElementType();
unsigned NumElements = 0;
if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
NumElements = 4;
if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
NumElements = 8;
if (NumElements == 0 || FromVT.getVectorNumElements() == NumElements ||
FromVT.getVectorNumElements() % NumElements != 0)
return SDValue();
SDLoc DL(St);
// Details about the old store
SDValue Ch = St->getChain();
SDValue BasePtr = St->getBasePtr();
unsigned Alignment = St->getOriginalAlignment();
MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
AAMDNodes AAInfo = St->getAAInfo();
EVT NewFromVT = EVT::getVectorVT(*DAG.getContext(), FromEltVT, NumElements);
EVT NewToVT = EVT::getVectorVT(*DAG.getContext(), ToEltVT, NumElements);
SmallVector<SDValue, 4> Stores;
for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);
SDValue Extract =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
DAG.getConstant(i * NumElements, DL, MVT::i32));
SDValue Store = DAG.getTruncStore(
Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
NewToVT, Alignment, MMOFlags, AAInfo);
Stores.push_back(Store);
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
}
/// PerformSTORECombine - Target-specific dag combine xforms for
/// ISD::STORE.
static SDValue PerformSTORECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
StoreSDNode *St = cast<StoreSDNode>(N);
if (St->isVolatile())
return SDValue();
SDValue StVal = St->getValue();
EVT VT = StVal.getValueType();
if (Subtarget->hasNEON())
if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
return Store;
if (Subtarget->hasMVEIntegerOps())
if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
return NewToken;
if (!ISD::isNormalStore(St))
return SDValue();
// Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
// ARM stores of arguments in the same cache line.
if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
StVal.getNode()->hasOneUse()) {
SelectionDAG &DAG = DCI.DAG;
bool isBigEndian = DAG.getDataLayout().isBigEndian();
SDLoc DL(St);
SDValue BasePtr = St->getBasePtr();
SDValue NewST1 = DAG.getStore(
St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
BasePtr, St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(4, DL, MVT::i32));
return DAG.getStore(NewST1.getValue(0), DL,
StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
OffsetPtr, St->getPointerInfo(),
std::min(4U, St->getAlignment() / 2),
St->getMemOperand()->getFlags());
}
if (StVal.getValueType() == MVT::i64 &&
StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
// Bitcast an i64 store extracted from a vector to f64.
// Otherwise, the i64 value will be legalized to a pair of i32 values.
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(StVal);
SDValue IntVec = StVal.getOperand(0);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
IntVec.getValueType().getVectorNumElements());
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
Vec, StVal.getOperand(1));
dl = SDLoc(N);
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(Vec.getNode());
DCI.AddToWorklist(ExtElt.getNode());
DCI.AddToWorklist(V.getNode());
return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags(), St->getAAInfo());
}
// If this is a legal vector store, try to combine it into a VST1_UPD.
if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
return CombineBaseUpdate(N, DCI);
return SDValue();
}
/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
/// can replace combinations of VMUL and VCVT (floating-point to integer)
/// when the VMUL has a constant operand that is a power of 2.
///
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
/// vmul.f32 d16, d17, d16
/// vcvt.s32.f32 d16, d16
/// becomes:
/// vcvt.s32.f32 d16, d16, #3
static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasNEON())
return SDValue();
SDValue Op = N->getOperand(0);
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
Op.getOpcode() != ISD::FMUL)
return SDValue();
SDValue ConstVec = Op->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
uint32_t FloatBits = FloatTy.getSizeInBits();
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
uint32_t IntBits = IntTy.getSizeInBits();
unsigned NumLanes = Op.getValueType().getVectorNumElements();
if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
// These instructions only exist converting from f32 to i32. We can handle
// smaller integers by generating an extra truncate, but larger ones would
// be lossy. We also can't handle anything other than 2 or 4 lanes, since
// these intructions only support v2i32/v4i32 types.
return SDValue();
}
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
if (C == -1 || C == 0 || C > 32)
return SDValue();
SDLoc dl(N);
bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
Intrinsic::arm_neon_vcvtfp2fxu;
SDValue FixConv = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
DAG.getConstant(C, dl, MVT::i32));
if (IntBits < FloatBits)
FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
return FixConv;
}
/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
/// can replace combinations of VCVT (integer to floating-point) and VDIV
/// when the VDIV has a constant operand that is a power of 2.
///
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
/// vcvt.f32.s32 d16, d16
/// vdiv.f32 d16, d17, d16
/// becomes:
/// vcvt.f32.s32 d16, d16, #3
static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasNEON())
return SDValue();
SDValue Op = N->getOperand(0);
unsigned OpOpcode = Op.getNode()->getOpcode();
if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
(OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
return SDValue();
SDValue ConstVec = N->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
uint32_t FloatBits = FloatTy.getSizeInBits();
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
uint32_t IntBits = IntTy.getSizeInBits();
unsigned NumLanes = Op.getValueType().getVectorNumElements();
if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
// These instructions only exist converting from i32 to f32. We can handle
// smaller integers by generating an extra extend, but larger ones would
// be lossy. We also can't handle anything other than 2 or 4 lanes, since
// these intructions only support v2i32/v4i32 types.
return SDValue();
}
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
if (C == -1 || C == 0 || C > 32)
return SDValue();
SDLoc dl(N);
bool isSigned = OpOpcode == ISD::SINT_TO_FP;
SDValue ConvInput = Op.getOperand(0);
if (IntBits < FloatBits)
ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
ConvInput);
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
Intrinsic::arm_neon_vcvtfxu2fp;
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
Op.getValueType(),
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
ConvInput, DAG.getConstant(C, dl, MVT::i32));
}
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IntNo) {
default:
// Don't do anything for most intrinsics.
break;
// Vector shifts: check for immediate versions and lower them.
// Note: This is done during DAG combining instead of DAG legalizing because
// the build_vectors for 64-bit vector element shift counts are generally
// not legal, and it is hard to see their values after they get legalized to
// loads from a constant pool.
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
case Intrinsic::arm_neon_vrshiftn:
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
case Intrinsic::arm_neon_vqshiftsu:
case Intrinsic::arm_neon_vqshiftns:
case Intrinsic::arm_neon_vqshiftnu:
case Intrinsic::arm_neon_vqshiftnsu:
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu: {
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
switch (IntNo) {
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
VShiftOpc = ARMISD::VSHLIMM;
break;
}
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM);
break;
}
return SDValue();
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
break;
return SDValue();
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
return SDValue();
case Intrinsic::arm_neon_vqshiftsu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
llvm_unreachable("invalid shift count for vqshlu intrinsic");
case Intrinsic::arm_neon_vrshiftn:
case Intrinsic::arm_neon_vqshiftns:
case Intrinsic::arm_neon_vqshiftnu:
case Intrinsic::arm_neon_vqshiftnsu:
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu:
// Narrowing shifts require an immediate right shift.
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
break;
llvm_unreachable("invalid shift count for narrowing vector shift "
"intrinsic");
default:
llvm_unreachable("unhandled vector shift");
}
switch (IntNo) {
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
// Opcode already set above.
break;
case Intrinsic::arm_neon_vrshifts:
VShiftOpc = ARMISD::VRSHRsIMM;
break;
case Intrinsic::arm_neon_vrshiftu:
VShiftOpc = ARMISD::VRSHRuIMM;
break;
case Intrinsic::arm_neon_vrshiftn:
VShiftOpc = ARMISD::VRSHRNIMM;
break;
case Intrinsic::arm_neon_vqshifts:
VShiftOpc = ARMISD::VQSHLsIMM;
break;
case Intrinsic::arm_neon_vqshiftu:
VShiftOpc = ARMISD::VQSHLuIMM;
break;
case Intrinsic::arm_neon_vqshiftsu:
VShiftOpc = ARMISD::VQSHLsuIMM;
break;
case Intrinsic::arm_neon_vqshiftns:
VShiftOpc = ARMISD::VQSHRNsIMM;
break;
case Intrinsic::arm_neon_vqshiftnu:
VShiftOpc = ARMISD::VQSHRNuIMM;
break;
case Intrinsic::arm_neon_vqshiftnsu:
VShiftOpc = ARMISD::VQSHRNsuIMM;
break;
case Intrinsic::arm_neon_vqrshiftns:
VShiftOpc = ARMISD::VQRSHRNsIMM;
break;
case Intrinsic::arm_neon_vqrshiftnu:
VShiftOpc = ARMISD::VQRSHRNuIMM;
break;
case Intrinsic::arm_neon_vqrshiftnsu:
VShiftOpc = ARMISD::VQRSHRNsuIMM;
break;
}
SDLoc dl(N);
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
}
case Intrinsic::arm_neon_vshiftins: {
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
VShiftOpc = ARMISD::VSLIIMM;
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
VShiftOpc = ARMISD::VSRIIMM;
else {
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
}
SDLoc dl(N);
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
N->getOperand(1), N->getOperand(2),
DAG.getConstant(Cnt, dl, MVT::i32));
}
case Intrinsic::arm_neon_vqrshifts:
case Intrinsic::arm_neon_vqrshiftu:
// No immediate versions of these to check for.
break;
}
return SDValue();
}
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
/// lowers them. As with the vector shift intrinsics, this is done during DAG
/// combining instead of DAG legalizing because the build_vectors for 64-bit
/// vector element shift counts are generally not legal, and it is hard to see
/// their values after they get legalized to loads from a constant pool.
static SDValue PerformShiftCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *ST) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
// Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
// 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
SDValue N1 = N->getOperand(1);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
SDValue N0 = N->getOperand(0);
if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
DAG.MaskedValueIsZero(N0.getOperand(0),
APInt::getHighBitsSet(32, 16)))
return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
}
}
if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
N->getOperand(0)->getOpcode() == ISD::AND &&
N->getOperand(0)->hasOneUse()) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
// Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
// usually show up because instcombine prefers to canonicalize it to
// (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
// out of GEP lowering in some cases.
SDValue N0 = N->getOperand(0);
ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!ShiftAmtNode)
return SDValue();
uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
if (!AndMaskNode)
return SDValue();
uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
// Don't transform uxtb/uxth.
if (AndMask == 255 || AndMask == 65535)
return SDValue();
if (isMask_32(AndMask)) {
uint32_t MaskedBits = countLeadingZeros(AndMask);
if (MaskedBits > ShiftAmt) {
SDLoc DL(N);
SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
DAG.getConstant(MaskedBits, DL, MVT::i32));
return DAG.getNode(
ISD::SRL, DL, MVT::i32, SHL,
DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
}
}
}
// Nothing to be done for scalar shifts.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!VT.isVector() || !TLI.isTypeLegal(VT))
return SDValue();
if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
return SDValue();
int64_t Cnt;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected shift opcode");
case ISD::SHL:
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
SDLoc dl(N);
return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
}
break;
case ISD::SRA:
case ISD::SRL:
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
unsigned VShiftOpc =
(N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
SDLoc dl(N);
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
}
}
return SDValue();
}
// Look for a sign/zero extend of a larger than legal load. This can be split
// into two extending loads, which are simpler to deal with than an arbitrary
// sign extend.
static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() != ISD::LOAD)
return SDValue();
LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
LD->getExtensionType() != ISD::NON_EXTLOAD)
return SDValue();
EVT FromVT = LD->getValueType(0);
EVT ToVT = N->getValueType(0);
if (!ToVT.isVector())
return SDValue();
assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
EVT ToEltVT = ToVT.getVectorElementType();
EVT FromEltVT = FromVT.getVectorElementType();
unsigned NumElements = 0;
if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
NumElements = 4;
if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
NumElements = 8;
if (NumElements == 0 ||
FromVT.getVectorNumElements() == NumElements ||
FromVT.getVectorNumElements() % NumElements != 0 ||
!isPowerOf2_32(NumElements))
return SDValue();
SDLoc DL(LD);
// Details about the old load
SDValue Ch = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
unsigned Alignment = LD->getOriginalAlignment();
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
AAMDNodes AAInfo = LD->getAAInfo();
ISD::LoadExtType NewExtType =
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
EVT NewFromVT = FromVT.getHalfNumVectorElementsVT(*DAG.getContext());
EVT NewToVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
unsigned NewOffset = NewFromVT.getSizeInBits() / 8;
SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);
// Split the load in half, each side of which is extended separately. This
// is good enough, as legalisation will take it from there. They are either
// already legal or they will be split further into something that is
// legal.
SDValue NewLoad1 =
DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, BasePtr, Offset,
LD->getPointerInfo(), NewFromVT, Alignment, MMOFlags, AAInfo);
SDValue NewLoad2 =
DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
Alignment, MMOFlags, AAInfo);
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
SDValue(NewLoad1.getNode(), 1),
SDValue(NewLoad2.getNode(), 1));
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, NewLoad1, NewLoad2);
}
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue N0 = N->getOperand(0);
// Check for sign- and zero-extensions of vector extract operations of 8- and
// 16-bit vector elements. NEON and MVE support these directly. They are
// handled during DAG combining because type legalization will promote them
// to 32-bit types and it is messy to recognize the operations after that.
if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue Vec = N0.getOperand(0);
SDValue Lane = N0.getOperand(1);
EVT VT = N->getValueType(0);
EVT EltVT = N0.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (VT == MVT::i32 &&
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
TLI.isTypeLegal(Vec.getValueType()) &&
isa<ConstantSDNode>(Lane)) {
unsigned Opc = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case ISD::SIGN_EXTEND:
Opc = ARMISD::VGETLANEs;
break;
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Opc = ARMISD::VGETLANEu;
break;
}
return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
}
}
if (ST->hasMVEIntegerOps())
if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
return NewLoad;
return SDValue();
}
static const APInt *isPowerOf2Constant(SDValue V) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
if (!C)
return nullptr;
const APInt *CV = &C->getAPIntValue();
return CV->isPowerOf2() ? CV : nullptr;
}
SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
// If we have a CMOV, OR and AND combination such as:
// if (x & CN)
// y |= CM;
//
// And:
// * CN is a single bit;
// * All bits covered by CM are known zero in y
//
// Then we can convert this into a sequence of BFI instructions. This will
// always be a win if CM is a single bit, will always be no worse than the
// TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
// three bits (due to the extra IT instruction).
SDValue Op0 = CMOV->getOperand(0);
SDValue Op1 = CMOV->getOperand(1);
auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
auto CC = CCNode->getAPIntValue().getLimitedValue();
SDValue CmpZ = CMOV->getOperand(4);
// The compare must be against zero.
if (!isNullConstant(CmpZ->getOperand(1)))
return SDValue();
assert(CmpZ->getOpcode() == ARMISD::CMPZ);
SDValue And = CmpZ->getOperand(0);
if (And->getOpcode() != ISD::AND)
return SDValue();
const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
if (!AndC)
return SDValue();
SDValue X = And->getOperand(0);
if (CC == ARMCC::EQ) {
// We're performing an "equal to zero" compare. Swap the operands so we
// canonicalize on a "not equal to zero" compare.
std::swap(Op0, Op1);
} else {
assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
}
if (Op1->getOpcode() != ISD::OR)
return SDValue();
ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
if (!OrC)
return SDValue();
SDValue Y = Op1->getOperand(0);
if (Op0 != Y)
return SDValue();
// Now, is it profitable to continue?
APInt OrCI = OrC->getAPIntValue();
unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
if (OrCI.countPopulation() > Heuristic)
return SDValue();
// Lastly, can we determine that the bits defined by OrCI
// are zero in Y?
KnownBits Known = DAG.computeKnownBits(Y);
if ((OrCI & Known.Zero) != OrCI)
return SDValue();
// OK, we can do the combine.
SDValue V = Y;
SDLoc dl(X);
EVT VT = X.getValueType();
unsigned BitInX = AndC->logBase2();
if (BitInX != 0) {
// We must shift X first.
X = DAG.getNode(ISD::SRL, dl, VT, X,
DAG.getConstant(BitInX, dl, VT));
}
for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
BitInY < NumActiveBits; ++BitInY) {
if (OrCI[BitInY] == 0)
continue;
APInt Mask(VT.getSizeInBits(), 0);
Mask.setBit(BitInY);
V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
// Confusingly, the operand is an *inverted* mask.
DAG.getConstant(~Mask, dl, VT));
}
return V;
}
// Given N, the value controlling the conditional branch, search for the loop
// intrinsic, returning it, along with how the value is used. We need to handle
// patterns such as the following:
// (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
// (brcond (setcc (loop.decrement), 0, eq), exit)
// (brcond (setcc (loop.decrement), 0, ne), header)
static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
bool &Negate) {
switch (N->getOpcode()) {
default:
break;
case ISD::XOR: {
if (!isa<ConstantSDNode>(N.getOperand(1)))
return SDValue();
if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
return SDValue();
Negate = !Negate;
return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
}
case ISD::SETCC: {
auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!Const)
return SDValue();
if (Const->isNullValue())
Imm = 0;
else if (Const->isOne())
Imm = 1;
else
return SDValue();
CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
}
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
if (IntOp != Intrinsic::test_set_loop_iterations &&
IntOp != Intrinsic::loop_decrement_reg)
return SDValue();
return N;
}
}
return SDValue();
}
static SDValue PerformHWLoopCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *ST) {
// The hwloop intrinsics that we're interested are used for control-flow,
// either for entering or exiting the loop:
// - test.set.loop.iterations will test whether its operand is zero. If it
// is zero, the proceeding branch should not enter the loop.
// - loop.decrement.reg also tests whether its operand is zero. If it is
// zero, the proceeding branch should not branch back to the beginning of
// the loop.
// So here, we need to check that how the brcond is using the result of each
// of the intrinsics to ensure that we're branching to the right place at the
// right time.
ISD::CondCode CC;
SDValue Cond;
int Imm = 1;
bool Negate = false;
SDValue Chain = N->getOperand(0);
SDValue Dest;
if (N->getOpcode() == ISD::BRCOND) {
CC = ISD::SETEQ;
Cond = N->getOperand(1);
Dest = N->getOperand(2);
} else {
assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
Cond = N->getOperand(2);
Dest = N->getOperand(4);
if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
if (!Const->isOne() && !Const->isNullValue())
return SDValue();
Imm = Const->getZExtValue();
} else
return SDValue();
}
SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
if (!Int)
return SDValue();
if (Negate)
CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
return (CC == ISD::SETEQ && Imm == 0) ||
(CC == ISD::SETNE && Imm == 1) ||
(CC == ISD::SETLT && Imm == 1) ||
(CC == ISD::SETULT && Imm == 1);
};
auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
return (CC == ISD::SETEQ && Imm == 1) ||
(CC == ISD::SETNE && Imm == 0) ||
(CC == ISD::SETGT && Imm == 0) ||
(CC == ISD::SETUGT && Imm == 0) ||
(CC == ISD::SETGE && Imm == 1) ||
(CC == ISD::SETUGE && Imm == 1);
};
assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
"unsupported condition");
SDLoc dl(Int);
SelectionDAG &DAG = DCI.DAG;
SDValue Elements = Int.getOperand(2);
unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
&& "expected single br user");
SDNode *Br = *N->use_begin();
SDValue OtherTarget = Br->getOperand(1);
// Update the unconditional branch to branch to the given Dest.
auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
SDValue NewBrOps[] = { Br->getOperand(0), Dest };
SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
};
if (IntOp == Intrinsic::test_set_loop_iterations) {
SDValue Res;
// We expect this 'instruction' to branch when the counter is zero.
if (IsTrueIfZero(CC, Imm)) {
SDValue Ops[] = { Chain, Elements, Dest };
Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
} else {
// The logic is the reverse of what we need for WLS, so find the other
// basic block target: the target of the proceeding br.
UpdateUncondBr(Br, Dest, DAG);
SDValue Ops[] = { Chain, Elements, OtherTarget };
Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
}
DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
return Res;
} else {
SDValue Size = DAG.getTargetConstant(
cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
SDValue Args[] = { Int.getOperand(0), Elements, Size, };
SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
DAG.getVTList(MVT::i32, MVT::Other), Args);
DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
// We expect this instruction to branch when the count is not zero.
SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
// Update the unconditional branch to target the loop preheader if we've
// found the condition has been reversed.
if (Target == OtherTarget)
UpdateUncondBr(Br, Dest, DAG);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
SDValue(LoopDec.getNode(), 1), Chain);
SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
}
return SDValue();
}
/// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
SDValue
ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
SDValue Cmp = N->getOperand(4);
if (Cmp.getOpcode() != ARMISD::CMPZ)
// Only looking at NE cases.
return SDValue();
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue LHS = Cmp.getOperand(0);
SDValue RHS = Cmp.getOperand(1);
SDValue Chain = N->getOperand(0);
SDValue BB = N->getOperand(1);
SDValue ARMcc = N->getOperand(2);
ARMCC::CondCodes CC =
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
// (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
// -> (brcond Chain BB CC CPSR Cmp)
if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
LHS->getOperand(0)->hasOneUse()) {
auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
if ((LHS00C && LHS00C->getZExtValue() == 0) &&
(LHS01C && LHS01C->getZExtValue() == 1) &&
(LHS1C && LHS1C->getZExtValue() == 1) &&
(RHSC && RHSC->getZExtValue() == 0)) {
return DAG.getNode(
ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
}
}
return SDValue();
}
/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
SDValue
ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
SDValue Cmp = N->getOperand(4);
if (Cmp.getOpcode() != ARMISD::CMPZ)
// Only looking at EQ and NE cases.
return SDValue();
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue LHS = Cmp.getOperand(0);
SDValue RHS = Cmp.getOperand(1);
SDValue FalseVal = N->getOperand(0);
SDValue TrueVal = N->getOperand(1);
SDValue ARMcc = N->getOperand(2);
ARMCC::CondCodes CC =
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
// BFI is only available on V6T2+.
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
SDValue R = PerformCMOVToBFICombine(N, DAG);
if (R)
return R;
}
// Simplify
// mov r1, r0
// cmp r1, x
// mov r0, y
// moveq r0, x
// to
// cmp r0, x
// movne r0, y
//
// mov r1, r0
// cmp r1, x
// mov r0, x
// movne r0, y
// to
// cmp r0, x
// movne r0, y
/// FIXME: Turn this into a target neutral optimization?
SDValue Res;
if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
N->getOperand(3), Cmp);
} else if (CC == ARMCC::EQ && TrueVal == RHS) {
SDValue ARMcc;
SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
N->getOperand(3), NewCmp);
}
// (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
// -> (cmov F T CC CPSR Cmp)
if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
if ((LHS0C && LHS0C->getZExtValue() == 0) &&
(LHS1C && LHS1C->getZExtValue() == 1) &&
(RHSC && RHSC->getZExtValue() == 0)) {
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
LHS->getOperand(2), LHS->getOperand(3),
LHS->getOperand(4));
}
}
if (!VT.isInteger())
return SDValue();
// Materialize a boolean comparison for integers so we can avoid branching.
if (isNullConstant(FalseVal)) {
if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
// If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
// right 5 bits will make that 32 be 1, otherwise it will be 0.
// CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
DAG.getConstant(5, dl, MVT::i32));
} else {
// CMOV 0, 1, ==, (CMPZ x, y) ->
// (ADDCARRY (SUB x, y), t:0, t:1)
// where t = (SUBCARRY 0, (SUB x, y), 0)
//
// The SUBCARRY computes 0 - (x - y) and this will give a borrow when
// x != y. In other words, a carry C == 1 when x == y, C == 0
// otherwise.
// The final ADDCARRY computes
// x - y + (0 - (x - y)) + C == C
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
// ISD::SUBCARRY returns a borrow but we want the carry here
// actually.
SDValue Carry =
DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
}
} else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
(!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
// This seems pointless but will allow us to combine it further below.
// CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
SDValue Sub =
DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
Sub.getValue(1), SDValue());
Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
N->getOperand(3), CPSRGlue.getValue(1));
FalseVal = Sub;
}
} else if (isNullConstant(TrueVal)) {
if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
(!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
// This seems pointless but will allow us to combine it further below
// Note that we change == for != as this is the dual for the case above.
// CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
SDValue Sub =
DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
Sub.getValue(1), SDValue());
Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
DAG.getConstant(ARMCC::NE, dl, MVT::i32),
N->getOperand(3), CPSRGlue.getValue(1));
FalseVal = Sub;
}
}
// On Thumb1, the DAG above may be further combined if z is a power of 2
// (z == 2 ^ K).
// CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
// t1 = (USUBO (SUB x, y), 1)
// t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
// Result = if K != 0 then (SHL t2:0, K) else t2:0
//
// This also handles the special case of comparing against zero; it's
// essentially, the same pattern, except there's no SUBS:
// CMOV x, z, !=, (CMPZ x, 0) ->
// t1 = (USUBO x, 1)
// t2 = (SUBCARRY x, t1:0, t1:1)
// Result = if K != 0 then (SHL t2:0, K) else t2:0
const APInt *TrueConst;
if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
((FalseVal.getOpcode() == ARMISD::SUBS &&
FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
(FalseVal == LHS && isNullConstant(RHS))) &&
(TrueConst = isPowerOf2Constant(TrueVal))) {
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
unsigned ShiftAmount = TrueConst->logBase2();
if (ShiftAmount)
TrueVal = DAG.getConstant(1, dl, VT);
SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
if (ShiftAmount)
Res = DAG.getNode(ISD::SHL, dl, VT, Res,
DAG.getConstant(ShiftAmount, dl, MVT::i32));
}
if (Res.getNode()) {
KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
// Capture demanded bits information that would be otherwise lost.
if (Known.Zero == 0xfffffffe)
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
DAG.getValueType(MVT::i1));
else if (Known.Zero == 0xffffff00)
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
DAG.getValueType(MVT::i8));
else if (Known.Zero == 0xffff0000)
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
DAG.getValueType(MVT::i16));
}
return Res;
}
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default: break;
case ISD::ABS: return PerformABSCombine(N, DCI, Subtarget);
case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
case ISD::SUB: return PerformSUBCombine(N, DCI, Subtarget);
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
case ISD::BRCOND:
case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget);
case ARMISD::ADDC:
case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
case ARMISD::BFI: return PerformBFICombine(N, DCI);
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
case ISD::STORE: return PerformSTORECombine(N, DCI, Subtarget);
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
return PerformVCVTCombine(N, DCI.DAG, Subtarget);
case ISD::FDIV:
return PerformVDIVCombine(N, DCI.DAG, Subtarget);
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
return PerformShiftCombine(N, DCI, Subtarget);
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
case ISD::LOAD: return PerformLOADCombine(N, DCI);
case ARMISD::VLD1DUP:
case ARMISD::VLD2DUP:
case ARMISD::VLD3DUP:
case ARMISD::VLD4DUP:
return PerformVLDCombine(N, DCI);
case ARMISD::BUILD_VECTOR:
return PerformARMBUILD_VECTORCombine(N, DCI);
case ARMISD::PREDICATE_CAST:
return PerformPREDICATE_CASTCombine(N, DCI);
case ARMISD::VCMP:
return PerformVCMPCombine(N, DCI, Subtarget);
case ARMISD::SMULWB: {
unsigned BitWidth = N->getValueType(0).getSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
return SDValue();
break;
}
case ARMISD::SMULWT: {
unsigned BitWidth = N->getValueType(0).getSizeInBits();
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
return SDValue();
break;
}
case ARMISD::SMLALBB:
case ARMISD::QADD16b:
case ARMISD::QSUB16b: {
unsigned BitWidth = N->getValueType(0).getSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
return SDValue();
break;
}
case ARMISD::SMLALBT: {
unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
(SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
return SDValue();
break;
}
case ARMISD::SMLALTB: {
unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
(SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
return SDValue();
break;
}
case ARMISD::SMLALTT: {
unsigned BitWidth = N->getValueType(0).getSizeInBits();
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
return SDValue();
break;
}
case ARMISD::QADD8b:
case ARMISD::QSUB8b: {
unsigned BitWidth = N->getValueType(0).getSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
return SDValue();
break;
}
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld1x2:
case Intrinsic::arm_neon_vld1x3:
case Intrinsic::arm_neon_vld1x4:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane:
case Intrinsic::arm_neon_vld2dup:
case Intrinsic::arm_neon_vld3dup:
case Intrinsic::arm_neon_vld4dup:
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst1x2:
case Intrinsic::arm_neon_vst1x3:
case Intrinsic::arm_neon_vst1x4:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane:
return PerformVLDCombine(N, DCI);
default: break;
}
break;
}
return SDValue();
}
bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
EVT VT) const {
return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
}
bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
unsigned Alignment,
MachineMemOperand::Flags,
bool *Fast) const {
// Depends what it gets converted into if the type is weird.
if (!VT.isSimple())
return false;
// The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
auto Ty = VT.getSimpleVT().SimpleTy;
if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
// Unaligned access can use (for example) LRDB, LRDH, LDR
if (AllowsUnaligned) {
if (Fast)
*Fast = Subtarget->hasV7Ops();
return true;
}
}
if (Ty == MVT::f64 || Ty == MVT::v2f64) {
// For any little-endian targets with neon, we can support unaligned ld/st
// of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
// A big-endian target may also explicitly support unaligned accesses
if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
if (Fast)
*Fast = true;
return true;
}
}
if (!Subtarget->hasMVEIntegerOps())
return false;
// These are for predicates
if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
if (Fast)
*Fast = true;
return true;
}
// These are for truncated stores/narrowing loads. They are fine so long as
// the alignment is at least the size of the item being loaded
if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
Alignment >= VT.getScalarSizeInBits() / 8) {
if (Fast)
*Fast = true;
return true;
}
// In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
// VSTRW.U32 all store the vector register in exactly the same format, and
// differ only in the range of their immediate offset field and the required
// alignment. So there is always a store that can be used, regardless of
// actual type.
//
// For big endian, that is not the case. But can still emit a (VSTRB.U8;
// VREV64.8) pair and get the same effect. This will likely be better than
// aligning the vector through the stack.
if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
Ty == MVT::v2f64) {
if (Fast)
*Fast = true;
return true;
}
return false;
}
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
unsigned AlignCheck) {
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
(DstAlign == 0 || DstAlign % AlignCheck == 0));
}
EVT ARMTargetLowering::getOptimalMemOpType(
uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
bool ZeroMemset, bool MemcpyStrSrc,
const AttributeList &FuncAttributes) const {
// See if we can use NEON instructions for this...
if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
bool Fast;
if (Size >= 16 &&
(memOpAlign(SrcAlign, DstAlign, 16) ||
(allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
MachineMemOperand::MONone, &Fast) &&
Fast))) {
return MVT::v2f64;
} else if (Size >= 8 &&
(memOpAlign(SrcAlign, DstAlign, 8) ||
(allowsMisalignedMemoryAccesses(
MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
Fast))) {
return MVT::f64;
}
}
// Let the target-independent logic figure it out.
return MVT::Other;
}
// 64-bit integers are split into their high and low parts and held in two
// different registers, so the trunc is free since the low register can just
// be used.
bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
return false;
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
return (SrcBits == 64 && DestBits == 32);
}
bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
!DstVT.isInteger())
return false;
unsigned SrcBits = SrcVT.getSizeInBits();
unsigned DestBits = DstVT.getSizeInBits();
return (SrcBits == 64 && DestBits == 32);
}
bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
if (Val.getOpcode() != ISD::LOAD)
return false;
EVT VT1 = Val.getValueType();
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
// 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
return true;
}
return false;
}
bool ARMTargetLowering::isFNegFree(EVT VT) const {
if (!VT.isSimple())
return false;
// There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
// negate values directly (fneg is free). So, we don't want to let the DAG
// combiner rewrite fneg into xors and some other instructions. For f16 and
// FullFP16 argument passing, some bitcast nodes may be introduced,
// triggering this DAG combine rewrite, so we are avoiding that with this.
switch (VT.getSimpleVT().SimpleTy) {
default: break;
case MVT::f16:
return Subtarget->hasFullFP16();
}
return false;
}
/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
/// of the vector elements.
static bool areExtractExts(Value *Ext1, Value *Ext2) {
auto areExtDoubled = [](Instruction *Ext) {
return Ext->getType()->getScalarSizeInBits() ==
2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
};
if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
!match(Ext2, m_ZExtOrSExt(m_Value())) ||
!areExtDoubled(cast<Instruction>(Ext1)) ||
!areExtDoubled(cast<Instruction>(Ext2)))
return false;
return true;
}
/// Check if sinking \p I's operands to I's basic block is profitable, because
/// the operands can be folded into a target instruction, e.g.
/// sext/zext can be folded into vsubl.
bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const {
if (!I->getType()->isVectorTy())
return false;
if (Subtarget->hasNEON()) {
switch (I->getOpcode()) {
case Instruction::Sub:
case Instruction::Add: {
if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
return false;
Ops.push_back(&I->getOperandUse(0));
Ops.push_back(&I->getOperandUse(1));
return true;
}
default:
return false;
}
}
if (!Subtarget->hasMVEIntegerOps())
return false;
auto IsSinker = [](Instruction *I, int Operand) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::Mul:
case Instruction::ICmp:
return true;
case Instruction::Sub:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
return Operand == 1;
default:
return false;
}
};
int Op = 0;
if (!isa<ShuffleVectorInst>(I->getOperand(Op)))
Op = 1;
if (!IsSinker(I, Op))
return false;
if (!match(I->getOperand(Op),
m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
m_Undef(), m_Zero()))) {
return false;
}
Instruction *Shuffle = cast<Instruction>(I->getOperand(Op));
// All uses of the shuffle should be sunk to avoid duplicating it across gpr
// and vector registers
for (Use &U : Shuffle->uses()) {
Instruction *Insn = cast<Instruction>(U.getUser());
if (!IsSinker(Insn, U.getOperandNo()))
return false;
}
Ops.push_back(&Shuffle->getOperandUse(0));
Ops.push_back(&I->getOperandUse(Op));
return true;
}
bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
EVT VT = ExtVal.getValueType();
if (!isTypeLegal(VT))
return false;
if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
if (Ld->isExpandingLoad())
return false;
}
// Don't create a loadext if we can fold the extension into a wide/long
// instruction.
// If there's more than one user instruction, the loadext is desirable no
// matter what. There can be two uses by the same instruction.
if (ExtVal->use_empty() ||
!ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
return true;
SDNode *U = *ExtVal->use_begin();
if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
return false;
return true;
}
bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
if (!isTypeLegal(EVT::getEVT(Ty1)))
return false;
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
// Assuming the caller doesn't have a zeroext or signext return parameter,
// truncation all the way down to i1 is valid.
return true;
}
int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
if (isLegalAddressingMode(DL, AM, Ty, AS)) {
if (Subtarget->hasFPAO())
return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
return 0;
}
return -1;
}
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
/// expanded to FMAs when this method returns true, otherwise fmuladd is
/// expanded to fmul + fadd.
///
/// ARM supports both fused and unfused multiply-add operations; we already
/// lower a pair of fmul and fadd to the latter so it's not clear that there
/// would be a gain or that the gain would be worthwhile enough to risk
/// correctness bugs.
///
/// For MVE, we set this to true as it helps simplify the need for some
/// patterns (and we don't have the non-fused floating point instruction).
bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const {
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::v4f32:
case MVT::v8f16:
return Subtarget->hasMVEFloatOps();
case MVT::f16:
return Subtarget->useFPVFMx16();
case MVT::f32:
return Subtarget->useFPVFMx();
case MVT::f64:
return Subtarget->useFPVFMx64();
default:
break;
}
return false;
}
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
if (V < 0)
return false;
unsigned Scale = 1;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::i1:
case MVT::i8:
// Scale == 1;
break;
case MVT::i16:
// Scale == 2;
Scale = 2;
break;
default:
// On thumb1 we load most things (i32, i64, floats, etc) with a LDR
// Scale == 4;
Scale = 4;
break;
}
if ((V & (Scale - 1)) != 0)
return false;
return isUInt<5>(V / Scale);
}
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
if (!VT.isInteger() && !VT.isFloatingPoint())
return false;
if (VT.isVector() && Subtarget->hasNEON())
return false;
if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
!Subtarget->hasMVEFloatOps())
return false;
bool IsNeg = false;
if (V < 0) {
IsNeg = true;
V = -V;
}
unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
// MVE: size * imm7
if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
case MVT::i32:
case MVT::f32:
return isShiftedUInt<7,2>(V);
case MVT::i16:
case MVT::f16:
return isShiftedUInt<7,1>(V);
case MVT::i8:
return isUInt<7>(V);
default:
return false;
}
}
// half VLDR: 2 * imm8
if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
return isShiftedUInt<8, 1>(V);
// VLDR and LDRD: 4 * imm8
if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
return isShiftedUInt<8, 2>(V);
if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
// + imm12 or - imm8
if (IsNeg)
return isUInt<8>(V);
return isUInt<12>(V);
}
return false;
}
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
static bool isLegalAddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
if (V == 0)
return true;
if (!VT.isSimple())
return false;
if (Subtarget->isThumb1Only())
return isLegalT1AddressImmediate(V, VT);
else if (Subtarget->isThumb2())
return isLegalT2AddressImmediate(V, VT, Subtarget);
// ARM mode.
if (V < 0)
V = - V;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
// +- imm12
return isUInt<12>(V);
case MVT::i16:
// +- imm8
return isUInt<8>(V);
case MVT::f32:
case MVT::f64:
if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
return false;
return isShiftedUInt<8, 2>(V);
}
}
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
EVT VT) const {
int Scale = AM.Scale;
if (Scale < 0)
return false;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
if (Scale == 1)
return true;
// r + r << imm
Scale = Scale & ~1;
return Scale == 2 || Scale == 4 || Scale == 8;
case MVT::i64:
// FIXME: What are we trying to model here? ldrd doesn't have an r + r
// version in Thumb mode.
// r + r
if (Scale == 1)
return true;
// r * 2 (this can be lowered to r + r).
if (!AM.HasBaseReg && Scale == 2)
return true;
return false;
case MVT::isVoid:
// Note, we allow "void" uses (basically, uses that aren't loads or
// stores), because arm allows folding a scale into many arithmetic
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
if (Scale & 1) return false;
return isPowerOf2_32(Scale);
}
}
bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
EVT VT) const {
const int Scale = AM.Scale;
// Negative scales are not supported in Thumb1.
if (Scale < 0)
return false;
// Thumb1 addressing modes do not support register scaling excepting the
// following cases:
// 1. Scale == 1 means no scaling.
// 2. Scale == 2 this can be lowered to r + r if there is no base register.
return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
EVT VT = getValueType(DL, Ty, true);
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
return false;
// Can never fold addr of global into load/store.
if (AM.BaseGV)
return false;
switch (AM.Scale) {
case 0: // no scale reg, must be "r+i" or "r", or "i".
break;
default:
// ARM doesn't support any R+R*scale+imm addr modes.
if (AM.BaseOffs)
return false;
if (!VT.isSimple())
return false;
if (Subtarget->isThumb1Only())
return isLegalT1ScaledAddressingMode(AM, VT);
if (Subtarget->isThumb2())
return isLegalT2ScaledAddressingMode(AM, VT);
int Scale = AM.Scale;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
if (Scale < 0) Scale = -Scale;
if (Scale == 1)
return true;
// r + r << imm
return isPowerOf2_32(Scale & ~1);
case MVT::i16:
case MVT::i64:
// r +/- r
if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
return true;
// r * 2 (this can be lowered to r + r).
if (!AM.HasBaseReg && Scale == 2)
return true;
return false;
case MVT::isVoid:
// Note, we allow "void" uses (basically, uses that aren't loads or
// stores), because arm allows folding a scale into many arithmetic
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
if (Scale & 1) return false;
return isPowerOf2_32(Scale);
}
}
return true;
}
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
// Thumb2 and ARM modes can use cmn for negative immediates.
if (!Subtarget->isThumb())
return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
if (Subtarget->isThumb2())
return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
// Thumb1 doesn't have cmn, and only 8-bit immediates.
return Imm >= 0 && Imm <= 255;
}
/// isLegalAddImmediate - Return true if the specified immediate is a legal add
/// *or sub* immediate, that is the target has add or sub instructions which can
/// add a register with the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
// Same encoding for add/sub, just flip the sign.
int64_t AbsImm = std::abs(Imm);
if (!Subtarget->isThumb())
return ARM_AM::getSOImmVal(AbsImm) != -1;
if (Subtarget->isThumb2())
return ARM_AM::getT2SOImmVal(AbsImm) != -1;
// Thumb1 only has 8-bit unsigned immediate.
return AbsImm >= 0 && AbsImm <= 255;
}
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
// AddressingMode 3
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -256) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
}
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Offset = Ptr->getOperand(1);
return true;
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
// AddressingMode 2
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -0x1000) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
Base = Ptr->getOperand(0);
return true;
}
}
if (Ptr->getOpcode() == ISD::ADD) {
isInc = true;
ARM_AM::ShiftOpc ShOpcVal=
ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
if (ShOpcVal != ARM_AM::no_shift) {
Base = Ptr->getOperand(1);
Offset = Ptr->getOperand(0);
} else {
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
}
return true;
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
return true;
}
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
return false;
}
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
isInc = Ptr->getOpcode() == ISD::ADD;
Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
}
}
return false;
}
static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, unsigned Align,
bool isSEXTLoad, bool IsMasked, bool isLE,
SDValue &Base, SDValue &Offset,
bool &isInc, SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
return false;
// We allow LE non-masked loads to change the type (for example use a vldrb.8
// as opposed to a vldrw.32). This can allow extra addressing modes or
// alignments for what is otherwise an equivalent instruction.
bool CanChangeType = isLE && !IsMasked;
ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
int RHSC = (int)RHS->getZExtValue();
auto IsInRange = [&](int RHSC, int Limit, int Scale) {
if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
} else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
isInc = Ptr->getOpcode() == ISD::ADD;
Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
}
return false;
};
// Try to find a matching instruction based on s/zext, Alignment, Offset and
// (in BE/masked) type.
Base = Ptr->getOperand(0);
if (VT == MVT::v4i16) {
if (Align >= 2 && IsInRange(RHSC, 0x80, 2))
return true;
} else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
if (IsInRange(RHSC, 0x80, 1))
return true;
} else if (Align >= 4 &&
(CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
IsInRange(RHSC, 0x80, 4))
return true;
else if (Align >= 2 &&
(CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
IsInRange(RHSC, 0x80, 2))
return true;
else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
return true;
return false;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (Subtarget->isThumb1Only())
return false;
EVT VT;
SDValue Ptr;
unsigned Align;
bool isSEXTLoad = false;
bool IsMasked = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
Align = LD->getAlignment();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
Align = ST->getAlignment();
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
Align = LD->getAlignment();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
IsMasked = true;
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
Align = ST->getAlignment();
IsMasked = true;
} else
return false;
bool isInc;
bool isLegal = false;
if (VT.isVector())
isLegal = Subtarget->hasMVEIntegerOps() &&
getMVEIndexedAddressParts(Ptr.getNode(), VT, Align, isSEXTLoad,
IsMasked, Subtarget->isLittle(), Base,
Offset, isInc, DAG);
else {
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
else
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
}
if (!isLegal)
return false;
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
return true;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
EVT VT;
SDValue Ptr;
unsigned Align;
bool isSEXTLoad = false, isNonExt;
bool IsMasked = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
Align = LD->getAlignment();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
Align = ST->getAlignment();
isNonExt = !ST->isTruncatingStore();
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
Align = LD->getAlignment();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
IsMasked = true;
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
Align = ST->getAlignment();
isNonExt = !ST->isTruncatingStore();
IsMasked = true;
} else
return false;
if (Subtarget->isThumb1Only()) {
// Thumb-1 can do a limited post-inc load or store as an updating LDM. It
// must be non-extending/truncating, i32, with an offset of 4.
assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
if (Op->getOpcode() != ISD::ADD || !isNonExt)
return false;
auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!RHS || RHS->getZExtValue() != 4)
return false;
Offset = Op->getOperand(1);
Base = Op->getOperand(0);
AM = ISD::POST_INC;
return true;
}
bool isInc;
bool isLegal = false;
if (VT.isVector())
isLegal = Subtarget->hasMVEIntegerOps() &&
getMVEIndexedAddressParts(Op, VT, Align, isSEXTLoad, IsMasked,
Subtarget->isLittle(), Base, Offset,
isInc, DAG);
else {
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
else
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
}
if (!isLegal)
return false;
if (Ptr != Base) {
// Swap base ptr and offset to catch more post-index load / store when
// it's legal. In Thumb2 mode, offset must be an immediate.
if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
!Subtarget->isThumb2())
std::swap(Base, Offset);
// Post-indexed load / store update the base pointer.
if (Ptr != Base)
return false;
}
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = Known.getBitWidth();
Known.resetAll();
switch (Op.getOpcode()) {
default: break;
case ARMISD::ADDC:
case ARMISD::ADDE:
case ARMISD::SUBC:
case ARMISD::SUBE:
// Special cases when we convert a carry to a boolean.
if (Op.getResNo() == 0) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
// (ADDE 0, 0, C) will give us a single bit.
if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
isNullConstant(RHS)) {
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
return;
}
}
break;
case ARMISD::CMOV: {
// Bits are known zero/one if known on the LHS and RHS.
Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
if (Known.isUnknown())
return;
KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
Known.Zero &= KnownRHS.Zero;
Known.One &= KnownRHS.One;
return;
}
case ISD::INTRINSIC_W_CHAIN: {
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
switch (IntID) {
default: return;
case Intrinsic::arm_ldaex:
case Intrinsic::arm_ldrex: {
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
return;
}
}
}
case ARMISD::BFI: {
// Conservatively, we can recurse down the first operand
// and just mask out all affected bits.
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
// The operand to BFI is already a mask suitable for removing the bits it
// sets.
ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
const APInt &Mask = CI->getAPIntValue();
Known.Zero &= Mask;
Known.One &= Mask;
return;
}
case ARMISD::VGETLANEs:
case ARMISD::VGETLANEu: {
const SDValue &SrcSV = Op.getOperand(0);
EVT VecVT = SrcSV.getValueType();
assert(VecVT.isVector() && "VGETLANE expected a vector type");
const unsigned NumSrcElts = VecVT.getVectorNumElements();
ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
assert(Pos->getAPIntValue().ult(NumSrcElts) &&
"VGETLANE index out of bounds");
unsigned Idx = Pos->getZExtValue();
APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
EVT VT = Op.getValueType();
const unsigned DstSz = VT.getScalarSizeInBits();
const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
(void)SrcSz;
assert(SrcSz == Known.getBitWidth());
assert(DstSz > SrcSz);
if (Op.getOpcode() == ARMISD::VGETLANEs)
Known = Known.sext(DstSz);
else {
Known = Known.zext(DstSz, true /* extended bits are known zero */);
}
assert(DstSz == Known.getBitWidth());
break;
}
}
}
bool
ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
const APInt &DemandedAPInt,
TargetLoweringOpt &TLO) const {
// Delay optimization, so we don't have to deal with illegal types, or block
// optimizations.
if (!TLO.LegalOps)
return false;
// Only optimize AND for now.
if (Op.getOpcode() != ISD::AND)
return false;
EVT VT = Op.getValueType();
// Ignore vectors.
if (VT.isVector())
return false;
assert(VT == MVT::i32 && "Unexpected integer type");
// Make sure the RHS really is a constant.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
unsigned Mask = C->getZExtValue();
unsigned Demanded = DemandedAPInt.getZExtValue();
unsigned ShrunkMask = Mask & Demanded;
unsigned ExpandedMask = Mask | ~Demanded;
// If the mask is all zeros, let the target-independent code replace the
// result with zero.
if (ShrunkMask == 0)
return false;
// If the mask is all ones, erase the AND. (Currently, the target-independent
// code won't do this, so we have to do it explicitly to avoid an infinite
// loop in obscure cases.)
if (ExpandedMask == ~0U)
return TLO.CombineTo(Op, Op.getOperand(0));
auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
};
auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
if (NewMask == Mask)
return true;
SDLoc DL(Op);
SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
return TLO.CombineTo(Op, NewOp);
};
// Prefer uxtb mask.
if (IsLegalMask(0xFF))
return UseMask(0xFF);
// Prefer uxth mask.
if (IsLegalMask(0xFFFF))
return UseMask(0xFFFF);
// [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
// FIXME: Prefer a contiguous sequence of bits for other optimizations.
if (ShrunkMask < 256)
return UseMask(ShrunkMask);
// [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
// FIXME: Prefer a contiguous sequence of bits for other optimizations.
if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
return UseMask(ExpandedMask);
// Potential improvements:
//
// We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
// We could try to prefer Thumb1 immediates which can be lowered to a
// two-instruction sequence.
// We could try to recognize more legal ARM/Thumb2 immediates here.
return false;
}
//===----------------------------------------------------------------------===//
// ARM Inline Assembly Support
//===----------------------------------------------------------------------===//
bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
// Looking for "rev" which is V6+.
if (!Subtarget->hasV6Ops())
return false;
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
std::string AsmStr = IA->getAsmString();
SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, ";\n");
switch (AsmPieces.size()) {
default: return false;
case 1:
AsmStr = AsmPieces[0];
AsmPieces.clear();
SplitString(AsmStr, AsmPieces, " \t,");
// rev $0, $1
if (AsmPieces.size() == 3 &&
AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
if (Ty && Ty->getBitWidth() == 32)
return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
}
return false;
}
const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
// At this point, we have to lower this constraint to something else, so we
// lower it to an "r" or "w". However, by doing this we will force the result
// to be in register, while the X constraint is much more permissive.
//
// Although we are correct (we are free to emit anything, without
// constraints), we might break use cases that would expect us to be more
// efficient and emit something else.
if (!Subtarget->hasVFP2Base())
return "r";
if (ConstraintVT.isFloatingPoint())
return "w";
if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
(ConstraintVT.getSizeInBits() == 64 ||
ConstraintVT.getSizeInBits() == 128))
return "w";
return "r";
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
ARMTargetLowering::getConstraintType(StringRef Constraint) const {
unsigned S = Constraint.size();
if (S == 1) {
switch (Constraint[0]) {
default: break;
case 'l': return C_RegisterClass;
case 'w': return C_RegisterClass;
case 'h': return C_RegisterClass;
case 'x': return C_RegisterClass;
case 't': return C_RegisterClass;
case 'j': return C_Immediate; // Constant for movw.
// An address with a single base register. Due to the way we
// currently handle addresses it is the same as an 'r' memory constraint.
case 'Q': return C_Memory;
}
} else if (S == 2) {
switch (Constraint[0]) {
default: break;
case 'T': return C_RegisterClass;
// All 'U+' constraints are addresses.
case 'U': return C_Memory;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
ARMTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'l':
if (type->isIntegerTy()) {
if (Subtarget->isThumb())
weight = CW_SpecificReg;
else
weight = CW_Register;
}
break;
case 'w':
if (type->isFloatingPointTy())
weight = CW_Register;
break;
}
return weight;
}
using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
switch (Constraint.size()) {
case 1:
// GCC ARM Constraint Letters
switch (Constraint[0]) {
case 'l': // Low regs or general regs.
if (Subtarget->isThumb())
return RCPair(0U, &ARM::tGPRRegClass);
return RCPair(0U, &ARM::GPRRegClass);
case 'h': // High regs or no regs.
if (Subtarget->isThumb())
return RCPair(0U, &ARM::hGPRRegClass);
break;
case 'r':
if (Subtarget->isThumb1Only())
return RCPair(0U, &ARM::tGPRRegClass);
return RCPair(0U, &ARM::GPRRegClass);
case 'w':
if (VT == MVT::Other)
break;
if (VT == MVT::f32)
return RCPair(0U, &ARM::SPRRegClass);
if (VT.getSizeInBits() == 64)
return RCPair(0U, &ARM::DPRRegClass);
if (VT.getSizeInBits() == 128)
return RCPair(0U, &ARM::QPRRegClass);
break;
case 'x':
if (VT == MVT::Other)
break;
if (VT == MVT::f32)
return RCPair(0U, &ARM::SPR_8RegClass);
if (VT.getSizeInBits() == 64)
return RCPair(0U, &ARM::DPR_8RegClass);
if (VT.getSizeInBits() == 128)
return RCPair(0U, &ARM::QPR_8RegClass);
break;
case 't':
if (VT == MVT::Other)
break;
if (VT == MVT::f32 || VT == MVT::i32)
return RCPair(0U, &ARM::SPRRegClass);
if (VT.getSizeInBits() == 64)
return RCPair(0U, &ARM::DPR_VFP2RegClass);
if (VT.getSizeInBits() == 128)
return RCPair(0U, &ARM::QPR_VFP2RegClass);
break;
}
break;
case 2:
if (Constraint[0] == 'T') {
switch (Constraint[1]) {
default:
break;
case 'e':
return RCPair(0U, &ARM::tGPREvenRegClass);
case 'o':
return RCPair(0U, &ARM::tGPROddRegClass);
}
}
break;
default:
break;
}
if (StringRef("{cc}").equals_lower(Constraint))
return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Currently only support length 1 constraints.
if (Constraint.length() != 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'j':
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O':
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
int64_t CVal64 = C->getSExtValue();
int CVal = (int) CVal64;
// None of these constraints allow values larger than 32 bits. Check
// that the value fits in an int.
if (CVal != CVal64)
return;
switch (ConstraintLetter) {
case 'j':
// Constant suitable for movw, must be between 0 and
// 65535.
if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
if (CVal >= 0 && CVal <= 65535)
break;
return;
case 'I':
if (Subtarget->isThumb1Only()) {
// This must be a constant between 0 and 255, for ADD
// immediates.
if (CVal >= 0 && CVal <= 255)
break;
} else if (Subtarget->isThumb2()) {
// A constant that can be used as an immediate value in a
// data-processing instruction.
if (ARM_AM::getT2SOImmVal(CVal) != -1)
break;
} else {
// A constant that can be used as an immediate value in a
// data-processing instruction.
if (ARM_AM::getSOImmVal(CVal) != -1)
break;
}
return;
case 'J':
if (Subtarget->isThumb1Only()) {
// This must be a constant between -255 and -1, for negated ADD
// immediates. This can be used in GCC with an "n" modifier that
// prints the negated value, for use with SUB instructions. It is
// not useful otherwise but is implemented for compatibility.
if (CVal >= -255 && CVal <= -1)
break;
} else {
// This must be a constant between -4095 and 4095. It is not clear
// what this constraint is intended for. Implemented for
// compatibility with GCC.
if (CVal >= -4095 && CVal <= 4095)
break;
}
return;
case 'K':
if (Subtarget->isThumb1Only()) {
// A 32-bit value where only one byte has a nonzero value. Exclude
// zero to match GCC. This constraint is used by GCC internally for
// constants that can be loaded with a move/shift combination.
// It is not useful otherwise but is implemented for compatibility.
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
break;
} else if (Subtarget->isThumb2()) {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
// with a "B" modifier that prints the inverted value, for use with
// BIC and MVN instructions. It is not useful otherwise but is
// implemented for compatibility.
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
break;
} else {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
// with a "B" modifier that prints the inverted value, for use with
// BIC and MVN instructions. It is not useful otherwise but is
// implemented for compatibility.
if (ARM_AM::getSOImmVal(~CVal) != -1)
break;
}
return;
case 'L':
if (Subtarget->isThumb1Only()) {
// This must be a constant between -7 and 7,
// for 3-operand ADD/SUB immediate instructions.
if (CVal >= -7 && CVal < 7)
break;
} else if (Subtarget->isThumb2()) {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
// modifier that prints the negated value, for use with SUB
// instructions. It is not useful otherwise but is implemented for
// compatibility.
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
break;
} else {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
// modifier that prints the negated value, for use with SUB
// instructions. It is not useful otherwise but is implemented for
// compatibility.
if (ARM_AM::getSOImmVal(-CVal) != -1)
break;
}
return;
case 'M':
if (Subtarget->isThumb1Only()) {
// This must be a multiple of 4 between 0 and 1020, for
// ADD sp + immediate.
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
break;
} else {
// A power of two or a constant between 0 and 32. This is used in
// GCC for the shift amount on shifted register operands, but it is
// useful in general for any shift amounts.
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
break;
}
return;
case 'N':
if (Subtarget->isThumb1Only()) {
// This must be a constant between 0 and 31, for shift amounts.
if (CVal >= 0 && CVal <= 31)
break;
}
return;
case 'O':
if (Subtarget->isThumb1Only()) {
// This must be a multiple of 4 between -508 and 508, for
// ADD/SUB sp = sp + immediate.
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
break;
}
return;
}
Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
break;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
static RTLIB::Libcall getDivRemLibcall(
const SDNode *N, MVT::SimpleValueType SVT) {
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
"Unhandled Opcode in getDivRemLibcall");
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
N->getOpcode() == ISD::SREM;
RTLIB::Libcall LC;
switch (SVT) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
}
return LC;
}
static TargetLowering::ArgListTy getDivRemArgList(
const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
"Unhandled Opcode in getDivRemArgList");
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
N->getOpcode() == ISD::SREM;
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
EVT ArgVT = N->getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*Context);
Entry.Node = N->getOperand(i);
Entry.Ty = ArgTy;
Entry.IsSExt = isSigned;
Entry.IsZExt = !isSigned;
Args.push_back(Entry);
}
if (Subtarget->isTargetWindows() && Args.size() >= 2)
std::swap(Args[0], Args[1]);
return Args;
}
SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
Subtarget->isTargetWindows()) &&
"Register-based DivRem lowering only");
unsigned Opcode = Op->getOpcode();
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
"Invalid opcode for Div/Rem lowering");
bool isSigned = (Opcode == ISD::SDIVREM);
EVT VT = Op->getValueType(0);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
SDLoc dl(Op);
// If the target has hardware divide, use divide + multiply + subtract:
// div = a / b
// rem = a - b * div
// return {div, rem}
// This should be lowered into UDIV/SDIV + MLS later on.
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
: Subtarget->hasDivideInARMMode();
if (hasDivide && Op->getValueType(0).isSimple() &&
Op->getSimpleValueType(0) == MVT::i32) {
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
const SDValue Dividend = Op->getOperand(0);
const SDValue Divisor = Op->getOperand(1);
SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
SDValue Values[2] = {Div, Rem};
return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
}
RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
VT.getSimpleVT().SimpleTy);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
DAG.getContext(),
Subtarget);
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
Type *RetTy = StructType::get(Ty, Ty);
if (Subtarget->isTargetWindows())
InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(InChain)
.setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
return CallInfo.first;
}
// Lowers REM using divmod helpers
// see RTABI section 4.2/4.3
SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
// Build return types (div and rem)
std::vector<Type*> RetTyParams;
Type *RetTyElement;
switch (N->getValueType(0).getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
}
RetTyParams.push_back(RetTyElement);
RetTyParams.push_back(RetTyElement);
ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
Type *RetTy = StructType::get(*DAG.getContext(), ret);
RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
SimpleTy);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
Subtarget);
bool isSigned = N->getOpcode() == ISD::SREM;
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
if (Subtarget->isTargetWindows())
InChain = WinDBZCheckDenominator(DAG, N, InChain);
// Lower call
CallLoweringInfo CLI(DAG);
CLI.setChain(InChain)
.setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
.setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
// Return second (rem) result operand (first contains div)
SDNode *ResNode = CallResult.first.getNode();
assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
return ResNode->getOperand(1);
}
SDValue
ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "unsupported target platform");
SDLoc DL(Op);
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
"no-stack-arg-probe")) {
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
Chain = SP.getValue(1);
SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
if (Align)
SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
SDValue Ops[2] = { SP, Chain };
return DAG.getMergeValues(Ops, DL);
}
SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
DAG.getConstant(2, DL, MVT::i32));
SDValue Flag;
Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
Flag = Chain.getValue(1);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
Chain = NewSP.getValue(1);
SDValue Ops[2] = { NewSP, Chain };
return DAG.getMergeValues(Ops, DL);
}
SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
const unsigned DstSz = Op.getValueType().getSizeInBits();
const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
"Unexpected type for custom-lowering FP_EXTEND");
assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
"With both FP DP and 16, any FP conversion is legal!");
assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
"With FP16, 16 to 32 conversion is legal!");
// Converting from 32 -> 64 is valid if we have FP64.
if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
// FIXME: Remove this when we have strict fp instruction selection patterns
if (IsStrict) {
SDLoc Loc(Op);
SDValue Result = DAG.getNode(ISD::FP_EXTEND,
Loc, Op.getValueType(), SrcVal);
return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
}
return Op;
}
// Either we are converting from 16 -> 64, without FP16 and/or
// FP.double-precision or without Armv8-fp. So we must do it in two
// steps.
// Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
// without FP16. So we must do a function call.
SDLoc Loc(Op);
RTLIB::Libcall LC;
MakeLibCallOptions CallOptions;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
if (Supported) {
if (IsStrict) {
SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
{DstVT, MVT::Other}, {Chain, SrcVal});
Chain = SrcVal.getValue(1);
} else {
SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
}
} else {
LC = RTLIB::getFPEXT(SrcVT, DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unexpected type for custom-lowering FP_EXTEND");
std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
Loc, Chain);
}
}
return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
}
SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
EVT SrcVT = SrcVal.getValueType();
EVT DstVT = Op.getValueType();
const unsigned DstSz = Op.getValueType().getSizeInBits();
const unsigned SrcSz = SrcVT.getSizeInBits();
(void)DstSz;
assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
"Unexpected type for custom-lowering FP_ROUND");
assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
"With both FP DP and 16, any FP conversion is legal!");
SDLoc Loc(Op);
// Instruction from 32 -> 16 if hasFP16 is valid
if (SrcSz == 32 && Subtarget->hasFP16())
return Op;
// Lib call from 32 -> 16 / 64 -> [32, 16]
RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unexpected type for custom-lowering FP_ROUND");
MakeLibCallOptions CallOptions;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
SDValue Result;
std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
Loc, Chain);
return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
}
void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
MVT HalfT = MVT::i32;
SDLoc dl(N);
SDValue Hi, Lo, Tmp;
if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
!isOperationLegalOrCustom(ISD::UADDO, HalfT))
return ;
unsigned OpTypeBits = HalfT.getScalarSizeInBits();
SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
DAG.getConstant(0, dl, HalfT));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
DAG.getConstant(1, dl, HalfT));
Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
DAG.getConstant(OpTypeBits - 1, dl,
getShiftAmountTy(HalfT, DAG.getDataLayout())));
Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
SDValue(Lo.getNode(), 1));
Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
Results.push_back(Lo);
Results.push_back(Hi);
}
bool
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The ARM target isn't yet aware of offsets.
return false;
}
bool ARM::isBitFieldInvertedMask(unsigned v) {
if (v == 0xffffffff)
return false;
// there can be 1's on either or both "outsides", all the "inside"
// bits must be 0's
return isShiftedMask_32(~v);
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
if (!Subtarget->hasVFP3Base())
return false;
if (VT == MVT::f16 && Subtarget->hasFullFP16())
return ARM_AM::getFP16Imm(Imm) != -1;
if (VT == MVT::f32)
return ARM_AM::getFP32Imm(Imm) != -1;
if (VT == MVT::f64 && Subtarget->hasFP64())
return ARM_AM::getFP64Imm(Imm) != -1;
return false;
}
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane:
case Intrinsic::arm_neon_vld2dup:
case Intrinsic::arm_neon_vld3dup:
case Intrinsic::arm_neon_vld4dup: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
// volatile loads with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::arm_neon_vld1x2:
case Intrinsic::arm_neon_vld1x3:
case Intrinsic::arm_neon_vld1x4: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
Info.offset = 0;
Info.align.reset();
// volatile loads with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
Info.opc = ISD::INTRINSIC_VOID;
// Conservatively set memVT to the entire set of vectors stored.
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
unsigned NumElts = 0;
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
Type *ArgTy = I.getArgOperand(ArgI)->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
// volatile stores with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOStore;
return true;
}
case Intrinsic::arm_neon_vst1x2:
case Intrinsic::arm_neon_vst1x3:
case Intrinsic::arm_neon_vst1x4: {
Info.opc = ISD::INTRINSIC_VOID;
// Conservatively set memVT to the entire set of vectors stored.
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
unsigned NumElts = 0;
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
Type *ArgTy = I.getArgOperand(ArgI)->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align.reset();
// volatile stores with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOStore;
return true;
}
case Intrinsic::arm_ldaex:
case Intrinsic::arm_ldrex: {
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::arm_stlex:
case Intrinsic::arm_strex: {
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::arm_stlexd:
case Intrinsic::arm_strexd:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i64;
Info.ptrVal = I.getArgOperand(2);
Info.offset = 0;
Info.align = Align(8);
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
return true;
case Intrinsic::arm_ldaexd:
case Intrinsic::arm_ldrexd:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(8);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return true;
default:
break;
}
return false;
}
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned Bits = Ty->getPrimitiveSizeInBits();
if (Bits == 0 || Bits > 32)
return false;
return true;
}
bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
return (Index == 0 || Index == ResVT.getVectorNumElements());
}
Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
ARM_MB::MemBOpt Domain) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
// First, if the target has no DMB, see what fallback we can use.
if (!Subtarget->hasDataBarrier()) {
// Some ARMv6 cpus can support data barriers with an mcr instruction.
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
// here.
if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
Builder.getInt32(0), Builder.getInt32(7),
Builder.getInt32(10), Builder.getInt32(5)};
return Builder.CreateCall(MCR, args);
} else {
// Instead of using barriers, atomic accesses on these subtargets use
// libcalls.
llvm_unreachable("makeDMB on a target so old that it has no barriers");
}
} else {
Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
// Only a full system barrier exists in the M-class architectures.
Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
Constant *CDomain = Builder.getInt32(Domain);
return Builder.CreateCall(DMB, CDomain);
}
}
// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
switch (Ord) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
llvm_unreachable("Invalid fence: unordered/non-atomic");
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
return nullptr; // Nothing to do
case AtomicOrdering::SequentiallyConsistent:
if (!Inst->hasAtomicStore())
return nullptr; // Nothing to do
LLVM_FALLTHROUGH;
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
if (Subtarget->preferISHSTBarriers())
return makeDMB(Builder, ARM_MB::ISHST);
// FIXME: add a comment with a link to documentation justifying this.
else
return makeDMB(Builder, ARM_MB::ISH);
}
llvm_unreachable("Unknown fence ordering in emitLeadingFence");
}
Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
switch (Ord) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
llvm_unreachable("Invalid fence: unordered/not-atomic");
case AtomicOrdering::Monotonic:
case AtomicOrdering::Release:
return nullptr; // Nothing to do
case AtomicOrdering::Acquire:
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
return makeDMB(Builder, ARM_MB::ISH);
}
llvm_unreachable("Unknown fence ordering in emitTrailingFence");
}
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
return (Size == 64) && !Subtarget->isMClass();
}
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
// guarantee, see DDI0406C ARM architecture reference manual,
// sections A8.8.72-74 LDRD)
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
: AtomicExpansionKind::None;
}
// For the real atomic operations, we have ldrex/strex up to 32 bits,
// and up to 64 bits on the non-M profiles
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
if (AI->isFloatingPointOperation())
return AtomicExpansionKind::CmpXChg;
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
? AtomicExpansionKind::LLSC
: AtomicExpansionKind::None;
}
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
// implement cmpxchg without spilling. If the address being exchanged is also
// on the stack and close enough to the spill slot, this can lead to a
// situation where the monitor always gets cleared and the atomic operation
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
bool HasAtomicCmpXchg =
!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
return AtomicExpansionKind::LLSC;
return AtomicExpansionKind::None;
}
bool ARMTargetLowering::shouldInsertFencesForAtomic(
const Instruction *I) const {
return InsertFencesForAtomic;
}
// This has so far only been implemented for MachO.
bool ARMTargetLowering::useLoadStackGuardNode() const {
return Subtarget->isTargetMachO();
}
void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return TargetLowering::insertSSPDeclarations(M);
// MSVC CRT has a global variable holding security cookie.
M.getOrInsertGlobal("__security_cookie",
Type::getInt8PtrTy(M.getContext()));
// MSVC CRT has a function to validate security cookie.
FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
"__security_check_cookie", Type::getVoidTy(M.getContext()),
Type::getInt8PtrTy(M.getContext()));
if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
F->addAttribute(1, Attribute::AttrKind::InReg);
}
Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
// MSVC CRT has a global variable holding security cookie.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return M.getGlobalVariable("__security_cookie");
return TargetLowering::getSDagStackGuard(M);
}
Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
// MSVC CRT has a function to validate security cookie.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return M.getFunction("__security_check_cookie");
return TargetLowering::getSSPStackGuardCheck(M);
}
bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
unsigned &Cost) const {
// If we do not have NEON, vector types are not natively supported.
if (!Subtarget->hasNEON())
return false;
// Floating point values and vector values map to the same register file.
// Therefore, although we could do a store extract of a vector type, this is
// better to leave at float as we have more freedom in the addressing mode for
// those.
if (VectorTy->isFPOrFPVectorTy())
return false;
// If the index is unknown at compile time, this is very expensive to lower
// and it is not possible to combine the store with the extract.
if (!isa<ConstantInt>(Idx))
return false;
assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
// We can do a store + vector extract on any vector that fits perfectly in a D
// or Q register.
if (BitWidth == 64 || BitWidth == 128) {
Cost = 0;
return true;
}
return false;
}
bool ARMTargetLowering::isCheapToSpeculateCttz() const {
return Subtarget->hasV6T2Ops();
}
bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
return Subtarget->hasV6T2Ops();
}
bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
return !Subtarget->hasMinSize() || Subtarget->isTargetWindows();
}
Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
bool IsAcquire = isAcquireOrStronger(Ord);
// Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
// intrinsic must return {i32, i32} and we have to recombine them into a
// single i64 here.
if (ValTy->getPrimitiveSizeInBits() == 64) {
Intrinsic::ID Int =
IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
Function *Ldrex = Intrinsic::getDeclaration(M, Int);
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
return Builder.CreateOr(
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
}
Type *Tys[] = { Addr->getType() };
Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
return Builder.CreateTruncOrBitCast(
Builder.CreateCall(Ldrex, Addr),
cast<PointerType>(Addr->getType())->getElementType());
}
void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
IRBuilder<> &Builder) const {
if (!Subtarget->hasV7Ops())
return;
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
}
Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
bool IsRelease = isReleaseOrStronger(Ord);
// Since the intrinsics must have legal type, the i64 intrinsics take two
// parameters: "i32, i32". We must marshal Val into the appropriate form
// before the call.
if (Val->getType()->getPrimitiveSizeInBits() == 64) {
Intrinsic::ID Int =
IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
Function *Strex = Intrinsic::getDeclaration(M, Int);
Type *Int32Ty = Type::getInt32Ty(M->getContext());
Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
if (!Subtarget->isLittle())
std::swap(Lo, Hi);
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
return Builder.CreateCall(Strex, {Lo, Hi, Addr});
}
Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
Type *Tys[] = { Addr->getType() };
Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
return Builder.CreateCall(
Strex, {Builder.CreateZExtOrBitCast(
Val, Strex->getFunctionType()->getParamType(0)),
Addr});
}
bool ARMTargetLowering::alignLoopsWithOptSize() const {
return Subtarget->isMClass();
}
/// A helper function for determining the number of interleaved accesses we
/// will generate when lowering accesses of the given type.
unsigned
ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
const DataLayout &DL) const {
return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
}
bool ARMTargetLowering::isLegalInterleavedAccessType(
unsigned Factor, VectorType *VecTy, const DataLayout &DL) const {
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
return false;
// Ensure the vector doesn't have f16 elements. Even though we could do an
// i16 vldN, we can't hold the f16 vectors and will end up converting via
// f32.
if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
return false;
if (Subtarget->hasMVEIntegerOps() && Factor == 3)
return false;
// Ensure the number of vector elements is greater than 1.
if (VecTy->getNumElements() < 2)
return false;
// Ensure the element type is legal.
if (ElSize != 8 && ElSize != 16 && ElSize != 32)
return false;
// Ensure the total vector size is 64 or a multiple of 128. Types larger than
// 128 will be split into multiple interleaved accesses.
if (Subtarget->hasNEON() && VecSize == 64)
return true;
return VecSize % 128 == 0;
}
unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
if (Subtarget->hasNEON())
return 4;
if (Subtarget->hasMVEIntegerOps())
return MVEMaxSupportedInterleaveFactor;
return TargetLoweringBase::getMaxSupportedInterleaveFactor();
}
/// Lower an interleaved load into a vldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
///
/// Into:
/// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
bool ARMTargetLowering::lowerInterleavedLoad(
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices, unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
assert(!Shuffles.empty() && "Empty shufflevector input");
assert(Shuffles.size() == Indices.size() &&
"Unmatched number of shufflevectors and indices");
VectorType *VecTy = Shuffles[0]->getType();
Type *EltTy = VecTy->getVectorElementType();
const DataLayout &DL = LI->getModule()->getDataLayout();
// Skip if we do not have NEON and skip illegal vector types. We can
// "legalize" wide vector types into multiple interleaved accesses as long as
// the vector types are divisible by 128.
if (!isLegalInterleavedAccessType(Factor, VecTy, DL))
return false;
unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
// A pointer vector can not be the return type of the ldN intrinsics. Need to
// load integer vectors first and then convert to pointer vectors.
if (EltTy->isPointerTy())
VecTy =
VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
IRBuilder<> Builder(LI);
// The base address of the load.
Value *BaseAddr = LI->getPointerOperand();
if (NumLoads > 1) {
// If we're going to generate more than one load, reset the sub-vector type
// to something legal.
VecTy = VectorType::get(VecTy->getVectorElementType(),
VecTy->getVectorNumElements() / NumLoads);
// We will compute the pointer operand of each load from the original base
// address using GEPs. Cast the base address to a pointer to the scalar
// element type.
BaseAddr = Builder.CreateBitCast(
BaseAddr, VecTy->getVectorElementType()->getPointerTo(
LI->getPointerAddressSpace()));
}
assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
auto createLoadIntrinsic = [&](Value *BaseAddr) {
if (Subtarget->hasNEON()) {
Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
Type *Tys[] = {VecTy, Int8Ptr};
static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
Intrinsic::arm_neon_vld3,
Intrinsic::arm_neon_vld4};
Function *VldnFunc =
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
SmallVector<Value *, 2> Ops;
Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
Ops.push_back(Builder.getInt32(LI->getAlignment()));
return Builder.CreateCall(VldnFunc, Ops, "vldN");
} else {
assert((Factor == 2 || Factor == 4) &&
"expected interleave factor of 2 or 4 for MVE");
Intrinsic::ID LoadInts =
Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
Type *VecEltTy = VecTy->getVectorElementType()->getPointerTo(
LI->getPointerAddressSpace());
Type *Tys[] = {VecTy, VecEltTy};
Function *VldnFunc =
Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
SmallVector<Value *, 2> Ops;
Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
return Builder.CreateCall(VldnFunc, Ops, "vldN");
}
};
// Holds sub-vectors extracted from the load intrinsic return values. The
// sub-vectors are associated with the shufflevector instructions they will
// replace.
DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
// If we're generating more than one load, compute the base address of
// subsequent loads as an offset from the previous.
if (LoadCount > 0)
BaseAddr =
Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
VecTy->getVectorNumElements() * Factor);
CallInst *VldN = createLoadIntrinsic(BaseAddr);
// Replace uses of each shufflevector with the corresponding vector loaded
// by ldN.
for (unsigned i = 0; i < Shuffles.size(); i++) {
ShuffleVectorInst *SV = Shuffles[i];
unsigned Index = Indices[i];
Value *SubVec = Builder.CreateExtractValue(VldN, Index);
// Convert the integer vector to pointer vector if the element is pointer.
if (EltTy->isPointerTy())
SubVec = Builder.CreateIntToPtr(
SubVec, VectorType::get(SV->getType()->getVectorElementType(),
VecTy->getVectorNumElements()));
SubVecs[SV].push_back(SubVec);
}
}
// Replace uses of the shufflevector instructions with the sub-vectors
// returned by the load intrinsic. If a shufflevector instruction is
// associated with more than one sub-vector, those sub-vectors will be
// concatenated into a single wide vector.
for (ShuffleVectorInst *SVI : Shuffles) {
auto &SubVec = SubVecs[SVI];
auto *WideVec =
SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
SVI->replaceAllUsesWith(WideVec);
}
return true;
}
/// Lower an interleaved store into a vstN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
///
/// Into:
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// vst3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
///
/// Into:
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
ShuffleVectorInst *SVI,
unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
VectorType *VecTy = SVI->getType();
assert(VecTy->getVectorNumElements() % Factor == 0 &&
"Invalid interleaved store");
unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
Type *EltTy = VecTy->getVectorElementType();
VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
const DataLayout &DL = SI->getModule()->getDataLayout();
// Skip if we do not have NEON and skip illegal vector types. We can
// "legalize" wide vector types into multiple interleaved accesses as long as
// the vector types are divisible by 128.
if (!isLegalInterleavedAccessType(Factor, SubVecTy, DL))
return false;
unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
Value *Op0 = SVI->getOperand(0);
Value *Op1 = SVI->getOperand(1);
IRBuilder<> Builder(SI);
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
// vectors to integer vectors.
if (EltTy->isPointerTy()) {
Type *IntTy = DL.getIntPtrType(EltTy);
// Convert to the corresponding integer vector.
Type *IntVecTy =
VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
SubVecTy = VectorType::get(IntTy, LaneLen);
}
// The base address of the store.
Value *BaseAddr = SI->getPointerOperand();
if (NumStores > 1) {
// If we're going to generate more than one store, reset the lane length
// and sub-vector type to something legal.
LaneLen /= NumStores;
SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
// We will compute the pointer operand of each store from the original base
// address using GEPs. Cast the base address to a pointer to the scalar
// element type.
BaseAddr = Builder.CreateBitCast(
BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
SI->getPointerAddressSpace()));
}
assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
auto Mask = SVI->getShuffleMask();
auto createStoreIntrinsic = [&](Value *BaseAddr,
SmallVectorImpl<Value *> &Shuffles) {
if (Subtarget->hasNEON()) {
static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
Intrinsic::arm_neon_vst3,
Intrinsic::arm_neon_vst4};
Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
Type *Tys[] = {Int8Ptr, SubVecTy};
Function *VstNFunc = Intrinsic::getDeclaration(
SI->getModule(), StoreInts[Factor - 2], Tys);
SmallVector<Value *, 6> Ops;
Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
for (auto S : Shuffles)
Ops.push_back(S);
Ops.push_back(Builder.getInt32(SI->getAlignment()));
Builder.CreateCall(VstNFunc, Ops);
} else {
assert((Factor == 2 || Factor == 4) &&
"expected interleave factor of 2 or 4 for MVE");
Intrinsic::ID StoreInts =
Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
Type *EltPtrTy = SubVecTy->getVectorElementType()->getPointerTo(
SI->getPointerAddressSpace());
Type *Tys[] = {EltPtrTy, SubVecTy};
Function *VstNFunc =
Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
SmallVector<Value *, 6> Ops;
Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
for (auto S : Shuffles)
Ops.push_back(S);
for (unsigned F = 0; F < Factor; F++) {
Ops.push_back(Builder.getInt32(F));
Builder.CreateCall(VstNFunc, Ops);
Ops.pop_back();
}
}
};
for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
// If we generating more than one store, we compute the base address of
// subsequent stores as an offset from the previous.
if (StoreCount > 0)
BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
BaseAddr, LaneLen * Factor);
SmallVector<Value *, 4> Shuffles;
// Split the shufflevector operands into sub vectors for the new vstN call.
for (unsigned i = 0; i < Factor; i++) {
unsigned IdxI = StoreCount * LaneLen * Factor + i;
if (Mask[IdxI] >= 0) {
Shuffles.push_back(Builder.CreateShuffleVector(
Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
} else {
unsigned StartMask = 0;
for (unsigned j = 1; j < LaneLen; j++) {
unsigned IdxJ = StoreCount * LaneLen * Factor + j;
if (Mask[IdxJ * Factor + IdxI] >= 0) {
StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
break;
}
}
// Note: If all elements in a chunk are undefs, StartMask=0!
// Note: Filling undef gaps with random elements is ok, since
// those elements were being written anyway (with undefs).
// In the case of all undefs we're defaulting to using elems from 0
// Note: StartMask cannot be negative, it's checked in
// isReInterleaveMask
Shuffles.push_back(Builder.CreateShuffleVector(
Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
}
}
createStoreIntrinsic(BaseAddr, Shuffles);
}
return true;
}
enum HABaseType {
HA_UNKNOWN = 0,
HA_FLOAT,
HA_DOUBLE,
HA_VECT64,
HA_VECT128
};
static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
uint64_t &Members) {
if (auto *ST = dyn_cast<StructType>(Ty)) {
for (unsigned i = 0; i < ST->getNumElements(); ++i) {
uint64_t SubMembers = 0;
if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
return false;
Members += SubMembers;
}
} else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t SubMembers = 0;
if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
return false;
Members += SubMembers * AT->getNumElements();
} else if (Ty->isFloatTy()) {
if (Base != HA_UNKNOWN && Base != HA_FLOAT)
return false;
Members = 1;
Base = HA_FLOAT;
} else if (Ty->isDoubleTy()) {
if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
return false;
Members = 1;
Base = HA_DOUBLE;
} else if (auto *VT = dyn_cast<VectorType>(Ty)) {
Members = 1;
switch (Base) {
case HA_FLOAT:
case HA_DOUBLE:
return false;
case HA_VECT64:
return VT->getBitWidth() == 64;
case HA_VECT128:
return VT->getBitWidth() == 128;
case HA_UNKNOWN:
switch (VT->getBitWidth()) {
case 64:
Base = HA_VECT64;
return true;
case 128:
Base = HA_VECT128;
return true;
default:
return false;
}
}
}
return (Members > 0 && Members <= 4);
}
/// Return the correct alignment for the current calling convention.
Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
DataLayout DL) const {
const Align ABITypeAlign(DL.getABITypeAlignment(ArgTy));
if (!ArgTy->isVectorTy())
return ABITypeAlign;
// Avoid over-aligning vector parameters. It would require realigning the
// stack and waste space for no real benefit.
return std::min(ABITypeAlign, DL.getStackAlignment());
}
/// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
/// passing according to AAPCS rules.
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
if (getEffectiveCallingConv(CallConv, isVarArg) !=
CallingConv::ARM_AAPCS_VFP)
return false;
HABaseType Base = HA_UNKNOWN;
uint64_t Members = 0;
bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
return IsHA || IsIntArray;
}
unsigned ARMTargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
// Platforms which do not use SjLj EH may return values in these registers
// via the personality function.
return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
}
unsigned ARMTargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
// Platforms which do not use SjLj EH may return values in these registers
// via the personality function.
return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
}
void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
// Update IsSplitCSR in ARMFunctionInfo.
ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
AFI->setIsSplitCSR(true);
}
void ARMTargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (ARM::GPRRegClass.contains(*I))
RC = &ARM::GPRRegClass;
else if (ARM::DPRRegClass.contains(*I))
RC = &ARM::DPRRegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
Register NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(Entry->getParent()->getFunction().hasFnAttribute(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
MF.getFrameInfo().computeMaxCallFrameSize(MF);
TargetLoweringBase::finalizeLowering(MF);
}