| //===- subzero/src/IceTargetLoweringX8632.h - x86-32 lowering ---*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Declares the TargetLoweringX8632 class, which implements the |
| /// TargetLowering interface for the x86-32 architecture. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICETARGETLOWERINGX8632_H |
| #define SUBZERO_SRC_ICETARGETLOWERINGX8632_H |
| |
| #include "IceAssemblerX8632.h" |
| #include "IceDefs.h" |
| #include "IceInst.h" |
| #include "IceInstX8632.h" |
| #include "IceRegistersX8632.h" |
| #include "IceSwitchLowering.h" |
| #include "IceTargetLoweringX86.h" |
| #include "IceTargetLoweringX86RegClass.h" |
| #include "IceUtils.h" |
| |
| #include <array> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace Ice { |
| namespace X8632 { |
| |
| using namespace ::Ice::X86; |
| |
| constexpr Type WordType = IceType_i32; |
| |
| class BoolFoldingEntry { |
| BoolFoldingEntry(const BoolFoldingEntry &) = delete; |
| |
| public: |
| BoolFoldingEntry() = default; |
| explicit BoolFoldingEntry(Inst *I); |
| BoolFoldingEntry &operator=(const BoolFoldingEntry &) = default; |
| /// Instr is the instruction producing the i1-type variable of interest. |
| Inst *Instr = nullptr; |
| /// IsComplex is the cached result of BoolFolding::hasComplexLowering(Instr). |
| bool IsComplex = false; |
| /// IsLiveOut is initialized conservatively to true, and is set to false when |
| /// we encounter an instruction that ends Var's live range. We disable the |
| /// folding optimization when Var is live beyond this basic block. Note that |
| /// if liveness analysis is not performed (e.g. in Om1 mode), IsLiveOut will |
| /// always be true and the folding optimization will never be performed. |
| bool IsLiveOut = true; |
| // NumUses counts the number of times Var is used as a source operand in the |
| // basic block. If IsComplex is true and there is more than one use of Var, |
| // then the folding optimization is disabled for Var. |
| uint32_t NumUses = 0; |
| }; |
| |
| class BoolFolding { |
| public: |
| enum BoolFoldingProducerKind { |
| PK_None, |
| // TODO(jpp): PK_Icmp32 is no longer meaningful. Rename to PK_IcmpNative. |
| PK_Icmp32, |
| PK_Icmp64, |
| PK_Fcmp, |
| PK_Trunc, |
| PK_Arith // A flag-setting arithmetic instruction. |
| }; |
| |
| /// Currently the actual enum values are not used (other than CK_None), but we |
| /// go ahead and produce them anyway for symmetry with the |
| /// BoolFoldingProducerKind. |
| enum BoolFoldingConsumerKind { CK_None, CK_Br, CK_Select, CK_Sext, CK_Zext }; |
| |
| private: |
| BoolFolding(const BoolFolding &) = delete; |
| BoolFolding &operator=(const BoolFolding &) = delete; |
| |
| public: |
| BoolFolding() = default; |
| static BoolFoldingProducerKind getProducerKind(const Inst *Instr); |
| static BoolFoldingConsumerKind getConsumerKind(const Inst *Instr); |
| static bool hasComplexLowering(const Inst *Instr); |
| static bool isValidFolding(BoolFoldingProducerKind ProducerKind, |
| BoolFoldingConsumerKind ConsumerKind); |
| void init(CfgNode *Node); |
| const Inst *getProducerFor(const Operand *Opnd) const; |
| void dump(const Cfg *Func) const; |
| |
| private: |
| /// Returns true if Producers contains a valid entry for the given VarNum. |
| bool containsValid(SizeT VarNum) const { |
| auto Element = Producers.find(VarNum); |
| return Element != Producers.end() && Element->second.Instr != nullptr; |
| } |
| void setInvalid(SizeT VarNum) { Producers[VarNum].Instr = nullptr; } |
| void invalidateProducersOnStore(const Inst *Instr); |
| /// Producers maps Variable::Number to a BoolFoldingEntry. |
| CfgUnorderedMap<SizeT, BoolFoldingEntry> Producers; |
| }; |
| |
| class TargetX8632 : public TargetX86 { |
| TargetX8632() = delete; |
| TargetX8632(const TargetX8632 &) = delete; |
| TargetX8632 &operator=(const TargetX8632 &) = delete; |
| |
| friend class BoolFolding; |
| |
| public: |
| using BrCond = CondX86::BrCond; |
| using CmppsCond = CondX86::CmppsCond; |
| |
| using SegmentRegisters = X86OperandMem::SegmentRegisters; |
| |
| using InstX86Br = Insts::Br; |
| using InstX86FakeRMW = Insts::FakeRMW; |
| using InstX86Label = Insts::Label; |
| |
| ~TargetX8632() override = default; |
| |
| static void staticInit(GlobalContext *Ctx); |
| static bool shouldBePooled(const Constant *C); |
| static ::Ice::Type getPointerType(); |
| |
| void translateOm1() override; |
| void translateO2() override; |
| void doLoadOpt(); |
| bool doBranchOpt(Inst *I, const CfgNode *NextNode) override; |
| |
| SizeT getNumRegisters() const override { return RegisterSet::Reg_NUM; } |
| |
| Inst *createLoweredMove(Variable *Dest, Variable *SrcVar) override { |
| if (isVectorType(Dest->getType())) { |
| return Insts::Movp::create(Func, Dest, SrcVar); |
| } |
| return Insts::Mov::create(Func, Dest, SrcVar); |
| (void)Dest; |
| (void)SrcVar; |
| return nullptr; |
| } |
| |
| Variable *getPhysicalRegister(RegNumT RegNum, |
| Type Ty = IceType_void) override; |
| const char *getRegName(RegNumT RegNum, Type Ty) const override; |
| static const char *getRegClassName(RegClass C) { |
| auto ClassNum = static_cast<RegClassX86>(C); |
| assert(ClassNum < RCX86_NUM); |
| switch (ClassNum) { |
| default: |
| assert(C < RC_Target); |
| return regClassString(C); |
| case RCX86_Is64To8: |
| return "i64to8"; // 64-bit GPR truncable to i8 |
| case RCX86_Is32To8: |
| return "i32to8"; // 32-bit GPR truncable to i8 |
| case RCX86_Is16To8: |
| return "i16to8"; // 16-bit GPR truncable to i8 |
| case RCX86_IsTrunc8Rcvr: |
| return "i8from"; // 8-bit GPR truncable from wider GPRs |
| case RCX86_IsAhRcvr: |
| return "i8fromah"; // 8-bit GPR that ah can be assigned to |
| } |
| } |
| SmallBitVector getRegisterSet(RegSetMask Include, |
| RegSetMask Exclude) const override; |
| const SmallBitVector & |
| getRegistersForVariable(const Variable *Var) const override { |
| RegClass RC = Var->getRegClass(); |
| assert(static_cast<RegClassX86>(RC) < RCX86_NUM); |
| return TypeToRegisterSet[RC]; |
| } |
| |
| const SmallBitVector & |
| getAllRegistersForVariable(const Variable *Var) const override { |
| RegClass RC = Var->getRegClass(); |
| assert(static_cast<RegClassX86>(RC) < RCX86_NUM); |
| return TypeToRegisterSetUnfiltered[RC]; |
| } |
| |
| const SmallBitVector &getAliasesForRegister(RegNumT Reg) const override { |
| Reg.assertIsValid(); |
| return RegisterAliases[Reg]; |
| } |
| |
| bool hasFramePointer() const override { return IsEbpBasedFrame; } |
| void setHasFramePointer() override { IsEbpBasedFrame = true; } |
| RegNumT getStackReg() const override { return RegX8632::Reg_esp; } |
| RegNumT getFrameReg() const override { return RegX8632::Reg_ebp; } |
| RegNumT getFrameOrStackReg() const override { |
| // If the stack pointer needs to be aligned, then the frame pointer is |
| // unaligned, so always use the stack pointer. |
| if (needsStackPointerAlignment()) |
| return getStackReg(); |
| return IsEbpBasedFrame ? getFrameReg() : getStackReg(); |
| } |
| size_t typeWidthInBytesOnStack(Type Ty) const override { |
| // Round up to the next multiple of WordType bytes. |
| const uint32_t WordSizeInBytes = typeWidthInBytes(WordType); |
| return Utils::applyAlignment(typeWidthInBytes(Ty), WordSizeInBytes); |
| } |
| uint32_t getStackAlignment() const override { |
| return X86_STACK_ALIGNMENT_BYTES; |
| } |
| bool needsStackPointerAlignment() const override { |
| // If the ABI's stack alignment is smaller than the vector size (16 bytes), |
| // use the (realigned) stack pointer for addressing any stack variables. |
| return X86_STACK_ALIGNMENT_BYTES < 16; |
| } |
| void reserveFixedAllocaArea(size_t Size, size_t Align) override { |
| FixedAllocaSizeBytes = Size; |
| assert(llvm::isPowerOf2_32(Align)); |
| FixedAllocaAlignBytes = Align; |
| PrologEmitsFixedAllocas = true; |
| } |
| /// Returns the (negative) offset from ebp/rbp where the fixed Allocas start. |
| int32_t getFrameFixedAllocaOffset() const override { |
| return FixedAllocaSizeBytes - (SpillAreaSizeBytes - maxOutArgsSizeBytes()); |
| } |
| virtual uint32_t maxOutArgsSizeBytes() const override { |
| return MaxOutArgsSizeBytes; |
| } |
| virtual void updateMaxOutArgsSizeBytes(uint32_t Size) { |
| MaxOutArgsSizeBytes = std::max(MaxOutArgsSizeBytes, Size); |
| } |
| |
| bool shouldSplitToVariable64On32(Type Ty) const override { |
| return Ty == IceType_i64; |
| } |
| |
| SizeT getMinJumpTableSize() const override { return 4; } |
| |
| void emitVariable(const Variable *Var) const override; |
| |
| void emit(const ConstantInteger32 *C) const final; |
| void emit(const ConstantInteger64 *C) const final; |
| void emit(const ConstantFloat *C) const final; |
| void emit(const ConstantDouble *C) const final; |
| void emit(const ConstantUndef *C) const final; |
| void emit(const ConstantRelocatable *C) const final; |
| |
| void initNodeForLowering(CfgNode *Node) override; |
| |
| Operand *loOperand(Operand *Operand); |
| Operand *hiOperand(Operand *Operand); |
| |
| void addProlog(CfgNode *Node) override; |
| void finishArgumentLowering(Variable *Arg, Variable *FramePtr, |
| size_t BasicFrameOffset, size_t StackAdjBytes, |
| size_t &InArgsSizeBytes); |
| void addEpilog(CfgNode *Node) override; |
| |
| Operand *legalizeUndef(Operand *From, RegNumT RegNum = RegNumT()); |
| |
| protected: |
| void postLower() override; |
| |
| void lowerAlloca(const InstAlloca *Instr) override; |
| void lowerArguments() override; |
| void lowerArithmetic(const InstArithmetic *Instr) override; |
| void lowerAssign(const InstAssign *Instr) override; |
| void lowerBr(const InstBr *Instr) override; |
| void lowerBreakpoint(const InstBreakpoint *Instr) override; |
| void lowerCall(const InstCall *Instr) override; |
| void lowerCast(const InstCast *Instr) override; |
| void lowerExtractElement(const InstExtractElement *Instr) override; |
| void lowerFcmp(const InstFcmp *Instr) override; |
| void lowerIcmp(const InstIcmp *Instr) override; |
| |
| void lowerIntrinsic(const InstIntrinsic *Instr) override; |
| void lowerInsertElement(const InstInsertElement *Instr) override; |
| void lowerLoad(const InstLoad *Instr) override; |
| void lowerPhi(const InstPhi *Instr) override; |
| void lowerRet(const InstRet *Instr) override; |
| void lowerSelect(const InstSelect *Instr) override; |
| void lowerShuffleVector(const InstShuffleVector *Instr) override; |
| void lowerStore(const InstStore *Instr) override; |
| void lowerSwitch(const InstSwitch *Instr) override; |
| void lowerUnreachable(const InstUnreachable *Instr) override; |
| void lowerOther(const Inst *Instr) override; |
| void lowerRMW(const InstX86FakeRMW *RMW); |
| void prelowerPhis() override; |
| uint32_t getCallStackArgumentsSizeBytes(const CfgVector<Type> &ArgTypes, |
| Type ReturnType); |
| uint32_t getCallStackArgumentsSizeBytes(const InstCall *Instr) override; |
| void genTargetHelperCallFor(Inst *Instr) override; |
| |
| /// OptAddr wraps all the possible operands that an x86 address might have. |
| struct OptAddr { |
| Variable *Base = nullptr; |
| Variable *Index = nullptr; |
| uint16_t Shift = 0; |
| int32_t Offset = 0; |
| ConstantRelocatable *Relocatable = nullptr; |
| }; |
| |
| // Builds information for a canonical address expresion: |
| // <Relocatable + Offset>(Base, Index, Shift) |
| X86OperandMem *computeAddressOpt(const Inst *Instr, Type MemType, |
| Operand *Addr); |
| void doAddressOptOther() override; |
| void doAddressOptLoad() override; |
| void doAddressOptStore() override; |
| void doAddressOptLoadSubVector() override; |
| void doAddressOptStoreSubVector() override; |
| void doMockBoundsCheck(Operand *Opnd) override; |
| |
| /// Naive lowering of cmpxchg. |
| void lowerAtomicCmpxchg(Variable *DestPrev, Operand *Ptr, Operand *Expected, |
| Operand *Desired); |
| /// Attempt a more optimized lowering of cmpxchg. Returns true if optimized. |
| bool tryOptimizedCmpxchgCmpBr(Variable *DestPrev, Operand *Ptr, |
| Operand *Expected, Operand *Desired); |
| void lowerAtomicRMW(Variable *Dest, uint32_t Operation, Operand *Ptr, |
| Operand *Val); |
| void lowerCountZeros(bool Cttz, Type Ty, Variable *Dest, Operand *FirstVal, |
| Operand *SecondVal); |
| /// Load from memory for a given type. |
| void typedLoad(Type Ty, Variable *Dest, Variable *Base, Constant *Offset); |
| /// Store to memory for a given type. |
| void typedStore(Type Ty, Variable *Value, Variable *Base, Constant *Offset); |
| /// Copy memory of given type from Src to Dest using OffsetAmt on both. |
| void copyMemory(Type Ty, Variable *Dest, Variable *Src, int32_t OffsetAmt); |
| /// Replace some calls to memcpy with inline instructions. |
| void lowerMemcpy(Operand *Dest, Operand *Src, Operand *Count); |
| /// Replace some calls to memmove with inline instructions. |
| void lowerMemmove(Operand *Dest, Operand *Src, Operand *Count); |
| /// Replace some calls to memset with inline instructions. |
| void lowerMemset(Operand *Dest, Operand *Val, Operand *Count); |
| |
| /// Lower an indirect jump adding sandboxing when needed. |
| void lowerIndirectJump(Variable *JumpTarget); |
| |
| /// Check the comparison is in [Min,Max]. The flags register will be modified |
| /// with: |
| /// - below equal, if in range |
| /// - above, set if not in range |
| /// The index into the range is returned. |
| Operand *lowerCmpRange(Operand *Comparison, uint64_t Min, uint64_t Max); |
| /// Lowering of a cluster of switch cases. If the case is not matched control |
| /// will pass to the default label provided. If the default label is nullptr |
| /// then control will fall through to the next instruction. DoneCmp should be |
| /// true if the flags contain the result of a comparison with the Comparison. |
| void lowerCaseCluster(const CaseCluster &Case, Operand *Src0, bool DoneCmp, |
| CfgNode *DefaultLabel = nullptr); |
| |
| using LowerBinOp = void (TargetX8632::*)(Variable *, Operand *); |
| void expandAtomicRMWAsCmpxchg(LowerBinOp op_lo, LowerBinOp op_hi, |
| Variable *Dest, Operand *Ptr, Operand *Val); |
| |
| void eliminateNextVectorSextInstruction(Variable *SignExtendedResult); |
| |
| void emitStackProbe(size_t StackSizeBytes); |
| |
| /// Emit just the call instruction (without argument or return variable |
| /// processing), sandboxing if needed. |
| Inst *emitCallToTarget(Operand *CallTarget, Variable *ReturnReg, |
| size_t NumVariadicFpArgs = 0); |
| /// Materialize the moves needed to return a value of the specified type. |
| Variable *moveReturnValueToRegister(Operand *Value, Type ReturnType); |
| |
| /// Emit a jump table to the constant pool. |
| void emitJumpTable(const Cfg *Func, |
| const InstJumpTable *JumpTable) const override; |
| |
| /// Emit a fake use of esp to make sure esp stays alive for the entire |
| /// function. Otherwise some esp adjustments get dead-code eliminated. |
| void keepEspLiveAtExit() { |
| Variable *esp = |
| Func->getTarget()->getPhysicalRegister(getStackReg(), WordType); |
| Context.insert<InstFakeUse>(esp); |
| } |
| |
| /// Operand legalization helpers. To deal with address mode constraints, the |
| /// helpers will create a new Operand and emit instructions that guarantee |
| /// that the Operand kind is one of those indicated by the LegalMask (a |
| /// bitmask of allowed kinds). If the input Operand is known to already meet |
| /// the constraints, it may be simply returned as the result, without creating |
| /// any new instructions or operands. |
| enum OperandLegalization { |
| Legal_None = 0, |
| Legal_Reg = 1 << 0, // physical register, not stack location |
| Legal_Imm = 1 << 1, |
| Legal_Mem = 1 << 2, // includes [eax+4*ecx] as well as [esp+12] |
| Legal_Rematerializable = 1 << 3, |
| Legal_AddrAbs = 1 << 4, // ConstantRelocatable doesn't have to add RebasePtr |
| Legal_Default = ~(Legal_Rematerializable | Legal_AddrAbs) |
| // TODO(stichnot): Figure out whether this default works for x86-64. |
| }; |
| using LegalMask = uint32_t; |
| Operand *legalize(Operand *From, LegalMask Allowed = Legal_Default, |
| RegNumT RegNum = RegNumT()); |
| Variable *legalizeToReg(Operand *From, RegNumT RegNum = RegNumT()); |
| /// Legalize the first source operand for use in the cmp instruction. |
| Operand *legalizeSrc0ForCmp(Operand *Src0, Operand *Src1); |
| /// Turn a pointer operand into a memory operand that can be used by a real |
| /// load/store operation. Legalizes the operand as well. This is a nop if the |
| /// operand is already a legal memory operand. |
| X86OperandMem *formMemoryOperand(Operand *Ptr, Type Ty, |
| bool DoLegalize = true); |
| |
| Variable *makeReg(Type Ty, RegNumT RegNum = RegNumT()); |
| static Type stackSlotType(); |
| |
| static constexpr uint32_t NoSizeLimit = 0; |
| /// Returns the largest type which is equal to or larger than Size bytes. The |
| /// type is suitable for copying memory i.e. a load and store will be a single |
| /// instruction (for example x86 will get f64 not i64). |
| static Type largestTypeInSize(uint32_t Size, uint32_t MaxSize = NoSizeLimit); |
| /// Returns the smallest type which is equal to or larger than Size bytes. If |
| /// one doesn't exist then the largest type smaller than Size bytes is |
| /// returned. The type is suitable for memory copies as described at |
| /// largestTypeInSize. |
| static Type firstTypeThatFitsSize(uint32_t Size, |
| uint32_t MaxSize = NoSizeLimit); |
| |
| Variable *copyToReg8(Operand *Src, RegNumT RegNum = RegNumT()); |
| Variable *copyToReg(Operand *Src, RegNumT RegNum = RegNumT()); |
| |
| /// Returns a register containing all zeros, without affecting the FLAGS |
| /// register, using the best instruction for the type. |
| Variable *makeZeroedRegister(Type Ty, RegNumT RegNum = RegNumT()); |
| |
| /// \name Returns a vector in a register with the given constant entries. |
| /// @{ |
| Variable *makeVectorOfZeros(Type Ty, RegNumT RegNum = RegNumT()); |
| Variable *makeVectorOfOnes(Type Ty, RegNumT RegNum = RegNumT()); |
| Variable *makeVectorOfMinusOnes(Type Ty, RegNumT RegNum = RegNumT()); |
| Variable *makeVectorOfHighOrderBits(Type Ty, RegNumT RegNum = RegNumT()); |
| Variable *makeVectorOfFabsMask(Type Ty, RegNumT RegNum = RegNumT()); |
| /// @} |
| |
| /// Return a memory operand corresponding to a stack allocated Variable. |
| X86OperandMem *getMemoryOperandForStackSlot(Type Ty, Variable *Slot, |
| uint32_t Offset = 0); |
| |
| /// The following are helpers that insert lowered x86 instructions with |
| /// minimal syntactic overhead, so that the lowering code can look as close to |
| /// assembly as practical. |
| void _adc(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Adc>(Dest, Src0); |
| } |
| void _adc_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::AdcRMW>(DestSrc0, Src1); |
| } |
| void _add(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Add>(Dest, Src0); |
| } |
| void _add_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::AddRMW>(DestSrc0, Src1); |
| } |
| void _addps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Addps>(Dest, Src0); |
| } |
| void _addss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Addss>(Dest, Src0); |
| } |
| void _add_sp(Operand *Adjustment); |
| void _and(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::And>(Dest, Src0); |
| } |
| void _andnps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Andnps>(Dest, Src0); |
| } |
| void _andps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Andps>(Dest, Src0); |
| } |
| void _and_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::AndRMW>(DestSrc0, Src1); |
| } |
| void _blendvps(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Blendvps>(Dest, Src0, Src1); |
| } |
| void _br(BrCond Condition, CfgNode *TargetTrue, CfgNode *TargetFalse) { |
| Context.insert<InstX86Br>(TargetTrue, TargetFalse, Condition, |
| InstX86Br::Far); |
| } |
| void _br(CfgNode *Target) { |
| Context.insert<InstX86Br>(Target, InstX86Br::Far); |
| } |
| void _br(BrCond Condition, CfgNode *Target) { |
| Context.insert<InstX86Br>(Target, Condition, InstX86Br::Far); |
| } |
| void _br(BrCond Condition, InstX86Label *Label, |
| InstX86Br::Mode Kind = InstX86Br::Near) { |
| Context.insert<InstX86Br>(Label, Condition, Kind); |
| } |
| void _bsf(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Bsf>(Dest, Src0); |
| } |
| void _bsr(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Bsr>(Dest, Src0); |
| } |
| void _bswap(Variable *SrcDest) { Context.insert<Insts::Bswap>(SrcDest); } |
| void _cbwdq(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Cbwdq>(Dest, Src0); |
| } |
| void _cmov(Variable *Dest, Operand *Src0, BrCond Condition) { |
| Context.insert<Insts::Cmov>(Dest, Src0, Condition); |
| } |
| void _cmp(Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Icmp>(Src0, Src1); |
| } |
| void _cmpps(Variable *Dest, Operand *Src0, CmppsCond Condition) { |
| Context.insert<Insts::Cmpps>(Dest, Src0, Condition); |
| } |
| void _cmpxchg(Operand *DestOrAddr, Variable *Eax, Variable *Desired, |
| bool Locked) { |
| Context.insert<Insts::Cmpxchg>(DestOrAddr, Eax, Desired, Locked); |
| // Mark eax as possibly modified by cmpxchg. |
| Context.insert<InstFakeDef>(Eax, llvm::dyn_cast<Variable>(DestOrAddr)); |
| _set_dest_redefined(); |
| Context.insert<InstFakeUse>(Eax); |
| } |
| void _cmpxchg8b(X86OperandMem *Addr, Variable *Edx, Variable *Eax, |
| Variable *Ecx, Variable *Ebx, bool Locked) { |
| Context.insert<Insts::Cmpxchg8b>(Addr, Edx, Eax, Ecx, Ebx, Locked); |
| // Mark edx, and eax as possibly modified by cmpxchg8b. |
| Context.insert<InstFakeDef>(Edx); |
| _set_dest_redefined(); |
| Context.insert<InstFakeUse>(Edx); |
| Context.insert<InstFakeDef>(Eax); |
| _set_dest_redefined(); |
| Context.insert<InstFakeUse>(Eax); |
| } |
| void _cvt(Variable *Dest, Operand *Src0, Insts::Cvt::CvtVariant Variant) { |
| Context.insert<Insts::Cvt>(Dest, Src0, Variant); |
| } |
| void _round(Variable *Dest, Operand *Src0, Operand *Imm) { |
| Context.insert<Insts::Round>(Dest, Src0, Imm); |
| } |
| void _div(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Div>(Dest, Src0, Src1); |
| } |
| void _divps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Divps>(Dest, Src0); |
| } |
| void _divss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Divss>(Dest, Src0); |
| } |
| void _fld(Operand *Src0) { Context.insert<Insts::Fld>(Src0); } |
| void _fstp(Variable *Dest) { Context.insert<Insts::Fstp>(Dest); } |
| void _idiv(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Idiv>(Dest, Src0, Src1); |
| } |
| void _imul(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Imul>(Dest, Src0); |
| } |
| void _imul_imm(Variable *Dest, Operand *Src0, Constant *Imm) { |
| Context.insert<Insts::ImulImm>(Dest, Src0, Imm); |
| } |
| void _insertps(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Insertps>(Dest, Src0, Src1); |
| } |
| void _int3() { Context.insert<Insts::Int3>(); } |
| void _jmp(Operand *Target) { Context.insert<Insts::Jmp>(Target); } |
| void _lea(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Lea>(Dest, Src0); |
| } |
| void _link_bp(); |
| void _push_reg(RegNumT RegNum); |
| void _pop_reg(RegNumT RegNum); |
| void _mfence() { Context.insert<Insts::Mfence>(); } |
| /// Moves can be used to redefine registers, creating "partial kills" for |
| /// liveness. Mark where moves are used in this way. |
| void _redefined(Inst *MovInst, bool IsRedefinition = true) { |
| if (IsRedefinition) |
| MovInst->setDestRedefined(); |
| } |
| /// If Dest=nullptr is passed in, then a new variable is created, marked as |
| /// infinite register allocation weight, and returned through the in/out Dest |
| /// argument. |
| Insts::Mov *_mov(Variable *&Dest, Operand *Src0, RegNumT RegNum = RegNumT()) { |
| if (Dest == nullptr) |
| Dest = makeReg(Src0->getType(), RegNum); |
| return Context.insert<Insts::Mov>(Dest, Src0); |
| } |
| void _mov_sp(Operand *NewValue); |
| Insts::Movp *_movp(Variable *Dest, Operand *Src0) { |
| return Context.insert<Insts::Movp>(Dest, Src0); |
| } |
| void _movd(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Movd>(Dest, Src0); |
| } |
| void _movq(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Movq>(Dest, Src0); |
| } |
| void _movss(Variable *Dest, Variable *Src0) { |
| Context.insert<Insts::MovssRegs>(Dest, Src0); |
| } |
| void _movsx(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Movsx>(Dest, Src0); |
| } |
| Insts::Movzx *_movzx(Variable *Dest, Operand *Src0) { |
| return Context.insert<Insts::Movzx>(Dest, Src0); |
| } |
| void _maxss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Maxss>(Dest, Src0); |
| } |
| void _minss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Minss>(Dest, Src0); |
| } |
| void _maxps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Maxps>(Dest, Src0); |
| } |
| void _minps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Minps>(Dest, Src0); |
| } |
| void _mul(Variable *Dest, Variable *Src0, Operand *Src1) { |
| Context.insert<Insts::Mul>(Dest, Src0, Src1); |
| } |
| void _mulps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Mulps>(Dest, Src0); |
| } |
| void _mulss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Mulss>(Dest, Src0); |
| } |
| void _neg(Variable *SrcDest) { Context.insert<Insts::Neg>(SrcDest); } |
| void _nop(SizeT Variant) { Context.insert<Insts::Nop>(Variant); } |
| void _or(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Or>(Dest, Src0); |
| } |
| void _orps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Orps>(Dest, Src0); |
| } |
| void _or_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::OrRMW>(DestSrc0, Src1); |
| } |
| void _padd(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Padd>(Dest, Src0); |
| } |
| void _padds(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Padds>(Dest, Src0); |
| } |
| void _paddus(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Paddus>(Dest, Src0); |
| } |
| void _pand(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pand>(Dest, Src0); |
| } |
| void _pandn(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pandn>(Dest, Src0); |
| } |
| void _pblendvb(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Pblendvb>(Dest, Src0, Src1); |
| } |
| void _pcmpeq(Variable *Dest, Operand *Src0, |
| Type ArithmeticTypeOverride = IceType_void) { |
| Context.insert<Insts::Pcmpeq>(Dest, Src0, ArithmeticTypeOverride); |
| } |
| void _pcmpgt(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pcmpgt>(Dest, Src0); |
| } |
| void _pextr(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Pextr>(Dest, Src0, Src1); |
| } |
| void _pinsr(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Pinsr>(Dest, Src0, Src1); |
| } |
| void _pmull(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pmull>(Dest, Src0); |
| } |
| void _pmulhw(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pmulhw>(Dest, Src0); |
| } |
| void _pmulhuw(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pmulhuw>(Dest, Src0); |
| } |
| void _pmaddwd(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pmaddwd>(Dest, Src0); |
| } |
| void _pmuludq(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pmuludq>(Dest, Src0); |
| } |
| void _pop(Variable *Dest) { Context.insert<Insts::Pop>(Dest); } |
| void _por(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Por>(Dest, Src0); |
| } |
| void _punpckl(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Punpckl>(Dest, Src0); |
| } |
| void _punpckh(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Punpckh>(Dest, Src0); |
| } |
| void _packss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Packss>(Dest, Src0); |
| } |
| void _packus(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Packus>(Dest, Src0); |
| } |
| void _pshufb(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pshufb>(Dest, Src0); |
| } |
| void _pshufd(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Pshufd>(Dest, Src0, Src1); |
| } |
| void _psll(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Psll>(Dest, Src0); |
| } |
| void _psra(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Psra>(Dest, Src0); |
| } |
| void _psrl(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Psrl>(Dest, Src0); |
| } |
| void _psub(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Psub>(Dest, Src0); |
| } |
| void _psubs(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Psubs>(Dest, Src0); |
| } |
| void _psubus(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Psubus>(Dest, Src0); |
| } |
| void _push(Operand *Src0) { Context.insert<Insts::Push>(Src0); } |
| void _pxor(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Pxor>(Dest, Src0); |
| } |
| void _ret(Variable *Src0 = nullptr) { Context.insert<Insts::Ret>(Src0); } |
| void _rol(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Rol>(Dest, Src0); |
| } |
| void _round(Variable *Dest, Operand *Src, Constant *Imm) { |
| Context.insert<Insts::Round>(Dest, Src, Imm); |
| } |
| void _sar(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Sar>(Dest, Src0); |
| } |
| void _sbb(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Sbb>(Dest, Src0); |
| } |
| void _sbb_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::SbbRMW>(DestSrc0, Src1); |
| } |
| void _setcc(Variable *Dest, BrCond Condition) { |
| Context.insert<Insts::Setcc>(Dest, Condition); |
| } |
| void _shl(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Shl>(Dest, Src0); |
| } |
| void _shld(Variable *Dest, Variable *Src0, Operand *Src1) { |
| Context.insert<Insts::Shld>(Dest, Src0, Src1); |
| } |
| void _shr(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Shr>(Dest, Src0); |
| } |
| void _shrd(Variable *Dest, Variable *Src0, Operand *Src1) { |
| Context.insert<Insts::Shrd>(Dest, Src0, Src1); |
| } |
| void _shufps(Variable *Dest, Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Shufps>(Dest, Src0, Src1); |
| } |
| void _movmsk(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Movmsk>(Dest, Src0); |
| } |
| void _sqrt(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Sqrt>(Dest, Src0); |
| } |
| void _store(Operand *Value, X86Operand *Mem) { |
| Context.insert<Insts::Store>(Value, Mem); |
| } |
| void _storep(Variable *Value, X86OperandMem *Mem) { |
| Context.insert<Insts::StoreP>(Value, Mem); |
| } |
| void _storeq(Operand *Value, X86OperandMem *Mem) { |
| Context.insert<Insts::StoreQ>(Value, Mem); |
| } |
| void _stored(Operand *Value, X86OperandMem *Mem) { |
| Context.insert<Insts::StoreD>(Value, Mem); |
| } |
| void _sub(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Sub>(Dest, Src0); |
| } |
| void _sub_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::SubRMW>(DestSrc0, Src1); |
| } |
| void _sub_sp(Operand *Adjustment); |
| void _subps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Subps>(Dest, Src0); |
| } |
| void _subss(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Subss>(Dest, Src0); |
| } |
| void _test(Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Test>(Src0, Src1); |
| } |
| void _ucomiss(Operand *Src0, Operand *Src1) { |
| Context.insert<Insts::Ucomiss>(Src0, Src1); |
| } |
| void _ud2() { Context.insert<Insts::UD2>(); } |
| void _unlink_bp(); |
| void _xadd(Operand *Dest, Variable *Src, bool Locked) { |
| Context.insert<Insts::Xadd>(Dest, Src, Locked); |
| // The xadd exchanges Dest and Src (modifying Src). Model that update with |
| // a FakeDef followed by a FakeUse. |
| Context.insert<InstFakeDef>(Src, llvm::dyn_cast<Variable>(Dest)); |
| _set_dest_redefined(); |
| Context.insert<InstFakeUse>(Src); |
| } |
| void _xchg(Operand *Dest, Variable *Src) { |
| Context.insert<Insts::Xchg>(Dest, Src); |
| // The xchg modifies Dest and Src -- model that update with a |
| // FakeDef/FakeUse. |
| Context.insert<InstFakeDef>(Src, llvm::dyn_cast<Variable>(Dest)); |
| _set_dest_redefined(); |
| Context.insert<InstFakeUse>(Src); |
| } |
| void _xor(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Xor>(Dest, Src0); |
| } |
| void _xorps(Variable *Dest, Operand *Src0) { |
| Context.insert<Insts::Xorps>(Dest, Src0); |
| } |
| void _xor_rmw(X86OperandMem *DestSrc0, Operand *Src1) { |
| Context.insert<Insts::XorRMW>(DestSrc0, Src1); |
| } |
| |
| void _iaca_start() { |
| if (!BuildDefs::minimal()) |
| Context.insert<Insts::IacaStart>(); |
| } |
| void _iaca_end() { |
| if (!BuildDefs::minimal()) |
| Context.insert<Insts::IacaEnd>(); |
| } |
| |
| /// This class helps wrap IACA markers around the code generated by the |
| /// current scope. It means you don't need to put an end before each return. |
| class ScopedIacaMark { |
| ScopedIacaMark(const ScopedIacaMark &) = delete; |
| ScopedIacaMark &operator=(const ScopedIacaMark &) = delete; |
| |
| public: |
| ScopedIacaMark(TargetX8632 *Lowering) : Lowering(Lowering) { |
| Lowering->_iaca_start(); |
| } |
| ~ScopedIacaMark() { end(); } |
| void end() { |
| if (!Lowering) |
| return; |
| Lowering->_iaca_end(); |
| Lowering = nullptr; |
| } |
| |
| private: |
| TargetX8632 *Lowering; |
| }; |
| |
| bool optimizeScalarMul(Variable *Dest, Operand *Src0, int32_t Src1); |
| void findRMW(); |
| |
| static uint32_t applyStackAlignment(uint32_t Value); |
| |
| bool IsEbpBasedFrame = false; |
| |
| #if defined(_WIN32) |
| // Windows 32-bit only guarantees 4 byte stack alignment |
| static constexpr uint32_t X86_STACK_ALIGNMENT_BYTES = 4; |
| #else |
| /// Stack alignment guaranteed by the System V ABI. |
| static constexpr uint32_t X86_STACK_ALIGNMENT_BYTES = 16; |
| #endif |
| /// Stack alignment required by the currently lowered function. |
| size_t RequiredStackAlignment = X86_STACK_ALIGNMENT_BYTES; |
| size_t SpillAreaSizeBytes = 0; |
| size_t FixedAllocaSizeBytes = 0; |
| size_t FixedAllocaAlignBytes = 0; |
| bool PrologEmitsFixedAllocas = false; |
| uint32_t MaxOutArgsSizeBytes = 0; |
| static std::array<SmallBitVector, RCX86_NUM> TypeToRegisterSet; |
| static std::array<SmallBitVector, RCX86_NUM> TypeToRegisterSetUnfiltered; |
| static std::array<SmallBitVector, RegisterSet::Reg_NUM> RegisterAliases; |
| SmallBitVector RegsUsed; |
| std::array<VarList, IceType_NUM> PhysicalRegisters; |
| // RebasePtr is a Variable that holds the Rebasing pointer (if any) for the |
| // current sandboxing type. |
| Variable *RebasePtr = nullptr; |
| |
| private: |
| void lowerShift64(InstArithmetic::OpKind Op, Operand *Src0Lo, Operand *Src0Hi, |
| Operand *Src1Lo, Variable *DestLo, Variable *DestHi); |
| |
| /// Emit the code for a combined operation and consumer instruction, or set |
| /// the destination variable of the operation if Consumer == nullptr. |
| void lowerIcmpAndConsumer(const InstIcmp *Icmp, const Inst *Consumer); |
| void lowerFcmpAndConsumer(const InstFcmp *Fcmp, const Inst *Consumer); |
| void lowerArithAndConsumer(const InstArithmetic *Arith, const Inst *Consumer); |
| |
| /// Emit a setcc instruction if Consumer == nullptr; otherwise emit a |
| /// specialized version of Consumer. |
| void setccOrConsumer(BrCond Condition, Variable *Dest, const Inst *Consumer); |
| |
| /// Emit a mov [1|0] instruction if Consumer == nullptr; otherwise emit a |
| /// specialized version of Consumer. |
| void movOrConsumer(bool IcmpResult, Variable *Dest, const Inst *Consumer); |
| |
| /// Emit the code for instructions with a vector type. |
| void lowerIcmpVector(const InstIcmp *Icmp); |
| void lowerFcmpVector(const InstFcmp *Icmp); |
| void lowerSelectVector(const InstSelect *Instr); |
| |
| /// Helpers for select lowering. |
| void lowerSelectMove(Variable *Dest, BrCond Cond, Operand *SrcT, |
| Operand *SrcF); |
| void lowerSelectIntMove(Variable *Dest, BrCond Cond, Operand *SrcT, |
| Operand *SrcF); |
| /// Generic helper to move an arbitrary type from Src to Dest. |
| void lowerMove(Variable *Dest, Operand *Src, bool IsRedefinition); |
| |
| /// Optimizations for idiom recognition. |
| bool lowerOptimizeFcmpSelect(const InstFcmp *Fcmp, const InstSelect *Select); |
| |
| /// x86lowerIcmp64 handles 64-bit icmp lowering. |
| void lowerIcmp64(const InstIcmp *Icmp, const Inst *Consumer); |
| |
| BoolFolding FoldingInfo; |
| |
| /// Helpers for lowering ShuffleVector |
| /// @{ |
| Variable *lowerShuffleVector_AllFromSameSrc(Operand *Src, SizeT Index0, |
| SizeT Index1, SizeT Index2, |
| SizeT Index3); |
| static constexpr SizeT IGNORE_INDEX = 0x80000000u; |
| Variable *lowerShuffleVector_TwoFromSameSrc(Operand *Src0, SizeT Index0, |
| SizeT Index1, Operand *Src1, |
| SizeT Index2, SizeT Index3); |
| static constexpr SizeT UNIFIED_INDEX_0 = 0; |
| static constexpr SizeT UNIFIED_INDEX_1 = 2; |
| Variable *lowerShuffleVector_UnifyFromDifferentSrcs(Operand *Src0, |
| SizeT Index0, |
| Operand *Src1, |
| SizeT Index1); |
| static constexpr SizeT CLEAR_ALL_BITS = 0x80; |
| SizeT PshufbMaskCount = 0; |
| GlobalString lowerShuffleVector_NewMaskName(); |
| ConstantRelocatable *lowerShuffleVector_CreatePshufbMask( |
| int8_t Idx0, int8_t Idx1, int8_t Idx2, int8_t Idx3, int8_t Idx4, |
| int8_t Idx5, int8_t Idx6, int8_t Idx7, int8_t Idx8, int8_t Idx9, |
| int8_t Idx10, int8_t Idx11, int8_t Idx12, int8_t Idx13, int8_t Idx14, |
| int8_t Idx15); |
| void lowerShuffleVector_UsingPshufb(Variable *Dest, Operand *Src0, |
| Operand *Src1, int8_t Idx0, int8_t Idx1, |
| int8_t Idx2, int8_t Idx3, int8_t Idx4, |
| int8_t Idx5, int8_t Idx6, int8_t Idx7, |
| int8_t Idx8, int8_t Idx9, int8_t Idx10, |
| int8_t Idx11, int8_t Idx12, int8_t Idx13, |
| int8_t Idx14, int8_t Idx15); |
| /// @} |
| |
| /// The following table summarizes the logic for lowering the fcmp |
| /// instruction. There is one table entry for each of the 16 conditions. |
| /// |
| /// The first four columns describe the case when the operands are floating |
| /// point scalar values. A comment in lowerFcmp() describes the lowering |
| /// template. In the most general case, there is a compare followed by two |
| /// conditional branches, because some fcmp conditions don't map to a single |
| /// x86 conditional branch. However, in many cases it is possible to swap the |
| /// operands in the comparison and have a single conditional branch. Since |
| /// it's quite tedious to validate the table by hand, good execution tests are |
| /// helpful. |
| /// |
| /// The last two columns describe the case when the operands are vectors of |
| /// floating point values. For most fcmp conditions, there is a clear mapping |
| /// to a single x86 cmpps instruction variant. Some fcmp conditions require |
| /// special code to handle and these are marked in the table with a |
| /// Cmpps_Invalid predicate. |
| /// {@ |
| static const struct TableFcmpType { |
| uint32_t Default; |
| bool SwapScalarOperands; |
| CondX86::BrCond C1, C2; |
| bool SwapVectorOperands; |
| CondX86::CmppsCond Predicate; |
| } TableFcmp[]; |
| static const size_t TableFcmpSize; |
| /// @} |
| |
| /// The following table summarizes the logic for lowering the icmp instruction |
| /// for i32 and narrower types. Each icmp condition has a clear mapping to an |
| /// x86 conditional branch instruction. |
| /// {@ |
| static const struct TableIcmp32Type { |
| CondX86::BrCond Mapping; |
| } TableIcmp32[]; |
| static const size_t TableIcmp32Size; |
| /// @} |
| |
| /// The following table summarizes the logic for lowering the icmp instruction |
| /// for the i64 type. For Eq and Ne, two separate 32-bit comparisons and |
| /// conditional branches are needed. For the other conditions, three separate |
| /// conditional branches are needed. |
| /// {@ |
| static const struct TableIcmp64Type { |
| CondX86::BrCond C1, C2, C3; |
| } TableIcmp64[]; |
| static const size_t TableIcmp64Size; |
| /// @} |
| |
| static CondX86::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { |
| assert(static_cast<size_t>(Cond) < TableIcmp32Size); |
| return TableIcmp32[Cond].Mapping; |
| } |
| |
| public: |
| static std::unique_ptr<::Ice::TargetLowering> create(Cfg *Func) { |
| return makeUnique<TargetX8632>(Func); |
| } |
| |
| std::unique_ptr<::Ice::Assembler> createAssembler() const override { |
| return makeUnique<X8632::AssemblerX8632>(); |
| } |
| |
| private: |
| ENABLE_MAKE_UNIQUE; |
| |
| explicit TargetX8632(Cfg *Func); |
| }; |
| |
| class TargetDataX8632 final : public TargetDataLowering { |
| TargetDataX8632() = delete; |
| TargetDataX8632(const TargetDataX8632 &) = delete; |
| TargetDataX8632 &operator=(const TargetDataX8632 &) = delete; |
| |
| public: |
| ~TargetDataX8632() override = default; |
| |
| static std::unique_ptr<TargetDataLowering> create(GlobalContext *Ctx) { |
| return makeUnique<TargetDataX8632>(Ctx); |
| } |
| |
| void lowerGlobals(const VariableDeclarationList &Vars, |
| const std::string &SectionSuffix) override; |
| void lowerConstants() override; |
| void lowerJumpTables() override; |
| |
| private: |
| ENABLE_MAKE_UNIQUE; |
| |
| explicit TargetDataX8632(GlobalContext *Ctx) : TargetDataLowering(Ctx) {} |
| template <typename T> static void emitConstantPool(GlobalContext *Ctx); |
| }; |
| |
| class TargetHeaderX86 : public TargetHeaderLowering { |
| TargetHeaderX86() = delete; |
| TargetHeaderX86(const TargetHeaderX86 &) = delete; |
| TargetHeaderX86 &operator=(const TargetHeaderX86 &) = delete; |
| |
| public: |
| ~TargetHeaderX86() = default; |
| |
| static std::unique_ptr<TargetHeaderLowering> create(GlobalContext *Ctx) { |
| return makeUnique<TargetHeaderX86>(Ctx); |
| } |
| |
| private: |
| ENABLE_MAKE_UNIQUE; |
| |
| explicit TargetHeaderX86(GlobalContext *Ctx) : TargetHeaderLowering(Ctx) {} |
| }; |
| |
| } // end of namespace X8632 |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICETARGETLOWERINGX8632_H |