| //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains switch inst lowering optimizations and utilities for |
| // codegen, so that it can be used for both SelectionDAG and GlobalISel. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/SwitchLoweringUtils.h" |
| |
| using namespace llvm; |
| using namespace SwitchCG; |
| |
| uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, |
| unsigned First, unsigned Last) { |
| assert(Last >= First); |
| const APInt &LowCase = Clusters[First].Low->getValue(); |
| const APInt &HighCase = Clusters[Last].High->getValue(); |
| assert(LowCase.getBitWidth() == HighCase.getBitWidth()); |
| |
| // FIXME: A range of consecutive cases has 100% density, but only requires one |
| // comparison to lower. We should discriminate against such consecutive ranges |
| // in jump tables. |
| return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; |
| } |
| |
| uint64_t |
| SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, |
| unsigned First, unsigned Last) { |
| assert(Last >= First); |
| assert(TotalCases[Last] >= TotalCases[First]); |
| uint64_t NumCases = |
| TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); |
| return NumCases; |
| } |
| |
| void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, |
| const SwitchInst *SI, |
| MachineBasicBlock *DefaultMBB, |
| ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *BFI) { |
| #ifndef NDEBUG |
| // Clusters must be non-empty, sorted, and only contain Range clusters. |
| assert(!Clusters.empty()); |
| for (CaseCluster &C : Clusters) |
| assert(C.Kind == CC_Range); |
| for (unsigned i = 1, e = Clusters.size(); i < e; ++i) |
| assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); |
| #endif |
| |
| assert(TLI && "TLI not set!"); |
| if (!TLI->areJTsAllowed(SI->getParent()->getParent())) |
| return; |
| |
| const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); |
| const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; |
| |
| // Bail if not enough cases. |
| const int64_t N = Clusters.size(); |
| if (N < 2 || N < MinJumpTableEntries) |
| return; |
| |
| // Accumulated number of cases in each cluster and those prior to it. |
| SmallVector<unsigned, 8> TotalCases(N); |
| for (unsigned i = 0; i < N; ++i) { |
| const APInt &Hi = Clusters[i].High->getValue(); |
| const APInt &Lo = Clusters[i].Low->getValue(); |
| TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; |
| if (i != 0) |
| TotalCases[i] += TotalCases[i - 1]; |
| } |
| |
| uint64_t Range = getJumpTableRange(Clusters,0, N - 1); |
| uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); |
| assert(NumCases < UINT64_MAX / 100); |
| assert(Range >= NumCases); |
| |
| // Cheap case: the whole range may be suitable for jump table. |
| if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { |
| CaseCluster JTCluster; |
| if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { |
| Clusters[0] = JTCluster; |
| Clusters.resize(1); |
| return; |
| } |
| } |
| |
| // The algorithm below is not suitable for -O0. |
| if (TM->getOptLevel() == CodeGenOpt::None) |
| return; |
| |
| // Split Clusters into minimum number of dense partitions. The algorithm uses |
| // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code |
| // for the Case Statement'" (1994), but builds the MinPartitions array in |
| // reverse order to make it easier to reconstruct the partitions in ascending |
| // order. In the choice between two optimal partitionings, it picks the one |
| // which yields more jump tables. |
| |
| // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. |
| SmallVector<unsigned, 8> MinPartitions(N); |
| // LastElement[i] is the last element of the partition starting at i. |
| SmallVector<unsigned, 8> LastElement(N); |
| // PartitionsScore[i] is used to break ties when choosing between two |
| // partitionings resulting in the same number of partitions. |
| SmallVector<unsigned, 8> PartitionsScore(N); |
| // For PartitionsScore, a small number of comparisons is considered as good as |
| // a jump table and a single comparison is considered better than a jump |
| // table. |
| enum PartitionScores : unsigned { |
| NoTable = 0, |
| Table = 1, |
| FewCases = 1, |
| SingleCase = 2 |
| }; |
| |
| // Base case: There is only one way to partition Clusters[N-1]. |
| MinPartitions[N - 1] = 1; |
| LastElement[N - 1] = N - 1; |
| PartitionsScore[N - 1] = PartitionScores::SingleCase; |
| |
| // Note: loop indexes are signed to avoid underflow. |
| for (int64_t i = N - 2; i >= 0; i--) { |
| // Find optimal partitioning of Clusters[i..N-1]. |
| // Baseline: Put Clusters[i] into a partition on its own. |
| MinPartitions[i] = MinPartitions[i + 1] + 1; |
| LastElement[i] = i; |
| PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; |
| |
| // Search for a solution that results in fewer partitions. |
| for (int64_t j = N - 1; j > i; j--) { |
| // Try building a partition from Clusters[i..j]. |
| Range = getJumpTableRange(Clusters, i, j); |
| NumCases = getJumpTableNumCases(TotalCases, i, j); |
| assert(NumCases < UINT64_MAX / 100); |
| assert(Range >= NumCases); |
| |
| if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { |
| unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); |
| unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; |
| int64_t NumEntries = j - i + 1; |
| |
| if (NumEntries == 1) |
| Score += PartitionScores::SingleCase; |
| else if (NumEntries <= SmallNumberOfEntries) |
| Score += PartitionScores::FewCases; |
| else if (NumEntries >= MinJumpTableEntries) |
| Score += PartitionScores::Table; |
| |
| // If this leads to fewer partitions, or to the same number of |
| // partitions with better score, it is a better partitioning. |
| if (NumPartitions < MinPartitions[i] || |
| (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { |
| MinPartitions[i] = NumPartitions; |
| LastElement[i] = j; |
| PartitionsScore[i] = Score; |
| } |
| } |
| } |
| } |
| |
| // Iterate over the partitions, replacing some with jump tables in-place. |
| unsigned DstIndex = 0; |
| for (unsigned First = 0, Last; First < N; First = Last + 1) { |
| Last = LastElement[First]; |
| assert(Last >= First); |
| assert(DstIndex <= First); |
| unsigned NumClusters = Last - First + 1; |
| |
| CaseCluster JTCluster; |
| if (NumClusters >= MinJumpTableEntries && |
| buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { |
| Clusters[DstIndex++] = JTCluster; |
| } else { |
| for (unsigned I = First; I <= Last; ++I) |
| std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); |
| } |
| } |
| Clusters.resize(DstIndex); |
| } |
| |
| bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, |
| unsigned First, unsigned Last, |
| const SwitchInst *SI, |
| MachineBasicBlock *DefaultMBB, |
| CaseCluster &JTCluster) { |
| assert(First <= Last); |
| |
| auto Prob = BranchProbability::getZero(); |
| unsigned NumCmps = 0; |
| std::vector<MachineBasicBlock*> Table; |
| DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; |
| |
| // Initialize probabilities in JTProbs. |
| for (unsigned I = First; I <= Last; ++I) |
| JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); |
| |
| for (unsigned I = First; I <= Last; ++I) { |
| assert(Clusters[I].Kind == CC_Range); |
| Prob += Clusters[I].Prob; |
| const APInt &Low = Clusters[I].Low->getValue(); |
| const APInt &High = Clusters[I].High->getValue(); |
| NumCmps += (Low == High) ? 1 : 2; |
| if (I != First) { |
| // Fill the gap between this and the previous cluster. |
| const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); |
| assert(PreviousHigh.slt(Low)); |
| uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; |
| for (uint64_t J = 0; J < Gap; J++) |
| Table.push_back(DefaultMBB); |
| } |
| uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; |
| for (uint64_t J = 0; J < ClusterSize; ++J) |
| Table.push_back(Clusters[I].MBB); |
| JTProbs[Clusters[I].MBB] += Clusters[I].Prob; |
| } |
| |
| unsigned NumDests = JTProbs.size(); |
| if (TLI->isSuitableForBitTests(NumDests, NumCmps, |
| Clusters[First].Low->getValue(), |
| Clusters[Last].High->getValue(), *DL)) { |
| // Clusters[First..Last] should be lowered as bit tests instead. |
| return false; |
| } |
| |
| // Create the MBB that will load from and jump through the table. |
| // Note: We create it here, but it's not inserted into the function yet. |
| MachineFunction *CurMF = FuncInfo.MF; |
| MachineBasicBlock *JumpTableMBB = |
| CurMF->CreateMachineBasicBlock(SI->getParent()); |
| |
| // Add successors. Note: use table order for determinism. |
| SmallPtrSet<MachineBasicBlock *, 8> Done; |
| for (MachineBasicBlock *Succ : Table) { |
| if (Done.count(Succ)) |
| continue; |
| addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); |
| Done.insert(Succ); |
| } |
| JumpTableMBB->normalizeSuccProbs(); |
| |
| unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) |
| ->createJumpTableIndex(Table); |
| |
| // Set up the jump table info. |
| JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); |
| JumpTableHeader JTH(Clusters[First].Low->getValue(), |
| Clusters[Last].High->getValue(), SI->getCondition(), |
| nullptr, false); |
| JTCases.emplace_back(std::move(JTH), std::move(JT)); |
| |
| JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, |
| JTCases.size() - 1, Prob); |
| return true; |
| } |
| |
| void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, |
| const SwitchInst *SI) { |
| // Partition Clusters into as few subsets as possible, where each subset has a |
| // range that fits in a machine word and has <= 3 unique destinations. |
| |
| #ifndef NDEBUG |
| // Clusters must be sorted and contain Range or JumpTable clusters. |
| assert(!Clusters.empty()); |
| assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); |
| for (const CaseCluster &C : Clusters) |
| assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); |
| for (unsigned i = 1; i < Clusters.size(); ++i) |
| assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); |
| #endif |
| |
| // The algorithm below is not suitable for -O0. |
| if (TM->getOptLevel() == CodeGenOpt::None) |
| return; |
| |
| // If target does not have legal shift left, do not emit bit tests at all. |
| EVT PTy = TLI->getPointerTy(*DL); |
| if (!TLI->isOperationLegal(ISD::SHL, PTy)) |
| return; |
| |
| int BitWidth = PTy.getSizeInBits(); |
| const int64_t N = Clusters.size(); |
| |
| // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. |
| SmallVector<unsigned, 8> MinPartitions(N); |
| // LastElement[i] is the last element of the partition starting at i. |
| SmallVector<unsigned, 8> LastElement(N); |
| |
| // FIXME: This might not be the best algorithm for finding bit test clusters. |
| |
| // Base case: There is only one way to partition Clusters[N-1]. |
| MinPartitions[N - 1] = 1; |
| LastElement[N - 1] = N - 1; |
| |
| // Note: loop indexes are signed to avoid underflow. |
| for (int64_t i = N - 2; i >= 0; --i) { |
| // Find optimal partitioning of Clusters[i..N-1]. |
| // Baseline: Put Clusters[i] into a partition on its own. |
| MinPartitions[i] = MinPartitions[i + 1] + 1; |
| LastElement[i] = i; |
| |
| // Search for a solution that results in fewer partitions. |
| // Note: the search is limited by BitWidth, reducing time complexity. |
| for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { |
| // Try building a partition from Clusters[i..j]. |
| |
| // Check the range. |
| if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), |
| Clusters[j].High->getValue(), *DL)) |
| continue; |
| |
| // Check nbr of destinations and cluster types. |
| // FIXME: This works, but doesn't seem very efficient. |
| bool RangesOnly = true; |
| BitVector Dests(FuncInfo.MF->getNumBlockIDs()); |
| for (int64_t k = i; k <= j; k++) { |
| if (Clusters[k].Kind != CC_Range) { |
| RangesOnly = false; |
| break; |
| } |
| Dests.set(Clusters[k].MBB->getNumber()); |
| } |
| if (!RangesOnly || Dests.count() > 3) |
| break; |
| |
| // Check if it's a better partition. |
| unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); |
| if (NumPartitions < MinPartitions[i]) { |
| // Found a better partition. |
| MinPartitions[i] = NumPartitions; |
| LastElement[i] = j; |
| } |
| } |
| } |
| |
| // Iterate over the partitions, replacing with bit-test clusters in-place. |
| unsigned DstIndex = 0; |
| for (unsigned First = 0, Last; First < N; First = Last + 1) { |
| Last = LastElement[First]; |
| assert(First <= Last); |
| assert(DstIndex <= First); |
| |
| CaseCluster BitTestCluster; |
| if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { |
| Clusters[DstIndex++] = BitTestCluster; |
| } else { |
| size_t NumClusters = Last - First + 1; |
| std::memmove(&Clusters[DstIndex], &Clusters[First], |
| sizeof(Clusters[0]) * NumClusters); |
| DstIndex += NumClusters; |
| } |
| } |
| Clusters.resize(DstIndex); |
| } |
| |
| bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, |
| unsigned First, unsigned Last, |
| const SwitchInst *SI, |
| CaseCluster &BTCluster) { |
| assert(First <= Last); |
| if (First == Last) |
| return false; |
| |
| BitVector Dests(FuncInfo.MF->getNumBlockIDs()); |
| unsigned NumCmps = 0; |
| for (int64_t I = First; I <= Last; ++I) { |
| assert(Clusters[I].Kind == CC_Range); |
| Dests.set(Clusters[I].MBB->getNumber()); |
| NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; |
| } |
| unsigned NumDests = Dests.count(); |
| |
| APInt Low = Clusters[First].Low->getValue(); |
| APInt High = Clusters[Last].High->getValue(); |
| assert(Low.slt(High)); |
| |
| if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) |
| return false; |
| |
| APInt LowBound; |
| APInt CmpRange; |
| |
| const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); |
| assert(TLI->rangeFitsInWord(Low, High, *DL) && |
| "Case range must fit in bit mask!"); |
| |
| // Check if the clusters cover a contiguous range such that no value in the |
| // range will jump to the default statement. |
| bool ContiguousRange = true; |
| for (int64_t I = First + 1; I <= Last; ++I) { |
| if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { |
| ContiguousRange = false; |
| break; |
| } |
| } |
| |
| if (Low.isStrictlyPositive() && High.slt(BitWidth)) { |
| // Optimize the case where all the case values fit in a word without having |
| // to subtract minValue. In this case, we can optimize away the subtraction. |
| LowBound = APInt::getNullValue(Low.getBitWidth()); |
| CmpRange = High; |
| ContiguousRange = false; |
| } else { |
| LowBound = Low; |
| CmpRange = High - Low; |
| } |
| |
| CaseBitsVector CBV; |
| auto TotalProb = BranchProbability::getZero(); |
| for (unsigned i = First; i <= Last; ++i) { |
| // Find the CaseBits for this destination. |
| unsigned j; |
| for (j = 0; j < CBV.size(); ++j) |
| if (CBV[j].BB == Clusters[i].MBB) |
| break; |
| if (j == CBV.size()) |
| CBV.push_back( |
| CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); |
| CaseBits *CB = &CBV[j]; |
| |
| // Update Mask, Bits and ExtraProb. |
| uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); |
| uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); |
| assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); |
| CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; |
| CB->Bits += Hi - Lo + 1; |
| CB->ExtraProb += Clusters[i].Prob; |
| TotalProb += Clusters[i].Prob; |
| } |
| |
| BitTestInfo BTI; |
| llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { |
| // Sort by probability first, number of bits second, bit mask third. |
| if (a.ExtraProb != b.ExtraProb) |
| return a.ExtraProb > b.ExtraProb; |
| if (a.Bits != b.Bits) |
| return a.Bits > b.Bits; |
| return a.Mask < b.Mask; |
| }); |
| |
| for (auto &CB : CBV) { |
| MachineBasicBlock *BitTestBB = |
| FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); |
| BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); |
| } |
| BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), |
| SI->getCondition(), -1U, MVT::Other, false, |
| ContiguousRange, nullptr, nullptr, std::move(BTI), |
| TotalProb); |
| |
| BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, |
| BitTestCases.size() - 1, TotalProb); |
| return true; |
| } |
| |
| void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { |
| #ifndef NDEBUG |
| for (const CaseCluster &CC : Clusters) |
| assert(CC.Low == CC.High && "Input clusters must be single-case"); |
| #endif |
| |
| llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { |
| return a.Low->getValue().slt(b.Low->getValue()); |
| }); |
| |
| // Merge adjacent clusters with the same destination. |
| const unsigned N = Clusters.size(); |
| unsigned DstIndex = 0; |
| for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { |
| CaseCluster &CC = Clusters[SrcIndex]; |
| const ConstantInt *CaseVal = CC.Low; |
| MachineBasicBlock *Succ = CC.MBB; |
| |
| if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && |
| (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { |
| // If this case has the same successor and is a neighbour, merge it into |
| // the previous cluster. |
| Clusters[DstIndex - 1].High = CaseVal; |
| Clusters[DstIndex - 1].Prob += CC.Prob; |
| } else { |
| std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], |
| sizeof(Clusters[SrcIndex])); |
| } |
| } |
| Clusters.resize(DstIndex); |
| } |