| //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements routines for translating from LLVM IR into SelectionDAG IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SelectionDAGBuilder.h" |
| #include "SDNodeDbgValue.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/SwiftErrorValueTracking.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/CodeGen/WinEHFuncInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <limits> |
| #include <numeric> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| using namespace SwitchCG; |
| |
| #define DEBUG_TYPE "isel" |
| |
| /// LimitFloatPrecision - Generate low-precision inline sequences for |
| /// some float libcalls (6, 8 or 12 bits). |
| static unsigned LimitFloatPrecision; |
| |
| static cl::opt<unsigned, true> |
| LimitFPPrecision("limit-float-precision", |
| cl::desc("Generate low-precision inline sequences " |
| "for some float libcalls"), |
| cl::location(LimitFloatPrecision), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<unsigned> SwitchPeelThreshold( |
| "switch-peel-threshold", cl::Hidden, cl::init(66), |
| cl::desc("Set the case probability threshold for peeling the case from a " |
| "switch statement. A value greater than 100 will void this " |
| "optimization")); |
| |
| // Limit the width of DAG chains. This is important in general to prevent |
| // DAG-based analysis from blowing up. For example, alias analysis and |
| // load clustering may not complete in reasonable time. It is difficult to |
| // recognize and avoid this situation within each individual analysis, and |
| // future analyses are likely to have the same behavior. Limiting DAG width is |
| // the safe approach and will be especially important with global DAGs. |
| // |
| // MaxParallelChains default is arbitrarily high to avoid affecting |
| // optimization, but could be lowered to improve compile time. Any ld-ld-st-st |
| // sequence over this should have been converted to llvm.memcpy by the |
| // frontend. It is easy to induce this behavior with .ll code such as: |
| // %buffer = alloca [4096 x i8] |
| // %data = load [4096 x i8]* %argPtr |
| // store [4096 x i8] %data, [4096 x i8]* %buffer |
| static const unsigned MaxParallelChains = 64; |
| |
| // Return the calling convention if the Value passed requires ABI mangling as it |
| // is a parameter to a function or a return value from a function which is not |
| // an intrinsic. |
| static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { |
| if (auto *R = dyn_cast<ReturnInst>(V)) |
| return R->getParent()->getParent()->getCallingConv(); |
| |
| if (auto *CI = dyn_cast<CallInst>(V)) { |
| const bool IsInlineAsm = CI->isInlineAsm(); |
| const bool IsIndirectFunctionCall = |
| !IsInlineAsm && !CI->getCalledFunction(); |
| |
| // It is possible that the call instruction is an inline asm statement or an |
| // indirect function call in which case the return value of |
| // getCalledFunction() would be nullptr. |
| const bool IsInstrinsicCall = |
| !IsInlineAsm && !IsIndirectFunctionCall && |
| CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; |
| |
| if (!IsInlineAsm && !IsInstrinsicCall) |
| return CI->getCallingConv(); |
| } |
| |
| return None; |
| } |
| |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, |
| const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, const Value *V, |
| Optional<CallingConv::ID> CC); |
| |
| /// getCopyFromParts - Create a value that contains the specified legal parts |
| /// combined into the value they represent. If the parts combine to a type |
| /// larger than ValueVT then AssertOp can be used to specify whether the extra |
| /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT |
| /// (ISD::AssertSext). |
| static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, |
| const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, const Value *V, |
| Optional<CallingConv::ID> CC = None, |
| Optional<ISD::NodeType> AssertOp = None) { |
| if (ValueVT.isVector()) |
| return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, |
| CC); |
| |
| assert(NumParts > 0 && "No parts to assemble!"); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Val = Parts[0]; |
| |
| if (NumParts > 1) { |
| // Assemble the value from multiple parts. |
| if (ValueVT.isInteger()) { |
| unsigned PartBits = PartVT.getSizeInBits(); |
| unsigned ValueBits = ValueVT.getSizeInBits(); |
| |
| // Assemble the power of 2 part. |
| unsigned RoundParts = |
| (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; |
| unsigned RoundBits = PartBits * RoundParts; |
| EVT RoundVT = RoundBits == ValueBits ? |
| ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); |
| SDValue Lo, Hi; |
| |
| EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); |
| |
| if (RoundParts > 2) { |
| Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, |
| PartVT, HalfVT, V); |
| Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, |
| RoundParts / 2, PartVT, HalfVT, V); |
| } else { |
| Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); |
| Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); |
| } |
| |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); |
| |
| if (RoundParts < NumParts) { |
| // Assemble the trailing non-power-of-2 part. |
| unsigned OddParts = NumParts - RoundParts; |
| EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); |
| Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, |
| OddVT, V, CC); |
| |
| // Combine the round and odd parts. |
| Lo = Val; |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(Lo, Hi); |
| EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); |
| Hi = |
| DAG.getNode(ISD::SHL, DL, TotalVT, Hi, |
| DAG.getConstant(Lo.getValueSizeInBits(), DL, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); |
| Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); |
| } |
| } else if (PartVT.isFloatingPoint()) { |
| // FP split into multiple FP parts (for ppcf128) |
| assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && |
| "Unexpected split"); |
| SDValue Lo, Hi; |
| Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); |
| Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); |
| if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) |
| std::swap(Lo, Hi); |
| Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); |
| } else { |
| // FP split into integer parts (soft fp) |
| assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && |
| !PartVT.isVector() && "Unexpected split"); |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
| Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); |
| } |
| } |
| |
| // There is now one part, held in Val. Correct it to match ValueVT. |
| // PartEVT is the type of the register class that holds the value. |
| // ValueVT is the type of the inline asm operation. |
| EVT PartEVT = Val.getValueType(); |
| |
| if (PartEVT == ValueVT) |
| return Val; |
| |
| if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && |
| ValueVT.bitsLT(PartEVT)) { |
| // For an FP value in an integer part, we need to truncate to the right |
| // width first. |
| PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); |
| } |
| |
| // Handle types that have the same size. |
| if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| |
| // Handle types with different sizes. |
| if (PartEVT.isInteger() && ValueVT.isInteger()) { |
| if (ValueVT.bitsLT(PartEVT)) { |
| // For a truncate, see if we have any information to |
| // indicate whether the truncated bits will always be |
| // zero or sign-extension. |
| if (AssertOp.hasValue()) |
| Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, |
| DAG.getValueType(ValueVT)); |
| return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| } |
| return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); |
| } |
| |
| if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
| // FP_ROUND's are always exact here. |
| if (ValueVT.bitsLT(Val.getValueType())) |
| return DAG.getNode( |
| ISD::FP_ROUND, DL, ValueVT, Val, |
| DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); |
| |
| return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); |
| } |
| |
| // Handle MMX to a narrower integer type by bitcasting MMX to integer and |
| // then truncating. |
| if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && |
| ValueVT.bitsLT(PartEVT)) { |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); |
| return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| } |
| |
| report_fatal_error("Unknown mismatch in getCopyFromParts!"); |
| } |
| |
| static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, |
| const Twine &ErrMsg) { |
| const Instruction *I = dyn_cast_or_null<Instruction>(V); |
| if (!V) |
| return Ctx.emitError(ErrMsg); |
| |
| const char *AsmError = ", possible invalid constraint for vector type"; |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (isa<InlineAsm>(CI->getCalledValue())) |
| return Ctx.emitError(I, ErrMsg + AsmError); |
| |
| return Ctx.emitError(I, ErrMsg); |
| } |
| |
| /// getCopyFromPartsVector - Create a value that contains the specified legal |
| /// parts combined into the value they represent. If the parts combine to a |
| /// type larger than ValueVT then AssertOp can be used to specify whether the |
| /// extra bits are known to be zero (ISD::AssertZext) or sign extended from |
| /// ValueVT (ISD::AssertSext). |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, |
| const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, const Value *V, |
| Optional<CallingConv::ID> CallConv) { |
| assert(ValueVT.isVector() && "Not a vector value"); |
| assert(NumParts > 0 && "No parts to assemble!"); |
| const bool IsABIRegCopy = CallConv.hasValue(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Val = Parts[0]; |
| |
| // Handle a multi-element vector. |
| if (NumParts > 1) { |
| EVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegs; |
| |
| if (IsABIRegCopy) { |
| NumRegs = TLI.getVectorTypeBreakdownForCallingConv( |
| *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, |
| NumIntermediates, RegisterVT); |
| } else { |
| NumRegs = |
| TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, |
| NumIntermediates, RegisterVT); |
| } |
| |
| assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); |
| NumParts = NumRegs; // Silence a compiler warning. |
| assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); |
| assert(RegisterVT.getSizeInBits() == |
| Parts[0].getSimpleValueType().getSizeInBits() && |
| "Part type sizes don't match!"); |
| |
| // Assemble the parts into intermediate operands. |
| SmallVector<SDValue, 8> Ops(NumIntermediates); |
| if (NumIntermediates == NumParts) { |
| // If the register was not expanded, truncate or copy the value, |
| // as appropriate. |
| for (unsigned i = 0; i != NumParts; ++i) |
| Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, |
| PartVT, IntermediateVT, V); |
| } else if (NumParts > 0) { |
| // If the intermediate type was expanded, build the intermediate |
| // operands from the parts. |
| assert(NumParts % NumIntermediates == 0 && |
| "Must expand into a divisible number of parts!"); |
| unsigned Factor = NumParts / NumIntermediates; |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, |
| PartVT, IntermediateVT, V); |
| } |
| |
| // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the |
| // intermediate operands. |
| EVT BuiltVectorTy = |
| EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), |
| (IntermediateVT.isVector() |
| ? IntermediateVT.getVectorNumElements() * NumParts |
| : NumIntermediates)); |
| Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS |
| : ISD::BUILD_VECTOR, |
| DL, BuiltVectorTy, Ops); |
| } |
| |
| // There is now one part, held in Val. Correct it to match ValueVT. |
| EVT PartEVT = Val.getValueType(); |
| |
| if (PartEVT == ValueVT) |
| return Val; |
| |
| if (PartEVT.isVector()) { |
| // If the element type of the source/dest vectors are the same, but the |
| // parts vector has more elements than the value vector, then we have a |
| // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the |
| // elements we want. |
| if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { |
| assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && |
| "Cannot narrow, it would be a lossy transformation"); |
| return DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, |
| DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| } |
| |
| // Vector/Vector bitcast. |
| if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| |
| assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && |
| "Cannot handle this kind of promotion"); |
| // Promoted vector extract |
| return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); |
| |
| } |
| |
| // Trivial bitcast if the types are the same size and the destination |
| // vector type is legal. |
| if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && |
| TLI.isTypeLegal(ValueVT)) |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| |
| if (ValueVT.getVectorNumElements() != 1) { |
| // Certain ABIs require that vectors are passed as integers. For vectors |
| // are the same size, this is an obvious bitcast. |
| if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { |
| // Bitcast Val back the original type and extract the corresponding |
| // vector we want. |
| unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); |
| EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), |
| ValueVT.getVectorElementType(), Elts); |
| Val = DAG.getBitcast(WiderVecType, Val); |
| return DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, |
| DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| } |
| |
| diagnosePossiblyInvalidConstraint( |
| *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); |
| return DAG.getUNDEF(ValueVT); |
| } |
| |
| // Handle cases such as i8 -> <1 x i1> |
| EVT ValueSVT = ValueVT.getVectorElementType(); |
| if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) |
| Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) |
| : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); |
| |
| return DAG.getBuildVector(ValueVT, DL, Val); |
| } |
| |
| static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, |
| SDValue Val, SDValue *Parts, unsigned NumParts, |
| MVT PartVT, const Value *V, |
| Optional<CallingConv::ID> CallConv); |
| |
| /// getCopyToParts - Create a series of nodes that contain the specified value |
| /// split into legal parts. If the parts contain more bits than Val, then, for |
| /// integers, ExtendKind can be used to specify how to generate the extra bits. |
| static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, |
| SDValue *Parts, unsigned NumParts, MVT PartVT, |
| const Value *V, |
| Optional<CallingConv::ID> CallConv = None, |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { |
| EVT ValueVT = Val.getValueType(); |
| |
| // Handle the vector case separately. |
| if (ValueVT.isVector()) |
| return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, |
| CallConv); |
| |
| unsigned PartBits = PartVT.getSizeInBits(); |
| unsigned OrigNumParts = NumParts; |
| assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && |
| "Copying to an illegal type!"); |
| |
| if (NumParts == 0) |
| return; |
| |
| assert(!ValueVT.isVector() && "Vector case handled elsewhere"); |
| EVT PartEVT = PartVT; |
| if (PartEVT == ValueVT) { |
| assert(NumParts == 1 && "No-op copy with multiple parts!"); |
| Parts[0] = Val; |
| return; |
| } |
| |
| if (NumParts * PartBits > ValueVT.getSizeInBits()) { |
| // If the parts cover more bits than the value has, promote the value. |
| if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
| assert(NumParts == 1 && "Do not know what to promote to!"); |
| Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); |
| } else { |
| if (ValueVT.isFloatingPoint()) { |
| // FP values need to be bitcast, then extended if they are being put |
| // into a larger container. |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
| Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| } |
| assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && |
| ValueVT.isInteger() && |
| "Unknown mismatch!"); |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); |
| if (PartVT == MVT::x86mmx) |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } |
| } else if (PartBits == ValueVT.getSizeInBits()) { |
| // Different types of the same size. |
| assert(NumParts == 1 && PartEVT != ValueVT); |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { |
| // If the parts cover less bits than value has, truncate the value. |
| assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && |
| ValueVT.isInteger() && |
| "Unknown mismatch!"); |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| if (PartVT == MVT::x86mmx) |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } |
| |
| // The value may have changed - recompute ValueVT. |
| ValueVT = Val.getValueType(); |
| assert(NumParts * PartBits == ValueVT.getSizeInBits() && |
| "Failed to tile the value with PartVT!"); |
| |
| if (NumParts == 1) { |
| if (PartEVT != ValueVT) { |
| diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, |
| "scalar-to-vector conversion failed"); |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } |
| |
| Parts[0] = Val; |
| return; |
| } |
| |
| // Expand the value into multiple parts. |
| if (NumParts & (NumParts - 1)) { |
| // The number of parts is not a power of 2. Split off and copy the tail. |
| assert(PartVT.isInteger() && ValueVT.isInteger() && |
| "Do not know what to expand to!"); |
| unsigned RoundParts = 1 << Log2_32(NumParts); |
| unsigned RoundBits = RoundParts * PartBits; |
| unsigned OddParts = NumParts - RoundParts; |
| SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, |
| DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); |
| |
| getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, |
| CallConv); |
| |
| if (DAG.getDataLayout().isBigEndian()) |
| // The odd parts were reversed by getCopyToParts - unreverse them. |
| std::reverse(Parts + RoundParts, Parts + NumParts); |
| |
| NumParts = RoundParts; |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| } |
| |
| // The number of parts is a power of 2. Repeatedly bisect the value using |
| // EXTRACT_ELEMENT. |
| Parts[0] = DAG.getNode(ISD::BITCAST, DL, |
| EVT::getIntegerVT(*DAG.getContext(), |
| ValueVT.getSizeInBits()), |
| Val); |
| |
| for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { |
| for (unsigned i = 0; i < NumParts; i += StepSize) { |
| unsigned ThisBits = StepSize * PartBits / 2; |
| EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); |
| SDValue &Part0 = Parts[i]; |
| SDValue &Part1 = Parts[i+StepSize/2]; |
| |
| Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, |
| ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); |
| Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, |
| ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); |
| |
| if (ThisBits == PartBits && ThisVT != PartVT) { |
| Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); |
| Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); |
| } |
| } |
| } |
| |
| if (DAG.getDataLayout().isBigEndian()) |
| std::reverse(Parts, Parts + OrigNumParts); |
| } |
| |
| static SDValue widenVectorToPartType(SelectionDAG &DAG, |
| SDValue Val, const SDLoc &DL, EVT PartVT) { |
| if (!PartVT.isVector()) |
| return SDValue(); |
| |
| EVT ValueVT = Val.getValueType(); |
| unsigned PartNumElts = PartVT.getVectorNumElements(); |
| unsigned ValueNumElts = ValueVT.getVectorNumElements(); |
| if (PartNumElts > ValueNumElts && |
| PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { |
| EVT ElementVT = PartVT.getVectorElementType(); |
| // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in |
| // undef elements. |
| SmallVector<SDValue, 16> Ops; |
| DAG.ExtractVectorElements(Val, Ops); |
| SDValue EltUndef = DAG.getUNDEF(ElementVT); |
| for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) |
| Ops.push_back(EltUndef); |
| |
| // FIXME: Use CONCAT for 2x -> 4x. |
| return DAG.getBuildVector(PartVT, DL, Ops); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// getCopyToPartsVector - Create a series of nodes that contain the specified |
| /// value split into legal parts. |
| static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, |
| SDValue Val, SDValue *Parts, unsigned NumParts, |
| MVT PartVT, const Value *V, |
| Optional<CallingConv::ID> CallConv) { |
| EVT ValueVT = Val.getValueType(); |
| assert(ValueVT.isVector() && "Not a vector"); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const bool IsABIRegCopy = CallConv.hasValue(); |
| |
| if (NumParts == 1) { |
| EVT PartEVT = PartVT; |
| if (PartEVT == ValueVT) { |
| // Nothing to do. |
| } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { |
| // Bitconvert vector->vector case. |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { |
| Val = Widened; |
| } else if (PartVT.isVector() && |
| PartEVT.getVectorElementType().bitsGE( |
| ValueVT.getVectorElementType()) && |
| PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { |
| |
| // Promoted vector extract |
| Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); |
| } else { |
| if (ValueVT.getVectorNumElements() == 1) { |
| Val = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, |
| DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| } else { |
| assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && |
| "lossy conversion of vector to scalar type"); |
| EVT IntermediateType = |
| EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
| Val = DAG.getBitcast(IntermediateType, Val); |
| Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); |
| } |
| } |
| |
| assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); |
| Parts[0] = Val; |
| return; |
| } |
| |
| // Handle a multi-element vector. |
| EVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegs; |
| if (IsABIRegCopy) { |
| NumRegs = TLI.getVectorTypeBreakdownForCallingConv( |
| *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, |
| NumIntermediates, RegisterVT); |
| } else { |
| NumRegs = |
| TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, |
| NumIntermediates, RegisterVT); |
| } |
| |
| assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); |
| NumParts = NumRegs; // Silence a compiler warning. |
| assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); |
| |
| unsigned IntermediateNumElts = IntermediateVT.isVector() ? |
| IntermediateVT.getVectorNumElements() : 1; |
| |
| // Convert the vector to the appropriate type if necessary. |
| unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; |
| |
| EVT BuiltVectorTy = EVT::getVectorVT( |
| *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); |
| MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| if (ValueVT != BuiltVectorTy) { |
| if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) |
| Val = Widened; |
| |
| Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); |
| } |
| |
| // Split the vector into intermediate operands. |
| SmallVector<SDValue, 8> Ops(NumIntermediates); |
| for (unsigned i = 0; i != NumIntermediates; ++i) { |
| if (IntermediateVT.isVector()) { |
| Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, |
| DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); |
| } else { |
| Ops[i] = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, |
| DAG.getConstant(i, DL, IdxVT)); |
| } |
| } |
| |
| // Split the intermediate operands into legal parts. |
| if (NumParts == NumIntermediates) { |
| // If the register was not expanded, promote or copy the value, |
| // as appropriate. |
| for (unsigned i = 0; i != NumParts; ++i) |
| getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); |
| } else if (NumParts > 0) { |
| // If the intermediate type was expanded, split each the value into |
| // legal parts. |
| assert(NumIntermediates != 0 && "division by zero"); |
| assert(NumParts % NumIntermediates == 0 && |
| "Must expand into a divisible number of parts!"); |
| unsigned Factor = NumParts / NumIntermediates; |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, |
| CallConv); |
| } |
| } |
| |
| RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, |
| EVT valuevt, Optional<CallingConv::ID> CC) |
| : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), |
| RegCount(1, regs.size()), CallConv(CC) {} |
| |
| RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, |
| const DataLayout &DL, unsigned Reg, Type *Ty, |
| Optional<CallingConv::ID> CC) { |
| ComputeValueVTs(TLI, DL, Ty, ValueVTs); |
| |
| CallConv = CC; |
| |
| for (EVT ValueVT : ValueVTs) { |
| unsigned NumRegs = |
| isABIMangled() |
| ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) |
| : TLI.getNumRegisters(Context, ValueVT); |
| MVT RegisterVT = |
| isABIMangled() |
| ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) |
| : TLI.getRegisterType(Context, ValueVT); |
| for (unsigned i = 0; i != NumRegs; ++i) |
| Regs.push_back(Reg + i); |
| RegVTs.push_back(RegisterVT); |
| RegCount.push_back(NumRegs); |
| Reg += NumRegs; |
| } |
| } |
| |
| SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, |
| FunctionLoweringInfo &FuncInfo, |
| const SDLoc &dl, SDValue &Chain, |
| SDValue *Flag, const Value *V) const { |
| // A Value with type {} or [0 x %t] needs no registers. |
| if (ValueVTs.empty()) |
| return SDValue(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Assemble the legal parts into the final values. |
| SmallVector<SDValue, 4> Values(ValueVTs.size()); |
| SmallVector<SDValue, 8> Parts; |
| for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| // Copy the legal parts from the registers. |
| EVT ValueVT = ValueVTs[Value]; |
| unsigned NumRegs = RegCount[Value]; |
| MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( |
| *DAG.getContext(), |
| CallConv.getValue(), RegVTs[Value]) |
| : RegVTs[Value]; |
| |
| Parts.resize(NumRegs); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| SDValue P; |
| if (!Flag) { |
| P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); |
| } else { |
| P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); |
| *Flag = P.getValue(2); |
| } |
| |
| Chain = P.getValue(1); |
| Parts[i] = P; |
| |
| // If the source register was virtual and if we know something about it, |
| // add an assert node. |
| if (!Register::isVirtualRegister(Regs[Part + i]) || |
| !RegisterVT.isInteger()) |
| continue; |
| |
| const FunctionLoweringInfo::LiveOutInfo *LOI = |
| FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); |
| if (!LOI) |
| continue; |
| |
| unsigned RegSize = RegisterVT.getScalarSizeInBits(); |
| unsigned NumSignBits = LOI->NumSignBits; |
| unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); |
| |
| if (NumZeroBits == RegSize) { |
| // The current value is a zero. |
| // Explicitly express that as it would be easier for |
| // optimizations to kick in. |
| Parts[i] = DAG.getConstant(0, dl, RegisterVT); |
| continue; |
| } |
| |
| // FIXME: We capture more information than the dag can represent. For |
| // now, just use the tightest assertzext/assertsext possible. |
| bool isSExt; |
| EVT FromVT(MVT::Other); |
| if (NumZeroBits) { |
| FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); |
| isSExt = false; |
| } else if (NumSignBits > 1) { |
| FromVT = |
| EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); |
| isSExt = true; |
| } else { |
| continue; |
| } |
| // Add an assertion node. |
| assert(FromVT != MVT::Other); |
| Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, |
| RegisterVT, P, DAG.getValueType(FromVT)); |
| } |
| |
| Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, |
| RegisterVT, ValueVT, V, CallConv); |
| Part += NumRegs; |
| Parts.clear(); |
| } |
| |
| return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); |
| } |
| |
| void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue &Chain, SDValue *Flag, |
| const Value *V, |
| ISD::NodeType PreferredExtendType) const { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| ISD::NodeType ExtendKind = PreferredExtendType; |
| |
| // Get the list of the values's legal parts. |
| unsigned NumRegs = Regs.size(); |
| SmallVector<SDValue, 8> Parts(NumRegs); |
| for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| unsigned NumParts = RegCount[Value]; |
| |
| MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( |
| *DAG.getContext(), |
| CallConv.getValue(), RegVTs[Value]) |
| : RegVTs[Value]; |
| |
| if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], |
| NumParts, RegisterVT, V, CallConv, ExtendKind); |
| Part += NumParts; |
| } |
| |
| // Copy the parts into the registers. |
| SmallVector<SDValue, 8> Chains(NumRegs); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| SDValue Part; |
| if (!Flag) { |
| Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); |
| } else { |
| Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); |
| *Flag = Part.getValue(1); |
| } |
| |
| Chains[i] = Part.getValue(0); |
| } |
| |
| if (NumRegs == 1 || Flag) |
| // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is |
| // flagged to it. That is the CopyToReg nodes and the user are considered |
| // a single scheduling unit. If we create a TokenFactor and return it as |
| // chain, then the TokenFactor is both a predecessor (operand) of the |
| // user as well as a successor (the TF operands are flagged to the user). |
| // c1, f1 = CopyToReg |
| // c2, f2 = CopyToReg |
| // c3 = TokenFactor c1, c2 |
| // ... |
| // = op c3, ..., f2 |
| Chain = Chains[NumRegs-1]; |
| else |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); |
| } |
| |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, |
| unsigned MatchingIdx, const SDLoc &dl, |
| SelectionDAG &DAG, |
| std::vector<SDValue> &Ops) const { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); |
| if (HasMatching) |
| Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); |
| else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { |
| // Put the register class of the virtual registers in the flag word. That |
| // way, later passes can recompute register class constraints for inline |
| // assembly as well as normal instructions. |
| // Don't do this for tied operands that can use the regclass information |
| // from the def. |
| const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); |
| Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); |
| } |
| |
| SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); |
| Ops.push_back(Res); |
| |
| if (Code == InlineAsm::Kind_Clobber) { |
| // Clobbers should always have a 1:1 mapping with registers, and may |
| // reference registers that have illegal (e.g. vector) types. Hence, we |
| // shouldn't try to apply any sort of splitting logic to them. |
| assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && |
| "No 1:1 mapping from clobbers to regs?"); |
| unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); |
| (void)SP; |
| for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { |
| Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); |
| assert( |
| (Regs[I] != SP || |
| DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && |
| "If we clobbered the stack pointer, MFI should know about it."); |
| } |
| return; |
| } |
| |
| for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); |
| MVT RegisterVT = RegVTs[Value]; |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| assert(Reg < Regs.size() && "Mismatch in # registers expected"); |
| unsigned TheReg = Regs[Reg++]; |
| Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); |
| } |
| } |
| } |
| |
| SmallVector<std::pair<unsigned, unsigned>, 4> |
| RegsForValue::getRegsAndSizes() const { |
| SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; |
| unsigned I = 0; |
| for (auto CountAndVT : zip_first(RegCount, RegVTs)) { |
| unsigned RegCount = std::get<0>(CountAndVT); |
| MVT RegisterVT = std::get<1>(CountAndVT); |
| unsigned RegisterSize = RegisterVT.getSizeInBits(); |
| for (unsigned E = I + RegCount; I != E; ++I) |
| OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); |
| } |
| return OutVec; |
| } |
| |
| void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, |
| const TargetLibraryInfo *li) { |
| AA = aa; |
| GFI = gfi; |
| LibInfo = li; |
| DL = &DAG.getDataLayout(); |
| Context = DAG.getContext(); |
| LPadToCallSiteMap.clear(); |
| SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); |
| } |
| |
| void SelectionDAGBuilder::clear() { |
| NodeMap.clear(); |
| UnusedArgNodeMap.clear(); |
| PendingLoads.clear(); |
| PendingExports.clear(); |
| PendingConstrainedFP.clear(); |
| PendingConstrainedFPStrict.clear(); |
| CurInst = nullptr; |
| HasTailCall = false; |
| SDNodeOrder = LowestSDNodeOrder; |
| StatepointLowering.clear(); |
| } |
| |
| void SelectionDAGBuilder::clearDanglingDebugInfo() { |
| DanglingDebugInfoMap.clear(); |
| } |
| |
| // Update DAG root to include dependencies on Pending chains. |
| SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { |
| SDValue Root = DAG.getRoot(); |
| |
| if (Pending.empty()) |
| return Root; |
| |
| // Add current root to PendingChains, unless we already indirectly |
| // depend on it. |
| if (Root.getOpcode() != ISD::EntryToken) { |
| unsigned i = 0, e = Pending.size(); |
| for (; i != e; ++i) { |
| assert(Pending[i].getNode()->getNumOperands() > 1); |
| if (Pending[i].getNode()->getOperand(0) == Root) |
| break; // Don't add the root if we already indirectly depend on it. |
| } |
| |
| if (i == e) |
| Pending.push_back(Root); |
| } |
| |
| if (Pending.size() == 1) |
| Root = Pending[0]; |
| else |
| Root = DAG.getTokenFactor(getCurSDLoc(), Pending); |
| |
| DAG.setRoot(Root); |
| Pending.clear(); |
| return Root; |
| } |
| |
| SDValue SelectionDAGBuilder::getMemoryRoot() { |
| return updateRoot(PendingLoads); |
| } |
| |
| SDValue SelectionDAGBuilder::getRoot() { |
| // Chain up all pending constrained intrinsics together with all |
| // pending loads, by simply appending them to PendingLoads and |
| // then calling getMemoryRoot(). |
| PendingLoads.reserve(PendingLoads.size() + |
| PendingConstrainedFP.size() + |
| PendingConstrainedFPStrict.size()); |
| PendingLoads.append(PendingConstrainedFP.begin(), |
| PendingConstrainedFP.end()); |
| PendingLoads.append(PendingConstrainedFPStrict.begin(), |
| PendingConstrainedFPStrict.end()); |
| PendingConstrainedFP.clear(); |
| PendingConstrainedFPStrict.clear(); |
| return getMemoryRoot(); |
| } |
| |
| SDValue SelectionDAGBuilder::getControlRoot() { |
| // We need to emit pending fpexcept.strict constrained intrinsics, |
| // so append them to the PendingExports list. |
| PendingExports.append(PendingConstrainedFPStrict.begin(), |
| PendingConstrainedFPStrict.end()); |
| PendingConstrainedFPStrict.clear(); |
| return updateRoot(PendingExports); |
| } |
| |
| void SelectionDAGBuilder::visit(const Instruction &I) { |
| // Set up outgoing PHI node register values before emitting the terminator. |
| if (I.isTerminator()) { |
| HandlePHINodesInSuccessorBlocks(I.getParent()); |
| } |
| |
| // Increase the SDNodeOrder if dealing with a non-debug instruction. |
| if (!isa<DbgInfoIntrinsic>(I)) |
| ++SDNodeOrder; |
| |
| CurInst = &I; |
| |
| visit(I.getOpcode(), I); |
| |
| if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { |
| // Propagate the fast-math-flags of this IR instruction to the DAG node that |
| // maps to this instruction. |
| // TODO: We could handle all flags (nsw, etc) here. |
| // TODO: If an IR instruction maps to >1 node, only the final node will have |
| // flags set. |
| if (SDNode *Node = getNodeForIRValue(&I)) { |
| SDNodeFlags IncomingFlags; |
| IncomingFlags.copyFMF(*FPMO); |
| if (!Node->getFlags().isDefined()) |
| Node->setFlags(IncomingFlags); |
| else |
| Node->intersectFlagsWith(IncomingFlags); |
| } |
| } |
| // Constrained FP intrinsics with fpexcept.ignore should also get |
| // the NoFPExcept flag. |
| if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) |
| if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) |
| if (SDNode *Node = getNodeForIRValue(&I)) { |
| SDNodeFlags Flags = Node->getFlags(); |
| Flags.setNoFPExcept(true); |
| Node->setFlags(Flags); |
| } |
| |
| if (!I.isTerminator() && !HasTailCall && |
| !isStatepoint(&I)) // statepoints handle their exports internally |
| CopyToExportRegsIfNeeded(&I); |
| |
| CurInst = nullptr; |
| } |
| |
| void SelectionDAGBuilder::visitPHI(const PHINode &) { |
| llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); |
| } |
| |
| void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { |
| // Note: this doesn't use InstVisitor, because it has to work with |
| // ConstantExpr's in addition to instructions. |
| switch (Opcode) { |
| default: llvm_unreachable("Unknown instruction type encountered!"); |
| // Build the switch statement using the Instruction.def file. |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
| case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; |
| #include "llvm/IR/Instruction.def" |
| } |
| } |
| |
| void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, |
| const DIExpression *Expr) { |
| auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { |
| const DbgValueInst *DI = DDI.getDI(); |
| DIVariable *DanglingVariable = DI->getVariable(); |
| DIExpression *DanglingExpr = DI->getExpression(); |
| if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { |
| LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); |
| return true; |
| } |
| return false; |
| }; |
| |
| for (auto &DDIMI : DanglingDebugInfoMap) { |
| DanglingDebugInfoVector &DDIV = DDIMI.second; |
| |
| // If debug info is to be dropped, run it through final checks to see |
| // whether it can be salvaged. |
| for (auto &DDI : DDIV) |
| if (isMatchingDbgValue(DDI)) |
| salvageUnresolvedDbgValue(DDI); |
| |
| DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); |
| } |
| } |
| |
| // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, |
| // generate the debug data structures now that we've seen its definition. |
| void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, |
| SDValue Val) { |
| auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); |
| if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) |
| return; |
| |
| DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; |
| for (auto &DDI : DDIV) { |
| const DbgValueInst *DI = DDI.getDI(); |
| assert(DI && "Ill-formed DanglingDebugInfo"); |
| DebugLoc dl = DDI.getdl(); |
| unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); |
| unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); |
| DILocalVariable *Variable = DI->getVariable(); |
| DIExpression *Expr = DI->getExpression(); |
| assert(Variable->isValidLocationForIntrinsic(dl) && |
| "Expected inlined-at fields to agree"); |
| SDDbgValue *SDV; |
| if (Val.getNode()) { |
| // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a |
| // FuncArgumentDbgValue (it would be hoisted to the function entry, and if |
| // we couldn't resolve it directly when examining the DbgValue intrinsic |
| // in the first place we should not be more successful here). Unless we |
| // have some test case that prove this to be correct we should avoid |
| // calling EmitFuncArgumentDbgValue here. |
| if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { |
| LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" |
| << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); |
| LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); |
| // Increase the SDNodeOrder for the DbgValue here to make sure it is |
| // inserted after the definition of Val when emitting the instructions |
| // after ISel. An alternative could be to teach |
| // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. |
| LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() |
| << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " |
| << ValSDNodeOrder << "\n"); |
| SDV = getDbgValue(Val, Variable, Expr, dl, |
| std::max(DbgSDNodeOrder, ValSDNodeOrder)); |
| DAG.AddDbgValue(SDV, Val.getNode(), false); |
| } else |
| LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI |
| << "in EmitFuncArgumentDbgValue\n"); |
| } else { |
| LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); |
| auto Undef = |
| UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); |
| auto SDV = |
| DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); |
| DAG.AddDbgValue(SDV, nullptr, false); |
| } |
| } |
| DDIV.clear(); |
| } |
| |
| void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { |
| Value *V = DDI.getDI()->getValue(); |
| DILocalVariable *Var = DDI.getDI()->getVariable(); |
| DIExpression *Expr = DDI.getDI()->getExpression(); |
| DebugLoc DL = DDI.getdl(); |
| DebugLoc InstDL = DDI.getDI()->getDebugLoc(); |
| unsigned SDOrder = DDI.getSDNodeOrder(); |
| |
| // Currently we consider only dbg.value intrinsics -- we tell the salvager |
| // that DW_OP_stack_value is desired. |
| assert(isa<DbgValueInst>(DDI.getDI())); |
| bool StackValue = true; |
| |
| // Can this Value can be encoded without any further work? |
| if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) |
| return; |
| |
| // Attempt to salvage back through as many instructions as possible. Bail if |
| // a non-instruction is seen, such as a constant expression or global |
| // variable. FIXME: Further work could recover those too. |
| while (isa<Instruction>(V)) { |
| Instruction &VAsInst = *cast<Instruction>(V); |
| DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); |
| |
| // If we cannot salvage any further, and haven't yet found a suitable debug |
| // expression, bail out. |
| if (!NewExpr) |
| break; |
| |
| // New value and expr now represent this debuginfo. |
| V = VAsInst.getOperand(0); |
| Expr = NewExpr; |
| |
| // Some kind of simplification occurred: check whether the operand of the |
| // salvaged debug expression can be encoded in this DAG. |
| if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { |
| LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " |
| << DDI.getDI() << "\nBy stripping back to:\n " << V); |
| return; |
| } |
| } |
| |
| // This was the final opportunity to salvage this debug information, and it |
| // couldn't be done. Place an undef DBG_VALUE at this location to terminate |
| // any earlier variable location. |
| auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); |
| auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); |
| DAG.AddDbgValue(SDV, nullptr, false); |
| |
| LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() |
| << "\n"); |
| LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) |
| << "\n"); |
| } |
| |
| bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, |
| DIExpression *Expr, DebugLoc dl, |
| DebugLoc InstDL, unsigned Order) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDDbgValue *SDV; |
| if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || |
| isa<ConstantPointerNull>(V)) { |
| SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, nullptr, false); |
| return true; |
| } |
| |
| // If the Value is a frame index, we can create a FrameIndex debug value |
| // without relying on the DAG at all. |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| auto SI = FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| auto SDV = |
| DAG.getFrameIndexDbgValue(Var, Expr, SI->second, |
| /*IsIndirect*/ false, dl, SDNodeOrder); |
| // Do not attach the SDNodeDbgValue to an SDNode: this variable location |
| // is still available even if the SDNode gets optimized out. |
| DAG.AddDbgValue(SDV, nullptr, false); |
| return true; |
| } |
| } |
| |
| // Do not use getValue() in here; we don't want to generate code at |
| // this point if it hasn't been done yet. |
| SDValue N = NodeMap[V]; |
| if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. |
| N = UnusedArgNodeMap[V]; |
| if (N.getNode()) { |
| if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) |
| return true; |
| SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, N.getNode(), false); |
| return true; |
| } |
| |
| // Special rules apply for the first dbg.values of parameter variables in a |
| // function. Identify them by the fact they reference Argument Values, that |
| // they're parameters, and they are parameters of the current function. We |
| // need to let them dangle until they get an SDNode. |
| bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && |
| !InstDL.getInlinedAt(); |
| if (!IsParamOfFunc) { |
| // The value is not used in this block yet (or it would have an SDNode). |
| // We still want the value to appear for the user if possible -- if it has |
| // an associated VReg, we can refer to that instead. |
| auto VMI = FuncInfo.ValueMap.find(V); |
| if (VMI != FuncInfo.ValueMap.end()) { |
| unsigned Reg = VMI->second; |
| // If this is a PHI node, it may be split up into several MI PHI nodes |
| // (in FunctionLoweringInfo::set). |
| RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, |
| V->getType(), None); |
| if (RFV.occupiesMultipleRegs()) { |
| unsigned Offset = 0; |
| unsigned BitsToDescribe = 0; |
| if (auto VarSize = Var->getSizeInBits()) |
| BitsToDescribe = *VarSize; |
| if (auto Fragment = Expr->getFragmentInfo()) |
| BitsToDescribe = Fragment->SizeInBits; |
| for (auto RegAndSize : RFV.getRegsAndSizes()) { |
| unsigned RegisterSize = RegAndSize.second; |
| // Bail out if all bits are described already. |
| if (Offset >= BitsToDescribe) |
| break; |
| unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) |
| ? BitsToDescribe - Offset |
| : RegisterSize; |
| auto FragmentExpr = DIExpression::createFragmentExpression( |
| Expr, Offset, FragmentSize); |
| if (!FragmentExpr) |
| continue; |
| SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, |
| false, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, nullptr, false); |
| Offset += RegisterSize; |
| } |
| } else { |
| SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, nullptr, false); |
| } |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void SelectionDAGBuilder::resolveOrClearDbgInfo() { |
| // Try to fixup any remaining dangling debug info -- and drop it if we can't. |
| for (auto &Pair : DanglingDebugInfoMap) |
| for (auto &DDI : Pair.second) |
| salvageUnresolvedDbgValue(DDI); |
| clearDanglingDebugInfo(); |
| } |
| |
| /// getCopyFromRegs - If there was virtual register allocated for the value V |
| /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. |
| SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { |
| DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); |
| SDValue Result; |
| |
| if (It != FuncInfo.ValueMap.end()) { |
| unsigned InReg = It->second; |
| |
| RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), |
| DAG.getDataLayout(), InReg, Ty, |
| None); // This is not an ABI copy. |
| SDValue Chain = DAG.getEntryNode(); |
| Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, |
| V); |
| resolveDanglingDebugInfo(V, Result); |
| } |
| |
| return Result; |
| } |
| |
| /// getValue - Return an SDValue for the given Value. |
| SDValue SelectionDAGBuilder::getValue(const Value *V) { |
| // If we already have an SDValue for this value, use it. It's important |
| // to do this first, so that we don't create a CopyFromReg if we already |
| // have a regular SDValue. |
| SDValue &N = NodeMap[V]; |
| if (N.getNode()) return N; |
| |
| // If there's a virtual register allocated and initialized for this |
| // value, use it. |
| if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) |
| return copyFromReg; |
| |
| // Otherwise create a new SDValue and remember it. |
| SDValue Val = getValueImpl(V); |
| NodeMap[V] = Val; |
| resolveDanglingDebugInfo(V, Val); |
| return Val; |
| } |
| |
| // Return true if SDValue exists for the given Value |
| bool SelectionDAGBuilder::findValue(const Value *V) const { |
| return (NodeMap.find(V) != NodeMap.end()) || |
| (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); |
| } |
| |
| /// getNonRegisterValue - Return an SDValue for the given Value, but |
| /// don't look in FuncInfo.ValueMap for a virtual register. |
| SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { |
| // If we already have an SDValue for this value, use it. |
| SDValue &N = NodeMap[V]; |
| if (N.getNode()) { |
| if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { |
| // Remove the debug location from the node as the node is about to be used |
| // in a location which may differ from the original debug location. This |
| // is relevant to Constant and ConstantFP nodes because they can appear |
| // as constant expressions inside PHI nodes. |
| N->setDebugLoc(DebugLoc()); |
| } |
| return N; |
| } |
| |
| // Otherwise create a new SDValue and remember it. |
| SDValue Val = getValueImpl(V); |
| NodeMap[V] = Val; |
| resolveDanglingDebugInfo(V, Val); |
| return Val; |
| } |
| |
| /// getValueImpl - Helper function for getValue and getNonRegisterValue. |
| /// Create an SDValue for the given value. |
| SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) |
| return DAG.getConstant(*CI, getCurSDLoc(), VT); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); |
| |
| if (isa<ConstantPointerNull>(C)) { |
| unsigned AS = V->getType()->getPointerAddressSpace(); |
| return DAG.getConstant(0, getCurSDLoc(), |
| TLI.getPointerTy(DAG.getDataLayout(), AS)); |
| } |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); |
| |
| if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) |
| return DAG.getUNDEF(VT); |
| |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| visit(CE->getOpcode(), *CE); |
| SDValue N1 = NodeMap[V]; |
| assert(N1.getNode() && "visit didn't populate the NodeMap!"); |
| return N1; |
| } |
| |
| if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { |
| SmallVector<SDValue, 4> Constants; |
| for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); |
| OI != OE; ++OI) { |
| SDNode *Val = getValue(*OI).getNode(); |
| // If the operand is an empty aggregate, there are no values. |
| if (!Val) continue; |
| // Add each leaf value from the operand to the Constants list |
| // to form a flattened list of all the values. |
| for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
| Constants.push_back(SDValue(Val, i)); |
| } |
| |
| return DAG.getMergeValues(Constants, getCurSDLoc()); |
| } |
| |
| if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(C)) { |
| SmallVector<SDValue, 4> Ops; |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
| SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); |
| // Add each leaf value from the operand to the Constants list |
| // to form a flattened list of all the values. |
| for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
| Ops.push_back(SDValue(Val, i)); |
| } |
| |
| if (isa<ArrayType>(CDS->getType())) |
| return DAG.getMergeValues(Ops, getCurSDLoc()); |
| return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); |
| } |
| |
| if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { |
| assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && |
| "Unknown struct or array constant!"); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); |
| unsigned NumElts = ValueVTs.size(); |
| if (NumElts == 0) |
| return SDValue(); // empty struct |
| SmallVector<SDValue, 4> Constants(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| EVT EltVT = ValueVTs[i]; |
| if (isa<UndefValue>(C)) |
| Constants[i] = DAG.getUNDEF(EltVT); |
| else if (EltVT.isFloatingPoint()) |
| Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); |
| else |
| Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); |
| } |
| |
| return DAG.getMergeValues(Constants, getCurSDLoc()); |
| } |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) |
| return DAG.getBlockAddress(BA, VT); |
| |
| VectorType *VecTy = cast<VectorType>(V->getType()); |
| unsigned NumElements = VecTy->getNumElements(); |
| |
| // Now that we know the number and type of the elements, get that number of |
| // elements into the Ops array based on what kind of constant it is. |
| SmallVector<SDValue, 16> Ops; |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { |
| for (unsigned i = 0; i != NumElements; ++i) |
| Ops.push_back(getValue(CV->getOperand(i))); |
| } else { |
| assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); |
| EVT EltVT = |
| TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); |
| |
| SDValue Op; |
| if (EltVT.isFloatingPoint()) |
| Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); |
| else |
| Op = DAG.getConstant(0, getCurSDLoc(), EltVT); |
| Ops.assign(NumElements, Op); |
| } |
| |
| // Create a BUILD_VECTOR node. |
| return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); |
| } |
| |
| // If this is a static alloca, generate it as the frameindex instead of |
| // computation. |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) |
| return DAG.getFrameIndex(SI->second, |
| TLI.getFrameIndexTy(DAG.getDataLayout())); |
| } |
| |
| // If this is an instruction which fast-isel has deferred, select it now. |
| if (const Instruction *Inst = dyn_cast<Instruction>(V)) { |
| unsigned InReg = FuncInfo.InitializeRegForValue(Inst); |
| |
| RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, |
| Inst->getType(), getABIRegCopyCC(V)); |
| SDValue Chain = DAG.getEntryNode(); |
| return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); |
| } |
| |
| llvm_unreachable("Can't get register for value!"); |
| } |
| |
| void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { |
| auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
| bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; |
| bool IsCoreCLR = Pers == EHPersonality::CoreCLR; |
| bool IsSEH = isAsynchronousEHPersonality(Pers); |
| bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; |
| MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; |
| if (!IsSEH) |
| CatchPadMBB->setIsEHScopeEntry(); |
| // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. |
| if (IsMSVCCXX || IsCoreCLR) |
| CatchPadMBB->setIsEHFuncletEntry(); |
| // Wasm does not need catchpads anymore |
| if (!IsWasmCXX) |
| DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, |
| getControlRoot())); |
| } |
| |
| void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { |
| // Update machine-CFG edge. |
| MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; |
| FuncInfo.MBB->addSuccessor(TargetMBB); |
| |
| auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
| bool IsSEH = isAsynchronousEHPersonality(Pers); |
| if (IsSEH) { |
| // If this is not a fall-through branch or optimizations are switched off, |
| // emit the branch. |
| if (TargetMBB != NextBlock(FuncInfo.MBB) || |
| TM.getOptLevel() == CodeGenOpt::None) |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, |
| getControlRoot(), DAG.getBasicBlock(TargetMBB))); |
| return; |
| } |
| |
| // Figure out the funclet membership for the catchret's successor. |
| // This will be used by the FuncletLayout pass to determine how to order the |
| // BB's. |
| // A 'catchret' returns to the outer scope's color. |
| Value *ParentPad = I.getCatchSwitchParentPad(); |
| const BasicBlock *SuccessorColor; |
| if (isa<ConstantTokenNone>(ParentPad)) |
| SuccessorColor = &FuncInfo.Fn->getEntryBlock(); |
| else |
| SuccessorColor = cast<Instruction>(ParentPad)->getParent(); |
| assert(SuccessorColor && "No parent funclet for catchret!"); |
| MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; |
| assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); |
| |
| // Create the terminator node. |
| SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, |
| getControlRoot(), DAG.getBasicBlock(TargetMBB), |
| DAG.getBasicBlock(SuccessorColorMBB)); |
| DAG.setRoot(Ret); |
| } |
| |
| void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { |
| // Don't emit any special code for the cleanuppad instruction. It just marks |
| // the start of an EH scope/funclet. |
| FuncInfo.MBB->setIsEHScopeEntry(); |
| auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
| if (Pers != EHPersonality::Wasm_CXX) { |
| FuncInfo.MBB->setIsEHFuncletEntry(); |
| FuncInfo.MBB->setIsCleanupFuncletEntry(); |
| } |
| } |
| |
| // For wasm, there's alwyas a single catch pad attached to a catchswitch, and |
| // the control flow always stops at the single catch pad, as it does for a |
| // cleanup pad. In case the exception caught is not of the types the catch pad |
| // catches, it will be rethrown by a rethrow. |
| static void findWasmUnwindDestinations( |
| FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, |
| BranchProbability Prob, |
| SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> |
| &UnwindDests) { |
| while (EHPadBB) { |
| const Instruction *Pad = EHPadBB->getFirstNonPHI(); |
| if (isa<CleanupPadInst>(Pad)) { |
| // Stop on cleanup pads. |
| UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); |
| UnwindDests.back().first->setIsEHScopeEntry(); |
| break; |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { |
| // Add the catchpad handlers to the possible destinations. We don't |
| // continue to the unwind destination of the catchswitch for wasm. |
| for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
| UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); |
| UnwindDests.back().first->setIsEHScopeEntry(); |
| } |
| break; |
| } else { |
| continue; |
| } |
| } |
| } |
| |
| /// When an invoke or a cleanupret unwinds to the next EH pad, there are |
| /// many places it could ultimately go. In the IR, we have a single unwind |
| /// destination, but in the machine CFG, we enumerate all the possible blocks. |
| /// This function skips over imaginary basic blocks that hold catchswitch |
| /// instructions, and finds all the "real" machine |
| /// basic block destinations. As those destinations may not be successors of |
| /// EHPadBB, here we also calculate the edge probability to those destinations. |
| /// The passed-in Prob is the edge probability to EHPadBB. |
| static void findUnwindDestinations( |
| FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, |
| BranchProbability Prob, |
| SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> |
| &UnwindDests) { |
| EHPersonality Personality = |
| classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
| bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; |
| bool IsCoreCLR = Personality == EHPersonality::CoreCLR; |
| bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; |
| bool IsSEH = isAsynchronousEHPersonality(Personality); |
| |
| if (IsWasmCXX) { |
| findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); |
| assert(UnwindDests.size() <= 1 && |
| "There should be at most one unwind destination for wasm"); |
| return; |
| } |
| |
| while (EHPadBB) { |
| const Instruction *Pad = EHPadBB->getFirstNonPHI(); |
| BasicBlock *NewEHPadBB = nullptr; |
| if (isa<LandingPadInst>(Pad)) { |
| // Stop on landingpads. They are not funclets. |
| UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); |
| break; |
| } else if (isa<CleanupPadInst>(Pad)) { |
| // Stop on cleanup pads. Cleanups are always funclet entries for all known |
| // personalities. |
| UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); |
| UnwindDests.back().first->setIsEHScopeEntry(); |
| UnwindDests.back().first->setIsEHFuncletEntry(); |
| break; |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { |
| // Add the catchpad handlers to the possible destinations. |
| for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
| UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); |
| // For MSVC++ and the CLR, catchblocks are funclets and need prologues. |
| if (IsMSVCCXX || IsCoreCLR) |
| UnwindDests.back().first->setIsEHFuncletEntry(); |
| if (!IsSEH) |
| UnwindDests.back().first->setIsEHScopeEntry(); |
| } |
| NewEHPadBB = CatchSwitch->getUnwindDest(); |
| } else { |
| continue; |
| } |
| |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| if (BPI && NewEHPadBB) |
| Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); |
| EHPadBB = NewEHPadBB; |
| } |
| } |
| |
| void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { |
| // Update successor info. |
| SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; |
| auto UnwindDest = I.getUnwindDest(); |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| BranchProbability UnwindDestProb = |
| (BPI && UnwindDest) |
| ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) |
| : BranchProbability::getZero(); |
| findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); |
| for (auto &UnwindDest : UnwindDests) { |
| UnwindDest.first->setIsEHPad(); |
| addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); |
| } |
| FuncInfo.MBB->normalizeSuccProbs(); |
| |
| // Create the terminator node. |
| SDValue Ret = |
| DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); |
| DAG.setRoot(Ret); |
| } |
| |
| void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { |
| report_fatal_error("visitCatchSwitch not yet implemented!"); |
| } |
| |
| void SelectionDAGBuilder::visitRet(const ReturnInst &I) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| auto &DL = DAG.getDataLayout(); |
| SDValue Chain = getControlRoot(); |
| SmallVector<ISD::OutputArg, 8> Outs; |
| SmallVector<SDValue, 8> OutVals; |
| |
| // Calls to @llvm.experimental.deoptimize don't generate a return value, so |
| // lower |
| // |
| // %val = call <ty> @llvm.experimental.deoptimize() |
| // ret <ty> %val |
| // |
| // differently. |
| if (I.getParent()->getTerminatingDeoptimizeCall()) { |
| LowerDeoptimizingReturn(); |
| return; |
| } |
| |
| if (!FuncInfo.CanLowerReturn) { |
| unsigned DemoteReg = FuncInfo.DemoteRegister; |
| const Function *F = I.getParent()->getParent(); |
| |
| // Emit a store of the return value through the virtual register. |
| // Leave Outs empty so that LowerReturn won't try to load return |
| // registers the usual way. |
| SmallVector<EVT, 1> PtrValueVTs; |
| ComputeValueVTs(TLI, DL, |
| F->getReturnType()->getPointerTo( |
| DAG.getDataLayout().getAllocaAddrSpace()), |
| PtrValueVTs); |
| |
| SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), |
| DemoteReg, PtrValueVTs[0]); |
| SDValue RetOp = getValue(I.getOperand(0)); |
| |
| SmallVector<EVT, 4> ValueVTs, MemVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, |
| &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| |
| SmallVector<SDValue, 4> Chains(NumValues); |
| for (unsigned i = 0; i != NumValues; ++i) { |
| // An aggregate return value cannot wrap around the address space, so |
| // offsets to its parts don't wrap either. |
| SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); |
| |
| SDValue Val = RetOp.getValue(RetOp.getResNo() + i); |
| if (MemVTs[i] != ValueVTs[i]) |
| Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); |
| Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, |
| // FIXME: better loc info would be nice. |
| Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); |
| } |
| |
| Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), |
| MVT::Other, Chains); |
| } else if (I.getNumOperands() != 0) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues) { |
| SDValue RetOp = getValue(I.getOperand(0)); |
| |
| const Function *F = I.getParent()->getParent(); |
| |
| bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( |
| I.getOperand(0)->getType(), F->getCallingConv(), |
| /*IsVarArg*/ false); |
| |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, |
| Attribute::SExt)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, |
| Attribute::ZExt)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| LLVMContext &Context = F->getContext(); |
| bool RetInReg = F->getAttributes().hasAttribute( |
| AttributeList::ReturnIndex, Attribute::InReg); |
| |
| for (unsigned j = 0; j != NumValues; ++j) { |
| EVT VT = ValueVTs[j]; |
| |
| if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) |
| VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); |
| |
| CallingConv::ID CC = F->getCallingConv(); |
| |
| unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); |
| MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| getCopyToParts(DAG, getCurSDLoc(), |
| SDValue(RetOp.getNode(), RetOp.getResNo() + j), |
| &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); |
| |
| // 'inreg' on function refers to return value |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| if (RetInReg) |
| Flags.setInReg(); |
| |
| if (I.getOperand(0)->getType()->isPointerTy()) { |
| Flags.setPointer(); |
| Flags.setPointerAddrSpace( |
| cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); |
| } |
| |
| if (NeedsRegBlock) { |
| Flags.setInConsecutiveRegs(); |
| if (j == NumValues - 1) |
| Flags.setInConsecutiveRegsLast(); |
| } |
| |
| // Propagate extension type if any |
| if (ExtendKind == ISD::SIGN_EXTEND) |
| Flags.setSExt(); |
| else if (ExtendKind == ISD::ZERO_EXTEND) |
| Flags.setZExt(); |
| |
| for (unsigned i = 0; i < NumParts; ++i) { |
| Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), |
| VT, /*isfixed=*/true, 0, 0)); |
| OutVals.push_back(Parts[i]); |
| } |
| } |
| } |
| } |
| |
| // Push in swifterror virtual register as the last element of Outs. This makes |
| // sure swifterror virtual register will be returned in the swifterror |
| // physical register. |
| const Function *F = I.getParent()->getParent(); |
| if (TLI.supportSwiftError() && |
| F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { |
| assert(SwiftError.getFunctionArg() && "Need a swift error argument"); |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| Flags.setSwiftError(); |
| Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, |
| EVT(TLI.getPointerTy(DL)) /*argvt*/, |
| true /*isfixed*/, 1 /*origidx*/, |
| 0 /*partOffs*/)); |
| // Create SDNode for the swifterror virtual register. |
| OutVals.push_back( |
| DAG.getRegister(SwiftError.getOrCreateVRegUseAt( |
| &I, FuncInfo.MBB, SwiftError.getFunctionArg()), |
| EVT(TLI.getPointerTy(DL)))); |
| } |
| |
| bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); |
| CallingConv::ID CallConv = |
| DAG.getMachineFunction().getFunction().getCallingConv(); |
| Chain = DAG.getTargetLoweringInfo().LowerReturn( |
| Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); |
| |
| // Verify that the target's LowerReturn behaved as expected. |
| assert(Chain.getNode() && Chain.getValueType() == MVT::Other && |
| "LowerReturn didn't return a valid chain!"); |
| |
| // Update the DAG with the new chain value resulting from return lowering. |
| DAG.setRoot(Chain); |
| } |
| |
| /// CopyToExportRegsIfNeeded - If the given value has virtual registers |
| /// created for it, emit nodes to copy the value into the virtual |
| /// registers. |
| void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { |
| // Skip empty types |
| if (V->getType()->isEmptyTy()) |
| return; |
| |
| DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); |
| if (VMI != FuncInfo.ValueMap.end()) { |
| assert(!V->use_empty() && "Unused value assigned virtual registers!"); |
| CopyValueToVirtualRegister(V, VMI->second); |
| } |
| } |
| |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from |
| /// the current basic block, add it to ValueMap now so that we'll get a |
| /// CopyTo/FromReg. |
| void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { |
| // No need to export constants. |
| if (!isa<Instruction>(V) && !isa<Argument>(V)) return; |
| |
| // Already exported? |
| if (FuncInfo.isExportedInst(V)) return; |
| |
| unsigned Reg = FuncInfo.InitializeRegForValue(V); |
| CopyValueToVirtualRegister(V, Reg); |
| } |
| |
| bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, |
| const BasicBlock *FromBB) { |
| // The operands of the setcc have to be in this block. We don't know |
| // how to export them from some other block. |
| if (const Instruction *VI = dyn_cast<Instruction>(V)) { |
| // Can export from current BB. |
| if (VI->getParent() == FromBB) |
| return true; |
| |
| // Is already exported, noop. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // If this is an argument, we can export it if the BB is the entry block or |
| // if it is already exported. |
| if (isa<Argument>(V)) { |
| if (FromBB == &FromBB->getParent()->getEntryBlock()) |
| return true; |
| |
| // Otherwise, can only export this if it is already exported. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // Otherwise, constants can always be exported. |
| return true; |
| } |
| |
| /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. |
| BranchProbability |
| SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, |
| const MachineBasicBlock *Dst) const { |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| const BasicBlock *SrcBB = Src->getBasicBlock(); |
| const BasicBlock *DstBB = Dst->getBasicBlock(); |
| if (!BPI) { |
| // If BPI is not available, set the default probability as 1 / N, where N is |
| // the number of successors. |
| auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); |
| return BranchProbability(1, SuccSize); |
| } |
| return BPI->getEdgeProbability(SrcBB, DstBB); |
| } |
| |
| void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, |
| MachineBasicBlock *Dst, |
| BranchProbability Prob) { |
| if (!FuncInfo.BPI) |
| Src->addSuccessorWithoutProb(Dst); |
| else { |
| if (Prob.isUnknown()) |
| Prob = getEdgeProbability(Src, Dst); |
| Src->addSuccessor(Dst, Prob); |
| } |
| } |
| |
| static bool InBlock(const Value *V, const BasicBlock *BB) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent() == BB; |
| return true; |
| } |
| |
| /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. |
| /// This function emits a branch and is used at the leaves of an OR or an |
| /// AND operator tree. |
| void |
| SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| MachineBasicBlock *SwitchBB, |
| BranchProbability TProb, |
| BranchProbability FProb, |
| bool InvertCond) { |
| const BasicBlock *BB = CurBB->getBasicBlock(); |
| |
| // If the leaf of the tree is a comparison, merge the condition into |
| // the caseblock. |
| if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { |
| // The operands of the cmp have to be in this block. We don't know |
| // how to export them from some other block. If this is the first block |
| // of the sequence, no exporting is needed. |
| if (CurBB == SwitchBB || |
| (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && |
| isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { |
| ISD::CondCode Condition; |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { |
| ICmpInst::Predicate Pred = |
| InvertCond ? IC->getInversePredicate() : IC->getPredicate(); |
| Condition = getICmpCondCode(Pred); |
| } else { |
| const FCmpInst *FC = cast<FCmpInst>(Cond); |
| FCmpInst::Predicate Pred = |
| InvertCond ? FC->getInversePredicate() : FC->getPredicate(); |
| Condition = getFCmpCondCode(Pred); |
| if (TM.Options.NoNaNsFPMath) |
| Condition = getFCmpCodeWithoutNaN(Condition); |
| } |
| |
| CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, |
| TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); |
| SL->SwitchCases.push_back(CB); |
| return; |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; |
| CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), |
| nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); |
| SL->SwitchCases.push_back(CB); |
| } |
| |
| void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| MachineBasicBlock *SwitchBB, |
| Instruction::BinaryOps Opc, |
| BranchProbability TProb, |
| BranchProbability FProb, |
| bool InvertCond) { |
| // Skip over not part of the tree and remember to invert op and operands at |
| // next level. |
| Value *NotCond; |
| if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && |
| InBlock(NotCond, CurBB->getBasicBlock())) { |
| FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, |
| !InvertCond); |
| return; |
| } |
| |
| const Instruction *BOp = dyn_cast<Instruction>(Cond); |
| // Compute the effective opcode for Cond, taking into account whether it needs |
| // to be inverted, e.g. |
| // and (not (or A, B)), C |
| // gets lowered as |
| // and (and (not A, not B), C) |
| unsigned BOpc = 0; |
| if (BOp) { |
| BOpc = BOp->getOpcode(); |
| if (InvertCond) { |
| if (BOpc == Instruction::And) |
| BOpc = Instruction::Or; |
| else if (BOpc == Instruction::Or) |
| BOpc = Instruction::And; |
| } |
| } |
| |
| // If this node is not part of the or/and tree, emit it as a branch. |
| if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || |
| BOpc != unsigned(Opc) || !BOp->hasOneUse() || |
| BOp->getParent() != CurBB->getBasicBlock() || |
| !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || |
| !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { |
| EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, |
| TProb, FProb, InvertCond); |
| return; |
| } |
| |
| // Create TmpBB after CurBB. |
| MachineFunction::iterator BBI(CurBB); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); |
| CurBB->getParent()->insert(++BBI, TmpBB); |
| |
| if (Opc == Instruction::Or) { |
| // Codegen X | Y as: |
| // BB1: |
| // jmp_if_X TBB |
| // jmp TmpBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| |
| // We have flexibility in setting Prob for BB1 and Prob for TmpBB. |
| // The requirement is that |
| // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) |
| // = TrueProb for original BB. |
| // Assuming the original probabilities are A and B, one choice is to set |
| // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to |
| // A/(1+B) and 2B/(1+B). This choice assumes that |
| // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. |
| // Another choice is to assume TrueProb for BB1 equals to TrueProb for |
| // TmpBB, but the math is more complicated. |
| |
| auto NewTrueProb = TProb / 2; |
| auto NewFalseProb = TProb / 2 + FProb; |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, |
| NewTrueProb, NewFalseProb, InvertCond); |
| |
| // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). |
| SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; |
| BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, |
| Probs[0], Probs[1], InvertCond); |
| } else { |
| assert(Opc == Instruction::And && "Unknown merge op!"); |
| // Codegen X & Y as: |
| // BB1: |
| // jmp_if_X TmpBB |
| // jmp FBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| // This requires creation of TmpBB after CurBB. |
| |
| // We have flexibility in setting Prob for BB1 and Prob for TmpBB. |
| // The requirement is that |
| // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) |
| // = FalseProb for original BB. |
| // Assuming the original probabilities are A and B, one choice is to set |
| // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to |
| // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == |
| // TrueProb for BB1 * FalseProb for TmpBB. |
| |
| auto NewTrueProb = TProb + FProb / 2; |
| auto NewFalseProb = FProb / 2; |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, |
| NewTrueProb, NewFalseProb, InvertCond); |
| |
| // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). |
| SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; |
| BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, |
| Probs[0], Probs[1], InvertCond); |
| } |
| } |
| |
| /// If the set of cases should be emitted as a series of branches, return true. |
| /// If we should emit this as a bunch of and/or'd together conditions, return |
| /// false. |
| bool |
| SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { |
| if (Cases.size() != 2) return true; |
| |
| // If this is two comparisons of the same values or'd or and'd together, they |
| // will get folded into a single comparison, so don't emit two blocks. |
| if ((Cases[0].CmpLHS == Cases[1].CmpLHS && |
| Cases[0].CmpRHS == Cases[1].CmpRHS) || |
| (Cases[0].CmpRHS == Cases[1].CmpLHS && |
| Cases[0].CmpLHS == Cases[1].CmpRHS)) { |
| return false; |
| } |
| |
| // Handle: (X != null) | (Y != null) --> (X|Y) != 0 |
| // Handle: (X == null) & (Y == null) --> (X|Y) == 0 |
| if (Cases[0].CmpRHS == Cases[1].CmpRHS && |
| Cases[0].CC == Cases[1].CC && |
| isa<Constant>(Cases[0].CmpRHS) && |
| cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { |
| if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) |
| return false; |
| if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void SelectionDAGBuilder::visitBr(const BranchInst &I) { |
| MachineBasicBlock *BrMBB = FuncInfo.MBB; |
| |
| // Update machine-CFG edges. |
| MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| |
| if (I.isUnconditional()) { |
| // Update machine-CFG edges. |
| BrMBB->addSuccessor(Succ0MBB); |
| |
| // If this is not a fall-through branch or optimizations are switched off, |
| // emit the branch. |
| if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Succ0MBB))); |
| |
| return; |
| } |
| |
| // If this condition is one of the special cases we handle, do special stuff |
| // now. |
| const Value *CondVal = I.getCondition(); |
| MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| // If this is a series of conditions that are or'd or and'd together, emit |
| // this as a sequence of branches instead of setcc's with and/or operations. |
| // As long as jumps are not expensive, this should improve performance. |
| // For example, instead of something like: |
| // cmp A, B |
| // C = seteq |
| // cmp D, E |
| // F = setle |
| // or C, F |
| // jnz foo |
| // Emit: |
| // cmp A, B |
| // je foo |
| // cmp D, E |
| // jle foo |
| if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { |
| Instruction::BinaryOps Opcode = BOp->getOpcode(); |
| if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && |
| !I.hasMetadata(LLVMContext::MD_unpredictable) && |
| (Opcode == Instruction::And || Opcode == Instruction::Or)) { |
| FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, |
| Opcode, |
| getEdgeProbability(BrMBB, Succ0MBB), |
| getEdgeProbability(BrMBB, Succ1MBB), |
| /*InvertCond=*/false); |
| // If the compares in later blocks need to use values not currently |
| // exported from this block, export them now. This block should always |
| // be the first entry. |
| assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); |
| |
| // Allow some cases to be rejected. |
| if (ShouldEmitAsBranches(SL->SwitchCases)) { |
| for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { |
| ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); |
| ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); |
| } |
| |
| // Emit the branch for this block. |
| visitSwitchCase(SL->SwitchCases[0], BrMBB); |
| SL->SwitchCases.erase(SL->SwitchCases.begin()); |
| return; |
| } |
| |
| // Okay, we decided not to do this, remove any inserted MBB's and clear |
| // SwitchCases. |
| for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) |
| FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); |
| |
| SL->SwitchCases.clear(); |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), |
| nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); |
| |
| // Use visitSwitchCase to actually insert the fast branch sequence for this |
| // cond branch. |
| visitSwitchCase(CB, BrMBB); |
| } |
| |
| /// visitSwitchCase - Emits the necessary code to represent a single node in |
| /// the binary search tree resulting from lowering a switch instruction. |
| void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, |
| MachineBasicBlock *SwitchBB) { |
| SDValue Cond; |
| SDValue CondLHS = getValue(CB.CmpLHS); |
| SDLoc dl = CB.DL; |
| |
| if (CB.CC == ISD::SETTRUE) { |
| // Branch or fall through to TrueBB. |
| addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); |
| SwitchBB->normalizeSuccProbs(); |
| if (CB.TrueBB != NextBlock(SwitchBB)) { |
| DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(CB.TrueBB))); |
| } |
| return; |
| } |
| |
| auto &TLI = DAG.getTargetLoweringInfo(); |
| EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); |
| |
| // Build the setcc now. |
| if (!CB.CmpMHS) { |
| // Fold "(X == true)" to X and "(X == false)" to !X to |
| // handle common cases produced by branch lowering. |
| if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && |
| CB.CC == ISD::SETEQ) |
| Cond = CondLHS; |
| else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && |
| CB.CC == ISD::SETEQ) { |
| SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); |
| } else { |
| SDValue CondRHS = getValue(CB.CmpRHS); |
| |
| // If a pointer's DAG type is larger than its memory type then the DAG |
| // values are zero-extended. This breaks signed comparisons so truncate |
| // back to the underlying type before doing the compare. |
| if (CondLHS.getValueType() != MemVT) { |
| CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); |
| CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); |
| } |
| Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); |
| } |
| } else { |
| assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); |
| |
| const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); |
| const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); |
| |
| SDValue CmpOp = getValue(CB.CmpMHS); |
| EVT VT = CmpOp.getValueType(); |
| |
| if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { |
| Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), |
| ISD::SETLE); |
| } else { |
| SDValue SUB = DAG.getNode(ISD::SUB, dl, |
| VT, CmpOp, DAG.getConstant(Low, dl, VT)); |
| Cond = DAG.getSetCC(dl, MVT::i1, SUB, |
| DAG.getConstant(High-Low, dl, VT), ISD::SETULE); |
| } |
| } |
| |
| // Update successor info |
| addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); |
| // TrueBB and FalseBB are always different unless the incoming IR is |
| // degenerate. This only happens when running llc on weird IR. |
| if (CB.TrueBB != CB.FalseBB) |
| addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); |
| SwitchBB->normalizeSuccProbs(); |
| |
| // If the lhs block is the next block, invert the condition so that we can |
| // fall through to the lhs instead of the rhs block. |
| if (CB.TrueBB == NextBlock(SwitchBB)) { |
| std::swap(CB.TrueBB, CB.FalseBB); |
| SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); |
| } |
| |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
| MVT::Other, getControlRoot(), Cond, |
| DAG.getBasicBlock(CB.TrueBB)); |
| |
| // Insert the false branch. Do this even if it's a fall through branch, |
| // this makes it easier to do DAG optimizations which require inverting |
| // the branch condition. |
| BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, |
| DAG.getBasicBlock(CB.FalseBB)); |
| |
| DAG.setRoot(BrCond); |
| } |
| |
| /// visitJumpTable - Emit JumpTable node in the current MBB |
| void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { |
| // Emit the code for the jump table |
| assert(JT.Reg != -1U && "Should lower JT Header first!"); |
| EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
| SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), |
| JT.Reg, PTy); |
| SDValue Table = DAG.getJumpTable(JT.JTI, PTy); |
| SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), |
| MVT::Other, Index.getValue(1), |
| Table, Index); |
| DAG.setRoot(BrJumpTable); |
| } |
| |
| /// visitJumpTableHeader - This function emits necessary code to produce index |
| /// in the JumpTable from switch case. |
| void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, |
| JumpTableHeader &JTH, |
| MachineBasicBlock *SwitchBB) { |
| SDLoc dl = getCurSDLoc(); |
| |
| // Subtract the lowest switch case value from the value being switched on. |
| SDValue SwitchOp = getValue(JTH.SValue); |
| EVT VT = SwitchOp.getValueType(); |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, |
| DAG.getConstant(JTH.First, dl, VT)); |
| |
| // The SDNode we just created, which holds the value being switched on minus |
| // the smallest case value, needs to be copied to a virtual register so it |
| // can be used as an index into the jump table in a subsequent basic block. |
| // This value may be smaller or larger than the target's pointer type, and |
| // therefore require extension or truncating. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); |
| |
| unsigned JumpTableReg = |
| FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); |
| SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, |
| JumpTableReg, SwitchOp); |
| JT.Reg = JumpTableReg; |
| |
| if (!JTH.OmitRangeCheck) { |
| // Emit the range check for the jump table, and branch to the default block |
| // for the switch statement if the value being switched on exceeds the |
| // largest case in the switch. |
| SDValue CMP = DAG.getSetCC( |
| dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), |
| Sub.getValueType()), |
| Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); |
| |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
| MVT::Other, CopyTo, CMP, |
| DAG.getBasicBlock(JT.Default)); |
| |
| // Avoid emitting unnecessary branches to the next block. |
| if (JT.MBB != NextBlock(SwitchBB)) |
| BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, |
| DAG.getBasicBlock(JT.MBB)); |
| |
| DAG.setRoot(BrCond); |
| } else { |
| // Avoid emitting unnecessary branches to the next block. |
| if (JT.MBB != NextBlock(SwitchBB)) |
| DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, |
| DAG.getBasicBlock(JT.MBB))); |
| else |
| DAG.setRoot(CopyTo); |
| } |
| } |
| |
| /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global |
| /// variable if there exists one. |
| static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, |
| SDValue &Chain) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
| EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); |
| MachineSDNode *Node = |
| DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); |
| if (Global) { |
| MachinePointerInfo MPInfo(Global); |
| auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | |
| MachineMemOperand::MODereferenceable; |
| MachineMemOperand *MemRef = MF.getMachineMemOperand( |
| MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); |
| DAG.setNodeMemRefs(Node, {MemRef}); |
| } |
| if (PtrTy != PtrMemTy) |
| return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); |
| return SDValue(Node, 0); |
| } |
| |
| /// Codegen a new tail for a stack protector check ParentMBB which has had its |
| /// tail spliced into a stack protector check success bb. |
| /// |
| /// For a high level explanation of how this fits into the stack protector |
| /// generation see the comment on the declaration of class |
| /// StackProtectorDescriptor. |
| void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, |
| MachineBasicBlock *ParentBB) { |
| |
| // First create the loads to the guard/stack slot for the comparison. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
| EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); |
| |
| MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); |
| int FI = MFI.getStackProtectorIndex(); |
| |
| SDValue Guard; |
| SDLoc dl = getCurSDLoc(); |
| SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); |
| const Module &M = *ParentBB->getParent()->getFunction().getParent(); |
| unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); |
| |
| // Generate code to load the content of the guard slot. |
| SDValue GuardVal = DAG.getLoad( |
| PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, |
| MachineMemOperand::MOVolatile); |
| |
| if (TLI.useStackGuardXorFP()) |
| GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); |
| |
| // Retrieve guard check function, nullptr if instrumentation is inlined. |
| if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { |
| // The target provides a guard check function to validate the guard value. |
| // Generate a call to that function with the content of the guard slot as |
| // argument. |
| FunctionType *FnTy = GuardCheckFn->getFunctionType(); |
| assert(FnTy->getNumParams() == 1 && "Invalid function signature"); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = GuardVal; |
| Entry.Ty = FnTy->getParamType(0); |
| if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) |
| Entry.IsInReg = true; |
| Args.push_back(Entry); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(getCurSDLoc()) |
| .setChain(DAG.getEntryNode()) |
| .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), |
| getValue(GuardCheckFn), std::move(Args)); |
| |
| std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); |
| DAG.setRoot(Result.second); |
| return; |
| } |
| |
| // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. |
| // Otherwise, emit a volatile load to retrieve the stack guard value. |
| SDValue Chain = DAG.getEntryNode(); |
| if (TLI.useLoadStackGuardNode()) { |
| Guard = getLoadStackGuard(DAG, dl, Chain); |
| } else { |
| const Value *IRGuard = TLI.getSDagStackGuard(M); |
| SDValue GuardPtr = getValue(IRGuard); |
| |
| Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, |
| MachinePointerInfo(IRGuard, 0), Align, |
| MachineMemOperand::MOVolatile); |
| } |
| |
| // Perform the comparison via a subtract/getsetcc. |
| EVT VT = Guard.getValueType(); |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); |
| |
| SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), |
| Sub.getValueType()), |
| Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); |
| |
| // If the sub is not 0, then we know the guard/stackslot do not equal, so |
| // branch to failure MBB. |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
| MVT::Other, GuardVal.getOperand(0), |
| Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); |
| // Otherwise branch to success MBB. |
| SDValue Br = DAG.getNode(ISD::BR, dl, |
| MVT::Other, BrCond, |
| DAG.getBasicBlock(SPD.getSuccessMBB())); |
| |
| DAG.setRoot(Br); |
| } |
| |
| /// Codegen the failure basic block for a stack protector check. |
| /// |
| /// A failure stack protector machine basic block consists simply of a call to |
| /// __stack_chk_fail(). |
| /// |
| /// For a high level explanation of how this fits into the stack protector |
| /// generation see the comment on the declaration of class |
| /// StackProtectorDescriptor. |
| void |
| SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::MakeLibCallOptions CallOptions; |
| CallOptions.setDiscardResult(true); |
| SDValue Chain = |
| TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, |
| None, CallOptions, getCurSDLoc()).second; |
| // On PS4, the "return address" must still be within the calling function, |
| // even if it's at the very end, so emit an explicit TRAP here. |
| // Passing 'true' for doesNotReturn above won't generate the trap for us. |
| if (TM.getTargetTriple().isPS4CPU()) |
| Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); |
| |
| DAG.setRoot(Chain); |
| } |
| |
| /// visitBitTestHeader - This function emits necessary code to produce value |
| /// suitable for "bit tests" |
| void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, |
| MachineBasicBlock *SwitchBB) { |
| SDLoc dl = getCurSDLoc(); |
| |
| // Subtract the minimum value. |
| SDValue SwitchOp = getValue(B.SValue); |
| EVT VT = SwitchOp.getValueType(); |
| SDValue RangeSub = |
| DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); |
| |
| // Determine the type of the test operands. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| bool UsePtrType = false; |
| if (!TLI.isTypeLegal(VT)) { |
| UsePtrType = true; |
| } else { |
| for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) |
| if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { |
| // Switch table case range are encoded into series of masks. |
| // Just use pointer type, it's guaranteed to fit. |
| UsePtrType = true; |
| break; |
| } |
| } |
| SDValue Sub = RangeSub; |
| if (UsePtrType) { |
| VT = TLI.getPointerTy(DAG.getDataLayout()); |
| Sub = DAG.getZExtOrTrunc(Sub, dl, VT); |
| } |
| |
| B.RegVT = VT.getSimpleVT(); |
| B.Reg = FuncInfo.CreateReg(B.RegVT); |
| SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); |
| |
| MachineBasicBlock* MBB = B.Cases[0].ThisBB; |
| |
| if (!B.OmitRangeCheck) |
| addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); |
| addSuccessorWithProb(SwitchBB, MBB, B.Prob); |
| SwitchBB->normalizeSuccProbs(); |
| |
| SDValue Root = CopyTo; |
| if (!B.OmitRangeCheck) { |
| // Conditional branch to the default block. |
| SDValue RangeCmp = DAG.getSetCC(dl, |
| TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), |
| RangeSub.getValueType()), |
| RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), |
| ISD::SETUGT); |
| |
| Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, |
| DAG.getBasicBlock(B.Default)); |
| } |
| |
| // Avoid emitting unnecessary branches to the next block. |
| if (MBB != NextBlock(SwitchBB)) |
| Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); |
| |
| DAG.setRoot(Root); |
| } |
| |
| /// visitBitTestCase - this function produces one "bit test" |
| void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, |
| MachineBasicBlock* NextMBB, |
| BranchProbability BranchProbToNext, |
| unsigned Reg, |
| BitTestCase &B, |
| MachineBasicBlock *SwitchBB) { |
| SDLoc dl = getCurSDLoc(); |
| MVT VT = BB.RegVT; |
| SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); |
| SDValue Cmp; |
| unsigned PopCount = countPopulation(B.Mask); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (PopCount == 1) { |
| // Testing for a single bit; just compare the shift count with what it |
| // would need to be to shift a 1 bit in that position. |
| Cmp = DAG.getSetCC( |
| dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), |
| ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), |
| ISD::SETEQ); |
| } else if (PopCount == BB.Range) { |
| // There is only one zero bit in the range, test for it directly. |
| Cmp = DAG.getSetCC( |
| dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), |
| ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), |
| ISD::SETNE); |
| } else { |
| // Make desired shift |
| SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, |
| DAG.getConstant(1, dl, VT), ShiftOp); |
| |
| // Emit bit tests and jumps |
| SDValue AndOp = DAG.getNode(ISD::AND, dl, |
| VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); |
| Cmp = DAG.getSetCC( |
| dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), |
| AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); |
| } |
| |
| // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. |
| addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); |
| // The branch probability from SwitchBB to NextMBB is BranchProbToNext. |
| addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); |
| // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is |
| // one as they are relative probabilities (and thus work more like weights), |
| // and hence we need to normalize them to let the sum of them become one. |
| SwitchBB->normalizeSuccProbs(); |
| |
| SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, |
| MVT::Other, getControlRoot(), |
| Cmp, DAG.getBasicBlock(B.TargetBB)); |
| |
| // Avoid emitting unnecessary branches to the next block. |
| if (NextMBB != NextBlock(SwitchBB)) |
| BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, |
| DAG.getBasicBlock(NextMBB)); |
| |
| DAG.setRoot(BrAnd); |
| } |
| |
| void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { |
| MachineBasicBlock *InvokeMBB = FuncInfo.MBB; |
| |
| // Retrieve successors. Look through artificial IR level blocks like |
| // catchswitch for successors. |
| MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| const BasicBlock *EHPadBB = I.getSuccessor(1); |
| |
| // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't |
| // have to do anything here to lower funclet bundles. |
| assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, |
| LLVMContext::OB_funclet, |
| LLVMContext::OB_cfguardtarget}) && |
| "Cannot lower invokes with arbitrary operand bundles yet!"); |
| |
| const Value *Callee(I.getCalledValue()); |
| const Function *Fn = dyn_cast<Function>(Callee); |
| if (isa<InlineAsm>(Callee)) |
| visitInlineAsm(&I); |
| else if (Fn && Fn->isIntrinsic()) { |
| switch (Fn->getIntrinsicID()) { |
| default: |
| llvm_unreachable("Cannot invoke this intrinsic"); |
| case Intrinsic::donothing: |
| // Ignore invokes to @llvm.donothing: jump directly to the next BB. |
| break; |
| case Intrinsic::experimental_patchpoint_void: |
| case Intrinsic::experimental_patchpoint_i64: |
| visitPatchpoint(&I, EHPadBB); |
| break; |
| case Intrinsic::experimental_gc_statepoint: |
| LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); |
| break; |
| case Intrinsic::wasm_rethrow_in_catch: { |
| // This is usually done in visitTargetIntrinsic, but this intrinsic is |
| // special because it can be invoked, so we manually lower it to a DAG |
| // node here. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(getRoot()); // inchain |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| Ops.push_back( |
| DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain |
| DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); |
| break; |
| } |
| } |
| } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { |
| // Currently we do not lower any intrinsic calls with deopt operand bundles. |
| // Eventually we will support lowering the @llvm.experimental.deoptimize |
| // intrinsic, and right now there are no plans to support other intrinsics |
| // with deopt state. |
| LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); |
| } else { |
| LowerCallTo(&I, getValue(Callee), false, EHPadBB); |
| } |
| |
| // If the value of the invoke is used outside of its defining block, make it |
| // available as a virtual register. |
| // We already took care of the exported value for the statepoint instruction |
| // during call to the LowerStatepoint. |
| if (!isStatepoint(I)) { |
| CopyToExportRegsIfNeeded(&I); |
| } |
| |
| SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| BranchProbability EHPadBBProb = |
| BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) |
| : BranchProbability::getZero(); |
| findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); |
| |
| // Update successor info. |
| addSuccessorWithProb(InvokeMBB, Return); |
| for (auto &UnwindDest : UnwindDests) { |
| UnwindDest.first->setIsEHPad(); |
| addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); |
| } |
| InvokeMBB->normalizeSuccProbs(); |
| |
| // Drop into normal successor. |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Return))); |
| } |
| |
| void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { |
| MachineBasicBlock *CallBrMBB = FuncInfo.MBB; |
| |
| // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't |
| // have to do anything here to lower funclet bundles. |
| assert(!I.hasOperandBundlesOtherThan( |
| {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && |
| "Cannot lower callbrs with arbitrary operand bundles yet!"); |
| |
| assert(isa<InlineAsm>(I.getCalledValue()) && |
| "Only know how to handle inlineasm callbr"); |
| visitInlineAsm(&I); |
| |
| // Retrieve successors. |
| MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; |
| |
| // Update successor info. |
| addSuccessorWithProb(CallBrMBB, Return); |
| for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { |
| MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; |
| addSuccessorWithProb(CallBrMBB, Target); |
| } |
| CallBrMBB->normalizeSuccProbs(); |
| |
| // Drop into default successor. |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Return))); |
| } |
| |
| void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { |
| llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); |
| } |
| |
| void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { |
| assert(FuncInfo.MBB->isEHPad() && |
| "Call to landingpad not in landing pad!"); |
| |
| // If there aren't registers to copy the values into (e.g., during SjLj |
| // exceptions), then don't bother to create these DAG nodes. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); |
| if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && |
| TLI.getExceptionSelectorRegister(PersonalityFn) == 0) |
| return; |
| |
| // If landingpad's return type is token type, we don't create DAG nodes |
| // for its exception pointer and selector value. The extraction of exception |
| // pointer or selector value from token type landingpads is not currently |
| // supported. |
| if (LP.getType()->isTokenTy()) |
| return; |
| |
| SmallVector<EVT, 2> ValueVTs; |
| SDLoc dl = getCurSDLoc(); |
| ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); |
| assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); |
| |
| // Get the two live-in registers as SDValues. The physregs have already been |
| // copied into virtual registers. |
| SDValue Ops[2]; |
| if (FuncInfo.ExceptionPointerVirtReg) { |
| Ops[0] = DAG.getZExtOrTrunc( |
| DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
| FuncInfo.ExceptionPointerVirtReg, |
| TLI.getPointerTy(DAG.getDataLayout())), |
| dl, ValueVTs[0]); |
| } else { |
| Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); |
| } |
| Ops[1] = DAG.getZExtOrTrunc( |
| DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
| FuncInfo.ExceptionSelectorVirtReg, |
| TLI.getPointerTy(DAG.getDataLayout())), |
| dl, ValueVTs[1]); |
| |
| // Merge into one. |
| SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, |
| DAG.getVTList(ValueVTs), Ops); |
| setValue(&LP, Res); |
| } |
| |
| void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, |
| MachineBasicBlock *Last) { |
| // Update JTCases. |
| for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) |
| if (SL->JTCases[i].first.HeaderBB == First) |
| SL->JTCases[i].first.HeaderBB = Last; |
| |
| // Update BitTestCases. |
| for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) |
| if (SL->BitTestCases[i].Parent == First) |
| SL->BitTestCases[i].Parent = Last; |
| } |
| |
| void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { |
| MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; |
| |
| // Update machine-CFG edges with unique successors. |
| SmallSet<BasicBlock*, 32> Done; |
| for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { |
| BasicBlock *BB = I.getSuccessor(i); |
| bool Inserted = Done.insert(BB).second; |
| if (!Inserted) |
| continue; |
| |
| MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; |
| addSuccessorWithProb(IndirectBrMBB, Succ); |
| } |
| IndirectBrMBB->normalizeSuccProbs(); |
| |
| DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), |
| MVT::Other, getControlRoot(), |
| getValue(I.getAddress()))); |
| } |
| |
| void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { |
| if (!DAG.getTarget().Options.TrapUnreachable) |
| return; |
| |
| // We may be able to ignore unreachable behind a noreturn call. |
| if (DAG.getTarget().Options.NoTrapAfterNoreturn) { |
| const BasicBlock &BB = *I.getParent(); |
| if (&I != &BB.front()) { |
| BasicBlock::const_iterator PredI = |
| std::prev(BasicBlock::const_iterator(&I)); |
| if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { |
| if (Call->doesNotReturn()) |
| return; |
| } |
| } |
| } |
| |
| DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); |
| } |
| |
| void SelectionDAGBuilder::visitFSub(const User &I) { |
| // -0.0 - X --> fneg |
| Type *Ty = I.getType(); |
| if (isa<Constant>(I.getOperand(0)) && |
| I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { |
| SDValue Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), |
| Op2.getValueType(), Op2)); |
| return; |
| } |
| |
| visitBinary(I, ISD::FSUB); |
| } |
| |
| /// Checks if the given instruction performs a vector reduction, in which case |
| /// we have the freedom to alter the elements in the result as long as the |
| /// reduction of them stays unchanged. |
| static bool isVectorReductionOp(const User *I) { |
| const Instruction *Inst = dyn_cast<Instruction>(I); |
| if (!Inst || !Inst->getType()->isVectorTy()) |
| return false; |
| |
| auto OpCode = Inst->getOpcode(); |
| switch (OpCode) { |
| case Instruction::Add: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| break; |
| case Instruction::FAdd: |
| case Instruction::FMul: |
| if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) |
| if (FPOp->getFastMathFlags().isFast()) |
| break; |
| LLVM_FALLTHROUGH; |
| default: |
| return false; |
| } |
| |
| unsigned ElemNum = Inst->getType()->getVectorNumElements(); |
| // Ensure the reduction size is a power of 2. |
| if (!isPowerOf2_32(ElemNum)) |
| return false; |
| |
| unsigned ElemNumToReduce = ElemNum; |
| |
| // Do DFS search on the def-use chain from the given instruction. We only |
| // allow four kinds of operations during the search until we reach the |
| // instruction that extracts the first element from the vector: |
| // |
| // 1. The reduction operation of the same opcode as the given instruction. |
| // |
| // 2. PHI node. |
| // |
| // 3. ShuffleVector instruction together with a reduction operation that |
| // does a partial reduction. |
| // |
| // 4. ExtractElement that extracts the first element from the vector, and we |
| // stop searching the def-use chain here. |
| // |
| // 3 & 4 above perform a reduction on all elements of the vector. We push defs |
| // from 1-3 to the stack to continue the DFS. The given instruction is not |
| // a reduction operation if we meet any other instructions other than those |
| // listed above. |
| |
| SmallVector<const User *, 16> UsersToVisit{Inst}; |
| SmallPtrSet<const User *, 16> Visited; |
| bool ReduxExtracted = false; |
| |
| while (!UsersToVisit.empty()) { |
| auto User = UsersToVisit.back(); |
| UsersToVisit.pop_back(); |
| if (!Visited.insert(User).second) |
| continue; |
| |
| for (const auto *U : User->users()) { |
| auto Inst = dyn_cast<Instruction>(U); |
| if (!Inst) |
| return false; |
| |
| if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { |
| if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) |
| if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) |
| return false; |
| UsersToVisit.push_back(U); |
| } else if (const ShuffleVectorInst *ShufInst = |
| dyn_cast<ShuffleVectorInst>(U)) { |
| // Detect the following pattern: A ShuffleVector instruction together |
| // with a reduction that do partial reduction on the first and second |
| // ElemNumToReduce / 2 elements, and store the result in |
| // ElemNumToReduce / 2 elements in another vector. |
| |
| unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); |
| if (ResultElements < ElemNum) |
| return false; |
| |
| if (ElemNumToReduce == 1) |
| return false; |
| if (!isa<UndefValue>(U->getOperand(1))) |
| return false; |
| for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) |
| if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) |
| return false; |
| for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) |
| if (ShufInst->getMaskValue(i) != -1) |
| return false; |
| |
| // There is only one user of this ShuffleVector instruction, which |
| // must be a reduction operation. |
| if (!U->hasOneUse()) |
| return false; |
| |
| auto U2 = dyn_cast<Instruction>(*U->user_begin()); |
| if (!U2 || U2->getOpcode() != OpCode) |
| return false; |
| |
| // Check operands of the reduction operation. |
| if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || |
| (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { |
| UsersToVisit.push_back(U2); |
| ElemNumToReduce /= 2; |
| } else |
| return false; |
| } else if (isa<ExtractElementInst>(U)) { |
| // At this moment we should have reduced all elements in the vector. |
| if (ElemNumToReduce != 1) |
| return false; |
| |
| const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); |
| if (!Val || !Val->isZero()) |
| return false; |
| |
| ReduxExtracted = true; |
| } else |
| return false; |
| } |
| } |
| return ReduxExtracted; |
| } |
| |
| void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { |
| SDNodeFlags Flags; |
| |
| SDValue Op = getValue(I.getOperand(0)); |
| SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), |
| Op, Flags); |
| setValue(&I, UnNodeValue); |
| } |
| |
| void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { |
| SDNodeFlags Flags; |
| if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { |
| Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); |
| Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); |
| } |
| if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { |
| Flags.setExact(ExactOp->isExact()); |
| } |
| if (isVectorReductionOp(&I)) { |
| Flags.setVectorReduction(true); |
| LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); |
| |
| // If no flags are set we will propagate the incoming flags, if any flags |
| // are set, we will intersect them with the incoming flag and so we need to |
| // copy the FMF flags here. |
| if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { |
| Flags.copyFMF(*FPOp); |
| } |
| } |
| |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), |
| Op1, Op2, Flags); |
| setValue(&I, BinNodeValue); |
| } |
| |
| void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| |
| EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( |
| Op1.getValueType(), DAG.getDataLayout()); |
| |
| // Coerce the shift amount to the right type if we can. |
| if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { |
| unsigned ShiftSize = ShiftTy.getSizeInBits(); |
| unsigned Op2Size = Op2.getValueSizeInBits(); |
| SDLoc DL = getCurSDLoc(); |
| |
| // If the operand is smaller than the shift count type, promote it. |
| if (ShiftSize > Op2Size) |
| Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); |
| |
| // If the operand is larger than the shift count type but the shift |
| // count type has enough bits to represent any shift value, truncate |
| // it now. This is a common case and it exposes the truncate to |
| // optimization early. |
| else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) |
| Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); |
| // Otherwise we'll need to temporarily settle for some other convenient |
| // type. Type legalization will make adjustments once the shiftee is split. |
| else |
| Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); |
| } |
| |
| bool nuw = false; |
| bool nsw = false; |
| bool exact = false; |
| |
| if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { |
| |
| if (const OverflowingBinaryOperator *OFBinOp = |
| dyn_cast<const OverflowingBinaryOperator>(&I)) { |
| nuw = OFBinOp->hasNoUnsignedWrap(); |
| nsw = OFBinOp->hasNoSignedWrap(); |
| } |
| if (const PossiblyExactOperator *ExactOp = |
| dyn_cast<const PossiblyExactOperator>(&I)) |
| exact = ExactOp->isExact(); |
| } |
| SDNodeFlags Flags; |
| Flags.setExact(exact); |
| Flags.setNoSignedWrap(nsw); |
| Flags.setNoUnsignedWrap(nuw); |
| SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, |
| Flags); |
| setValue(&I, Res); |
| } |
| |
| void SelectionDAGBuilder::visitSDiv(const User &I) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| |
| SDNodeFlags Flags; |
| Flags.setExact(isa<PossiblyExactOperator>(&I) && |
| cast<PossiblyExactOperator>(&I)->isExact()); |
| setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, |
| Op2, Flags)); |
| } |
| |
| void SelectionDAGBuilder::visitICmp(const User &I) { |
| ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) |
| predicate = IC->getPredicate(); |
| else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) |
| predicate = ICmpInst::Predicate(IC->getPredicate()); |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Opcode = getICmpCondCode(predicate); |
| |
| auto &TLI = DAG.getTargetLoweringInfo(); |
| EVT MemVT = |
| TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); |
| |
| // If a pointer's DAG type is larger than its memory type then the DAG values |
| // are zero-extended. This breaks signed comparisons so truncate back to the |
| // underlying type before doing the compare. |
| if (Op1.getValueType() != MemVT) { |
| Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); |
| Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); |
| } |
| |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); |
| } |
| |
| void SelectionDAGBuilder::visitFCmp(const User &I) { |
| FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; |
| if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) |
| predicate = FC->getPredicate(); |
| else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) |
| predicate = FCmpInst::Predicate(FC->getPredicate()); |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| |
| ISD::CondCode Condition = getFCmpCondCode(predicate); |
| auto *FPMO = dyn_cast<FPMathOperator>(&I); |
| if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) |
| Condition = getFCmpCodeWithoutNaN(Condition); |
| |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); |
| } |
| |
| // Check if the condition of the select has one use or two users that are both |
| // selects with the same condition. |
| static bool hasOnlySelectUsers(const Value *Cond) { |
| return llvm::all_of(Cond->users(), [](const Value *V) { |
| return isa<SelectInst>(V); |
| }); |
| } |
| |
| void SelectionDAGBuilder::visitSelect(const User &I) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), |
| ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) return; |
| |
| SmallVector<SDValue, 4> Values(NumValues); |
| SDValue Cond = getValue(I.getOperand(0)); |
| SDValue LHSVal = getValue(I.getOperand(1)); |
| SDValue RHSVal = getValue(I.getOperand(2)); |
| auto BaseOps = {Cond}; |
| ISD::NodeType OpCode = Cond.getValueType().isVector() ? |
| ISD::VSELECT : ISD::SELECT; |
| |
| bool IsUnaryAbs = false; |
| |
| // Min/max matching is only viable if all output VTs are the same. |
| if (is_splat(ValueVTs)) { |
| EVT VT = ValueVTs[0]; |
| LLVMContext &Ctx = *DAG.getContext(); |
| auto &TLI = DAG.getTargetLoweringInfo(); |
| |
| // We care about the legality of the operation after it has been type |
| // legalized. |
| while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) |
| VT = TLI.getTypeToTransformTo(Ctx, VT); |
| |
| // If the vselect is legal, assume we want to leave this as a vector setcc + |
| // vselect. Otherwise, if this is going to be scalarized, we want to see if |
| // min/max is legal on the scalar type. |
| bool UseScalarMinMax = VT.isVector() && |
| !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); |
| |
| Value *LHS, *RHS; |
| auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); |
| ISD::NodeType Opc = ISD::DELETED_NODE; |
| switch (SPR.Flavor) { |
| case SPF_UMAX: Opc = ISD::UMAX; break; |
| case SPF_UMIN: Opc = ISD::UMIN; break; |
| case SPF_SMAX: Opc = ISD::SMAX; break; |
| case SPF_SMIN: Opc = ISD::SMIN; break; |
| case SPF_FMINNUM: |
| switch (SPR.NaNBehavior) { |
| case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); |
| case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; |
| case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; |
| case SPNB_RETURNS_ANY: { |
| if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) |
| Opc = ISD::FMINNUM; |
| else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) |
| Opc = ISD::FMINIMUM; |
| else if (UseScalarMinMax) |
| Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? |
| ISD::FMINNUM : ISD::FMINIMUM; |
| break; |
| } |
| } |
| break; |
| case SPF_FMAXNUM: |
| switch (SPR.NaNBehavior) { |
| case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); |
| case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; |
| case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; |
| case SPNB_RETURNS_ANY: |
| |
| if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) |
| Opc = ISD::FMAXNUM; |
| else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) |
| Opc = ISD::FMAXIMUM; |
| else if (UseScalarMinMax) |
| Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? |
| ISD::FMAXNUM : ISD::FMAXIMUM; |
| break; |
| } |
| break; |
| case SPF_ABS: |
| IsUnaryAbs = true; |
| Opc = ISD::ABS; |
| break; |
| case SPF_NABS: |
| // TODO: we need to produce sub(0, abs(X)). |
| default: break; |
| } |
| |
| if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && |
| (TLI.isOperationLegalOrCustom(Opc, VT) || |
| (UseScalarMinMax && |
| TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && |
| // If the underlying comparison instruction is used by any other |
| // instruction, the consumed instructions won't be destroyed, so it is |
| // not profitable to convert to a min/max. |
| hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { |
| OpCode = Opc; |
| LHSVal = getValue(LHS); |
| RHSVal = getValue(RHS); |
| BaseOps = {}; |
| } |
| |
| if (IsUnaryAbs) { |
| OpCode = Opc; |
| LHSVal = getValue(LHS); |
| BaseOps = {}; |
| } |
| } |
| |
| if (IsUnaryAbs) { |
| for (unsigned i = 0; i != NumValues; ++i) { |
| Values[i] = |
| DAG.getNode(OpCode, getCurSDLoc(), |
| LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), |
| SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); |
| } |
| } else { |
| for (unsigned i = 0; i != NumValues; ++i) { |
| SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); |
| Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); |
| Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); |
| Values[i] = DAG.getNode( |
| OpCode, getCurSDLoc(), |
| LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); |
| } |
| } |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
| DAG.getVTList(ValueVTs), Values)); |
| } |
| |
| void SelectionDAGBuilder::visitTrunc(const User &I) { |
| // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitZExt(const User &I) { |
| // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // ZExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitSExt(const User &I) { |
| // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // SExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitFPTrunc(const User &I) { |
| // FPTrunc is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| SDLoc dl = getCurSDLoc(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, |
| DAG.getTargetConstant( |
| 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); |
| } |
| |
| void SelectionDAGBuilder::visitFPExt(const User &I) { |
| // FPExt is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitFPToUI(const User &I) { |
| // FPToUI is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitFPToSI(const User &I) { |
| // FPToSI is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitUIToFP(const User &I) { |
| // UIToFP is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitSIToFP(const User &I) { |
| // SIToFP is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitPtrToInt(const User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDValue N = getValue(I.getOperand(0)); |
| auto &TLI = DAG.getTargetLoweringInfo(); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| EVT PtrMemVT = |
| TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); |
| N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); |
| N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGBuilder::visitIntToPtr(const User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDValue N = getValue(I.getOperand(0)); |
| auto &TLI = DAG.getTargetLoweringInfo(); |
| EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); |
| N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); |
| N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGBuilder::visitBitCast(const User &I) { |
| SDValue N = getValue(I.getOperand(0)); |
| SDLoc dl = getCurSDLoc(); |
| EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType()); |
| |
| // BitCast assures us that source and destination are the same size so this is |
| // either a BITCAST or a no-op. |
| if (DestVT != N.getValueType()) |
| setValue(&I, DAG.getNode(ISD::BITCAST, dl, |
| DestVT, N)); // convert types. |
| // Check if the original LLVM IR Operand was a ConstantInt, because getValue() |
| // might fold any kind of constant expression to an integer constant and that |
| // is not what we are looking for. Only recognize a bitcast of a genuine |
| // constant integer as an opaque constant. |
| else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) |
| setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, |
| /*isOpaque*/true)); |
| else |
| setValue(&I, N); // noop cast. |
| } |
| |
| void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const Value *SV = I.getOperand(0); |
| SDValue N = getValue(SV); |
| EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| |
| unsigned SrcAS = SV->getType()->getPointerAddressSpace(); |
| unsigned DestAS = I.getType()->getPointerAddressSpace(); |
| |
| if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) |
| N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); |
| |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGBuilder::visitInsertElement(const User &I) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue InVec = getValue(I.getOperand(0)); |
| SDValue InVal = getValue(I.getOperand(1)); |
| SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), |
| TLI.getVectorIdxTy(DAG.getDataLayout())); |
| setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), |
| TLI.getValueType(DAG.getDataLayout(), I.getType()), |
| InVec, InVal, InIdx)); |
| } |
| |
| void SelectionDAGBuilder::visitExtractElement(const User &I) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue InVec = getValue(I.getOperand(0)); |
| SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), |
| TLI.getVectorIdxTy(DAG.getDataLayout())); |
| setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), |
| TLI.getValueType(DAG.getDataLayout(), I.getType()), |
| InVec, InIdx)); |
| } |
| |
| void SelectionDAGBuilder::visitShuffleVector(const User &I) { |
| SDValue Src1 = getValue(I.getOperand(0)); |
| SDValue Src2 = getValue(I.getOperand(1)); |
| Constant *MaskV = cast<Constant>(I.getOperand(2)); |
| SDLoc DL = getCurSDLoc(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| EVT SrcVT = Src1.getValueType(); |
| unsigned SrcNumElts = SrcVT.getVectorNumElements(); |
| |
| if (MaskV->isNullValue() && VT.isScalableVector()) { |
| // Canonical splat form of first element of first input vector. |
| SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| SrcVT.getScalarType(), Src1, |
| DAG.getConstant(0, DL, |
| TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); |
| return; |
| } |
| |
| // For now, we only handle splats for scalable vectors. |
| // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation |
| // for targets that support a SPLAT_VECTOR for non-scalable vector types. |
| assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); |
| |
| SmallVector<int, 8> Mask; |
| ShuffleVectorInst::getShuffleMask(MaskV, Mask); |
| unsigned MaskNumElts = Mask.size(); |
| |
| if (SrcNumElts == MaskNumElts) { |
| setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); |
| return; |
| } |
| |
| // Normalize the shuffle vector since mask and vector length don't match. |
| if (SrcNumElts < MaskNumElts) { |
| // Mask is longer than the source vectors. We can use concatenate vector to |
| // make the mask and vectors lengths match. |
| |
| if (MaskNumElts % SrcNumElts == 0) { |
| // Mask length is a multiple of the source vector length. |
| // Check if the shuffle is some kind of concatenation of the input |
| // vectors. |
| unsigned NumConcat = MaskNumElts / SrcNumElts; |
| bool IsConcat = true; |
| SmallVector<int, 8> ConcatSrcs(NumConcat, -1); |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| if (Idx < 0) |
| continue; |
| // Ensure the indices in each SrcVT sized piece are sequential and that |
| // the same source is used for the whole piece. |
| if ((Idx % SrcNumElts != (i % SrcNumElts)) || |
| (ConcatSrcs[i / SrcNumElts] >= 0 && |
| ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { |
| IsConcat = false; |
| break; |
| } |
| // Remember which source this index came from. |
| ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; |
| } |
| |
| // The shuffle is concatenating multiple vectors together. Just emit |
| // a CONCAT_VECTORS operation. |
| if (IsConcat) { |
| SmallVector<SDValue, 8> ConcatOps; |
| for (auto Src : ConcatSrcs) { |
| if (Src < 0) |
| ConcatOps.push_back(DAG.getUNDEF(SrcVT)); |
| else if (Src == 0) |
| ConcatOps.push_back(Src1); |
| else |
| ConcatOps.push_back(Src2); |
| } |
| setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); |
| return; |
| } |
| } |
| |
| unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); |
| unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; |
| EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), |
| PaddedMaskNumElts); |
| |
| // Pad both vectors with undefs to make them the same length as the mask. |
| SDValue UndefVal = DAG.getUNDEF(SrcVT); |
| |
| SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); |
| SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); |
| MOps1[0] = Src1; |
| MOps2[0] = Src2; |
| |
| Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); |
| Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); |
| |
| // Readjust mask for new input vector length. |
| SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| if (Idx >= (int)SrcNumElts) |
| Idx -= SrcNumElts - PaddedMaskNumElts; |
| MappedOps[i] = Idx; |
| } |
| |
| SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); |
| |
| // If the concatenated vector was padded, extract a subvector with the |
| // correct number of elements. |
| if (MaskNumElts != PaddedMaskNumElts) |
| Result = DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, DL, VT, Result, |
| DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| |
| setValue(&I, Result); |
| return; |
| } |
| |
| if (SrcNumElts > MaskNumElts) { |
| // Analyze the access pattern of the vector to see if we can extract |
| // two subvectors and do the shuffle. |
| int StartIdx[2] = { -1, -1 }; // StartIdx to extract from |
| bool CanExtract = true; |
| for (int Idx : Mask) { |
| unsigned Input = 0; |
| if (Idx < 0) |
| continue; |
| |
| if (Idx >= (int)SrcNumElts) { |
| Input = 1; |
| Idx -= SrcNumElts; |
| } |
| |
| // If all the indices come from the same MaskNumElts sized portion of |
| // the sources we can use extract. Also make sure the extract wouldn't |
| // extract past the end of the source. |
| int NewStartIdx = alignDown(Idx, MaskNumElts); |
| if (NewStartIdx + MaskNumElts > SrcNumElts || |
| (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) |
| CanExtract = false; |
| // Make sure we always update StartIdx as we use it to track if all |
| // elements are undef. |
| StartIdx[Input] = NewStartIdx; |
| } |
| |
| if (StartIdx[0] < 0 && StartIdx[1] < 0) { |
| setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. |
| return; |
| } |
| if (CanExtract) { |
| // Extract appropriate subvector and generate a vector shuffle |
| for (unsigned Input = 0; Input < 2; ++Input) { |
| SDValue &Src = Input == 0 ? Src1 : Src2; |
| if (StartIdx[Input] < 0) |
| Src = DAG.getUNDEF(VT); |
| else { |
| Src = DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, DL, VT, Src, |
| DAG.getConstant(StartIdx[Input], DL, |
| TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| } |
| } |
| |
| // Calculate new mask. |
| SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); |
| for (int &Idx : MappedOps) { |
| if (Idx >= (int)SrcNumElts) |
| Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; |
| else if (Idx >= 0) |
| Idx -= StartIdx[0]; |
| } |
| |
| setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); |
| return; |
| } |
| } |
| |
| // We can't use either concat vectors or extract subvectors so fall back to |
| // replacing the shuffle with extract and build vector. |
| // to insert and build vector. |
| EVT EltVT = VT.getVectorElementType(); |
| EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| SmallVector<SDValue,8> Ops; |
| for (int Idx : Mask) { |
| SDValue Res; |
| |
| if (Idx < 0) { |
| Res = DAG.getUNDEF(EltVT); |
| } else { |
| SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; |
| if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; |
| |
| Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); |
| } |
| |
| Ops.push_back(Res); |
| } |
| |
| setValue(&I, DAG.getBuildVector(VT, DL, Ops)); |
| } |
| |
| void SelectionDAGBuilder::visitInsertValue(const User &I) { |
| ArrayRef<unsigned> Indices; |
| if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) |
| Indices = IV->getIndices(); |
| else |
| Indices = cast<ConstantExpr>(&I)->getIndices(); |
| |
| const Value *Op0 = I.getOperand(0); |
| const Value *Op1 = I.getOperand(1); |
| Type *AggTy = I.getType(); |
| Type *ValTy = Op1->getType(); |
| bool IntoUndef = isa<UndefValue>(Op0); |
| bool FromUndef = isa<UndefValue>(Op1); |
| |
| unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SmallVector<EVT, 4> AggValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); |
| SmallVector<EVT, 4> ValValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); |
| |
| unsigned NumAggValues = AggValueVTs.size(); |
| unsigned NumValValues = ValValueVTs.size(); |
| SmallVector<SDValue, 4> Values(NumAggValues); |
| |
| // Ignore an insertvalue that produces an empty object |
| if (!NumAggValues) { |
| setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); |
| return; |
| } |
| |
| SDValue Agg = getValue(Op0); |
| unsigned i = 0; |
| // Copy the beginning value(s) from the original aggregate. |
| for (; i != LinearIndex; ++i) |
| Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| // Copy values from the inserted value(s). |
| if (NumValValues) { |
| SDValue Val = getValue(Op1); |
| for (; i != LinearIndex + NumValValues; ++i) |
| Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); |
| } |
| // Copy remaining value(s) from the original aggregate. |
| for (; i != NumAggValues; ++i) |
| Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
| DAG.getVTList(AggValueVTs), Values)); |
| } |
| |
| void SelectionDAGBuilder::visitExtractValue(const User &I) { |
| ArrayRef<unsigned> Indices; |
| if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) |
| Indices = EV->getIndices(); |
| else |
| Indices = cast<ConstantExpr>(&I)->getIndices(); |
| |
| const Value *Op0 = I.getOperand(0); |
| Type *AggTy = Op0->getType(); |
| Type *ValTy = I.getType(); |
| bool OutOfUndef = isa<UndefValue>(Op0); |
| |
| unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SmallVector<EVT, 4> ValValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); |
| |
| unsigned NumValValues = ValValueVTs.size(); |
| |
| // Ignore a extractvalue that produces an empty object |
| if (!NumValValues) { |
| setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); |
| return; |
| } |
| |
| SmallVector<SDValue, 4> Values(NumValValues); |
| |
| SDValue Agg = getValue(Op0); |
| // Copy out the selected value(s). |
| for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) |
| Values[i - LinearIndex] = |
| OutOfUndef ? |
| DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
| DAG.getVTList(ValValueVTs), Values)); |
| } |
| |
| void SelectionDAGBuilder::visitGetElementPtr(const User &I) { |
| Value *Op0 = I.getOperand(0); |
| // Note that the pointer operand may be a vector of pointers. Take the scalar |
| // element which holds a pointer. |
| unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); |
| SDValue N = getValue(Op0); |
| SDLoc dl = getCurSDLoc(); |
| auto &TLI = DAG.getTargetLoweringInfo(); |
| MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); |
| MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); |
| |
| // Normalize Vector GEP - all scalar operands should be converted to the |
| // splat vector. |
| unsigned VectorWidth = I.getType()->isVectorTy() ? |
| I.getType()->getVectorNumElements() : 0; |
| |
| if (VectorWidth && !N.getValueType().isVector()) { |
| LLVMContext &Context = *DAG.getContext(); |
| EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); |
| N = DAG.getSplatBuildVector(VT, dl, N); |
| } |
| |
| for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); |
| GTI != E; ++GTI) { |
| const Value *Idx = GTI.getOperand(); |
| if (StructType *StTy = GTI.getStructTypeOrNull()) { |
| unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); |
| |
| // In an inbounds GEP with an offset that is nonnegative even when |
| // interpreted as signed, assume there is no unsigned overflow. |
| SDNodeFlags Flags; |
| if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) |
| Flags.setNoUnsignedWrap(true); |
| |
| N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, |
| DAG.getConstant(Offset, dl, N.getValueType()), Flags); |
| } |
| } else { |
| unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); |
| MVT IdxTy = MVT::getIntegerVT(IdxSize); |
| APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); |
| |
| // If this is a scalar constant or a splat vector of constants, |
| // handle it quickly. |
| const auto *C = dyn_cast<Constant>(Idx); |
| if (C && isa<VectorType>(C->getType())) |
| C = C->getSplatValue(); |
| |
| if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { |
| if (CI->isZero()) |
| continue; |
| APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); |
| LLVMContext &Context = *DAG.getContext(); |
| SDValue OffsVal = VectorWidth ? |
| DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : |
| DAG.getConstant(Offs, dl, IdxTy); |
| |
| // In an inbounds GEP with an offset that is nonnegative even when |
| // interpreted as signed, assume there is no unsigned overflow. |
| SDNodeFlags Flags; |
| if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) |
| Flags.setNoUnsignedWrap(true); |
| |
| OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); |
| |
| N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| SDValue IdxN = getValue(Idx); |
| |
| if (!IdxN.getValueType().isVector() && VectorWidth) { |
| EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); |
| IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); |
| } |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend |
| // it. |
| IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); |
| |
| // If this is a multiply by a power of two, turn it into a shl |
| // immediately. This is a very common case. |
| if (ElementSize != 1) { |
| if (ElementSize.isPowerOf2()) { |
| unsigned Amt = ElementSize.logBase2(); |
| IdxN = DAG.getNode(ISD::SHL, dl, |
| N.getValueType(), IdxN, |
| DAG.getConstant(Amt, dl, IdxN.getValueType())); |
| } else { |
| SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, |
| IdxN.getValueType()); |
| IdxN = DAG.getNode(ISD::MUL, dl, |
| N.getValueType(), IdxN, Scale); |
| } |
| } |
| |
| N = DAG.getNode(ISD::ADD, dl, |
| N.getValueType(), N, IdxN); |
| } |
| } |
| |
| if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) |
| N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); |
| |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { |
| // If this is a fixed sized alloca in the entry block of the function, |
| // allocate it statically on the stack. |
| if (FuncInfo.StaticAllocaMap.count(&I)) |
| return; // getValue will auto-populate this. |
| |
| SDLoc dl = getCurSDLoc(); |
| Type *Ty = I.getAllocatedType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| auto &DL = DAG.getDataLayout(); |
| uint64_t TySize = DL.getTypeAllocSize(Ty); |
| unsigned Align = |
| std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); |
| |
| SDValue AllocSize = getValue(I.getArraySize()); |
| |
| EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); |
| if (AllocSize.getValueType() != IntPtr) |
| AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); |
| |
| AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, |
| AllocSize, |
| DAG.getConstant(TySize, dl, IntPtr)); |
| |
| // Handle alignment. If the requested alignment is less than or equal to |
| // the stack alignment, ignore it. If the size is greater than or equal to |
| // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. |
| unsigned StackAlign = |
| DAG.getSubtarget().getFrameLowering()->getStackAlignment(); |
| if (Align <= StackAlign) |
| Align = 0; |
| |
| // Round the size of the allocation up to the stack alignment size |
| // by add SA-1 to the size. This doesn't overflow because we're computing |
| // an address inside an alloca. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, |
| DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); |
| |
| // Mask out the low bits for alignment purposes. |
| AllocSize = |
| DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, |
| DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); |
| |
| SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; |
| SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); |
| SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); |
| setValue(&I, DSA); |
| DAG.setRoot(DSA.getValue(1)); |
| |
| assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); |
| } |
| |
| void SelectionDAGBuilder::visitLoad(const LoadInst &I) { |
| if (I.isAtomic()) |
| return visitAtomicLoad(I); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const Value *SV = I.getOperand(0); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(SV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return visitLoadFromSwiftError(I); |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { |
| if (Alloca->isSwiftError()) |
| return visitLoadFromSwiftError(I); |
| } |
| } |
| |
| SDValue Ptr = getValue(SV); |
| |
| Type *Ty = I.getType(); |
| |
| bool isVolatile = I.isVolatile(); |
| bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); |
| bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); |
| bool isDereferenceable = |
| isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); |
| unsigned Alignment = I.getAlignment(); |
| |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
| |
| SmallVector<EVT, 4> ValueVTs, MemVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| return; |
| |
| SDValue Root; |
| bool ConstantMemory = false; |
| if (isVolatile) |
| // Serialize volatile loads with other side effects. |
| Root = getRoot(); |
| else if (NumValues > MaxParallelChains) |
| Root = getMemoryRoot(); |
| else if (AA && |
| AA->pointsToConstantMemory(MemoryLocation( |
| SV, |
| LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), |
| AAInfo))) { |
| // Do not serialize (non-volatile) loads of constant memory with anything. |
| Root = DAG.getEntryNode(); |
| ConstantMemory = true; |
| } else { |
| // Do not serialize non-volatile loads against each other. |
| Root = DAG.getRoot(); |
| } |
| |
| SDLoc dl = getCurSDLoc(); |
| |
| if (isVolatile) |
| Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); |
| |
| // An aggregate load cannot wrap around the address space, so offsets to its |
| // parts don't wrap either. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| |
| SmallVector<SDValue, 4> Values(NumValues); |
| SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); |
| EVT PtrVT = Ptr.getValueType(); |
| unsigned ChainI = 0; |
| for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { |
| // Serializing loads here may result in excessive register pressure, and |
| // TokenFactor places arbitrary choke points on the scheduler. SD scheduling |
| // could recover a bit by hoisting nodes upward in the chain by recognizing |
| // they are side-effect free or do not alias. The optimizer should really |
| // avoid this case by converting large object/array copies to llvm.memcpy |
| // (MaxParallelChains should always remain as failsafe). |
| if (ChainI == MaxParallelChains) { |
| assert(PendingLoads.empty() && "PendingLoads must be serialized first"); |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| makeArrayRef(Chains.data(), ChainI)); |
| Root = Chain; |
| ChainI = 0; |
| } |
| SDValue A = DAG.getNode(ISD::ADD, dl, |
| PtrVT, Ptr, |
| DAG.getConstant(Offsets[i], dl, PtrVT), |
| Flags); |
| auto MMOFlags = MachineMemOperand::MONone; |
| if (isVolatile) |
| MMOFlags |= MachineMemOperand::MOVolatile; |
| if (isNonTemporal) |
| MMOFlags |= MachineMemOperand::MONonTemporal; |
| if (isInvariant) |
| MMOFlags |= MachineMemOperand::MOInvariant; |
| if (isDereferenceable) |
| MMOFlags |= MachineMemOperand::MODereferenceable; |
| MMOFlags |= TLI.getMMOFlags(I); |
| |
| SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, |
| MachinePointerInfo(SV, Offsets[i]), Alignment, |
| MMOFlags, AAInfo, Ranges); |
| Chains[ChainI] = L.getValue(1); |
| |
| if (MemVTs[i] != ValueVTs[i]) |
| L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); |
| |
| Values[i] = L; |
| } |
| |
| if (!ConstantMemory) { |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| makeArrayRef(Chains.data(), ChainI)); |
| if (isVolatile) |
| DAG.setRoot(Chain); |
| else |
| PendingLoads.push_back(Chain); |
| } |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, |
| DAG.getVTList(ValueVTs), Values)); |
| } |
| |
| void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { |
| assert(DAG.getTargetLoweringInfo().supportSwiftError() && |
| "call visitStoreToSwiftError when backend supports swifterror"); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| const Value *SrcV = I.getOperand(0); |
| ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), |
| SrcV->getType(), ValueVTs, &Offsets); |
| assert(ValueVTs.size() == 1 && Offsets[0] == 0 && |
| "expect a single EVT for swifterror"); |
| |
| SDValue Src = getValue(SrcV); |
| // Create a virtual register, then update the virtual register. |
| Register VReg = |
| SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); |
| // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue |
| // Chain can be getRoot or getControlRoot. |
| SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, |
| SDValue(Src.getNode(), Src.getResNo())); |
| DAG.setRoot(CopyNode); |
| } |
| |
| void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { |
| assert(DAG.getTargetLoweringInfo().supportSwiftError() && |
| "call visitLoadFromSwiftError when backend supports swifterror"); |
| |
| assert(!I.isVolatile() && |
| !I.hasMetadata(LLVMContext::MD_nontemporal) && |
| !I.hasMetadata(LLVMContext::MD_invariant_load) && |
| "Support volatile, non temporal, invariant for load_from_swift_error"); |
| |
| const Value *SV = I.getOperand(0); |
| Type *Ty = I.getType(); |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| assert( |
| (!AA || |
| !AA->pointsToConstantMemory(MemoryLocation( |
| SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), |
| AAInfo))) && |
| "load_from_swift_error should not be constant memory"); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, |
| ValueVTs, &Offsets); |
| assert(ValueVTs.size() == 1 && Offsets[0] == 0 && |
| "expect a single EVT for swifterror"); |
| |
| // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT |
| SDValue L = DAG.getCopyFromReg( |
| getRoot(), getCurSDLoc(), |
| SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); |
| |
| setValue(&I, L); |
| } |
| |
| void SelectionDAGBuilder::visitStore(const StoreInst &I) { |
| if (I.isAtomic()) |
| return visitAtomicStore(I); |
| |
| const Value *SrcV = I.getOperand(0); |
| const Value *PtrV = I.getOperand(1); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return visitStoreToSwiftError(I); |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { |
| if (Alloca->isSwiftError()) |
| return visitStoreToSwiftError(I); |
| } |
| } |
| |
| SmallVector<EVT, 4> ValueVTs, MemVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), |
| SrcV->getType(), ValueVTs, &MemVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| return; |
| |
| // Get the lowered operands. Note that we do this after |
| // checking if NumResults is zero, because with zero results |
| // the operands won't have values in the map. |
| SDValue Src = getValue(SrcV); |
| SDValue Ptr = getValue(PtrV); |
| |
| SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); |
| SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); |
| SDLoc dl = getCurSDLoc(); |
| unsigned Alignment = I.getAlignment(); |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| |
| auto MMOFlags = MachineMemOperand::MONone; |
| if (I.isVolatile()) |
| MMOFlags |= MachineMemOperand::MOVolatile; |
| if (I.hasMetadata(LLVMContext::MD_nontemporal)) |
| MMOFlags |= MachineMemOperand::MONonTemporal; |
| MMOFlags |= TLI.getMMOFlags(I); |
| |
| // An aggregate load cannot wrap around the address space, so offsets to its |
| // parts don't wrap either. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| |
| unsigned ChainI = 0; |
| for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { |
| // See visitLoad comments. |
| if (ChainI == MaxParallelChains) { |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| makeArrayRef(Chains.data(), ChainI)); |
| Root = Chain; |
| ChainI = 0; |
| } |
| SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); |
| SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); |
| if (MemVTs[i] != ValueVTs[i]) |
| Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); |
| SDValue St = |
| DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), |
| Alignment, MMOFlags, AAInfo); |
| Chains[ChainI] = St; |
| } |
| |
| SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| makeArrayRef(Chains.data(), ChainI)); |
| DAG.setRoot(StoreNode); |
| } |
| |
| void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, |
| bool IsCompressing) { |
| SDLoc sdl = getCurSDLoc(); |
| |
| auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, |
| unsigned& Alignment) { |
| // llvm.masked.store.*(Src0, Ptr, alignment, Mask) |
| Src0 = I.getArgOperand(0); |
| Ptr = I.getArgOperand(1); |
| Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); |
| Mask = I.getArgOperand(3); |
| }; |
| auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, |
| unsigned& Alignment) { |
| // llvm.masked.compressstore.*(Src0, Ptr, Mask) |
| Src0 = I.getArgOperand(0); |
| Ptr = I.getArgOperand(1); |
| Mask = I.getArgOperand(2); |
| Alignment = 0; |
| }; |
| |
| Value *PtrOperand, *MaskOperand, *Src0Operand; |
| unsigned Alignment; |
| if (IsCompressing) |
| getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
| else |
| getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
| |
| SDValue Ptr = getValue(PtrOperand); |
| SDValue Src0 = getValue(Src0Operand); |
| SDValue Mask = getValue(MaskOperand); |
| SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); |
| |
| EVT VT = Src0.getValueType(); |
| if (!Alignment) |
| Alignment = DAG.getEVTAlignment(VT); |
| |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| |
| MachineMemOperand *MMO = |
| DAG.getMachineFunction(). |
| getMachineMemOperand(MachinePointerInfo(PtrOperand), |
| MachineMemOperand::MOStore, |
| // TODO: Make MachineMemOperands aware of scalable |
| // vectors. |
| VT.getStoreSize().getKnownMinSize(), |
| Alignment, AAInfo); |
| SDValue StoreNode = |
| DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, |
| ISD::UNINDEXED, false /* Truncating */, IsCompressing); |
| DAG.setRoot(StoreNode); |
| setValue(&I, StoreNode); |
| } |
| |
| // Get a uniform base for the Gather/Scatter intrinsic. |
| // The first argument of the Gather/Scatter intrinsic is a vector of pointers. |
| // We try to represent it as a base pointer + vector of indices. |
| // Usually, the vector of pointers comes from a 'getelementptr' instruction. |
| // The first operand of the GEP may be a single pointer or a vector of pointers |
| // Example: |
| // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind |
| // or |
| // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind |
| // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. |
| // |
| // When the first GEP operand is a single pointer - it is the uniform base we |
| // are looking for. If first operand of the GEP is a splat vector - we |
| // extract the splat value and use it as a uniform base. |
| // In all other cases the function returns 'false'. |
| static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, |
| ISD::MemIndexType &IndexType, SDValue &Scale, |
| SelectionDAGBuilder *SDB) { |
| SelectionDAG& DAG = SDB->DAG; |
| LLVMContext &Context = *DAG.getContext(); |
| |
| assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); |
| const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| if (!GEP) |
| return false; |
| |
| const Value *GEPPtr = GEP->getPointerOperand(); |
| if (!GEPPtr->getType()->isVectorTy()) |
| Ptr = GEPPtr; |
| else if (!(Ptr = getSplatValue(GEPPtr))) |
| return false; |
| |
| unsigned FinalIndex = GEP->getNumOperands() - 1; |
| Value *IndexVal = GEP->getOperand(FinalIndex); |
| gep_type_iterator GTI = gep_type_begin(*GEP); |
| |
| // Ensure all the other indices are 0. |
| for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { |
| auto *C = dyn_cast<Constant>(GEP->getOperand(i)); |
| if (!C) |
| return false; |
| if (isa<VectorType>(C->getType())) |
| C = C->getSplatValue(); |
| auto *CI = dyn_cast_or_null<ConstantInt>(C); |
| if (!CI || !CI->isZero()) |
| return false; |
| } |
| |
| // The operands of the GEP may be defined in another basic block. |
| // In this case we'll not find nodes for the operands. |
| if (!SDB->findValue(Ptr)) |
| return false; |
| Constant *C = dyn_cast<Constant>(IndexVal); |
| if (!C && !SDB->findValue(IndexVal)) |
| return false; |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| StructType *STy = GTI.getStructTypeOrNull(); |
| |
| if (STy) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| if (isa<VectorType>(C->getType())) { |
| C = C->getSplatValue(); |
| // FIXME: If getSplatValue may return nullptr for a structure? |
| // If not, the following check can be removed. |
| if (!C) |
| return false; |
| } |
| auto *CI = cast<ConstantInt>(C); |
| Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); |
| Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), |
| SDB->getCurSDLoc(), TLI.getPointerTy(DL)); |
| } else { |
| Scale = DAG.getTargetConstant( |
| DL.getTypeAllocSize(GEP->getResultElementType()), |
| SDB->getCurSDLoc(), TLI.getPointerTy(DL)); |
| Index = SDB->getValue(IndexVal); |
| } |
| Base = SDB->getValue(Ptr); |
| IndexType = ISD::SIGNED_SCALED; |
| |
| if (STy || !Index.getValueType().isVector()) { |
| unsigned GEPWidth = GEP->getType()->getVectorNumElements(); |
| EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); |
| Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); |
| } |
| return true; |
| } |
| |
| void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { |
| SDLoc sdl = getCurSDLoc(); |
| |
| // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) |
| const Value *Ptr = I.getArgOperand(1); |
| SDValue Src0 = getValue(I.getArgOperand(0)); |
| SDValue Mask = getValue(I.getArgOperand(3)); |
| EVT VT = Src0.getValueType(); |
| unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); |
| if (!Alignment) |
| Alignment = DAG.getEVTAlignment(VT); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| |
| SDValue Base; |
| SDValue Index; |
| ISD::MemIndexType IndexType; |
| SDValue Scale; |
| const Value *BasePtr = Ptr; |
| bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, |
| this); |
| |
| const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; |
| MachineMemOperand *MMO = DAG.getMachineFunction(). |
| getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), |
| MachineMemOperand::MOStore, |
| // TODO: Make MachineMemOperands aware of scalable |
| // vectors. |
| VT.getStoreSize().getKnownMinSize(), |
| Alignment, AAInfo); |
| if (!UniformBase) { |
| Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
| Index = getValue(Ptr); |
| IndexType = ISD::SIGNED_SCALED; |
| Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
| } |
| SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; |
| SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, |
| Ops, MMO, IndexType); |
| DAG.setRoot(Scatter); |
| setValue(&I, Scatter); |
| } |
| |
| void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { |
| SDLoc sdl = getCurSDLoc(); |
| |
| auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, |
| unsigned& Alignment) { |
| // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) |
| Ptr = I.getArgOperand(0); |
| Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); |
| Mask = I.getArgOperand(2); |
| Src0 = I.getArgOperand(3); |
| }; |
| auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, |
| unsigned& Alignment) { |
| // @llvm.masked.expandload.*(Ptr, Mask, Src0) |
| Ptr = I.getArgOperand(0); |
| Alignment = 0; |
| Mask = I.getArgOperand(1); |
| Src0 = I.getArgOperand(2); |
| }; |
| |
| Value *PtrOperand, *MaskOperand, *Src0Operand; |
| unsigned Alignment; |
| if (IsExpanding) |
| getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
| else |
| getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
| |
| SDValue Ptr = getValue(PtrOperand); |
| SDValue Src0 = getValue(Src0Operand); |
| SDValue Mask = getValue(MaskOperand); |
| SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); |
| |
| EVT VT = Src0.getValueType(); |
| if (!Alignment) |
| Alignment = DAG.getEVTAlignment(VT); |
| |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
| |
| // Do not serialize masked loads of constant memory with anything. |
| MemoryLocation ML; |
| if (VT.isScalableVector()) |
| ML = MemoryLocation(PtrOperand); |
| else |
| ML = MemoryLocation(PtrOperand, LocationSize::precise( |
| DAG.getDataLayout().getTypeStoreSize(I.getType())), |
| AAInfo); |
| bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); |
| |
| SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); |
| |
| MachineMemOperand *MMO = |
| DAG.getMachineFunction(). |
| getMachineMemOperand(MachinePointerInfo(PtrOperand), |
| MachineMemOperand::MOLoad, |
| // TODO: Make MachineMemOperands aware of scalable |
| // vectors. |
| VT.getStoreSize().getKnownMinSize(), |
| Alignment, AAInfo, Ranges); |
| |
| SDValue Load = |
| DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, |
| ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); |
| if (AddToChain) |
| PendingLoads.push_back(Load.getValue(1)); |
| setValue(&I, Load); |
| } |
| |
| void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { |
| SDLoc sdl = getCurSDLoc(); |
| |
| // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) |
| const Value *Ptr = I.getArgOperand(0); |
| SDValue Src0 = getValue(I.getArgOperand(3)); |
| SDValue Mask = getValue(I.getArgOperand(2)); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); |
| if (!Alignment) |
| Alignment = DAG.getEVTAlignment(VT); |
| |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
| |
| SDValue Root = DAG.getRoot(); |
| SDValue Base; |
| SDValue Index; |
| ISD::MemIndexType IndexType; |
| SDValue Scale; |
| const Value *BasePtr = Ptr; |
| bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, |
| this); |
| bool ConstantMemory = false; |
| if (UniformBase && AA && |
| AA->pointsToConstantMemory( |
| MemoryLocation(BasePtr, |
| LocationSize::precise( |
| DAG.getDataLayout().getTypeStoreSize(I.getType())), |
| AAInfo))) { |
| // Do not serialize (non-volatile) loads of constant memory with anything. |
| Root = DAG.getEntryNode(); |
| ConstantMemory = true; |
| } |
| |
| MachineMemOperand *MMO = |
| DAG.getMachineFunction(). |
| getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), |
| MachineMemOperand::MOLoad, |
| // TODO: Make MachineMemOperands aware of scalable |
| // vectors. |
| VT.getStoreSize().getKnownMinSize(), |
| Alignment, AAInfo, Ranges); |
| |
| if (!UniformBase) { |
| Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
| Index = getValue(Ptr); |
| IndexType = ISD::SIGNED_SCALED; |
| Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
| } |
| SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; |
| SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, |
| Ops, MMO, IndexType); |
| |
| SDValue OutChain = Gather.getValue(1); |
| if (!ConstantMemory) |
| PendingLoads.push_back(OutChain); |
| setValue(&I, Gather); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { |
| SDLoc dl = getCurSDLoc(); |
| AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); |
| AtomicOrdering FailureOrdering = I.getFailureOrdering(); |
| SyncScope::ID SSID = I.getSyncScopeID(); |
| |
| SDValue InChain = getRoot(); |
| |
| MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); |
| SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); |
| |
| auto Alignment = DAG.getEVTAlignment(MemVT); |
| |
| auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| if (I.isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), |
| Flags, MemVT.getStoreSize(), Alignment, |
| AAMDNodes(), nullptr, SSID, SuccessOrdering, |
| FailureOrdering); |
| |
| SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, |
| dl, MemVT, VTs, InChain, |
| getValue(I.getPointerOperand()), |
| getValue(I.getCompareOperand()), |
| getValue(I.getNewValOperand()), MMO); |
| |
| SDValue OutChain = L.getValue(2); |
| |
| setValue(&I, L); |
| DAG.setRoot(OutChain); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { |
| SDLoc dl = getCurSDLoc(); |
| ISD::NodeType NT; |
| switch (I.getOperation()) { |
| default: llvm_unreachable("Unknown atomicrmw operation"); |
| case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; |
| case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; |
| case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; |
| case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; |
| case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; |
| case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; |
| case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; |
| case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; |
| case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; |
| case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; |
| case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; |
| case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; |
| case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; |
| } |
| AtomicOrdering Ordering = I.getOrdering(); |
| SyncScope::ID SSID = I.getSyncScopeID(); |
| |
| SDValue InChain = getRoot(); |
| |
| auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); |
| auto Alignment = DAG.getEVTAlignment(MemVT); |
| |
| auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| if (I.isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, |
| MemVT.getStoreSize(), Alignment, AAMDNodes(), |
| nullptr, SSID, Ordering); |
| |
| SDValue L = |
| DAG.getAtomic(NT, dl, MemVT, InChain, |
| getValue(I.getPointerOperand()), getValue(I.getValOperand()), |
| MMO); |
| |
| SDValue OutChain = L.getValue(1); |
| |
| setValue(&I, L); |
| DAG.setRoot(OutChain); |
| } |
| |
| void SelectionDAGBuilder::visitFence(const FenceInst &I) { |
| SDLoc dl = getCurSDLoc(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Ops[3]; |
| Ops[0] = getRoot(); |
| Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, |
| TLI.getFenceOperandTy(DAG.getDataLayout())); |
| Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, |
| TLI.getFenceOperandTy(DAG.getDataLayout())); |
| DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { |
| SDLoc dl = getCurSDLoc(); |
| AtomicOrdering Order = I.getOrdering(); |
| SyncScope::ID SSID = I.getSyncScopeID(); |
| |
| SDValue InChain = getRoot(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); |
| |
| if (!TLI.supportsUnalignedAtomics() && |
| I.getAlignment() < MemVT.getSizeInBits() / 8) |
| report_fatal_error("Cannot generate unaligned atomic load"); |
| |
| auto Flags = MachineMemOperand::MOLoad; |
| if (I.isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| if (I.hasMetadata(LLVMContext::MD_invariant_load)) |
| Flags |= MachineMemOperand::MOInvariant; |
| if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), |
| DAG.getDataLayout())) |
| Flags |= MachineMemOperand::MODereferenceable; |
| |
| Flags |= TLI.getMMOFlags(I); |
| |
| MachineMemOperand *MMO = |
| DAG.getMachineFunction(). |
| getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), |
| Flags, MemVT.getStoreSize(), |
| I.getAlignment() ? I.getAlignment() : |
| DAG.getEVTAlignment(MemVT), |
| AAMDNodes(), nullptr, SSID, Order); |
| |
| InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); |
| |
| SDValue Ptr = getValue(I.getPointerOperand()); |
| |
| if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { |
| // TODO: Once this is better exercised by tests, it should be merged with |
| // the normal path for loads to prevent future divergence. |
| SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); |
| if (MemVT != VT) |
| L = DAG.getPtrExtOrTrunc(L, dl, VT); |
| |
| setValue(&I, L); |
| SDValue OutChain = L.getValue(1); |
| if (!I.isUnordered()) |
| DAG.setRoot(OutChain); |
| else |
| PendingLoads.push_back(OutChain); |
| return; |
| } |
| |
| SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, |
| Ptr, MMO); |
| |
| SDValue OutChain = L.getValue(1); |
| if (MemVT != VT) |
| L = DAG.getPtrExtOrTrunc(L, dl, VT); |
| |
| setValue(&I, L); |
| DAG.setRoot(OutChain); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { |
| SDLoc dl = getCurSDLoc(); |
| |
| AtomicOrdering Ordering = I.getOrdering(); |
| SyncScope::ID SSID = I.getSyncScopeID(); |
| |
| SDValue InChain = getRoot(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT MemVT = |
| TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); |
| |
| if (I.getAlignment() < MemVT.getSizeInBits() / 8) |
| report_fatal_error("Cannot generate unaligned atomic store"); |
| |
| auto Flags = MachineMemOperand::MOStore; |
| if (I.isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| Flags |= TLI.getMMOFlags(I); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, |
| MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), |
| nullptr, SSID, Ordering); |
| |
| SDValue Val = getValue(I.getValueOperand()); |
| if (Val.getValueType() != MemVT) |
| Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); |
| SDValue Ptr = getValue(I.getPointerOperand()); |
| |
| if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { |
| // TODO: Once this is better exercised by tests, it should be merged with |
| // the normal path for stores to prevent future divergence. |
| SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); |
| DAG.setRoot(S); |
| return; |
| } |
| SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, |
| Ptr, Val, MMO); |
| |
| |
| DAG.setRoot(OutChain); |
| } |
| |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC |
| /// node. |
| void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, |
| unsigned Intrinsic) { |
| // Ignore the callsite's attributes. A specific call site may be marked with |
| // readnone, but the lowering code will expect the chain based on the |
| // definition. |
| const Function *F = I.getCalledFunction(); |
| bool HasChain = !F->doesNotAccessMemory(); |
| bool OnlyLoad = HasChain && F->onlyReadsMemory(); |
| |
| // Build the operand list. |
| SmallVector<SDValue, 8> Ops; |
| if (HasChain) { // If this intrinsic has side-effects, chainify it. |
| if (OnlyLoad) { |
| // We don't need to serialize loads against other loads. |
| Ops.push_back(DAG.getRoot()); |
| } else { |
| Ops.push_back(getRoot()); |
| } |
| } |
| |
| // Info is set by getTgtMemInstrinsic |
| TargetLowering::IntrinsicInfo Info; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, |
| DAG.getMachineFunction(), |
| Intrinsic); |
| |
| // Add the intrinsic ID as an integer operand if it's not a target intrinsic. |
| if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || |
| Info.opc == ISD::INTRINSIC_W_CHAIN) |
| Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| |
| // Add all operands of the call to the operand list. |
| for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { |
| const Value *Arg = I.getArgOperand(i); |
| if (!I.paramHasAttr(i, Attribute::ImmArg)) { |
| Ops.push_back(getValue(Arg)); |
| continue; |
| } |
| |
| // Use TargetConstant instead of a regular constant for immarg. |
| EVT VT = TLI.getValueType(*DL, Arg->getType(), true); |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { |
| assert(CI->getBitWidth() <= 64 && |
| "large intrinsic immediates not handled"); |
| Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); |
| } else { |
| Ops.push_back( |
| DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); |
| } |
| } |
| |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); |
| |
| if (HasChain) |
| ValueVTs.push_back(MVT::Other); |
| |
| SDVTList VTs = DAG.getVTList(ValueVTs); |
| |
| // Create the node. |
| SDValue Result; |
| if (IsTgtIntrinsic) { |
| // This is target intrinsic that touches memory |
| AAMDNodes AAInfo; |
| I.getAAMetadata(AAInfo); |
| Result = DAG.getMemIntrinsicNode( |
| Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, |
| MachinePointerInfo(Info.ptrVal, Info.offset), |
| Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); |
| } else if (!HasChain) { |
| Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); |
| } else if (!I.getType()->isVoidTy()) { |
| Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); |
| } else { |
| Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); |
| } |
| |
| if (HasChain) { |
| SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); |
| if (OnlyLoad) |
| PendingLoads.push_back(Chain); |
| else |
| DAG.setRoot(Chain); |
| } |
| |
| if (!I.getType()->isVoidTy()) { |
| if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); |
| Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); |
| } else |
| Result = lowerRangeToAssertZExt(DAG, I, Result); |
| |
| setValue(&I, Result); |
| } |
| } |
| |
| /// GetSignificand - Get the significand and build it into a floating-point |
| /// number with exponent of 1: |
| /// |
| /// Op = (Op & 0x007fffff) | 0x3f800000; |
| /// |
| /// where Op is the hexadecimal representation of floating point value. |
| static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { |
| SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
| DAG.getConstant(0x007fffff, dl, MVT::i32)); |
| SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, |
| DAG.getConstant(0x3f800000, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); |
| } |
| |
| /// GetExponent - Get the exponent: |
| /// |
| /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); |
| /// |
| /// where Op is the hexadecimal representation of floating point value. |
| static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, |
| const TargetLowering &TLI, const SDLoc &dl) { |
| SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
| DAG.getConstant(0x7f800000, dl, MVT::i32)); |
| SDValue t1 = DAG.getNode( |
| ISD::SRL, dl, MVT::i32, t0, |
| DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); |
| SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, |
| DAG.getConstant(127, dl, MVT::i32)); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); |
| } |
| |
| /// getF32Constant - Get 32-bit floating point constant. |
| static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, |
| const SDLoc &dl) { |
| return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, |
| MVT::f32); |
| } |
| |
| static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, |
| SelectionDAG &DAG) { |
| // TODO: What fast-math-flags should be set on the floating-point nodes? |
| |
| // IntegerPartOfX = ((int32_t)(t0); |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); |
| |
| // FractionalPartOfX = t0 - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode( |
| ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( |
| DAG.getDataLayout()))); |
| |
| SDValue TwoToFractionalPartOfX; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304, dl)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e, dl)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // error 0.000107046256, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3, dl)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd, dl)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e, dl)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d, dl)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14, dl)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234, dl)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000, dl)); |
| } |
| |
| // Add the exponent into the result in integer domain. |
| SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); |
| } |
| |
| /// expandExp - Lower an exp intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| |
| // Put the exponent in the right bit position for later addition to the |
| // final result: |
| // |
| // t0 = Op * log2(e) |
| |
| // TODO: What fast-math-flags should be set here? |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, |
| DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); |
| return getLimitedPrecisionExp2(t0, dl, DAG); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandLog - Lower a log intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // TODO: What fast-math-flags should be set on the floating-point nodes? |
| |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| |
| // Scale the exponent by log(2). |
| SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
| SDValue LogOfExponent = |
| DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
| DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| SDValue LogOfMantissa; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // LogofMantissa = |
| // -1.1609546f + |
| // (1.4034025f - 0.23903021f * x) * x; |
| // |
| // error 0.0034276066, which is better than 8 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbe74c456, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3fb3a2b1, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f949a29, dl)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // LogOfMantissa = |
| // -1.7417939f + |
| // (2.8212026f + |
| // (-1.4699568f + |
| // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; |
| // |
| // error 0.000061011436, which is 14 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbd67b6d6, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3ee4f4b8, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fbc278b, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40348e95, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3fdef31a, dl)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // LogOfMantissa = |
| // -2.1072184f + |
| // (4.2372794f + |
| // (-3.7029485f + |
| // (2.2781945f + |
| // (-0.87823314f + |
| // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; |
| // |
| // error 0.0000023660568, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbc91e5ac, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e4350aa, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f60d3e3, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x4011cdf0, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x406cfd1c, dl)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x408797cb, dl)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x4006dcab, dl)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // TODO: What fast-math-flags should be set on the floating-point nodes? |
| |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| |
| // Get the exponent. |
| SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| // Different possible minimax approximations of significand in |
| // floating-point for various degrees of accuracy over [1,2]. |
| SDValue Log2ofMantissa; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; |
| // |
| // error 0.0049451742, which is more than 7 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbeb08fe0, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x40019463, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fd6633d, dl)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // Log2ofMantissa = |
| // -2.51285454f + |
| // (4.07009056f + |
| // (-2.12067489f + |
| // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; |
| // |
| // error 0.0000876136000, which is better than 13 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbda7262e, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3f25280b, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x4007b923, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40823e2f, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x4020d29c, dl)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // Log2ofMantissa = |
| // -3.0400495f + |
| // (6.1129976f + |
| // (-5.3420409f + |
| // (3.2865683f + |
| // (-1.2669343f + |
| // (0.27515199f - |
| // 0.25691327e-1f * x) * x) * x) * x) * x) * x; |
| // |
| // error 0.0000018516, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbcd2769e, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e8ce0b9, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fa22ae7, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40525723, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x40aaf200, dl)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x40c39dad, dl)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x4042902c, dl)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // TODO: What fast-math-flags should be set on the floating-point nodes? |
| |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| |
| // Scale the exponent by log10(2) [0.30102999f]. |
| SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
| SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
| getF32Constant(DAG, 0x3e9a209a, dl)); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| SDValue Log10ofMantissa; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // Log10ofMantissa = |
| // -0.50419619f + |
| // (0.60948995f - 0.10380950f * x) * x; |
| // |
| // error 0.0014886165, which is 6 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbdd49a13, dl)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3f1c0789, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f011300, dl)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // Log10ofMantissa = |
| // -0.64831180f + |
| // (0.91751397f + |
| // (-0.31664806f + 0.47637168e-1f * x) * x) * x; |
| // |
| // error 0.00019228036, which is better than 12 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3d431f31, dl)); |
| SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3ea21fb2, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f6ae232, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f25f7c3, dl)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // Log10ofMantissa = |
| // -0.84299375f + |
| // (1.5327582f + |
| // (-1.0688956f + |
| // (0.49102474f + |
| // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; |
| // |
| // error 0.0000037995730, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3c5d51ce, dl)); |
| SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e00685a, dl)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3efb6798, dl)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f88d192, dl)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3fc4316c, dl)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3f57ce70, dl)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) |
| return getLimitedPrecisionExp2(Op, dl, DAG); |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); |
| } |
| |
| /// visitPow - Lower a pow intrinsic. Handles the special sequences for |
| /// limited-precision mode with x == 10.0f. |
| static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| bool IsExp10 = false; |
| if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { |
| APFloat Ten(10.0f); |
| IsExp10 = LHSC->isExactlyValue(Ten); |
| } |
| } |
| |
| // TODO: What fast-math-flags should be set on the FMUL node? |
| if (IsExp10) { |
| // Put the exponent in the right bit position for later addition to the |
| // final result: |
| // |
| // #define LOG2OF10 3.3219281f |
| // t0 = Op * LOG2OF10; |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, |
| getF32Constant(DAG, 0x40549a78, dl)); |
| return getLimitedPrecisionExp2(t0, dl, DAG); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); |
| } |
| |
| /// ExpandPowI - Expand a llvm.powi intrinsic. |
| static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG) { |
| // If RHS is a constant, we can expand this out to a multiplication tree, |
| // otherwise we end up lowering to a call to __powidf2 (for example). When |
| // optimizing for size, we only want to do this if the expansion would produce |
| // a small number of multiplies, otherwise we do the full expansion. |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| // Get the exponent as a positive value. |
| unsigned Val = RHSC->getSExtValue(); |
| if ((int)Val < 0) Val = -Val; |
| |
| // powi(x, 0) -> 1.0 |
| if (Val == 0) |
| return DAG.getConstantFP(1.0, DL, LHS.getValueType()); |
| |
| bool OptForSize = DAG.shouldOptForSize(); |
| if (!OptForSize || |
| // If optimizing for size, don't insert too many multiplies. |
| // This inserts up to 5 multiplies. |
| countPopulation(Val) + Log2_32(Val) < 7) { |
| // We use the simple binary decomposition method to generate the multiply |
| // sequence. There are more optimal ways to do this (for example, |
| // powi(x,15) generates one more multiply than it should), but this has |
| // the benefit of being both really simple and much better than a libcall. |
| SDValue Res; // Logically starts equal to 1.0 |
| SDValue CurSquare = LHS; |
| // TODO: Intrinsics should have fast-math-flags that propagate to these |
| // nodes. |
| while (Val) { |
| if (Val & 1) { |
| if (Res.getNode()) |
| Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); |
| else |
| Res = CurSquare; // 1.0*CurSquare. |
| } |
| |
| CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), |
| CurSquare, CurSquare); |
| Val >>= 1; |
| } |
| |
| // If the original was negative, invert the result, producing 1/(x*x*x). |
| if (RHSC->getSExtValue() < 0) |
| Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), |
| DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); |
| return Res; |
| } |
| } |
| |
| // Otherwise, expand to a libcall. |
| return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); |
| } |
| |
| static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, |
| SDValue LHS, SDValue RHS, SDValue Scale, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| EVT VT = LHS.getValueType(); |
| bool Signed = Opcode == ISD::SDIVFIX; |
| LLVMContext &Ctx = *DAG.getContext(); |
| |
| // If the type is legal but the operation isn't, this node might survive all |
| // the way to operation legalization. If we end up there and we do not have |
| // the ability to widen the type (if VT*2 is not legal), we cannot expand the |
| // node. |
| |
| // Coax the legalizer into expanding the node during type legalization instead |
| // by bumping the size by one bit. This will force it to Promote, enabling the |
| // early expansion and avoiding the need to expand later. |
| |
| // We don't have to do this if Scale is 0; that can always be expanded. |
| |
| // FIXME: We wouldn't have to do this (or any of the early |
| // expansion/promotion) if it was possible to expand a libcall of an |
| // illegal type during operation legalization. But it's not, so things |
| // get a bit hacky. |
| unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); |
| if (ScaleInt > 0 && |
| (TLI.isTypeLegal(VT) || |
| (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { |
| TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( |
| Opcode, VT, ScaleInt); |
| if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { |
| EVT PromVT; |
| if (VT.isScalarInteger()) |
| PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); |
| else if (VT.isVector()) { |
| PromVT = VT.getVectorElementType(); |
| PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); |
| PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); |
| } else |
| llvm_unreachable("Wrong VT for DIVFIX?"); |
| if (Signed) { |
| LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); |
| RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); |
| } else { |
| LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); |
| RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); |
| } |
| // TODO: Saturation. |
| SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); |
| return DAG.getZExtOrTrunc(Res, DL, VT); |
| } |
| } |
| |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); |
| } |
| |
| // getUnderlyingArgRegs - Find underlying registers used for a truncated, |
| // bitcasted, or split argument. Returns a list of <Register, size in bits> |
| static void |
| getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, |
| const SDValue &N) { |
| switch (N.getOpcode()) { |
| case ISD::CopyFromReg: { |
| SDValue Op = N.getOperand(1); |
| Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), |
| Op.getValueType().getSizeInBits()); |
| return; |
| } |
| case ISD::BITCAST: |
| case ISD::AssertZext: |
| case ISD::AssertSext: |
| case ISD::TRUNCATE: |
| getUnderlyingArgRegs(Regs, N.getOperand(0)); |
| return; |
| case ISD::BUILD_PAIR: |
| case ISD::BUILD_VECTOR: |
| case ISD::CONCAT_VECTORS: |
| for (SDValue Op : N->op_values()) |
| getUnderlyingArgRegs(Regs, Op); |
| return; |
| default: |
| return; |
| } |
| } |
| |
| /// If the DbgValueInst is a dbg_value of a function argument, create the |
| /// corresponding DBG_VALUE machine instruction for it now. At the end of |
| /// instruction selection, they will be inserted to the entry BB. |
| bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( |
| const Value *V, DILocalVariable *Variable, DIExpression *Expr, |
| DILocation *DL, bool IsDbgDeclare, const SDValue &N) { |
| const Argument *Arg = dyn_cast<Argument>(V); |
| if (!Arg) |
| return false; |
| |
| if (!IsDbgDeclare) { |
| // ArgDbgValues are hoisted to the beginning of the entry block. So we |
| // should only emit as ArgDbgValue if the dbg.value intrinsic is found in |
| // the entry block. |
| bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); |
| if (!IsInEntryBlock) |
| return false; |
| |
| // ArgDbgValues are hoisted to the beginning of the entry block. So we |
| // should only emit as ArgDbgValue if the dbg.value intrinsic describes a |
| // variable that also is a param. |
| // |
| // Although, if we are at the top of the entry block already, we can still |
| // emit using ArgDbgValue. This might catch some situations when the |
| // dbg.value refers to an argument that isn't used in the entry block, so |
| // any CopyToReg node would be optimized out and the only way to express |
| // this DBG_VALUE is by using the physical reg (or FI) as done in this |
| // method. ArgDbgValues are hoisted to the beginning of the entry block. So |
| // we should only emit as ArgDbgValue if the Variable is an argument to the |
| // current function, and the dbg.value intrinsic is found in the entry |
| // block. |
| bool VariableIsFunctionInputArg = Variable->isParameter() && |
| !DL->getInlinedAt(); |
| bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; |
| if (!IsInPrologue && !VariableIsFunctionInputArg) |
| return false; |
| |
| // Here we assume that a function argument on IR level only can be used to |
| // describe one input parameter on source level. If we for example have |
| // source code like this |
| // |
| // struct A { long x, y; }; |
| // void foo(struct A a, long b) { |
| // ... |
| // b = a.x; |
| // ... |
| // } |
| // |
| // and IR like this |
| // |
| // define void @foo(i32 %a1, i32 %a2, i32 %b) { |
| // entry: |
| // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment |
| // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment |
| // call void @llvm.dbg.value(metadata i32 %b, "b", |
| // ... |
| // call void @llvm.dbg.value(metadata i32 %a1, "b" |
| // ... |
| // |
| // then the last dbg.value is describing a parameter "b" using a value that |
| // is an argument. But since we already has used %a1 to describe a parameter |
| // we should not handle that last dbg.value here (that would result in an |
| // incorrect hoisting of the DBG_VALUE to the function entry). |
| // Notice that we allow one dbg.value per IR level argument, to accommodate |
| // for the situation with fragments above. |
| if (VariableIsFunctionInputArg) { |
| unsigned ArgNo = Arg->getArgNo(); |
| if (ArgNo >= FuncInfo.DescribedArgs.size()) |
| FuncInfo.DescribedArgs.resize(ArgNo + 1, false); |
| else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) |
| return false; |
| FuncInfo.DescribedArgs.set(ArgNo); |
| } |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); |
| |
| bool IsIndirect = false; |
| Optional<MachineOperand> Op; |
| // Some arguments' frame index is recorded during argument lowering. |
| int FI = FuncInfo.getArgumentFrameIndex(Arg); |
| if (FI != std::numeric_limits<int>::max()) |
| Op = MachineOperand::CreateFI(FI); |
| |
| SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; |
| if (!Op && N.getNode()) { |
| getUnderlyingArgRegs(ArgRegsAndSizes, N); |
| Register Reg; |
| if (ArgRegsAndSizes.size() == 1) |
| Reg = ArgRegsAndSizes.front().first; |
| |
| if (Reg && Reg.isVirtual()) { |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| Register PR = RegInfo.getLiveInPhysReg(Reg); |
| if (PR) |
| Reg = PR; |
| } |
| if (Reg) { |
| Op = MachineOperand::CreateReg(Reg, false); |
| IsIndirect = IsDbgDeclare; |
| } |
| } |
| |
| if (!Op && N.getNode()) { |
| // Check if frame index is available. |
| SDValue LCandidate = peekThroughBitcasts(N); |
| if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) |
| if (FrameIndexSDNode *FINode = |
| dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) |
| Op = MachineOperand::CreateFI(FINode->getIndex()); |
| } |
| |
| if (!Op) { |
| // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg |
| auto splitMultiRegDbgValue |
| = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { |
| unsigned Offset = 0; |
| for (auto RegAndSize : SplitRegs) { |
| // If the expression is already a fragment, the current register |
| // offset+size might extend beyond the fragment. In this case, only |
| // the register bits that are inside the fragment are relevant. |
| int RegFragmentSizeInBits = RegAndSize.second; |
| if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { |
| uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; |
| // The register is entirely outside the expression fragment, |
| // so is irrelevant for debug info. |
| if (Offset >= ExprFragmentSizeInBits) |
| break; |
| // The register is partially outside the expression fragment, only |
| // the low bits within the fragment are relevant for debug info. |
| if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { |
| RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; |
| } |
| } |
| |
| auto FragmentExpr = DIExpression::createFragmentExpression( |
| Expr, Offset, RegFragmentSizeInBits); |
| Offset += RegAndSize.second; |
| // If a valid fragment expression cannot be created, the variable's |
| // correct value cannot be determined and so it is set as Undef. |
| if (!FragmentExpr) { |
| SDDbgValue *SDV = DAG.getConstantDbgValue( |
| Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); |
| DAG.AddDbgValue(SDV, nullptr, false); |
| continue; |
| } |
| assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); |
| FuncInfo.ArgDbgValues.push_back( |
| BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, |
| RegAndSize.first, Variable, *FragmentExpr)); |
| } |
| }; |
| |
| // Check if ValueMap has reg number. |
| DenseMap<const Value *, unsigned>::const_iterator |
| VMI = FuncInfo.ValueMap.find(V); |
| if (VMI != FuncInfo.ValueMap.end()) { |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, |
| V->getType(), getABIRegCopyCC(V)); |
| if (RFV.occupiesMultipleRegs()) { |
| splitMultiRegDbgValue(RFV.getRegsAndSizes()); |
| return true; |
| } |
| |
| Op = MachineOperand::CreateReg(VMI->second, false); |
| IsIndirect = IsDbgDeclare; |
| } else if (ArgRegsAndSizes.size() > 1) { |
| // This was split due to the calling convention, and no virtual register |
| // mapping exists for the value. |
| splitMultiRegDbgValue(ArgRegsAndSizes); |
| return true; |
| } |
| } |
| |
| if (!Op) |
| return false; |
| |
| assert(Variable->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| IsIndirect = (Op->isReg()) ? IsIndirect : true; |
| FuncInfo.ArgDbgValues.push_back( |
| BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, |
| *Op, Variable, Expr)); |
| |
| return true; |
| } |
| |
| /// Return the appropriate SDDbgValue based on N. |
| SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, |
| DILocalVariable *Variable, |
| DIExpression *Expr, |
| const DebugLoc &dl, |
| unsigned DbgSDNodeOrder) { |
| if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { |
| // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe |
| // stack slot locations. |
| // |
| // Consider "int x = 0; int *px = &x;". There are two kinds of interesting |
| // debug values here after optimization: |
| // |
| // dbg.value(i32* %px, !"int *px", !DIExpression()), and |
| // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) |
| // |
| // Both describe the direct values of their associated variables. |
| return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), |
| /*IsIndirect*/ false, dl, DbgSDNodeOrder); |
| } |
| return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), |
| /*IsIndirect*/ false, dl, DbgSDNodeOrder); |
| } |
| |
| static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { |
| switch (Intrinsic) { |
| case Intrinsic::smul_fix: |
| return ISD::SMULFIX; |
| case Intrinsic::umul_fix: |
| return ISD::UMULFIX; |
| case Intrinsic::smul_fix_sat: |
| return ISD::SMULFIXSAT; |
| case Intrinsic::umul_fix_sat: |
| return ISD::UMULFIXSAT; |
| case Intrinsic::sdiv_fix: |
| return ISD::SDIVFIX; |
| case Intrinsic::udiv_fix: |
| return ISD::UDIVFIX; |
| default: |
| llvm_unreachable("Unhandled fixed point intrinsic"); |
| } |
| } |
| |
| void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, |
| const char *FunctionName) { |
| assert(FunctionName && "FunctionName must not be nullptr"); |
| SDValue Callee = DAG.getExternalSymbol( |
| FunctionName, |
| DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); |
| LowerCallTo(&I, Callee, I.isTailCall()); |
| } |
| |
| /// Lower the call to the specified intrinsic function. |
| void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, |
| unsigned Intrinsic) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDLoc sdl = getCurSDLoc(); |
| DebugLoc dl = getCurDebugLoc(); |
| SDValue Res; |
| |
| switch (Intrinsic) { |
| default: |
| // By default, turn this into a target intrinsic node. |
| visitTargetIntrinsic(I, Intrinsic); |
| return; |
| case Intrinsic::vastart: visitVAStart(I); return; |
| case Intrinsic::vaend: visitVAEnd(I); return; |
| case Intrinsic::vacopy: visitVACopy(I); return; |
| case Intrinsic::returnaddress: |
| setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, |
| TLI.getPointerTy(DAG.getDataLayout()), |
| getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::addressofreturnaddress: |
| setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| return; |
| case Intrinsic::sponentry: |
| setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, |
| TLI.getFrameIndexTy(DAG.getDataLayout()))); |
| return; |
| case Intrinsic::frameaddress: |
| setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, |
| TLI.getFrameIndexTy(DAG.getDataLayout()), |
| getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::read_register: { |
| Value *Reg = I.getArgOperand(0); |
| SDValue Chain = getRoot(); |
| SDValue RegName = |
| DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| Res = DAG.getNode(ISD::READ_REGISTER, sdl, |
| DAG.getVTList(VT, MVT::Other), Chain, RegName); |
| setValue(&I, Res); |
| DAG.setRoot(Res.getValue(1)); |
| return; |
| } |
| case Intrinsic::write_register: { |
| Value *Reg = I.getArgOperand(0); |
| Value *RegValue = I.getArgOperand(1); |
| SDValue Chain = getRoot(); |
| SDValue RegName = |
| DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); |
| DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, |
| RegName, getValue(RegValue))); |
| return; |
| } |
| case Intrinsic::memcpy: { |
| const auto &MCI = cast<MemCpyInst>(I); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| // @llvm.memcpy defines 0 and 1 to both mean no alignment. |
| unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); |
| unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); |
| unsigned Align = MinAlign(DstAlign, SrcAlign); |
| bool isVol = MCI.isVolatile(); |
| bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); |
| // FIXME: Support passing different dest/src alignments to the memcpy DAG |
| // node. |
| SDValue Root = isVol ? getRoot() : getMemoryRoot(); |
| SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol, |
| false, isTC, |
| MachinePointerInfo(I.getArgOperand(0)), |
| MachinePointerInfo(I.getArgOperand(1))); |
| updateDAGForMaybeTailCall(MC); |
| return; |
| } |
| case Intrinsic::memset: { |
| const auto &MSI = cast<MemSetInst>(I); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| // @llvm.memset defines 0 and 1 to both mean no alignment. |
| unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); |
| bool isVol = MSI.isVolatile(); |
| bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); |
| SDValue Root = isVol ? getRoot() : getMemoryRoot(); |
| SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol, |
| isTC, MachinePointerInfo(I.getArgOperand(0))); |
| updateDAGForMaybeTailCall(MS); |
| return; |
| } |
| case Intrinsic::memmove: { |
| const auto &MMI = cast<MemMoveInst>(I); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| // @llvm.memmove defines 0 and 1 to both mean no alignment. |
| unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); |
| unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); |
| unsigned Align = MinAlign(DstAlign, SrcAlign); |
| bool isVol = MMI.isVolatile(); |
| bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); |
| // FIXME: Support passing different dest/src alignments to the memmove DAG |
| // node. |
| SDValue Root = isVol ? getRoot() : getMemoryRoot(); |
| SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol, |
| isTC, MachinePointerInfo(I.getArgOperand(0)), |
| MachinePointerInfo(I.getArgOperand(1))); |
| updateDAGForMaybeTailCall(MM); |
| return; |
| } |
| case Intrinsic::memcpy_element_unordered_atomic: { |
| const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); |
| SDValue Dst = getValue(MI.getRawDest()); |
| SDValue Src = getValue(MI.getRawSource()); |
| SDValue Length = getValue(MI.getLength()); |
| |
| unsigned DstAlign = MI.getDestAlignment(); |
| unsigned SrcAlign = MI.getSourceAlignment(); |
| Type *LengthTy = MI.getLength()->getType(); |
| unsigned ElemSz = MI.getElementSizeInBytes(); |
| bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); |
| SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, |
| SrcAlign, Length, LengthTy, ElemSz, isTC, |
| MachinePointerInfo(MI.getRawDest()), |
| MachinePointerInfo(MI.getRawSource())); |
| updateDAGForMaybeTailCall(MC); |
| return; |
| } |
| case Intrinsic::memmove_element_unordered_atomic: { |
| auto &MI = cast<AtomicMemMoveInst>(I); |
| SDValue Dst = getValue(MI.getRawDest()); |
| SDValue Src = getValue(MI.getRawSource()); |
| SDValue Length = getValue(MI.getLength()); |
| |
| unsigned DstAlign = MI.getDestAlignment(); |
| unsigned SrcAlign = MI.getSourceAlignment(); |
| Type *LengthTy = MI.getLength()->getType(); |
| unsigned ElemSz = MI.getElementSizeInBytes(); |
| bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); |
| SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, |
| SrcAlign, Length, LengthTy, ElemSz, isTC, |
| MachinePointerInfo(MI.getRawDest()), |
| MachinePointerInfo(MI.getRawSource())); |
| updateDAGForMaybeTailCall(MC); |
| return; |
| } |
| case Intrinsic::memset_element_unordered_atomic: { |
| auto &MI = cast<AtomicMemSetInst>(I); |
| SDValue Dst = getValue(MI.getRawDest()); |
| SDValue Val = getValue(MI.getValue()); |
| SDValue Length = getValue(MI.getLength()); |
| |
| unsigned DstAlign = MI.getDestAlignment(); |
| Type *LengthTy = MI.getLength()->getType(); |
| unsigned ElemSz = MI.getElementSizeInBytes(); |
| bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); |
| SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, |
| LengthTy, ElemSz, isTC, |
| MachinePointerInfo(MI.getRawDest())); |
| updateDAGForMaybeTailCall(MC); |
| return; |
| } |
| case Intrinsic::dbg_addr: |
| case Intrinsic::dbg_declare: { |
| const auto &DI = cast<DbgVariableIntrinsic>(I); |
| DILocalVariable *Variable = DI.getVariable(); |
| DIExpression *Expression = DI.getExpression(); |
| dropDanglingDebugInfo(Variable, Expression); |
| assert(Variable && "Missing variable"); |
| |
| // Check if address has undef value. |
| const Value *Address = DI.getVariableLocation(); |
| if (!Address || isa<UndefValue>(Address) || |
| (Address->use_empty() && !isa<Argument>(Address))) { |
| LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| return; |
| } |
| |
| bool isParameter = Variable->isParameter() || isa<Argument>(Address); |
| |
| // Check if this variable can be described by a frame index, typically |
| // either as a static alloca or a byval parameter. |
| int FI = std::numeric_limits<int>::max(); |
| if (const auto *AI = |
| dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { |
| if (AI->isStaticAlloca()) { |
| auto I = FuncInfo.StaticAllocaMap.find(AI); |
| if (I != FuncInfo.StaticAllocaMap.end()) |
| FI = I->second; |
| } |
| } else if (const auto *Arg = dyn_cast<Argument>( |
| Address->stripInBoundsConstantOffsets())) { |
| FI = FuncInfo.getArgumentFrameIndex(Arg); |
| } |
| |
| // llvm.dbg.addr is control dependent and always generates indirect |
| // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in |
| // the MachineFunction variable table. |
| if (FI != std::numeric_limits<int>::max()) { |
| if (Intrinsic == Intrinsic::dbg_addr) { |
| SDDbgValue *SDV = DAG.getFrameIndexDbgValue( |
| Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); |
| } |
| return; |
| } |
| |
| SDValue &N = NodeMap[Address]; |
| if (!N.getNode() && isa<Argument>(Address)) |
| // Check unused arguments map. |
| N = UnusedArgNodeMap[Address]; |
| SDDbgValue *SDV; |
| if (N.getNode()) { |
| if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) |
| Address = BCI->getOperand(0); |
| // Parameters are handled specially. |
| auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); |
| if (isParameter && FINode) { |
| // Byval parameter. We have a frame index at this point. |
| SDV = |
| DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), |
| /*IsIndirect*/ true, dl, SDNodeOrder); |
| } else if (isa<Argument>(Address)) { |
| // Address is an argument, so try to emit its dbg value using |
| // virtual register info from the FuncInfo.ValueMap. |
| EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); |
| return; |
| } else { |
| SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), |
| true, dl, SDNodeOrder); |
| } |
| DAG.AddDbgValue(SDV, N.getNode(), isParameter); |
| } else { |
| // If Address is an argument then try to emit its dbg value using |
| // virtual register info from the FuncInfo.ValueMap. |
| if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, |
| N)) { |
| LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| } |
| } |
| return; |
| } |
| case Intrinsic::dbg_label: { |
| const DbgLabelInst &DI = cast<DbgLabelInst>(I); |
| DILabel *Label = DI.getLabel(); |
| assert(Label && "Missing label"); |
| |
| SDDbgLabel *SDV; |
| SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); |
| DAG.AddDbgLabel(SDV); |
| return; |
| } |
| case Intrinsic::dbg_value: { |
| const DbgValueInst &DI = cast<DbgValueInst>(I); |
| assert(DI.getVariable() && "Missing variable"); |
| |
| DILocalVariable *Variable = DI.getVariable(); |
| DIExpression *Expression = DI.getExpression(); |
| dropDanglingDebugInfo(Variable, Expression); |
| const Value *V = DI.getValue(); |
| if (!V) |
| return; |
| |
| if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), |
| SDNodeOrder)) |
| return; |
| |
| // TODO: Dangling debug info will eventually either be resolved or produce |
| // an Undef DBG_VALUE. However in the resolution case, a gap may appear |
| // between the original dbg.value location and its resolved DBG_VALUE, which |
| // we should ideally fill with an extra Undef DBG_VALUE. |
| |
| DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); |
| return; |
| } |
| |
| case Intrinsic::eh_typeid_for: { |
| // Find the type id for the given typeinfo. |
| GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); |
| unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); |
| Res = DAG.getConstant(TypeID, sdl, MVT::i32); |
| setValue(&I, Res); |
| return; |
| } |
| |
| case Intrinsic::eh_return_i32: |
| case Intrinsic::eh_return_i64: |
| DAG.getMachineFunction().setCallsEHReturn(true); |
| DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, |
| MVT::Other, |
| getControlRoot(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return; |
| case Intrinsic::eh_unwind_init: |
| DAG.getMachineFunction().setCallsUnwindInit(true); |
| return; |
| case Intrinsic::eh_dwarf_cfa: |
| setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, |
| TLI.getPointerTy(DAG.getDataLayout()), |
| getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::eh_sjlj_callsite: { |
| MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); |
| ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); |
| assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); |
| assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); |
| |
| MMI.setCurrentCallSite(CI->getZExtValue()); |
| return; |
| } |
| case Intrinsic::eh_sjlj_functioncontext: { |
| // Get and store the index of the function context. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| AllocaInst *FnCtx = |
| cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); |
| int FI = FuncInfo.StaticAllocaMap[FnCtx]; |
| MFI.setFunctionContextIndex(FI); |
| return; |
| } |
| case Intrinsic::eh_sjlj_setjmp: { |
| SDValue Ops[2]; |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getArgOperand(0)); |
| SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, |
| DAG.getVTList(MVT::i32, MVT::Other), Ops); |
| setValue(&I, Op.getValue(0)); |
| DAG.setRoot(Op.getValue(1)); |
| return; |
| } |
| case Intrinsic::eh_sjlj_longjmp: |
| DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, |
| getRoot(), getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::eh_sjlj_setup_dispatch: |
| DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, |
| getRoot())); |
| return; |
| case Intrinsic::masked_gather: |
| visitMaskedGather(I); |
| return; |
| case Intrinsic::masked_load: |
| visitMaskedLoad(I); |
| return; |
| case Intrinsic::masked_scatter: |
| visitMaskedScatter(I); |
| return; |
| case Intrinsic::masked_store: |
| visitMaskedStore(I); |
| return; |
| case Intrinsic::masked_expandload: |
| visitMaskedLoad(I, true /* IsExpanding */); |
| return; |
| case Intrinsic::masked_compressstore: |
| visitMaskedStore(I, true /* IsCompressing */); |
| return; |
| case Intrinsic::powi: |
| setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), DAG)); |
| return; |
| case Intrinsic::log: |
| setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return; |
| case Intrinsic::log2: |
| setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return; |
| case Intrinsic::log10: |
| setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return; |
| case Intrinsic::exp: |
| setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return; |
| case Intrinsic::exp2: |
| setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return; |
| case Intrinsic::pow: |
| setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), DAG, TLI)); |
| return; |
| case Intrinsic::sqrt: |
| case Intrinsic::fabs: |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::round: |
| case Intrinsic::canonicalize: { |
| unsigned Opcode; |
| switch (Intrinsic) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; |
| case Intrinsic::fabs: Opcode = ISD::FABS; break; |
| case Intrinsic::sin: Opcode = ISD::FSIN; break; |
| case Intrinsic::cos: Opcode = ISD::FCOS; break; |
| case Intrinsic::floor: Opcode = ISD::FFLOOR; break; |
| case Intrinsic::ceil: Opcode = ISD::FCEIL; break; |
| case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; |
| case Intrinsic::rint: Opcode = ISD::FRINT; break; |
| case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; |
| case Intrinsic::round: Opcode = ISD::FROUND; break; |
| case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; |
| } |
| |
| setValue(&I, DAG.getNode(Opcode, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)))); |
| return; |
| } |
| case Intrinsic::lround: |
| case Intrinsic::llround: |
| case Intrinsic::lrint: |
| case Intrinsic::llrint: { |
| unsigned Opcode; |
| switch (Intrinsic) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::lround: Opcode = ISD::LROUND; break; |
| case Intrinsic::llround: Opcode = ISD::LLROUND; break; |
| case Intrinsic::lrint: Opcode = ISD::LRINT; break; |
| case Intrinsic::llrint: Opcode = ISD::LLRINT; break; |
| } |
| |
| EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| setValue(&I, DAG.getNode(Opcode, sdl, RetVT, |
| getValue(I.getArgOperand(0)))); |
| return; |
| } |
| case Intrinsic::minnum: |
| setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return; |
| case Intrinsic::maxnum: |
| setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return; |
| case Intrinsic::minimum: |
| setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return; |
| case Intrinsic::maximum: |
| setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return; |
| case Intrinsic::copysign: |
| setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return; |
| case Intrinsic::fma: |
| setValue(&I, DAG.getNode(ISD::FMA, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| getValue(I.getArgOperand(2)))); |
| return; |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| case Intrinsic::INTRINSIC: |
| #include "llvm/IR/ConstrainedOps.def" |
| visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); |
| return; |
| case Intrinsic::fmuladd: { |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { |
| setValue(&I, DAG.getNode(ISD::FMA, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| getValue(I.getArgOperand(2)))); |
| } else { |
| // TODO: Intrinsic calls should have fast-math-flags. |
| SDValue Mul = DAG.getNode(ISD::FMUL, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1))); |
| SDValue Add = DAG.getNode(ISD::FADD, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| Mul, |
| getValue(I.getArgOperand(2))); |
| setValue(&I, Add); |
| } |
| return; |
| } |
| case Intrinsic::convert_to_fp16: |
| setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, |
| DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, |
| getValue(I.getArgOperand(0)), |
| DAG.getTargetConstant(0, sdl, |
| MVT::i32)))); |
| return; |
| case Intrinsic::convert_from_fp16: |
| setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, |
| TLI.getValueType(DAG.getDataLayout(), I.getType()), |
| DAG.getNode(ISD::BITCAST, sdl, MVT::f16, |
| getValue(I.getArgOperand(0))))); |
| return; |
| case Intrinsic::pcmarker: { |
| SDValue Tmp = getValue(I.getArgOperand(0)); |
| DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); |
| return; |
| } |
| case Intrinsic::readcyclecounter: { |
| SDValue Op = getRoot(); |
| Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, |
| DAG.getVTList(MVT::i64, MVT::Other), Op); |
| setValue(&I, Res); |
| DAG.setRoot(Res.getValue(1)); |
| return; |
| } |
| case Intrinsic::bitreverse: |
| setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::bswap: |
| setValue(&I, DAG.getNode(ISD::BSWAP, sdl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::cttz: { |
| SDValue Arg = getValue(I.getArgOperand(0)); |
| ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); |
| EVT Ty = Arg.getValueType(); |
| setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, |
| sdl, Ty, Arg)); |
| return; |
| } |
| case Intrinsic::ctlz: { |
| SDValue Arg = getValue(I.getArgOperand(0)); |
| ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); |
| EVT Ty = Arg.getValueType(); |
| setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, |
| sdl, Ty, Arg)); |
| return; |
| } |
| case Intrinsic::ctpop: { |
| SDValue Arg = getValue(I.getArgOperand(0)); |
| EVT Ty = Arg.getValueType(); |
| setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); |
| return; |
| } |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: { |
| bool IsFSHL = Intrinsic == Intrinsic::fshl; |
| SDValue X = getValue(I.getArgOperand(0)); |
| SDValue Y = getValue(I.getArgOperand(1)); |
| SDValue Z = getValue(I.getArgOperand(2)); |
| EVT VT = X.getValueType(); |
| SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); |
| SDValue Zero = DAG.getConstant(0, sdl, VT); |
| SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); |
| |
| auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; |
| if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { |
| setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); |
| return; |
| } |
| |
| // When X == Y, this is rotate. If the data type has a power-of-2 size, we |
| // avoid the select that is necessary in the general case to filter out |
| // the 0-shift possibility that leads to UB. |
| if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { |
| auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; |
| if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { |
| setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); |
| return; |
| } |
| |
| // Some targets only rotate one way. Try the opposite direction. |
| RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; |
| if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { |
| // Negate the shift amount because it is safe to ignore the high bits. |
| SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); |
| setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); |
| return; |
| } |
| |
| // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) |
| // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) |
| SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); |
| SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); |
| SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); |
| SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); |
| setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); |
| return; |
| } |
| |
| // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
| // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); |
| SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); |
| SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); |
| SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); |
| |
| // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, |
| // and that is undefined. We must compare and select to avoid UB. |
| EVT CCVT = MVT::i1; |
| if (VT.isVector()) |
| CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); |
| |
| // For fshl, 0-shift returns the 1st arg (X). |
| // For fshr, 0-shift returns the 2nd arg (Y). |
| SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); |
| setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); |
| return; |
| } |
| case Intrinsic::sadd_sat: { |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); |
| return; |
| } |
| case Intrinsic::uadd_sat: { |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); |
| return; |
| } |
| case Intrinsic::ssub_sat: { |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); |
| return; |
| } |
| case Intrinsic::usub_sat: { |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); |
| return; |
| } |
| case Intrinsic::smul_fix: |
| case Intrinsic::umul_fix: |
| case Intrinsic::smul_fix_sat: |
| case Intrinsic::umul_fix_sat: { |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, |
| Op1.getValueType(), Op1, Op2, Op3)); |
| return; |
| } |
| case Intrinsic::sdiv_fix: |
| case Intrinsic::udiv_fix: { |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, |
| Op1, Op2, Op3, DAG, TLI)); |
| return; |
| } |
| case Intrinsic::stacksave: { |
| SDValue Op = getRoot(); |
| Res = DAG.getNode( |
| ISD::STACKSAVE, sdl, |
| DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); |
| setValue(&I, Res); |
| DAG.setRoot(Res.getValue(1)); |
| return; |
| } |
| case Intrinsic::stackrestore: |
| Res = getValue(I.getArgOperand(0)); |
| DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); |
| return; |
| case Intrinsic::get_dynamic_area_offset: { |
| SDValue Op = getRoot(); |
| EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
| EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| // Result type for @llvm.get.dynamic.area.offset should match PtrTy for |
| // target. |
| if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) |
| report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" |
| " intrinsic!"); |
| Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), |
| Op); |
| DAG.setRoot(Op); |
| setValue(&I, Res); |
| return; |
| } |
| case Intrinsic::stackguard: { |
| EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Module &M = *MF.getFunction().getParent(); |
| SDValue Chain = getRoot(); |
| if (TLI.useLoadStackGuardNode()) { |
| Res = getLoadStackGuard(DAG, sdl, Chain); |
| } else { |
| const Value *Global = TLI.getSDagStackGuard(M); |
| unsigned Align = DL->getPrefTypeAlignment(Global->getType()); |
| Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), |
| MachinePointerInfo(Global, 0), Align, |
| MachineMemOperand::MOVolatile); |
| } |
| if (TLI.useStackGuardXorFP()) |
| Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); |
| DAG.setRoot(Chain); |
| setValue(&I, Res); |
| return; |
| } |
| case Intrinsic::stackprotector: { |
| // Emit code into the DAG to store the stack guard onto the stack. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
| SDValue Src, Chain = getRoot(); |
| |
| if (TLI.useLoadStackGuardNode()) |
| Src = getLoadStackGuard(DAG, sdl, Chain); |
| else |
| Src = getValue(I.getArgOperand(0)); // The guard's value. |
| |
| AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); |
| |
| int FI = FuncInfo.StaticAllocaMap[Slot]; |
| MFI.setStackProtectorIndex(FI); |
| |
| SDValue FIN = DAG.getFrameIndex(FI, PtrTy); |
| |
| // Store the stack protector onto the stack. |
| Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), FI), |
| /* Alignment = */ 0, MachineMemOperand::MOVolatile); |
| setValue(&I, Res); |
| DAG.setRoot(Res); |
| return; |
| } |
| case Intrinsic::objectsize: |
| llvm_unreachable("llvm.objectsize.* should have been lowered already"); |
| |
| case Intrinsic::is_constant: |
| llvm_unreachable("llvm.is.constant.* should have been lowered already"); |
| |
| case Intrinsic::annotation: |
| case Intrinsic::ptr_annotation: |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| // Drop the intrinsic, but forward the value |
| setValue(&I, getValue(I.getOperand(0))); |
| return; |
| case Intrinsic::assume: |
| case Intrinsic::var_annotation: |
| case Intrinsic::sideeffect: |
| // Discard annotate attributes, assumptions, and artificial side-effects. |
| return; |
| |
| case Intrinsic::codeview_annotation: { |
| // Emit a label associated with this metadata. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MCSymbol *Label = |
| MF.getMMI().getContext().createTempSymbol("annotation", true); |
| Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); |
| MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); |
| Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); |
| DAG.setRoot(Res); |
| return; |
| } |
| |
| case Intrinsic::init_trampoline: { |
| const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); |
| |
| SDValue Ops[6]; |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getArgOperand(0)); |
| Ops[2] = getValue(I.getArgOperand(1)); |
| Ops[3] = getValue(I.getArgOperand(2)); |
| Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); |
| Ops[5] = DAG.getSrcValue(F); |
| |
| Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); |
| |
| DAG.setRoot(Res); |
| return; |
| } |
| case Intrinsic::adjust_trampoline: |
| setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, |
| TLI.getPointerTy(DAG.getDataLayout()), |
| getValue(I.getArgOperand(0)))); |
| return; |
| case Intrinsic::gcroot: { |
| assert(DAG.getMachineFunction().getFunction().hasGC() && |
| "only valid in functions with gc specified, enforced by Verifier"); |
| assert(GFI && "implied by previous"); |
| const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); |
| const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); |
| |
| FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); |
| GFI->addStackRoot(FI->getIndex(), TypeMap); |
| return; |
| } |
| case Intrinsic::gcread: |
| case Intrinsic::gcwrite: |
| llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); |
| case Intrinsic::flt_rounds: |
| setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); |
| return; |
| |
| case Intrinsic::expect: |
| // Just replace __builtin_expect(exp, c) with EXP. |
| setValue(&I, getValue(I.getArgOperand(0))); |
| return; |
| |
| case Intrinsic::debugtrap: |
| case Intrinsic::trap: { |
| StringRef TrapFuncName = |
| I.getAttributes() |
| .getAttribute(AttributeList::FunctionIndex, "trap-func-name") |
| .getValueAsString(); |
| if (TrapFuncName.empty()) { |
| ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? |
| ISD::TRAP : ISD::DEBUGTRAP; |
| DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); |
| return; |
| } |
| TargetLowering::ArgListTy Args; |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( |
| CallingConv::C, I.getType(), |
| DAG.getExternalSymbol(TrapFuncName.data(), |
| TLI.getPointerTy(DAG.getDataLayout())), |
| std::move(Args)); |
| |
| std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); |
| DAG.setRoot(Result.second); |
| return; |
| } |
| |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: { |
| ISD::NodeType Op; |
| switch (Intrinsic) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; |
| case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; |
| case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; |
| case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; |
| case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; |
| case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; |
| } |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| |
| EVT ResultVT = Op1.getValueType(); |
| EVT OverflowVT = MVT::i1; |
| if (ResultVT.isVector()) |
| OverflowVT = EVT::getVectorVT( |
| *Context, OverflowVT, ResultVT.getVectorNumElements()); |
| |
| SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); |
| setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); |
| return; |
| } |
| case Intrinsic::prefetch: { |
| SDValue Ops[5]; |
| unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); |
| auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; |
| Ops[0] = DAG.getRoot(); |
| Ops[1] = getValue(I.getArgOperand(0)); |
| Ops[2] = getValue(I.getArgOperand(1)); |
| Ops[3] = getValue(I.getArgOperand(2)); |
| Ops[4] = getValue(I.getArgOperand(3)); |
| SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, |
| DAG.getVTList(MVT::Other), Ops, |
| EVT::getIntegerVT(*Context, 8), |
| MachinePointerInfo(I.getArgOperand(0)), |
| 0, /* align */ |
| Flags); |
| |
| // Chain the prefetch in parallell with any pending loads, to stay out of |
| // the way of later optimizations. |
| PendingLoads.push_back(Result); |
| Result = getRoot(); |
| DAG.setRoot(Result); |
| return; |
| } |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: { |
| bool IsStart = (Intrinsic == Intrinsic::lifetime_start); |
| // Stack coloring is not enabled in O0, discard region information. |
| if (TM.getOptLevel() == CodeGenOpt::None) |
| return; |
| |
| const int64_t ObjectSize = |
| cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); |
| Value *const ObjectPtr = I.getArgOperand(1); |
| SmallVector<const Value *, 4> Allocas; |
| GetUnderlyingObjects(ObjectPtr, Allocas, *DL); |
| |
| for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), |
| E = Allocas.end(); Object != E; ++Object) { |
| const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); |
| |
| // Could not find an Alloca. |
| if (!LifetimeObject) |
| continue; |
| |
| // First check that the Alloca is static, otherwise it won't have a |
| // valid frame index. |
| auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); |
| if (SI == FuncInfo.StaticAllocaMap.end()) |
| return; |
| |
| const int FrameIndex = SI->second; |
| int64_t Offset; |
| if (GetPointerBaseWithConstantOffset( |
| ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) |
| Offset = -1; // Cannot determine offset from alloca to lifetime object. |
| Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, |
| Offset); |
| DAG.setRoot(Res); |
| } |
| return; |
| } |
| case Intrinsic::invariant_start: |
| // Discard region information. |
| setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); |
| return; |
| case Intrinsic::invariant_end: |
| // Discard region information. |
| return; |
| case Intrinsic::clear_cache: |
| /// FunctionName may be null. |
| if (const char *FunctionName = TLI.getClearCacheBuiltinName()) |
| lowerCallToExternalSymbol(I, FunctionName); |
| return; |
| case Intrinsic::donothing: |
| // ignore |
| return; |
| case Intrinsic::experimental_stackmap: |
| visitStackmap(I); |
| return; |
| case Intrinsic::experimental_patchpoint_void: |
| case Intrinsic::experimental_patchpoint_i64: |
| visitPatchpoint(&I); |
| return; |
| case Intrinsic::experimental_gc_statepoint: |
| LowerStatepoint(ImmutableStatepoint(&I)); |
| return; |
| case Intrinsic::experimental_gc_result: |
| visitGCResult(cast<GCResultInst>(I)); |
| return; |
| case Intrinsic::experimental_gc_relocate: |
| visitGCRelocate(cast<GCRelocateInst>(I)); |
| return; |
| case Intrinsic::instrprof_increment: |
| llvm_unreachable("instrprof failed to lower an increment"); |
| case Intrinsic::instrprof_value_profile: |
| llvm_unreachable("instrprof failed to lower a value profiling call"); |
| case Intrinsic::localescape: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); |
| |
| // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission |
| // is the same on all targets. |
| for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { |
| Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); |
| if (isa<ConstantPointerNull>(Arg)) |
| continue; // Skip null pointers. They represent a hole in index space. |
| AllocaInst *Slot = cast<AllocaInst>(Arg); |
| assert(FuncInfo.StaticAllocaMap.count(Slot) && |
| "can only escape static allocas"); |
| int FI = FuncInfo.StaticAllocaMap[Slot]; |
| MCSymbol *FrameAllocSym = |
| MF.getMMI().getContext().getOrCreateFrameAllocSymbol( |
| GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, |
| TII->get(TargetOpcode::LOCAL_ESCAPE)) |
| .addSym(FrameAllocSym) |
| .addFrameIndex(FI); |
| } |
| |
| return; |
| } |
| |
| case Intrinsic::localrecover: { |
| // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); |
| |
| // Get the symbol that defines the frame offset. |
| auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); |
| auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); |
| unsigned IdxVal = |
| unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); |
| MCSymbol *FrameAllocSym = |
| MF.getMMI().getContext().getOrCreateFrameAllocSymbol( |
| GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); |
| |
| // Create a MCSymbol for the label to avoid any target lowering |
| // that would make this PC relative. |
| SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); |
| SDValue OffsetVal = |
| DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); |
| |
| // Add the offset to the FP. |
| Value *FP = I.getArgOperand(1); |
| SDValue FPVal = getValue(FP); |
| SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); |
| setValue(&I, Add); |
| |
| return; |
| } |
| |
| case Intrinsic::eh_exceptionpointer: |
| case Intrinsic::eh_exceptioncode: { |
| // Get the exception pointer vreg, copy from it, and resize it to fit. |
| const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); |
| MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); |
| const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); |
| unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); |
| SDValue N = |
| DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); |
| if (Intrinsic == Intrinsic::eh_exceptioncode) |
| N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); |
| setValue(&I, N); |
| return; |
| } |
| case Intrinsic::xray_customevent: { |
| // Here we want to make sure that the intrinsic behaves as if it has a |
| // specific calling convention, and only for x86_64. |
| // FIXME: Support other platforms later. |
| const auto &Triple = DAG.getTarget().getTargetTriple(); |
| if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) |
| return; |
| |
| SDLoc DL = getCurSDLoc(); |
| SmallVector<SDValue, 8> Ops; |
| |
| // We want to say that we always want the arguments in registers. |
| SDValue LogEntryVal = getValue(I.getArgOperand(0)); |
| SDValue StrSizeVal = getValue(I.getArgOperand(1)); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Chain = getRoot(); |
| Ops.push_back(LogEntryVal); |
| Ops.push_back(StrSizeVal); |
| Ops.push_back(Chain); |
| |
| // We need to enforce the calling convention for the callsite, so that |
| // argument ordering is enforced correctly, and that register allocation can |
| // see that some registers may be assumed clobbered and have to preserve |
| // them across calls to the intrinsic. |
| MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, |
| DL, NodeTys, Ops); |
| SDValue patchableNode = SDValue(MN, 0); |
| DAG.setRoot(patchableNode); |
| setValue(&I, patchableNode); |
| return; |
| } |
| case Intrinsic::xray_typedevent: { |
| // Here we want to make sure that the intrinsic behaves as if it has a |
| // specific calling convention, and only for x86_64. |
| // FIXME: Support other platforms later. |
| const auto &Triple = DAG.getTarget().getTargetTriple(); |
| if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) |
| return; |
| |
| SDLoc DL = getCurSDLoc(); |
| SmallVector<SDValue, 8> Ops; |
| |
| // We want to say that we always want the arguments in registers. |
| // It's unclear to me how manipulating the selection DAG here forces callers |
| // to provide arguments in registers instead of on the stack. |
| SDValue LogTypeId = getValue(I.getArgOperand(0)); |
| SDValue LogEntryVal = getValue(I.getArgOperand(1)); |
| SDValue StrSizeVal = getValue(I.getArgOperand(2)); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Chain = getRoot(); |
| Ops.push_back(LogTypeId); |
| Ops.push_back(LogEntryVal); |
| Ops.push_back(StrSizeVal); |
| Ops.push_back(Chain); |
| |
| // We need to enforce the calling convention for the callsite, so that |
| // argument ordering is enforced correctly, and that register allocation can |
| // see that some registers may be assumed clobbered and have to preserve |
| // them across calls to the intrinsic. |
| MachineSDNode *MN = DAG.getMachineNode( |
| TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); |
| SDValue patchableNode = SDValue(MN, 0); |
| DAG.setRoot(patchableNode); |
| setValue(&I, patchableNode); |
| return; |
| } |
| case Intrinsic::experimental_deoptimize: |
| LowerDeoptimizeCall(&I); |
| return; |
| |
| case Intrinsic::experimental_vector_reduce_v2_fadd: |
| case Intrinsic::experimental_vector_reduce_v2_fmul: |
| case Intrinsic::experimental_vector_reduce_add: |
| case Intrinsic::experimental_vector_reduce_mul: |
| case Intrinsic::experimental_vector_reduce_and: |
| case Intrinsic::experimental_vector_reduce_or: |
| case Intrinsic::experimental_vector_reduce_xor: |
| case Intrinsic::experimental_vector_reduce_smax: |
| case Intrinsic::experimental_vector_reduce_smin: |
| case Intrinsic::experimental_vector_reduce_umax: |
| case Intrinsic::experimental_vector_reduce_umin: |
| case Intrinsic::experimental_vector_reduce_fmax: |
| case Intrinsic::experimental_vector_reduce_fmin: |
| visitVectorReduce(I, Intrinsic); |
| return; |
| |
| case Intrinsic::icall_branch_funnel: { |
| SmallVector<SDValue, 16> Ops; |
| Ops.push_back(getValue(I.getArgOperand(0))); |
| |
| int64_t Offset; |
| auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( |
| I.getArgOperand(1), Offset, DAG.getDataLayout())); |
| if (!Base) |
| report_fatal_error( |
| "llvm.icall.branch.funnel operand must be a GlobalValue"); |
| Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); |
| |
| struct BranchFunnelTarget { |
| int64_t Offset; |
| SDValue Target; |
| }; |
| SmallVector<BranchFunnelTarget, 8> Targets; |
| |
| for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { |
| auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( |
| I.getArgOperand(Op), Offset, DAG.getDataLayout())); |
| if (ElemBase != Base) |
| report_fatal_error("all llvm.icall.branch.funnel operands must refer " |
| "to the same GlobalValue"); |
| |
| SDValue Val = getValue(I.getArgOperand(Op + 1)); |
| auto *GA = dyn_cast<GlobalAddressSDNode>(Val); |
| if (!GA) |
| report_fatal_error( |
| "llvm.icall.branch.funnel operand must be a GlobalValue"); |
| Targets.push_back({Offset, DAG.getTargetGlobalAddress( |
| GA->getGlobal(), getCurSDLoc(), |
| Val.getValueType(), GA->getOffset())}); |
| } |
| llvm::sort(Targets, |
| [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { |
| return T1.Offset < T2.Offset; |
| }); |
| |
| for (auto &T : Targets) { |
| Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); |
| Ops.push_back(T.Target); |
| } |
| |
| Ops.push_back(DAG.getRoot()); // Chain |
| SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, |
| getCurSDLoc(), MVT::Other, Ops), |
| 0); |
| DAG.setRoot(N); |
| setValue(&I, N); |
| HasTailCall = true; |
| return; |
| } |
| |
| case Intrinsic::wasm_landingpad_index: |
| // Information this intrinsic contained has been transferred to |
| // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely |
| // delete it now. |
| return; |
| |
| case Intrinsic::aarch64_settag: |
| case Intrinsic::aarch64_settag_zero: { |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; |
| SDValue Val = TSI.EmitTargetCodeForSetTag( |
| DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), |
| ZeroMemory); |
| DAG.setRoot(Val); |
| setValue(&I, Val); |
| return; |
| } |
| case Intrinsic::ptrmask: { |
| SDValue Ptr = getValue(I.getOperand(0)); |
| SDValue Const = getValue(I.getOperand(1)); |
| |
| EVT DestVT = |
| EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); |
| |
| setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, |
| DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); |
| return; |
| } |
| } |
| } |
| |
| void SelectionDAGBuilder::visitConstrainedFPIntrinsic( |
| const ConstrainedFPIntrinsic &FPI) { |
| SDLoc sdl = getCurSDLoc(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); |
| ValueVTs.push_back(MVT::Other); // Out chain |
| |
| // We do not need to serialize constrained FP intrinsics against |
| // each other or against (nonvolatile) loads, so they can be |
| // chained like loads. |
| SDValue Chain = DAG.getRoot(); |
| SmallVector<SDValue, 4> Opers; |
| Opers.push_back(Chain); |
| if (FPI.isUnaryOp()) { |
| Opers.push_back(getValue(FPI.getArgOperand(0))); |
| } else if (FPI.isTernaryOp()) { |
| Opers.push_back(getValue(FPI.getArgOperand(0))); |
| Opers.push_back(getValue(FPI.getArgOperand(1))); |
| Opers.push_back(getValue(FPI.getArgOperand(2))); |
| } else { |
| Opers.push_back(getValue(FPI.getArgOperand(0))); |
| Opers.push_back(getValue(FPI.getArgOperand(1))); |
| } |
| |
| unsigned Opcode; |
| switch (FPI.getIntrinsicID()) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| case Intrinsic::INTRINSIC: \ |
| Opcode = ISD::STRICT_##DAGN; \ |
| break; |
| #include "llvm/IR/ConstrainedOps.def" |
| } |
| |
| // A few strict DAG nodes carry additional operands that are not |
| // set up by the default code above. |
| switch (Opcode) { |
| default: break; |
| case ISD::STRICT_FP_ROUND: |
| Opers.push_back( |
| DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); |
| break; |
| case ISD::STRICT_FSETCC: |
| case ISD::STRICT_FSETCCS: { |
| auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); |
| Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); |
| break; |
| } |
| } |
| |
| SDVTList VTs = DAG.getVTList(ValueVTs); |
| SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); |
| |
| assert(Result.getNode()->getNumValues() == 2); |
| |
| // Push node to the appropriate list so that future instructions can be |
| // chained up correctly. |
| SDValue OutChain = Result.getValue(1); |
| switch (FPI.getExceptionBehavior().getValue()) { |
| case fp::ExceptionBehavior::ebIgnore: |
| // The only reason why ebIgnore nodes still need to be chained is that |
| // they might depend on the current rounding mode, and therefore must |
| // not be moved across instruction that may change that mode. |
| LLVM_FALLTHROUGH; |
| case fp::ExceptionBehavior::ebMayTrap: |
| // These must not be moved across calls or instructions that may change |
| // floating-point exception masks. |
| PendingConstrainedFP.push_back(OutChain); |
| break; |
| case fp::ExceptionBehavior::ebStrict: |
| // These must not be moved across calls or instructions that may change |
| // floating-point exception masks or read floating-point exception flags. |
| // In addition, they cannot be optimized out even if unused. |
| PendingConstrainedFPStrict.push_back(OutChain); |
| break; |
| } |
| |
| SDValue FPResult = Result.getValue(0); |
| setValue(&FPI, FPResult); |
| } |
| |
| std::pair<SDValue, SDValue> |
| SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, |
| const BasicBlock *EHPadBB) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineModuleInfo &MMI = MF.getMMI(); |
| MCSymbol *BeginLabel = nullptr; |
| |
| if (EHPadBB) { |
| // Insert a label before the invoke call to mark the try range. This can be |
| // used to detect deletion of the invoke via the MachineModuleInfo. |
| BeginLabel = MMI.getContext().createTempSymbol(); |
| |
| // For SjLj, keep track of which landing pads go with which invokes |
| // so as to maintain the ordering of pads in the LSDA. |
| unsigned CallSiteIndex = MMI.getCurrentCallSite(); |
| if (CallSiteIndex) { |
| MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); |
| LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); |
| |
| // Now that the call site is handled, stop tracking it. |
| MMI.setCurrentCallSite(0); |
| } |
| |
| // Both PendingLoads and PendingExports must be flushed here; |
| // this call might not return. |
| (void)getRoot(); |
| DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); |
| |
| CLI.setChain(getRoot()); |
| } |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); |
| |
| assert((CLI.IsTailCall || Result.second.getNode()) && |
| "Non-null chain expected with non-tail call!"); |
| assert((Result.second.getNode() || !Result.first.getNode()) && |
| "Null value expected with tail call!"); |
| |
| if (!Result.second.getNode()) { |
| // As a special case, a null chain means that a tail call has been emitted |
| // and the DAG root is already updated. |
| HasTailCall = true; |
| |
| // Since there's no actual continuation from this block, nothing can be |
| // relying on us setting vregs for them. |
| PendingExports.clear(); |
| } else { |
| DAG.setRoot(Result.second); |
| } |
| |
| if (EHPadBB) { |
| // Insert a label at the end of the invoke call to mark the try range. This |
| // can be used to detect deletion of the invoke via the MachineModuleInfo. |
| MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); |
| DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); |
| |
| // Inform MachineModuleInfo of range. |
| auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
| // There is a platform (e.g. wasm) that uses funclet style IR but does not |
| // actually use outlined funclets and their LSDA info style. |
| if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { |
| assert(CLI.CS); |
| WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); |
| EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), |
| BeginLabel, EndLabel); |
| } else if (!isScopedEHPersonality(Pers)) { |
| MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); |
| } |
| } |
| |
| return Result; |
| } |
| |
| void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, |
| bool isTailCall, |
| const BasicBlock *EHPadBB) { |
| auto &DL = DAG.getDataLayout(); |
| FunctionType *FTy = CS.getFunctionType(); |
| Type *RetTy = CS.getType(); |
| |
| TargetLowering::ArgListTy Args; |
| Args.reserve(CS.arg_size()); |
| |
| const Value *SwiftErrorVal = nullptr; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (isTailCall) { |
| // Avoid emitting tail calls in functions with the disable-tail-calls |
| // attribute. |
| auto *Caller = CS.getInstruction()->getParent()->getParent(); |
| if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == |
| "true") |
| isTailCall = false; |
| |
| // We can't tail call inside a function with a swifterror argument. Lowering |
| // does not support this yet. It would have to move into the swifterror |
| // register before the call. |
| if (TLI.supportSwiftError() && |
| Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) |
| isTailCall = false; |
| } |
| |
| for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| i != e; ++i) { |
| TargetLowering::ArgListEntry Entry; |
| const Value *V = *i; |
| |
| // Skip empty types |
| if (V->getType()->isEmptyTy()) |
| continue; |
| |
| SDValue ArgNode = getValue(V); |
| Entry.Node = ArgNode; Entry.Ty = V->getType(); |
| |
| Entry.setAttributes(&CS, i - CS.arg_begin()); |
| |
| // Use swifterror virtual register as input to the call. |
| if (Entry.IsSwiftError && TLI.supportSwiftError()) { |
| SwiftErrorVal = V; |
| // We find the virtual register for the actual swifterror argument. |
| // Instead of using the Value, we use the virtual register instead. |
| Entry.Node = DAG.getRegister( |
| SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), |
| EVT(TLI.getPointerTy(DL))); |
| } |
| |
| Args.push_back(Entry); |
| |
| // If we have an explicit sret argument that is an Instruction, (i.e., it |
| // might point to function-local memory), we can't meaningfully tail-call. |
| if (Entry.IsSRet && isa<Instruction>(V)) |
| isTailCall = false; |
| } |
| |
| // If call site has a cfguardtarget operand bundle, create and add an |
| // additional ArgListEntry. |
| if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { |
| TargetLowering::ArgListEntry Entry; |
| Value *V = Bundle->Inputs[0]; |
| SDValue ArgNode = getValue(V); |
| Entry.Node = ArgNode; |
| Entry.Ty = V->getType(); |
| Entry.IsCFGuardTarget = true; |
| Args.push_back(Entry); |
| } |
| |
| // Check if target-independent constraints permit a tail call here. |
| // Target-dependent constraints are checked within TLI->LowerCallTo. |
| if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) |
| isTailCall = false; |
| |
| // Disable tail calls if there is an swifterror argument. Targets have not |
| // been updated to support tail calls. |
| if (TLI.supportSwiftError() && SwiftErrorVal) |
| isTailCall = false; |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(getCurSDLoc()) |
| .setChain(getRoot()) |
| .setCallee(RetTy, FTy, Callee, std::move(Args), CS) |
| .setTailCall(isTailCall) |
| .setConvergent(CS.isConvergent()); |
| std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); |
| |
| if (Result.first.getNode()) { |
| const Instruction *Inst = CS.getInstruction(); |
| Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); |
| setValue(Inst, Result.first); |
| } |
| |
| // The last element of CLI.InVals has the SDValue for swifterror return. |
| // Here we copy it to a virtual register and update SwiftErrorMap for |
| // book-keeping. |
| if (SwiftErrorVal && TLI.supportSwiftError()) { |
| // Get the last element of InVals. |
| SDValue Src = CLI.InVals.back(); |
| Register VReg = SwiftError.getOrCreateVRegDefAt( |
| CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); |
| SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); |
| DAG.setRoot(CopyNode); |
| } |
| } |
| |
| static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, |
| SelectionDAGBuilder &Builder) { |
| // Check to see if this load can be trivially constant folded, e.g. if the |
| // input is from a string literal. |
| if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { |
| // Cast pointer to the type we really want to load. |
| Type *LoadTy = |
| Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); |
| if (LoadVT.isVector()) |
| LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); |
| |
| LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), |
| PointerType::getUnqual(LoadTy)); |
| |
| if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( |
| const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) |
| return Builder.getValue(LoadCst); |
| } |
| |
| // Otherwise, we have to emit the load. If the pointer is to unfoldable but |
| // still constant memory, the input chain can be the entry node. |
| SDValue Root; |
| bool ConstantMemory = false; |
| |
| // Do not serialize (non-volatile) loads of constant memory with anything. |
| if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { |
| Root = Builder.DAG.getEntryNode(); |
| ConstantMemory = true; |
| } else { |
| // Do not serialize non-volatile loads against each other. |
| Root = Builder.DAG.getRoot(); |
| } |
| |
| SDValue Ptr = Builder.getValue(PtrVal); |
| SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, |
| Ptr, MachinePointerInfo(PtrVal), |
| /* Alignment = */ 1); |
| |
| if (!ConstantMemory) |
| Builder.PendingLoads.push_back(LoadVal.getValue(1)); |
| return LoadVal; |
| } |
| |
| /// Record the value for an instruction that produces an integer result, |
| /// converting the type where necessary. |
| void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, |
| SDValue Value, |
| bool IsSigned) { |
| EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType(), true); |
| if (IsSigned) |
| Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); |
| else |
| Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); |
| setValue(&I, Value); |
| } |
| |
| /// See if we can lower a memcmp call into an optimized form. If so, return |
| /// true and lower it. Otherwise return false, and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { |
| const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); |
| const Value *Size = I.getArgOperand(2); |
| const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); |
| if (CSize && CSize->getZExtValue() == 0) { |
| EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
| I.getType(), true); |
| setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); |
| return true; |
| } |
| |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( |
| DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), |
| getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); |
| if (Res.first.getNode()) { |
| processIntegerCallValue(I, Res.first, true); |
| PendingLoads.push_back(Res.second); |
| return true; |
| } |
| |
| // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 |
| // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 |
| if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) |
| return false; |
| |
| // If the target has a fast compare for the given size, it will return a |
| // preferred load type for that size. Require that the load VT is legal and |
| // that the target supports unaligned loads of that type. Otherwise, return |
| // INVALID. |
| auto hasFastLoadsAndCompare = [&](unsigned NumBits) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT LVT = TLI.hasFastEqualityCompare(NumBits); |
| if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { |
| // TODO: Handle 5 byte compare as 4-byte + 1 byte. |
| // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. |
| // TODO: Check alignment of src and dest ptrs. |
| unsigned DstAS = LHS->getType()->getPointerAddressSpace(); |
| unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); |
| if (!TLI.isTypeLegal(LVT) || |
| !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || |
| !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) |
| LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; |
| } |
| |
| return LVT; |
| }; |
| |
| // This turns into unaligned loads. We only do this if the target natively |
| // supports the MVT we'll be loading or if it is small enough (<= 4) that |
| // we'll only produce a small number of byte loads. |
| MVT LoadVT; |
| unsigned NumBitsToCompare = CSize->getZExtValue() * 8; |
| switch (NumBitsToCompare) { |
| default: |
| return false; |
| case 16: |
| LoadVT = MVT::i16; |
| break; |
| case 32: |
| LoadVT = MVT::i32; |
| break; |
| case 64: |
| case 128: |
| case 256: |
| LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); |
| break; |
| } |
| |
| if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) |
| return false; |
| |
| SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); |
| SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); |
| |
| // Bitcast to a wide integer type if the loads are vectors. |
| if (LoadVT.isVector()) { |
| EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); |
| LoadL = DAG.getBitcast(CmpVT, LoadL); |
| LoadR = DAG.getBitcast(CmpVT, LoadR); |
| } |
| |
| SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); |
| processIntegerCallValue(I, Cmp, false); |
| return true; |
| } |
| |
| /// See if we can lower a memchr call into an optimized form. If so, return |
| /// true and lower it. Otherwise return false, and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { |
| const Value *Src = I.getArgOperand(0); |
| const Value *Char = I.getArgOperand(1); |
| const Value *Length = I.getArgOperand(2); |
| |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| std::pair<SDValue, SDValue> Res = |
| TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), |
| getValue(Src), getValue(Char), getValue(Length), |
| MachinePointerInfo(Src)); |
| if (Res.first.getNode()) { |
| setValue(&I, Res.first); |
| PendingLoads.push_back(Res.second); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// See if we can lower a mempcpy call into an optimized form. If so, return |
| /// true and lower it. Otherwise return false, and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { |
| SDValue Dst = getValue(I.getArgOperand(0)); |
| SDValue Src = getValue(I.getArgOperand(1)); |
| SDValue Size = getValue(I.getArgOperand(2)); |
| |
| unsigned DstAlign = DAG.InferPtrAlignment(Dst); |
| unsigned SrcAlign = DAG.InferPtrAlignment(Src); |
| unsigned Align = std::min(DstAlign, SrcAlign); |
| if (Align == 0) // Alignment of one or both could not be inferred. |
| Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. |
| |
| bool isVol = false; |
| SDLoc sdl = getCurSDLoc(); |
| |
| // In the mempcpy context we need to pass in a false value for isTailCall |
| // because the return pointer needs to be adjusted by the size of |
| // the copied memory. |
| SDValue Root = isVol ? getRoot() : getMemoryRoot(); |
| SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol, |
| false, /*isTailCall=*/false, |
| MachinePointerInfo(I.getArgOperand(0)), |
| MachinePointerInfo(I.getArgOperand(1))); |
| assert(MC.getNode() != nullptr && |
| "** memcpy should not be lowered as TailCall in mempcpy context **"); |
| DAG.setRoot(MC); |
| |
| // Check if Size needs to be truncated or extended. |
| Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); |
| |
| // Adjust return pointer to point just past the last dst byte. |
| SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), |
| Dst, Size); |
| setValue(&I, DstPlusSize); |
| return true; |
| } |
| |
| /// See if we can lower a strcpy call into an optimized form. If so, return |
| /// true and lower it, otherwise return false and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { |
| const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); |
| |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| std::pair<SDValue, SDValue> Res = |
| TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), |
| getValue(Arg0), getValue(Arg1), |
| MachinePointerInfo(Arg0), |
| MachinePointerInfo(Arg1), isStpcpy); |
| if (Res.first.getNode()) { |
| setValue(&I, Res.first); |
| DAG.setRoot(Res.second); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// See if we can lower a strcmp call into an optimized form. If so, return |
| /// true and lower it, otherwise return false and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { |
| const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); |
| |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| std::pair<SDValue, SDValue> Res = |
| TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), |
| getValue(Arg0), getValue(Arg1), |
| MachinePointerInfo(Arg0), |
| MachinePointerInfo(Arg1)); |
| if (Res.first.getNode()) { |
| processIntegerCallValue(I, Res.first, true); |
| PendingLoads.push_back(Res.second); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// See if we can lower a strlen call into an optimized form. If so, return |
| /// true and lower it, otherwise return false and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { |
| const Value *Arg0 = I.getArgOperand(0); |
| |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| std::pair<SDValue, SDValue> Res = |
| TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), |
| getValue(Arg0), MachinePointerInfo(Arg0)); |
| if (Res.first.getNode()) { |
| processIntegerCallValue(I, Res.first, false); |
| PendingLoads.push_back(Res.second); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// See if we can lower a strnlen call into an optimized form. If so, return |
| /// true and lower it, otherwise return false and it will be lowered like a |
| /// normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { |
| const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); |
| |
| const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); |
| std::pair<SDValue, SDValue> Res = |
| TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), |
| getValue(Arg0), getValue(Arg1), |
| MachinePointerInfo(Arg0)); |
| if (Res.first.getNode()) { |
| processIntegerCallValue(I, Res.first, false); |
| PendingLoads.push_back(Res.second); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// See if we can lower a unary floating-point operation into an SDNode with |
| /// the specified Opcode. If so, return true and lower it, otherwise return |
| /// false and it will be lowered like a normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, |
| unsigned Opcode) { |
| // We already checked this call's prototype; verify it doesn't modify errno. |
| if (!I.onlyReadsMemory()) |
| return false; |
| |
| SDValue Tmp = getValue(I.getArgOperand(0)); |
| setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); |
| return true; |
| } |
| |
| /// See if we can lower a binary floating-point operation into an SDNode with |
| /// the specified Opcode. If so, return true and lower it. Otherwise return |
| /// false, and it will be lowered like a normal call. |
| /// The caller already checked that \p I calls the appropriate LibFunc with a |
| /// correct prototype. |
| bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, |
| unsigned Opcode) { |
| // We already checked this call's prototype; verify it doesn't modify errno. |
| if (!I.onlyReadsMemory()) |
| return false; |
| |
| SDValue Tmp0 = getValue(I.getArgOperand(0)); |
| SDValue Tmp1 = getValue(I.getArgOperand(1)); |
| EVT VT = Tmp0.getValueType(); |
| setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); |
| return true; |
| } |
| |
| void SelectionDAGBuilder::visitCall(const CallInst &I) { |
| // Handle inline assembly differently. |
| if (isa<InlineAsm>(I.getCalledValue())) { |
| visitInlineAsm(&I); |
| return; |
| } |
| |
| if (Function *F = I.getCalledFunction()) { |
| if (F->isDeclaration()) { |
| // Is this an LLVM intrinsic or a target-specific intrinsic? |
| unsigned IID = F->getIntrinsicID(); |
| if (!IID) |
| if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) |
| IID = II->getIntrinsicID(F); |
| |
| if (IID) { |
| visitIntrinsicCall(I, IID); |
| return; |
| } |
| } |
| |
| // Check for well-known libc/libm calls. If the function is internal, it |
| // can't be a library call. Don't do the check if marked as nobuiltin for |
| // some reason or the call site requires strict floating point semantics. |
| LibFunc Func; |
| if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && |
| F->hasName() && LibInfo->getLibFunc(*F, Func) && |
| LibInfo->hasOptimizedCodeGen(Func)) { |
| switch (Func) { |
| default: break; |
| case LibFunc_copysign: |
| case LibFunc_copysignf: |
| case LibFunc_copysignl: |
| // We already checked this call's prototype; verify it doesn't modify |
| // errno. |
| if (I.onlyReadsMemory()) { |
| SDValue LHS = getValue(I.getArgOperand(0)); |
| SDValue RHS = getValue(I.getArgOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), |
| LHS.getValueType(), LHS, RHS)); |
| return; |
| } |
| break; |
| case LibFunc_fabs: |
| case LibFunc_fabsf: |
| case LibFunc_fabsl: |
| if (visitUnaryFloatCall(I, ISD::FABS)) |
| return; |
| break; |
| case LibFunc_fmin: |
| case LibFunc_fminf: |
| case LibFunc_fminl: |
| if (visitBinaryFloatCall(I, ISD::FMINNUM)) |
| return; |
| break; |
| case LibFunc_fmax: |
| case LibFunc_fmaxf: |
| case LibFunc_fmaxl: |
| if (visitBinaryFloatCall(I, ISD::FMAXNUM)) |
| return; |
| break; |
| case LibFunc_sin: |
| case LibFunc_sinf: |
| case LibFunc_sinl: |
| if (visitUnaryFloatCall(I, ISD::FSIN)) |
| return; |
| break; |
| case LibFunc_cos: |
| case LibFunc_cosf: |
| case LibFunc_cosl: |
| if (visitUnaryFloatCall(I, ISD::FCOS)) |
| return; |
| break; |
| case LibFunc_sqrt: |
| case LibFunc_sqrtf: |
| case LibFunc_sqrtl: |
| case LibFunc_sqrt_finite: |
| case LibFunc_sqrtf_finite: |
| case LibFunc_sqrtl_finite: |
| if (visitUnaryFloatCall(I, ISD::FSQRT)) |
| return; |
| break; |
| case LibFunc_floor: |
| case LibFunc_floorf: |
| case LibFunc_floorl: |
| if (visitUnaryFloatCall(I, ISD::FFLOOR)) |
| return; |
| break; |
| case LibFunc_nearbyint: |
| case LibFunc_nearbyintf: |
| case LibFunc_nearbyintl: |
| if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) |
| return; |
| break; |
| case LibFunc_ceil: |
| case LibFunc_ceilf: |
| case LibFunc_ceill: |
| if (visitUnaryFloatCall(I, ISD::FCEIL)) |
| return; |
| break; |
| case LibFunc_rint: |
| case LibFunc_rintf: |
| case LibFunc_rintl: |
| if (visitUnaryFloatCall(I, ISD::FRINT)) |
| return; |
| break; |
| case LibFunc_round: |
| case LibFunc_roundf: |
| case LibFunc_roundl: |
| if (visitUnaryFloatCall(I, ISD::FROUND)) |
| return; |
| break; |
| case LibFunc_trunc: |
| case LibFunc_truncf: |
| case LibFunc_truncl: |
| if (visitUnaryFloatCall(I, ISD::FTRUNC)) |
| return; |
| break; |
| case LibFunc_log2: |
| case LibFunc_log2f: |
| case LibFunc_log2l: |
| if (visitUnaryFloatCall(I, ISD::FLOG2)) |
| return; |
| break; |
| case LibFunc_exp2: |
| case LibFunc_exp2f: |
| case LibFunc_exp2l: |
| if (visitUnaryFloatCall(I, ISD::FEXP2)) |
| return; |
| break; |
| case LibFunc_memcmp: |
| if (visitMemCmpCall(I)) |
| return; |
| break; |
| case LibFunc_mempcpy: |
| if (visitMemPCpyCall(I)) |
| return; |
| break; |
| case LibFunc_memchr: |
| if (visitMemChrCall(I)) |
| return; |
| break; |
| case LibFunc_strcpy: |
| if (visitStrCpyCall(I, false)) |
| return; |
| break; |
| case LibFunc_stpcpy: |
| if (visitStrCpyCall(I, true)) |
| return; |
| break; |
| case LibFunc_strcmp: |
| if (visitStrCmpCall(I)) |
| return; |
| break; |
| case LibFunc_strlen: |
| if (visitStrLenCall(I)) |
| return; |
| break; |
| case LibFunc_strnlen: |
| if (visitStrNLenCall(I)) |
| return; |
| break; |
| } |
| } |
| } |
| |
| // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't |
| // have to do anything here to lower funclet bundles. |
| // CFGuardTarget bundles are lowered in LowerCallTo. |
| assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, |
| LLVMContext::OB_funclet, |
| LLVMContext::OB_cfguardtarget}) && |
| "Cannot lower calls with arbitrary operand bundles!"); |
| |
| SDValue Callee = getValue(I.getCalledValue()); |
| |
| if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) |
| LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); |
| else |
| // Check if we can potentially perform a tail call. More detailed checking |
| // is be done within LowerCallTo, after more information about the call is |
| // known. |
| LowerCallTo(&I, Callee, I.isTailCall()); |
| } |
| |
| namespace { |
| |
| /// AsmOperandInfo - This contains information for each constraint that we are |
| /// lowering. |
| class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { |
| public: |
| /// CallOperand - If this is the result output operand or a clobber |
| /// this is null, otherwise it is the incoming operand to the CallInst. |
| /// This gets modified as the asm is processed. |
| SDValue CallOperand; |
| |
| /// AssignedRegs - If this is a register or register class operand, this |
| /// contains the set of register corresponding to the operand. |
| RegsForValue AssignedRegs; |
| |
| explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) |
| : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { |
| } |
| |
| /// Whether or not this operand accesses memory |
| bool hasMemory(const TargetLowering &TLI) const { |
| // Indirect operand accesses access memory. |
| if (isIndirect) |
| return true; |
| |
| for (const auto &Code : Codes) |
| if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) |
| return true; |
| |
| return false; |
| } |
| |
| /// getCallOperandValEVT - Return the EVT of the Value* that this operand |
| /// corresponds to. If there is no Value* for this operand, it returns |
| /// MVT::Other. |
| EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, |
| const DataLayout &DL) const { |
| if (!CallOperandVal) return MVT::Other; |
| |
| if (isa<BasicBlock>(CallOperandVal)) |
| return TLI.getPointerTy(DL); |
| |
| llvm::Type *OpTy = CallOperandVal->getType(); |
| |
| // FIXME: code duplicated from TargetLowering::ParseConstraints(). |
| // If this is an indirect operand, the operand is a pointer to the |
| // accessed type. |
| if (isIndirect) { |
| PointerType *PtrTy = dyn_cast<PointerType>(OpTy); |
| if (!PtrTy) |
| report_fatal_error("Indirect operand for inline asm not a pointer!"); |
| OpTy = PtrTy->getElementType(); |
| } |
| |
| // Look for vector wrapped in a struct. e.g. { <16 x i8> }. |
| if (StructType *STy = dyn_cast<StructType>(OpTy)) |
| if (STy->getNumElements() == 1) |
| OpTy = STy->getElementType(0); |
| |
| // If OpTy is not a single value, it may be a struct/union that we |
| // can tile with integers. |
| if (!OpTy->isSingleValueType() && OpTy->isSized()) { |
| unsigned BitSize = DL.getTypeSizeInBits(OpTy); |
| switch (BitSize) { |
| default: break; |
| case 1: |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| case 128: |
| OpTy = IntegerType::get(Context, BitSize); |
| break; |
| } |
| } |
| |
| return TLI.getValueType(DL, OpTy, true); |
| } |
| }; |
| |
| using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; |
| |
| } // end anonymous namespace |
| |
| /// Make sure that the output operand \p OpInfo and its corresponding input |
| /// operand \p MatchingOpInfo have compatible constraint types (otherwise error |
| /// out). |
| static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, |
| SDISelAsmOperandInfo &MatchingOpInfo, |
| SelectionDAG &DAG) { |
| if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) |
| return; |
| |
| const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| |
| std::pair<unsigned, const TargetRegisterClass *> MatchRC = |
| TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, |
| OpInfo.ConstraintVT); |
| std::pair<unsigned, const TargetRegisterClass *> InputRC = |
| TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, |
| MatchingOpInfo.ConstraintVT); |
| if ((OpInfo.ConstraintVT.isInteger() != |
| MatchingOpInfo.ConstraintVT.isInteger()) || |
| (MatchRC.second != InputRC.second)) { |
| // FIXME: error out in a more elegant fashion |
| report_fatal_error("Unsupported asm: input constraint" |
| " with a matching output constraint of" |
| " incompatible type!"); |
| } |
| MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; |
| } |
| |
| /// Get a direct memory input to behave well as an indirect operand. |
| /// This may introduce stores, hence the need for a \p Chain. |
| /// \return The (possibly updated) chain. |
| static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, |
| SDISelAsmOperandInfo &OpInfo, |
| SelectionDAG &DAG) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // If we don't have an indirect input, put it in the constpool if we can, |
| // otherwise spill it to a stack slot. |
| // TODO: This isn't quite right. We need to handle these according to |
| // the addressing mode that the constraint wants. Also, this may take |
| // an additional register for the computation and we don't want that |
| // either. |
| |
| // If the operand is a float, integer, or vector constant, spill to a |
| // constant pool entry to get its address. |
| const Value *OpVal = OpInfo.CallOperandVal; |
| if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || |
| isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { |
| OpInfo.CallOperand = DAG.getConstantPool( |
| cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); |
| return Chain; |
| } |
| |
| // Otherwise, create a stack slot and emit a store to it before the asm. |
| Type *Ty = OpVal->getType(); |
| auto &DL = DAG.getDataLayout(); |
| uint64_t TySize = DL.getTypeAllocSize(Ty); |
| unsigned Align = DL.getPrefTypeAlignment(Ty); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); |
| Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, |
| MachinePointerInfo::getFixedStack(MF, SSFI), |
| TLI.getMemValueType(DL, Ty)); |
| OpInfo.CallOperand = StackSlot; |
| |
| return Chain; |
| } |
| |
| /// GetRegistersForValue - Assign registers (virtual or physical) for the |
| /// specified operand. We prefer to assign virtual registers, to allow the |
| /// register allocator to handle the assignment process. However, if the asm |
| /// uses features that we can't model on machineinstrs, we have SDISel do the |
| /// allocation. This produces generally horrible, but correct, code. |
| /// |
| /// OpInfo describes the operand |
| /// RefOpInfo describes the matching operand if any, the operand otherwise |
| static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, |
| SDISelAsmOperandInfo &OpInfo, |
| SDISelAsmOperandInfo &RefOpInfo) { |
| LLVMContext &Context = *DAG.getContext(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SmallVector<unsigned, 4> Regs; |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| |
| // No work to do for memory operations. |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory) |
| return; |
| |
| // If this is a constraint for a single physreg, or a constraint for a |
| // register class, find it. |
| unsigned AssignedReg; |
| const TargetRegisterClass *RC; |
| std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( |
| &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); |
| // RC is unset only on failure. Return immediately. |
| if (!RC) |
| return; |
| |
| // Get the actual register value type. This is important, because the user |
| // may have asked for (e.g.) the AX register in i32 type. We need to |
| // remember that AX is actually i16 to get the right extension. |
| const MVT RegVT = *TRI.legalclasstypes_begin(*RC); |
| |
| if (OpInfo.ConstraintVT != MVT::Other) { |
| // If this is an FP operand in an integer register (or visa versa), or more |
| // generally if the operand value disagrees with the register class we plan |
| // to stick it in, fix the operand type. |
| // |
| // If this is an input value, the bitcast to the new type is done now. |
| // Bitcast for output value is done at the end of visitInlineAsm(). |
| if ((OpInfo.Type == InlineAsm::isOutput || |
| OpInfo.Type == InlineAsm::isInput) && |
| !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { |
| // Try to convert to the first EVT that the reg class contains. If the |
| // types are identical size, use a bitcast to convert (e.g. two differing |
| // vector types). Note: output bitcast is done at the end of |
| // visitInlineAsm(). |
| if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { |
| // Exclude indirect inputs while they are unsupported because the code |
| // to perform the load is missing and thus OpInfo.CallOperand still |
| // refers to the input address rather than the pointed-to value. |
| if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) |
| OpInfo.CallOperand = |
| DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); |
| OpInfo.ConstraintVT = RegVT; |
| // If the operand is an FP value and we want it in integer registers, |
| // use the corresponding integer type. This turns an f64 value into |
| // i64, which can be passed with two i32 values on a 32-bit machine. |
| } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { |
| MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); |
| if (OpInfo.Type == InlineAsm::isInput) |
| OpInfo.CallOperand = |
| DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); |
| OpInfo.ConstraintVT = VT; |
| } |
| } |
| } |
| |
| // No need to allocate a matching input constraint since the constraint it's |
| // matching to has already been allocated. |
| if (OpInfo.isMatchingInputConstraint()) |
| return; |
| |
| EVT ValueVT = OpInfo.ConstraintVT; |
| if (OpInfo.ConstraintVT == MVT::Other) |
| ValueVT = RegVT; |
| |
| // Initialize NumRegs. |
| unsigned NumRegs = 1; |
| if (OpInfo.ConstraintVT != MVT::Other) |
| NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); |
| |
| // If this is a constraint for a specific physical register, like {r17}, |
| // assign it now. |
| |
| // If this associated to a specific register, initialize iterator to correct |
| // place. If virtual, make sure we have enough registers |
| |
| // Initialize iterator if necessary |
| TargetRegisterClass::iterator I = RC->begin(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| |
| // Do not check for single registers. |
| if (AssignedReg) { |
| for (; *I != AssignedReg; ++I) |
| assert(I != RC->end() && "AssignedReg should be member of RC"); |
| } |
| |
| for (; NumRegs; --NumRegs, ++I) { |
| assert(I != RC->end() && "Ran out of registers to allocate!"); |
| Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); |
| Regs.push_back(R); |
| } |
| |
| OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); |
| } |
| |
| static unsigned |
| findMatchingInlineAsmOperand(unsigned OperandNo, |
| const std::vector<SDValue> &AsmNodeOperands) { |
| // Scan until we find the definition we already emitted of this operand. |
| unsigned CurOp = InlineAsm::Op_FirstOperand; |
| for (; OperandNo; --OperandNo) { |
| // Advance to the next operand. |
| unsigned OpFlag = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); |
| assert((InlineAsm::isRegDefKind(OpFlag) || |
| InlineAsm::isRegDefEarlyClobberKind(OpFlag) || |
| InlineAsm::isMemKind(OpFlag)) && |
| "Skipped past definitions?"); |
| CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; |
| } |
| return CurOp; |
| } |
| |
| namespace { |
| |
| class ExtraFlags { |
| unsigned Flags = 0; |
| |
| public: |
| explicit ExtraFlags(ImmutableCallSite CS) { |
| const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); |
| if (IA->hasSideEffects()) |
| Flags |= InlineAsm::Extra_HasSideEffects; |
| if (IA->isAlignStack()) |
| Flags |= InlineAsm::Extra_IsAlignStack; |
| if (CS.isConvergent()) |
| Flags |= InlineAsm::Extra_IsConvergent; |
| Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; |
| } |
| |
| void update(const TargetLowering::AsmOperandInfo &OpInfo) { |
| // Ideally, we would only check against memory constraints. However, the |
| // meaning of an Other constraint can be target-specific and we can't easily |
| // reason about it. Therefore, be conservative and set MayLoad/MayStore |
| // for Other constraints as well. |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory || |
| OpInfo.ConstraintType == TargetLowering::C_Other) { |
| if (OpInfo.Type == InlineAsm::isInput) |
| Flags |= InlineAsm::Extra_MayLoad; |
| else if (OpInfo.Type == InlineAsm::isOutput) |
| Flags |= InlineAsm::Extra_MayStore; |
| else if (OpInfo.Type == InlineAsm::isClobber) |
| Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); |
| } |
| } |
| |
| unsigned get() const { return Flags; } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// visitInlineAsm - Handle a call to an InlineAsm object. |
| void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { |
| const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); |
| |
| /// ConstraintOperands - Information about all of the constraints. |
| SDISelAsmOperandInfoVector ConstraintOperands; |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( |
| DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); |
| |
| // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, |
| // AsmDialect, MayLoad, MayStore). |
| bool HasSideEffect = IA->hasSideEffects(); |
| ExtraFlags ExtraInfo(CS); |
| |
| unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. |
| unsigned ResNo = 0; // ResNo - The result number of the next output. |
| for (auto &T : TargetConstraints) { |
| ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); |
| |
| // Compute the value type for each operand. |
| if (OpInfo.Type == InlineAsm::isInput || |
| (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { |
| OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); |
| |
| // Process the call argument. BasicBlocks are labels, currently appearing |
| // only in asm's. |
| const Instruction *I = CS.getInstruction(); |
| if (isa<CallBrInst>(I) && |
| (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - |
| cast<CallBrInst>(I)->getNumIndirectDests())) { |
| const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); |
| OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); |
| } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { |
| OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); |
| } else { |
| OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); |
| } |
| |
| OpInfo.ConstraintVT = |
| OpInfo |
| .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) |
| .getSimpleVT(); |
| } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { |
| // The return value of the call is this value. As such, there is no |
| // corresponding argument. |
| assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); |
| if (StructType *STy = dyn_cast<StructType>(CS.getType())) { |
| OpInfo.ConstraintVT = TLI.getSimpleValueType( |
| DAG.getDataLayout(), STy->getElementType(ResNo)); |
| } else { |
| assert(ResNo == 0 && "Asm only has one result!"); |
| OpInfo.ConstraintVT = |
| TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); |
| } |
| ++ResNo; |
| } else { |
| OpInfo.ConstraintVT = MVT::Other; |
| } |
| |
| if (!HasSideEffect) |
| HasSideEffect = OpInfo.hasMemory(TLI); |
| |
| // Determine if this InlineAsm MayLoad or MayStore based on the constraints. |
| // FIXME: Could we compute this on OpInfo rather than T? |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI.ComputeConstraintToUse(T, SDValue()); |
| |
| if (T.ConstraintType == TargetLowering::C_Immediate && |
| OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) |
| // We've delayed emitting a diagnostic like the "n" constraint because |
| // inlining could cause an integer showing up. |
| return emitInlineAsmError( |
| CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " |
| "integer constant expression"); |
| |
| ExtraInfo.update(T); |
| } |
| |
| |
| // We won't need to flush pending loads if this asm doesn't touch |
| // memory and is nonvolatile. |
| SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); |
| |
| bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); |
| if (IsCallBr) { |
| // If this is a callbr we need to flush pending exports since inlineasm_br |
| // is a terminator. We need to do this before nodes are glued to |
| // the inlineasm_br node. |
| Chain = getControlRoot(); |
| } |
| |
| // Second pass over the constraints: compute which constraint option to use. |
| for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { |
| // If this is an output operand with a matching input operand, look up the |
| // matching input. If their types mismatch, e.g. one is an integer, the |
| // other is floating point, or their sizes are different, flag it as an |
| // error. |
| if (OpInfo.hasMatchingInput()) { |
| SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| patchMatchingInput(OpInfo, Input, DAG); |
| } |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| OpInfo.Type == InlineAsm::isClobber) |
| continue; |
| |
| // If this is a memory input, and if the operand is not indirect, do what we |
| // need to provide an address for the memory input. |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| !OpInfo.isIndirect) { |
| assert((OpInfo.isMultipleAlternative || |
| (OpInfo.Type == InlineAsm::isInput)) && |
| "Can only indirectify direct input operands!"); |
| |
| // Memory operands really want the address of the value. |
| Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); |
| |
| // There is no longer a Value* corresponding to this operand. |
| OpInfo.CallOperandVal = nullptr; |
| |
| // It is now an indirect operand. |
| OpInfo.isIndirect = true; |
| } |
| |
| } |
| |
| // AsmNodeOperands - The operands for the ISD::INLINEASM node. |
| std::vector<SDValue> AsmNodeOperands; |
| AsmNodeOperands.push_back(SDValue()); // reserve space for input chain |
| AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( |
| IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); |
| |
| // If we have a !srcloc metadata node associated with it, we want to attach |
| // this to the ultimately generated inline asm machineinstr. To do this, we |
| // pass in the third operand as this (potentially null) inline asm MDNode. |
| const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); |
| AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); |
| |
| // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore |
| // bits as operand 3. |
| AsmNodeOperands.push_back(DAG.getTargetConstant( |
| ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); |
| |
| // Third pass: Loop over operands to prepare DAG-level operands.. As part of |
| // this, assign virtual and physical registers for inputs and otput. |
| for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { |
| // Assign Registers. |
| SDISelAsmOperandInfo &RefOpInfo = |
| OpInfo.isMatchingInputConstraint() |
| ? ConstraintOperands[OpInfo.getMatchedOperand()] |
| : OpInfo; |
| GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); |
| |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory) { |
| unsigned ConstraintID = |
| TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); |
| assert(ConstraintID != InlineAsm::Constraint_Unknown && |
| "Failed to convert memory constraint code to constraint id."); |
| |
| // Add information to the INLINEASM node to know about this output. |
| unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); |
| OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), |
| MVT::i32)); |
| AsmNodeOperands.push_back(OpInfo.CallOperand); |
| } else { |
| // Otherwise, this outputs to a register (directly for C_Register / |
| // C_RegisterClass, and a target-defined fashion for |
| // C_Immediate/C_Other). Find a register that we can use. |
| if (OpInfo.AssignedRegs.Regs.empty()) { |
| emitInlineAsmError( |
| CS, "couldn't allocate output register for constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| return; |
| } |
| |
| // Add information to the INLINEASM node to know that this register is |
| // set. |
| OpInfo.AssignedRegs.AddInlineAsmOperands( |
| OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber |
| : InlineAsm::Kind_RegDef, |
| false, 0, getCurSDLoc(), DAG, AsmNodeOperands); |
| } |
| break; |
| |
| case InlineAsm::isInput: { |
| SDValue InOperandVal = OpInfo.CallOperand; |
| |
| if (OpInfo.isMatchingInputConstraint()) { |
| // If this is required to match an output register we have already set, |
| // just use its register. |
| auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), |
| AsmNodeOperands); |
| unsigned OpFlag = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); |
| if (InlineAsm::isRegDefKind(OpFlag) || |
| InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { |
| // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. |
| if (OpInfo.isIndirect) { |
| // This happens on gcc/testsuite/gcc.dg/pr8788-1.c |
| emitInlineAsmError(CS, "inline asm not supported yet:" |
| " don't know how to handle tied " |
| "indirect register inputs"); |
| return; |
| } |
| |
| MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); |
| SmallVector<unsigned, 4> Regs; |
| |
| if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { |
| unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); |
| MachineRegisterInfo &RegInfo = |
| DAG.getMachineFunction().getRegInfo(); |
| for (unsigned i = 0; i != NumRegs; ++i) |
| Regs.push_back(RegInfo.createVirtualRegister(RC)); |
| } else { |
| emitInlineAsmError(CS, "inline asm error: This value type register " |
| "class is not natively supported!"); |
| return; |
| } |
| |
| RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); |
| |
| SDLoc dl = getCurSDLoc(); |
| // Use the produced MatchedRegs object to |
| MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, |
| CS.getInstruction()); |
| MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, |
| true, OpInfo.getMatchedOperand(), dl, |
| DAG, AsmNodeOperands); |
| break; |
| } |
| |
| assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); |
| assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && |
| "Unexpected number of operands"); |
| // Add information to the INLINEASM node to know about this input. |
| // See InlineAsm.h isUseOperandTiedToDef. |
| OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); |
| OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, |
| OpInfo.getMatchedOperand()); |
| AsmNodeOperands.push_back(DAG.getTargetConstant( |
| OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); |
| AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); |
| break; |
| } |
| |
| // Treat indirect 'X' constraint as memory. |
| if (OpInfo.ConstraintType == TargetLowering::C_Other && |
| OpInfo.isIndirect) |
| OpInfo.ConstraintType = TargetLowering::C_Memory; |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Immediate || |
| OpInfo.ConstraintType == TargetLowering::C_Other) { |
| std::vector<SDValue> Ops; |
| TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, |
| Ops, DAG); |
| if (Ops.empty()) { |
| if (OpInfo.ConstraintType == TargetLowering::C_Immediate) |
| if (isa<ConstantSDNode>(InOperandVal)) { |
| emitInlineAsmError(CS, "value out of range for constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| return; |
| } |
| |
| emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| return; |
| } |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = |
| InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); |
| AsmNodeOperands.push_back(DAG.getTargetConstant( |
| ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); |
| AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); |
| break; |
| } |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory) { |
| assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); |
| assert(InOperandVal.getValueType() == |
| TLI.getPointerTy(DAG.getDataLayout()) && |
| "Memory operands expect pointer values"); |
| |
| unsigned ConstraintID = |
| TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); |
| assert(ConstraintID != InlineAsm::Constraint_Unknown && |
| "Failed to convert memory constraint code to constraint id."); |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); |
| ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, |
| getCurSDLoc(), |
| MVT::i32)); |
| AsmNodeOperands.push_back(InOperandVal); |
| break; |
| } |
| |
| assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || |
| OpInfo.ConstraintType == TargetLowering::C_Register) && |
| "Unknown constraint type!"); |
| |
| // TODO: Support this. |
| if (OpInfo.isIndirect) { |
| emitInlineAsmError( |
| CS, "Don't know how to handle indirect register inputs yet " |
| "for constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| return; |
| } |
| |
| // Copy the input into the appropriate registers. |
| if (OpInfo.AssignedRegs.Regs.empty()) { |
| emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| return; |
| } |
| |
| SDLoc dl = getCurSDLoc(); |
| |
| OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, |
| Chain, &Flag, CS.getInstruction()); |
| |
| OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, |
| dl, DAG, AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isClobber: |
| // Add the clobbered value to the operand list, so that the register |
| // allocator is aware that the physreg got clobbered. |
| if (!OpInfo.AssignedRegs.Regs.empty()) |
| OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, |
| false, 0, getCurSDLoc(), DAG, |
| AsmNodeOperands); |
| break; |
| } |
| } |
| |
| // Finish up input operands. Set the input chain and add the flag last. |
| AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; |
| if (Flag.getNode()) AsmNodeOperands.push_back(Flag); |
| |
| unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; |
| Chain = DAG.getNode(ISDOpc, getCurSDLoc(), |
| DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); |
| Flag = Chain.getValue(1); |
| |
| // Do additional work to generate outputs. |
| |
| SmallVector<EVT, 1> ResultVTs; |
| SmallVector<SDValue, 1> ResultValues; |
| SmallVector<SDValue, 8> OutChains; |
| |
| llvm::Type *CSResultType = CS.getType(); |
| ArrayRef<Type *> ResultTypes; |
| if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) |
| ResultTypes = StructResult->elements(); |
| else if (!CSResultType->isVoidTy()) |
| ResultTypes = makeArrayRef(CSResultType); |
| |
| auto CurResultType = ResultTypes.begin(); |
| auto handleRegAssign = [&](SDValue V) { |
| assert(CurResultType != ResultTypes.end() && "Unexpected value"); |
| assert((*CurResultType)->isSized() && "Unexpected unsized type"); |
| EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); |
| ++CurResultType; |
| // If the type of the inline asm call site return value is different but has |
| // same size as the type of the asm output bitcast it. One example of this |
| // is for vectors with different width / number of elements. This can |
| // happen for register classes that can contain multiple different value |
| // types. The preg or vreg allocated may not have the same VT as was |
| // expected. |
| // |
| // This can also happen for a return value that disagrees with the register |
| // class it is put in, eg. a double in a general-purpose register on a |
| // 32-bit machine. |
| if (ResultVT != V.getValueType() && |
| ResultVT.getSizeInBits() == V.getValueSizeInBits()) |
| V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); |
| else if (ResultVT != V.getValueType() && ResultVT.isInteger() && |
| V.getValueType().isInteger()) { |
| // If a result value was tied to an input value, the computed result |
| // may have a wider width than the expected result. Extract the |
| // relevant portion. |
| V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); |
| } |
| assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); |
| ResultVTs.push_back(ResultVT); |
| ResultValues.push_back(V); |
| }; |
| |
| // Deal with output operands. |
| for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { |
| if (OpInfo.Type == InlineAsm::isOutput) { |
| SDValue Val; |
| // Skip trivial output operands. |
| if (OpInfo.AssignedRegs.Regs.empty()) |
| continue; |
| |
| switch (OpInfo.ConstraintType) { |
| case TargetLowering::C_Register: |
| case TargetLowering::C_RegisterClass: |
| Val = OpInfo.AssignedRegs.getCopyFromRegs( |
| DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); |
| break; |
| case TargetLowering::C_Immediate: |
| case TargetLowering::C_Other: |
| Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), |
| OpInfo, DAG); |
| break; |
| case TargetLowering::C_Memory: |
| break; // Already handled. |
| case TargetLowering::C_Unknown: |
| assert(false && "Unexpected unknown constraint"); |
| } |
| |
| // Indirect output manifest as stores. Record output chains. |
| if (OpInfo.isIndirect) { |
| const Value *Ptr = OpInfo.CallOperandVal; |
| assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); |
| SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), |
| MachinePointerInfo(Ptr)); |
| OutChains.push_back(Store); |
| } else { |
| // generate CopyFromRegs to associated registers. |
| assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); |
| if (Val.getOpcode() == ISD::MERGE_VALUES) { |
| for (const SDValue &V : Val->op_values()) |
| handleRegAssign(V); |
| } else |
| handleRegAssign(Val); |
| } |
| } |
| } |
| |
| // Set results. |
| if (!ResultValues.empty()) { |
| assert(CurResultType == ResultTypes.end() && |
| "Mismatch in number of ResultTypes"); |
| assert(ResultValues.size() == ResultTypes.size() && |
| "Mismatch in number of output operands in asm result"); |
| |
| SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
| DAG.getVTList(ResultVTs), ResultValues); |
| setValue(CS.getInstruction(), V); |
| } |
| |
| // Collect store chains. |
| if (!OutChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); |
| |
| // Only Update Root if inline assembly has a memory effect. |
| if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) |
| DAG.setRoot(Chain); |
| } |
| |
| void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, |
| const Twine &Message) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Ctx.emitError(CS.getInstruction(), Message); |
| |
| // Make sure we leave the DAG in a valid state |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); |
| |
| if (ValueVTs.empty()) |
| return; |
| |
| SmallVector<SDValue, 1> Ops; |
| for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) |
| Ops.push_back(DAG.getUNDEF(ValueVTs[i])); |
| |
| setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); |
| } |
| |
| void SelectionDAGBuilder::visitVAStart(const CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getArgOperand(0)), |
| DAG.getSrcValue(I.getArgOperand(0)))); |
| } |
| |
| void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| SDValue V = DAG.getVAArg( |
| TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), |
| getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), |
| DL.getABITypeAlignment(I.getType())); |
| DAG.setRoot(V.getValue(1)); |
| |
| if (I.getType()->isPointerTy()) |
| V = DAG.getPtrExtOrTrunc( |
| V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); |
| setValue(&I, V); |
| } |
| |
| void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getArgOperand(0)), |
| DAG.getSrcValue(I.getArgOperand(0)))); |
| } |
| |
| void SelectionDAGBuilder::visitVACopy(const CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| DAG.getSrcValue(I.getArgOperand(0)), |
| DAG.getSrcValue(I.getArgOperand(1)))); |
| } |
| |
| SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, |
| const Instruction &I, |
| SDValue Op) { |
| const MDNode *Range = I.getMetadata(LLVMContext::MD_range); |
| if (!Range) |
| return Op; |
| |
| ConstantRange CR = getConstantRangeFromMetadata(*Range); |
| if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) |
| return Op; |
| |
| APInt Lo = CR.getUnsignedMin(); |
| if (!Lo.isMinValue()) |
| return Op; |
| |
| APInt Hi = CR.getUnsignedMax(); |
| unsigned Bits = std::max(Hi.getActiveBits(), |
| static_cast<unsigned>(IntegerType::MIN_INT_BITS)); |
| |
| EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); |
| |
| SDLoc SL = getCurSDLoc(); |
| |
| SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, |
| DAG.getValueType(SmallVT)); |
| unsigned NumVals = Op.getNode()->getNumValues(); |
| if (NumVals == 1) |
| return ZExt; |
| |
| SmallVector<SDValue, 4> Ops; |
| |
| Ops.push_back(ZExt); |
| for (unsigned I = 1; I != NumVals; ++I) |
| Ops.push_back(Op.getValue(I)); |
| |
| return DAG.getMergeValues(Ops, SL); |
| } |
| |
| /// Populate a CallLowerinInfo (into \p CLI) based on the properties of |
| /// the call being lowered. |
| /// |
| /// This is a helper for lowering intrinsics that follow a target calling |
| /// convention or require stack pointer adjustment. Only a subset of the |
| /// intrinsic's operands need to participate in the calling convention. |
| void SelectionDAGBuilder::populateCallLoweringInfo( |
| TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, |
| unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, |
| bool IsPatchPoint) { |
| TargetLowering::ArgListTy Args; |
| Args.reserve(NumArgs); |
| |
| // Populate the argument list. |
| // Attributes for args start at offset 1, after the return attribute. |
| for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; |
| ArgI != ArgE; ++ArgI) { |
| const Value *V = Call->getOperand(ArgI); |
| |
| assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); |
| |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = getValue(V); |
| Entry.Ty = V->getType(); |
| Entry.setAttributes(Call, ArgI); |
| Args.push_back(Entry); |
| } |
| |
| CLI.setDebugLoc(getCurSDLoc()) |
| .setChain(getRoot()) |
| .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) |
| .setDiscardResult(Call->use_empty()) |
| .setIsPatchPoint(IsPatchPoint); |
| } |
| |
| /// Add a stack map intrinsic call's live variable operands to a stackmap |
| /// or patchpoint target node's operand list. |
| /// |
| /// Constants are converted to TargetConstants purely as an optimization to |
| /// avoid constant materialization and register allocation. |
| /// |
| /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not |
| /// generate addess computation nodes, and so FinalizeISel can convert the |
| /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids |
| /// address materialization and register allocation, but may also be required |
| /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an |
| /// alloca in the entry block, then the runtime may assume that the alloca's |
| /// StackMap location can be read immediately after compilation and that the |
| /// location is valid at any point during execution (this is similar to the |
| /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were |
| /// only available in a register, then the runtime would need to trap when |
| /// execution reaches the StackMap in order to read the alloca's location. |
| static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, |
| const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, |
| SelectionDAGBuilder &Builder) { |
| for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { |
| SDValue OpVal = Builder.getValue(CS.getArgument(i)); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { |
| Ops.push_back( |
| Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); |
| Ops.push_back( |
| Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); |
| } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { |
| const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); |
| Ops.push_back(Builder.DAG.getTargetFrameIndex( |
| FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); |
| } else |
| Ops.push_back(OpVal); |
| } |
| } |
| |
| /// Lower llvm.experimental.stackmap directly to its target opcode. |
| void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { |
| // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, |
| // [live variables...]) |
| |
| assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); |
| |
| SDValue Chain, InFlag, Callee, NullPtr; |
| SmallVector<SDValue, 32> Ops; |
| |
| SDLoc DL = getCurSDLoc(); |
| Callee = getValue(CI.getCalledValue()); |
| NullPtr = DAG.getIntPtrConstant(0, DL, true); |
| |
| // The stackmap intrinsic only records the live variables (the arguments |
| // passed to it) and emits NOPS (if requested). Unlike the patchpoint |
| // intrinsic, this won't be lowered to a function call. This means we don't |
| // have to worry about calling conventions and target specific lowering code. |
| // Instead we perform the call lowering right here. |
| // |
| // chain, flag = CALLSEQ_START(chain, 0, 0) |
| // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) |
| // chain, flag = CALLSEQ_END(chain, 0, 0, flag) |
| // |
| Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); |
| InFlag = Chain.getValue(1); |
| |
| // Add the <id> and <numBytes> constants. |
| SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); |
| Ops.push_back(DAG.getTargetConstant( |
| cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); |
| SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); |
| Ops.push_back(DAG.getTargetConstant( |
| cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, |
| MVT::i32)); |
| |
| // Push live variables for the stack map. |
| addStackMapLiveVars(&CI, 2, DL, Ops, *this); |
| |
| // We are not pushing any register mask info here on the operands list, |
| // because the stackmap doesn't clobber anything. |
| |
| // Push the chain and the glue flag. |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| |
| // Create the STACKMAP node. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); |
| Chain = SDValue(SM, 0); |
| InFlag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); |
| |
| // Stackmaps don't generate values, so nothing goes into the NodeMap. |
| |
| // Set the root to the target-lowered call chain. |
| DAG.setRoot(Chain); |
| |
| // Inform the Frame Information that we have a stackmap in this function. |
| FuncInfo.MF->getFrameInfo().setHasStackMap(); |
| } |
| |
| /// Lower llvm.experimental.patchpoint directly to its target opcode. |
| void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, |
| const BasicBlock *EHPadBB) { |
| // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, |
| // i32 <numBytes>, |
| // i8* <target>, |
| // i32 <numArgs>, |
| // [Args...], |
| // [live variables...]) |
| |
| CallingConv::ID CC = CS.getCallingConv(); |
| bool IsAnyRegCC = CC == CallingConv::AnyReg; |
| bool HasDef = !CS->getType()->isVoidTy(); |
| SDLoc dl = getCurSDLoc(); |
| SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); |
| |
| // Handle immediate and symbolic callees. |
| if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) |
| Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, |
| /*isTarget=*/true); |
| else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), |
| SDLoc(SymbolicCallee), |
| SymbolicCallee->getValueType(0)); |
| |
| // Get the real number of arguments participating in the call <numArgs> |
| SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); |
| unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); |
| |
| // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> |
| // Intrinsics include all meta-operands up to but not including CC. |
| unsigned NumMetaOpers = PatchPointOpers::CCPos; |
| assert(CS.arg_size() >= NumMetaOpers + NumArgs && |
| "Not enough arguments provided to the patchpoint intrinsic"); |
| |
| // For AnyRegCC the arguments are lowered later on manually. |
| unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; |
| Type *ReturnTy = |
| IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), |
| NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); |
| std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); |
| |
| SDNode *CallEnd = Result.second.getNode(); |
| if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) |
| CallEnd = CallEnd->getOperand(0).getNode(); |
| |
| /// Get a call instruction from the call sequence chain. |
| /// Tail calls are not allowed. |
| assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && |
| "Expected a callseq node."); |
| SDNode *Call = CallEnd->getOperand(0).getNode(); |
| bool HasGlue = Call->getGluedNode(); |
| |
| // Replace the target specific call node with the patchable intrinsic. |
| SmallVector<SDValue, 8> Ops; |
| |
| // Add the <id> and <numBytes> constants. |
| SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); |
| Ops.push_back(DAG.getTargetConstant( |
| cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); |
| SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); |
| Ops.push_back(DAG.getTargetConstant( |
| cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, |
| MVT::i32)); |
| |
| // Add the callee. |
| Ops.push_back(Callee); |
| |
| // Adjust <numArgs> to account for any arguments that have been passed on the |
| // stack instead. |
| // Call Node: Chain, Target, {Args}, RegMask, [Glue] |
| unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); |
| NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; |
| Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); |
| |
| // Add the calling convention |
| Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); |
| |
| // Add the arguments we omitted previously. The register allocator should |
| // place these in any free register. |
| if (IsAnyRegCC) |
| for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) |
| Ops.push_back(getValue(CS.getArgument(i))); |
| |
| // Push the arguments from the call instruction up to the register mask. |
| SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; |
| Ops.append(Call->op_begin() + 2, e); |
| |
| // Push live variables for the stack map. |
| addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); |
| |
| // Push the register mask info. |
| if (HasGlue) |
| Ops.push_back(*(Call->op_end()-2)); |
| else |
| Ops.push_back(*(Call->op_end()-1)); |
| |
| // Push the chain (this is originally the first operand of the call, but |
| // becomes now the last or second to last operand). |
| Ops.push_back(*(Call->op_begin())); |
| |
| // Push the glue flag (last operand). |
| if (HasGlue) |
| Ops.push_back(*(Call->op_end()-1)); |
| |
| SDVTList NodeTys; |
| if (IsAnyRegCC && HasDef) { |
| // Create the return types based on the intrinsic definition |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SmallVector<EVT, 3> ValueVTs; |
| ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); |
| assert(ValueVTs.size() == 1 && "Expected only one return value type."); |
| |
| // There is always a chain and a glue type at the end |
| ValueVTs.push_back(MVT::Other); |
| ValueVTs.push_back(MVT::Glue); |
| NodeTys = DAG.getVTList(ValueVTs); |
| } else |
| NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| // Replace the target specific call node with a PATCHPOINT node. |
| MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, |
| dl, NodeTys, Ops); |
| |
| // Update the NodeMap. |
| if (HasDef) { |
| if (IsAnyRegCC) |
| setValue(CS.getInstruction(), SDValue(MN, 0)); |
| else |
| setValue(CS.getInstruction(), Result.first); |
| } |
| |
| // Fixup the consumers of the intrinsic. The chain and glue may be used in the |
| // call sequence. Furthermore the location of the chain and glue can change |
| // when the AnyReg calling convention is used and the intrinsic returns a |
| // value. |
| if (IsAnyRegCC && HasDef) { |
| SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; |
| SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; |
| DAG.ReplaceAllUsesOfValuesWith(From, To, 2); |
| } else |
| DAG.ReplaceAllUsesWith(Call, MN); |
| DAG.DeleteNode(Call); |
| |
| // Inform the Frame Information that we have a patchpoint in this function. |
| FuncInfo.MF->getFrameInfo().setHasPatchPoint(); |
| } |
| |
| void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, |
| unsigned Intrinsic) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2; |
| if (I.getNumArgOperands() > 1) |
| Op2 = getValue(I.getArgOperand(1)); |
| SDLoc dl = getCurSDLoc(); |
| EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
| SDValue Res; |
| FastMathFlags FMF; |
| if (isa<FPMathOperator>(I)) |
| FMF = I.getFastMathFlags(); |
| |
| switch (Intrinsic) { |
| case Intrinsic::experimental_vector_reduce_v2_fadd: |
| if (FMF.allowReassoc()) |
| Res = DAG.getNode(ISD::FADD, dl, VT, Op1, |
| DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); |
| else |
| Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); |
| break; |
| case Intrinsic::experimental_vector_reduce_v2_fmul: |
| if (FMF.allowReassoc()) |
| Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, |
| DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); |
| else |
| Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); |
| break; |
| case Intrinsic::experimental_vector_reduce_add: |
| Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_mul: |
| Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_and: |
| Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_or: |
| Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_xor: |
| Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_smax: |
| Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_smin: |
| Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_umax: |
| Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_umin: |
| Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_fmax: |
| Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); |
| break; |
| case Intrinsic::experimental_vector_reduce_fmin: |
| Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); |
| break; |
| default: |
| llvm_unreachable("Unhandled vector reduce intrinsic"); |
| } |
| setValue(&I, Res); |
| } |
| |
| /// Returns an AttributeList representing the attributes applied to the return |
| /// value of the given call. |
| static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { |
| SmallVector<Attribute::AttrKind, 2> Attrs; |
| if (CLI.RetSExt) |
| Attrs.push_back(Attribute::SExt); |
| if (CLI.RetZExt) |
| Attrs.push_back(Attribute::ZExt); |
| if (CLI.IsInReg) |
| Attrs.push_back(Attribute::InReg); |
| |
| return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, |
| Attrs); |
| } |
| |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo |
| /// implementation, which just calls LowerCall. |
| /// FIXME: When all targets are |
| /// migrated to using LowerCall, this hook should be integrated into SDISel. |
| std::pair<SDValue, SDValue> |
| TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { |
| // Handle the incoming return values from the call. |
| CLI.Ins.clear(); |
| Type *OrigRetTy = CLI.RetTy; |
| SmallVector<EVT, 4> RetTys; |
| SmallVector<uint64_t, 4> Offsets; |
| auto &DL = CLI.DAG.getDataLayout(); |
| ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); |
| |
| if (CLI.IsPostTypeLegalization) { |
| // If we are lowering a libcall after legalization, split the return type. |
| SmallVector<EVT, 4> OldRetTys; |
| SmallVector<uint64_t, 4> OldOffsets; |
| RetTys.swap(OldRetTys); |
| Offsets.swap(OldOffsets); |
| |
| for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { |
| EVT RetVT = OldRetTys[i]; |
| uint64_t Offset = OldOffsets[i]; |
| MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); |
| unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); |
| unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; |
| RetTys.append(NumRegs, RegisterVT); |
| for (unsigned j = 0; j != NumRegs; ++j) |
| Offsets.push_back(Offset + j * RegisterVTByteSZ); |
| } |
| } |
| |
| SmallVector<ISD::OutputArg, 4> Outs; |
| GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); |
| |
| bool CanLowerReturn = |
| this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), |
| CLI.IsVarArg, Outs, CLI.RetTy->getContext()); |
| |
| SDValue DemoteStackSlot; |
| int DemoteStackIdx = -100; |
| if (!CanLowerReturn) { |
| // FIXME: equivalent assert? |
| // assert(!CS.hasInAllocaArgument() && |
| // "sret demotion is incompatible with inalloca"); |
| uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); |
| unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); |
| MachineFunction &MF = CLI.DAG.getMachineFunction(); |
| DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); |
| Type *StackSlotPtrType = PointerType::get(CLI.RetTy, |
| DL.getAllocaAddrSpace()); |
| |
| DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); |
| ArgListEntry Entry; |
| Entry.Node = DemoteStackSlot; |
| Entry.Ty = StackSlotPtrType; |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Entry.IsInReg = false; |
| Entry.IsSRet = true; |
| Entry.IsNest = false; |
| Entry.IsByVal = false; |
| Entry.IsReturned = false; |
| Entry.IsSwiftSelf = false; |
| Entry.IsSwiftError = false; |
| Entry.IsCFGuardTarget = false; |
| Entry.Alignment = Align; |
| CLI.getArgs().insert(CLI.getArgs().begin(), Entry); |
| CLI.NumFixedArgs += 1; |
| CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); |
| |
| // sret demotion isn't compatible with tail-calls, since the sret argument |
| // points into the callers stack frame. |
| CLI.IsTailCall = false; |
| } else { |
| bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( |
| CLI.RetTy, CLI.CallConv, CLI.IsVarArg); |
| for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { |
| ISD::ArgFlagsTy Flags; |
| if (NeedsRegBlock) { |
| Flags.setInConsecutiveRegs(); |
| if (I == RetTys.size() - 1) |
| Flags.setInConsecutiveRegsLast(); |
| } |
| EVT VT = RetTys[I]; |
| MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), |
| CLI.CallConv, VT); |
| unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), |
| CLI.CallConv, VT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| ISD::InputArg MyFlags; |
| MyFlags.Flags = Flags; |
| MyFlags.VT = RegisterVT; |
| MyFlags.ArgVT = VT; |
| MyFlags.Used = CLI.IsReturnValueUsed; |
| if (CLI.RetTy->isPointerTy()) { |
| MyFlags.Flags.setPointer(); |
| MyFlags.Flags.setPointerAddrSpace( |
| cast<PointerType>(CLI.RetTy)->getAddressSpace()); |
| } |
| if (CLI.RetSExt) |
| MyFlags.Flags.setSExt(); |
| if (CLI.RetZExt) |
| MyFlags.Flags.setZExt(); |
| if (CLI.IsInReg) |
| MyFlags.Flags.setInReg(); |
| CLI.Ins.push_back(MyFlags); |
| } |
| } |
| } |
| |
| // We push in swifterror return as the last element of CLI.Ins. |
| ArgListTy &Args = CLI.getArgs(); |
| if (supportSwiftError()) { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| if (Args[i].IsSwiftError) { |
| ISD::InputArg MyFlags; |
| MyFlags.VT = getPointerTy(DL); |
| MyFlags.ArgVT = EVT(getPointerTy(DL)); |
| MyFlags.Flags.setSwiftError(); |
| CLI.Ins.push_back(MyFlags); |
| } |
| } |
| } |
| |
| // Handle all of the outgoing arguments. |
| CLI.Outs.clear(); |
| CLI.OutVals.clear(); |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); |
| // FIXME: Split arguments if CLI.IsPostTypeLegalization |
| Type *FinalType = Args[i].Ty; |
| if (Args[i].IsByVal) |
| FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); |
| bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( |
| FinalType, CLI.CallConv, CLI.IsVarArg); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; |
| ++Value) { |
| EVT VT = ValueVTs[Value]; |
| Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); |
| SDValue Op = SDValue(Args[i].Node.getNode(), |
| Args[i].Node.getResNo() + Value); |
| ISD::ArgFlagsTy Flags; |
| |
| // Certain targets (such as MIPS), may have a different ABI alignment |
| // for a type depending on the context. Give the target a chance to |
| // specify the alignment it wants. |
| const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); |
| |
| if (Args[i].Ty->isPointerTy()) { |
| Flags.setPointer(); |
| Flags.setPointerAddrSpace( |
| cast<PointerType>(Args[i].Ty)->getAddressSpace()); |
| } |
| if (Args[i].IsZExt) |
| Flags.setZExt(); |
| if (Args[i].IsSExt) |
| Flags.setSExt(); |
| if (Args[i].IsInReg) { |
| // If we are using vectorcall calling convention, a structure that is |
| // passed InReg - is surely an HVA |
| if (CLI.CallConv == CallingConv::X86_VectorCall && |
| isa<StructType>(FinalType)) { |
| // The first value of a structure is marked |
| if (0 == Value) |
| Flags.setHvaStart(); |
| Flags.setHva(); |
| } |
| // Set InReg Flag |
| Flags.setInReg(); |
| } |
| if (Args[i].IsSRet) |
| Flags.setSRet(); |
| if (Args[i].IsSwiftSelf) |
| Flags.setSwiftSelf(); |
| if (Args[i].IsSwiftError) |
| Flags.setSwiftError(); |
| if (Args[i].IsCFGuardTarget) |
| Flags.setCFGuardTarget(); |
| if (Args[i].IsByVal) |
| Flags.setByVal(); |
| if (Args[i].IsInAlloca) { |
| Flags.setInAlloca(); |
| // Set the byval flag for CCAssignFn callbacks that don't know about |
| // inalloca. This way we can know how many bytes we should've allocated |
| // and how many bytes a callee cleanup function will pop. If we port |
| // inalloca to more targets, we'll have to add custom inalloca handling |
| // in the various CC lowering callbacks. |
| Flags.setByVal(); |
| } |
| if (Args[i].IsByVal || Args[i].IsInAlloca) { |
| PointerType *Ty = cast<PointerType>(Args[i].Ty); |
| Type *ElementTy = Ty->getElementType(); |
| |
| unsigned FrameSize = DL.getTypeAllocSize( |
| Args[i].ByValType ? Args[i].ByValType : ElementTy); |
| Flags.setByValSize(FrameSize); |
| |
| // info is not there but there are cases it cannot get right. |
| unsigned FrameAlign; |
| if (Args[i].Alignment) |
| FrameAlign = Args[i].Alignment; |
| else |
| FrameAlign = getByValTypeAlignment(ElementTy, DL); |
| Flags.setByValAlign(Align(FrameAlign)); |
| } |
| if (Args[i].IsNest) |
| Flags.setNest(); |
| if (NeedsRegBlock) |
| Flags.setInConsecutiveRegs(); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), |
| CLI.CallConv, VT); |
| unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), |
| CLI.CallConv, VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| if (Args[i].IsSExt) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (Args[i].IsZExt) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| // Conservatively only handle 'returned' on non-vectors that can be lowered, |
| // for now. |
| if (Args[i].IsReturned && !Op.getValueType().isVector() && |
| CanLowerReturn) { |
| assert((CLI.RetTy == Args[i].Ty || |
| (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && |
| CLI.RetTy->getPointerAddressSpace() == |
| Args[i].Ty->getPointerAddressSpace())) && |
| RetTys.size() == NumValues && "unexpected use of 'returned'"); |
| // Before passing 'returned' to the target lowering code, ensure that |
| // either the register MVT and the actual EVT are the same size or that |
| // the return value and argument are extended in the same way; in these |
| // cases it's safe to pass the argument register value unchanged as the |
| // return register value (although it's at the target's option whether |
| // to do so) |
| // TODO: allow code generation to take advantage of partially preserved |
| // registers rather than clobbering the entire register when the |
| // parameter extension method is not compatible with the return |
| // extension method |
| if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || |
| (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && |
| CLI.RetZExt == Args[i].IsZExt)) |
| Flags.setReturned(); |
| } |
| |
| getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, |
| CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); |
| |
| for (unsigned j = 0; j != NumParts; ++j) { |
| // if it isn't first piece, alignment must be 1 |
| // For scalable vectors the scalable part is currently handled |
| // by individual targets, so we just use the known minimum size here. |
| ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, |
| i < CLI.NumFixedArgs, i, |
| j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); |
| if (NumParts > 1 && j == 0) |
| MyFlags.Flags.setSplit(); |
| else if (j != 0) { |
| MyFlags.Flags.setOrigAlign(Align::None()); |
| if (j == NumParts - 1) |
| MyFlags.Flags.setSplitEnd(); |
| } |
| |
| CLI.Outs.push_back(MyFlags); |
| CLI.OutVals.push_back(Parts[j]); |
| } |
| |
| if (NeedsRegBlock && Value == NumValues - 1) |
| CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); |
| } |
| } |
| |
| SmallVector<SDValue, 4> InVals; |
| CLI.Chain = LowerCall(CLI, InVals); |
| |
| // Update CLI.InVals to use outside of this function. |
| CLI.InVals = InVals; |
| |
| // Verify that the target's LowerCall behaved as expected. |
| assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && |
| "LowerCall didn't return a valid chain!"); |
| assert((!CLI.IsTailCall || InVals.empty()) && |
| "LowerCall emitted a return value for a tail call!"); |
| assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && |
| "LowerCall didn't emit the correct number of values!"); |
| |
| // For a tail call, the return value is merely live-out and there aren't |
| // any nodes in the DAG representing it. Return a special value to |
| // indicate that a tail call has been emitted and no more Instructions |
| // should be processed in the current block. |
| if (CLI.IsTailCall) { |
| CLI.DAG.setRoot(CLI.Chain); |
| return std::make_pair(SDValue(), SDValue()); |
| } |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { |
| assert(InVals[i].getNode() && "LowerCall emitted a null value!"); |
| assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && |
| "LowerCall emitted a value with the wrong type!"); |
| } |
| #endif |
| |
| SmallVector<SDValue, 4> ReturnValues; |
| if (!CanLowerReturn) { |
| // The instruction result is the result of loading from the |
| // hidden sret parameter. |
| SmallVector<EVT, 1> PVTs; |
| Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); |
| |
| ComputeValueVTs(*this, DL, PtrRetTy, PVTs); |
| assert(PVTs.size() == 1 && "Pointers should fit in one register"); |
| EVT PtrVT = PVTs[0]; |
| |
| unsigned NumValues = RetTys.size(); |
| ReturnValues.resize(NumValues); |
| SmallVector<SDValue, 4> Chains(NumValues); |
| |
| // An aggregate return value cannot wrap around the address space, so |
| // offsets to its parts don't wrap either. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| |
| for (unsigned i = 0; i < NumValues; ++i) { |
| SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, |
| CLI.DAG.getConstant(Offsets[i], CLI.DL, |
| PtrVT), Flags); |
| SDValue L = CLI.DAG.getLoad( |
| RetTys[i], CLI.DL, CLI.Chain, Add, |
| MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), |
| DemoteStackIdx, Offsets[i]), |
| /* Alignment = */ 1); |
| ReturnValues[i] = L; |
| Chains[i] = L.getValue(1); |
| } |
| |
| CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); |
| } else { |
| // Collect the legal value parts into potentially illegal values |
| // that correspond to the original function's return values. |
| Optional<ISD::NodeType> AssertOp; |
| if (CLI.RetSExt) |
| AssertOp = ISD::AssertSext; |
| else if (CLI.RetZExt) |
| AssertOp = ISD::AssertZext; |
| unsigned CurReg = 0; |
| for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { |
| EVT VT = RetTys[I]; |
| MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), |
| CLI.CallConv, VT); |
| unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), |
| CLI.CallConv, VT); |
| |
| ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], |
| NumRegs, RegisterVT, VT, nullptr, |
| CLI.CallConv, AssertOp)); |
| CurReg += NumRegs; |
| } |
| |
| // For a function returning void, there is no return value. We can't create |
| // such a node, so we just return a null return value in that case. In |
| // that case, nothing will actually look at the value. |
| if (ReturnValues.empty()) |
| return std::make_pair(SDValue(), CLI.Chain); |
| } |
| |
| SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, |
| CLI.DAG.getVTList(RetTys), ReturnValues); |
| return std::make_pair(Res, CLI.Chain); |
| } |
| |
| void TargetLowering::LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) |
| Results.push_back(Res); |
| } |
| |
| SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| llvm_unreachable("LowerOperation not implemented for this target!"); |
| } |
| |
| void |
| SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { |
| SDValue Op = getNonRegisterValue(V); |
| assert((Op.getOpcode() != ISD::CopyFromReg || |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && |
| "Copy from a reg to the same reg!"); |
| assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| // If this is an InlineAsm we have to match the registers required, not the |
| // notional registers required by the type. |
| |
| RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), |
| None); // This is not an ABI copy. |
| SDValue Chain = DAG.getEntryNode(); |
| |
| ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == |
| FuncInfo.PreferredExtendType.end()) |
| ? ISD::ANY_EXTEND |
| : FuncInfo.PreferredExtendType[V]; |
| RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); |
| PendingExports.push_back(Chain); |
| } |
| |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the |
| /// entry block, return true. This includes arguments used by switches, since |
| /// the switch may expand into multiple basic blocks. |
| static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { |
| // With FastISel active, we may be splitting blocks, so force creation |
| // of virtual registers for all non-dead arguments. |
| if (FastISel) |
| return A->use_empty(); |
| |
| const BasicBlock &Entry = A->getParent()->front(); |
| for (const User *U : A->users()) |
| if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) |
| return false; // Use not in entry block. |
| |
| return true; |
| } |
| |
| using ArgCopyElisionMapTy = |
| DenseMap<const Argument *, |
| std::pair<const AllocaInst *, const StoreInst *>>; |
| |
| /// Scan the entry block of the function in FuncInfo for arguments that look |
| /// like copies into a local alloca. Record any copied arguments in |
| /// ArgCopyElisionCandidates. |
| static void |
| findArgumentCopyElisionCandidates(const DataLayout &DL, |
| FunctionLoweringInfo *FuncInfo, |
| ArgCopyElisionMapTy &ArgCopyElisionCandidates) { |
| // Record the state of every static alloca used in the entry block. Argument |
| // allocas are all used in the entry block, so we need approximately as many |
| // entries as we have arguments. |
| enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; |
| SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; |
| unsigned NumArgs = FuncInfo->Fn->arg_size(); |
| StaticAllocas.reserve(NumArgs * 2); |
| |
| auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { |
| if (!V) |
| return nullptr; |
| V = V->stripPointerCasts(); |
| const auto *AI = dyn_cast<AllocaInst>(V); |
| if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) |
| return nullptr; |
| auto Iter = StaticAllocas.insert({AI, Unknown}); |
| return &Iter.first->second; |
| }; |
| |
| // Look for stores of arguments to static allocas. Look through bitcasts and |
| // GEPs to handle type coercions, as long as the alloca is fully initialized |
| // by the store. Any non-store use of an alloca escapes it and any subsequent |
| // unanalyzed store might write it. |
| // FIXME: Handle structs initialized with multiple stores. |
| for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { |
| // Look for stores, and handle non-store uses conservatively. |
| const auto *SI = dyn_cast<StoreInst>(&I); |
| if (!SI) { |
| // We will look through cast uses, so ignore them completely. |
| if (I.isCast()) |
| continue; |
| // Ignore debug info intrinsics, they don't escape or store to allocas. |
| if (isa<DbgInfoIntrinsic>(I)) |
| continue; |
| // This is an unknown instruction. Assume it escapes or writes to all |
| // static alloca operands. |
| for (const Use &U : I.operands()) { |
| if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) |
| *Info = StaticAllocaInfo::Clobbered; |
| } |
| continue; |
| } |
| |
| // If the stored value is a static alloca, mark it as escaped. |
| if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) |
| *Info = StaticAllocaInfo::Clobbered; |
| |
| // Check if the destination is a static alloca. |
| const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); |
| StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); |
| if (!Info) |
| continue; |
| const AllocaInst *AI = cast<AllocaInst>(Dst); |
| |
| // Skip allocas that have been initialized or clobbered. |
| if (*Info != StaticAllocaInfo::Unknown) |
| continue; |
| |
| // Check if the stored value is an argument, and that this store fully |
| // initializes the alloca. Don't elide copies from the same argument twice. |
| const Value *Val = SI->getValueOperand()->stripPointerCasts(); |
| const auto *Arg = dyn_cast<Argument>(Val); |
| if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || |
| Arg->getType()->isEmptyTy() || |
| DL.getTypeStoreSize(Arg->getType()) != |
| DL.getTypeAllocSize(AI->getAllocatedType()) || |
| ArgCopyElisionCandidates.count(Arg)) { |
| *Info = StaticAllocaInfo::Clobbered; |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI |
| << '\n'); |
| |
| // Mark this alloca and store for argument copy elision. |
| *Info = StaticAllocaInfo::Elidable; |
| ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); |
| |
| // Stop scanning if we've seen all arguments. This will happen early in -O0 |
| // builds, which is useful, because -O0 builds have large entry blocks and |
| // many allocas. |
| if (ArgCopyElisionCandidates.size() == NumArgs) |
| break; |
| } |
| } |
| |
| /// Try to elide argument copies from memory into a local alloca. Succeeds if |
| /// ArgVal is a load from a suitable fixed stack object. |
| static void tryToElideArgumentCopy( |
| FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, |
| DenseMap<int, int> &ArgCopyElisionFrameIndexMap, |
| SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, |
| ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, |
| SDValue ArgVal, bool &ArgHasUses) { |
| // Check if this is a load from a fixed stack object. |
| auto *LNode = dyn_cast<LoadSDNode>(ArgVal); |
| if (!LNode) |
| return; |
| auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); |
| if (!FINode) |
| return; |
| |
| // Check that the fixed stack object is the right size and alignment. |
| // Look at the alignment that the user wrote on the alloca instead of looking |
| // at the stack object. |
| auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); |
| assert(ArgCopyIter != ArgCopyElisionCandidates.end()); |
| const AllocaInst *AI = ArgCopyIter->second.first; |
| int FixedIndex = FINode->getIndex(); |
| int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; |
| int OldIndex = AllocaIndex; |
| MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); |
| if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { |
| LLVM_DEBUG( |
| dbgs() << " argument copy elision failed due to bad fixed stack " |
| "object size\n"); |
| return; |
| } |
| unsigned RequiredAlignment = AI->getAlignment(); |
| if (!RequiredAlignment) { |
| RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( |
| AI->getAllocatedType()); |
| } |
| if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { |
| LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " |
| "greater than stack argument alignment (" |
| << RequiredAlignment << " vs " |
| << MFI.getObjectAlignment(FixedIndex) << ")\n"); |
| return; |
| } |
| |
| // Perform the elision. Delete the old stack object and replace its only use |
| // in the variable info map. Mark the stack object as mutable. |
| LLVM_DEBUG({ |
| dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' |
| << " Replacing frame index " << OldIndex << " with " << FixedIndex |
| << '\n'; |
| }); |
| MFI.RemoveStackObject(OldIndex); |
| MFI.setIsImmutableObjectIndex(FixedIndex, false); |
| AllocaIndex = FixedIndex; |
| ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); |
| Chains.push_back(ArgVal.getValue(1)); |
| |
| // Avoid emitting code for the store implementing the copy. |
| const StoreInst *SI = ArgCopyIter->second.second; |
| ElidedArgCopyInstrs.insert(SI); |
| |
| // Check for uses of the argument again so that we can avoid exporting ArgVal |
| // if it is't used by anything other than the store. |
| for (const Value *U : Arg.users()) { |
| if (U != SI) { |
| ArgHasUses = true; |
| break; |
| } |
| } |
| } |
| |
| void SelectionDAGISel::LowerArguments(const Function &F) { |
| SelectionDAG &DAG = SDB->DAG; |
| SDLoc dl = SDB->getCurSDLoc(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| SmallVector<ISD::InputArg, 16> Ins; |
| |
| if (!FuncInfo->CanLowerReturn) { |
| // Put in an sret pointer parameter before all the other parameters. |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(*TLI, DAG.getDataLayout(), |
| F.getReturnType()->getPointerTo( |
| DAG.getDataLayout().getAllocaAddrSpace()), |
| ValueVTs); |
| |
| // NOTE: Assuming that a pointer will never break down to more than one VT |
| // or one register. |
| ISD::ArgFlagsTy Flags; |
| Flags.setSRet(); |
| MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); |
| ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, |
| ISD::InputArg::NoArgIndex, 0); |
| Ins.push_back(RetArg); |
| } |
| |
| // Look for stores of arguments to static allocas. Mark such arguments with a |
| // flag to ask the target to give us the memory location of that argument if |
| // available. |
| ArgCopyElisionMapTy ArgCopyElisionCandidates; |
| findArgumentCopyElisionCandidates(DL, FuncInfo.get(), |
| ArgCopyElisionCandidates); |
| |
| // Set up the incoming argument description vector. |
| for (const Argument &Arg : F.args()) { |
| unsigned ArgNo = Arg.getArgNo(); |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); |
| bool isArgValueUsed = !Arg.use_empty(); |
| unsigned PartBase = 0; |
| Type *FinalType = Arg.getType(); |
| if (Arg.hasAttribute(Attribute::ByVal)) |
| FinalType = Arg.getParamByValType(); |
| bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( |
| FinalType, F.getCallingConv(), F.isVarArg()); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| EVT VT = ValueVTs[Value]; |
| Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); |
| ISD::ArgFlagsTy Flags; |
| |
| // Certain targets (such as MIPS), may have a different ABI alignment |
| // for a type depending on the context. Give the target a chance to |
| // specify the alignment it wants. |
| const Align OriginalAlignment( |
| TLI->getABIAlignmentForCallingConv(ArgTy, DL)); |
| |
| if (Arg.getType()->isPointerTy()) { |
| Flags.setPointer(); |
| Flags.setPointerAddrSpace( |
| cast<PointerType>(Arg.getType())->getAddressSpace()); |
| } |
| if (Arg.hasAttribute(Attribute::ZExt)) |
| Flags.setZExt(); |
| if (Arg.hasAttribute(Attribute::SExt)) |
| Flags.setSExt(); |
| if (Arg.hasAttribute(Attribute::InReg)) { |
| // If we are using vectorcall calling convention, a structure that is |
| // passed InReg - is surely an HVA |
| if (F.getCallingConv() == CallingConv::X86_VectorCall && |
| isa<StructType>(Arg.getType())) { |
| // The first value of a structure is marked |
| if (0 == Value) |
| Flags.setHvaStart(); |
| Flags.setHva(); |
| } |
| // Set InReg Flag |
| Flags.setInReg(); |
| } |
| if (Arg.hasAttribute(Attribute::StructRet)) |
| Flags.setSRet(); |
| if (Arg.hasAttribute(Attribute::SwiftSelf)) |
| Flags.setSwiftSelf(); |
| if (Arg.hasAttribute(Attribute::SwiftError)) |
| Flags.setSwiftError(); |
| if (Arg.hasAttribute(Attribute::ByVal)) |
| Flags.setByVal(); |
| if (Arg.hasAttribute(Attribute::InAlloca)) { |
| Flags.setInAlloca(); |
| // Set the byval flag for CCAssignFn callbacks that don't know about |
| // inalloca. This way we can know how many bytes we should've allocated |
| // and how many bytes a callee cleanup function will pop. If we port |
| // inalloca to more targets, we'll have to add custom inalloca handling |
| // in the various CC lowering callbacks. |
| Flags.setByVal(); |
| } |
| if (F.getCallingConv() == CallingConv::X86_INTR) { |
| // IA Interrupt passes frame (1st parameter) by value in the stack. |
| if (ArgNo == 0) |
| Flags.setByVal(); |
| } |
| if (Flags.isByVal() || Flags.isInAlloca()) { |
| Type *ElementTy = Arg.getParamByValType(); |
| |
| // For ByVal, size and alignment should be passed from FE. BE will |
| // guess if this info is not there but there are cases it cannot get |
| // right. |
| unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); |
| Flags.setByValSize(FrameSize); |
| |
| unsigned FrameAlign; |
| if (Arg.getParamAlignment()) |
| FrameAlign = Arg.getParamAlignment(); |
| else |
| FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); |
| Flags.setByValAlign(Align(FrameAlign)); |
| } |
| if (Arg.hasAttribute(Attribute::Nest)) |
| Flags.setNest(); |
| if (NeedsRegBlock) |
| Flags.setInConsecutiveRegs(); |
| Flags.setOrigAlign(OriginalAlignment); |
| if (ArgCopyElisionCandidates.count(&Arg)) |
| Flags.setCopyElisionCandidate(); |
| if (Arg.hasAttribute(Attribute::Returned)) |
| Flags.setReturned(); |
| |
| MVT RegisterVT = TLI->getRegisterTypeForCallingConv( |
| *CurDAG->getContext(), F.getCallingConv(), VT); |
| unsigned NumRegs = TLI->getNumRegistersForCallingConv( |
| *CurDAG->getContext(), F.getCallingConv(), VT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| // For scalable vectors, use the minimum size; individual targets |
| // are responsible for handling scalable vector arguments and |
| // return values. |
| ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, |
| ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); |
| if (NumRegs > 1 && i == 0) |
| MyFlags.Flags.setSplit(); |
| // if it isn't first piece, alignment must be 1 |
| else if (i > 0) { |
| MyFlags.Flags.setOrigAlign(Align::None()); |
| if (i == NumRegs - 1) |
| MyFlags.Flags.setSplitEnd(); |
| } |
| Ins.push_back(MyFlags); |
| } |
| if (NeedsRegBlock && Value == NumValues - 1) |
| Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); |
| PartBase += VT.getStoreSize().getKnownMinSize(); |
| } |
| } |
| |
| // Call the target to set up the argument values. |
| SmallVector<SDValue, 8> InVals; |
| SDValue NewRoot = TLI->LowerFormalArguments( |
| DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); |
| |
| // Verify that the target's LowerFormalArguments behaved as expected. |
| assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && |
| "LowerFormalArguments didn't return a valid chain!"); |
| assert(InVals.size() == Ins.size() && |
| "LowerFormalArguments didn't emit the correct number of values!"); |
| LLVM_DEBUG({ |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| assert(InVals[i].getNode() && |
| "LowerFormalArguments emitted a null value!"); |
| assert(EVT(Ins[i].VT) == InVals[i].getValueType() && |
| "LowerFormalArguments emitted a value with the wrong type!"); |
| } |
| }); |
| |
| // Update the DAG with the new chain value resulting from argument lowering. |
| DAG.setRoot(NewRoot); |
| |
| // Set up the argument values. |
| unsigned i = 0; |
| if (!FuncInfo->CanLowerReturn) { |
| // Create a virtual register for the sret pointer, and put in a copy |
| // from the sret argument into it. |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(*TLI, DAG.getDataLayout(), |
| F.getReturnType()->getPointerTo( |
| DAG.getDataLayout().getAllocaAddrSpace()), |
| ValueVTs); |
| MVT VT = ValueVTs[0].getSimpleVT(); |
| MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); |
| Optional<ISD::NodeType> AssertOp = None; |
| SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, |
| nullptr, F.getCallingConv(), AssertOp); |
| |
| MachineFunction& MF = SDB->DAG.getMachineFunction(); |
| MachineRegisterInfo& RegInfo = MF.getRegInfo(); |
| Register SRetReg = |
| RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); |
| FuncInfo->DemoteRegister = SRetReg; |
| NewRoot = |
| SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); |
| DAG.setRoot(NewRoot); |
| |
| // i indexes lowered arguments. Bump it past the hidden sret argument. |
| ++i; |
| } |
| |
| SmallVector<SDValue, 4> Chains; |
| DenseMap<int, int> ArgCopyElisionFrameIndexMap; |
| for (const Argument &Arg : F.args()) { |
| SmallVector<SDValue, 4> ArgValues; |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| continue; |
| |
| bool ArgHasUses = !Arg.use_empty(); |
| |
| // Elide the copying store if the target loaded this argument from a |
| // suitable fixed stack object. |
| if (Ins[i].Flags.isCopyElisionCandidate()) { |
| tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, |
| ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, |
| InVals[i], ArgHasUses); |
| } |
| |
| // If this argument is unused then remember its value. It is used to generate |
| // debugging information. |
| bool isSwiftErrorArg = |
| TLI->supportSwiftError() && |
| Arg.hasAttribute(Attribute::SwiftError); |
| if (!ArgHasUses && !isSwiftErrorArg) { |
| SDB->setUnusedArgValue(&Arg, InVals[i]); |
| |
| // Also remember any frame index for use in FastISel. |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) |
| FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); |
| } |
| |
| for (unsigned Val = 0; Val != NumValues; ++Val) { |
| EVT VT = ValueVTs[Val]; |
| MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), |
| F.getCallingConv(), VT); |
| unsigned NumParts = TLI->getNumRegistersForCallingConv( |
| *CurDAG->getContext(), F.getCallingConv(), VT); |
| |
| // Even an apparent 'unused' swifterror argument needs to be returned. So |
| // we do generate a copy for it that can be used on return from the |
| // function. |
| if (ArgHasUses || isSwiftErrorArg) { |
| Optional<ISD::NodeType> AssertOp; |
| if (Arg.hasAttribute(Attribute::SExt)) |
| AssertOp = ISD::AssertSext; |
| else if (Arg.hasAttribute(Attribute::ZExt)) |
| AssertOp = ISD::AssertZext; |
| |
| ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, |
| PartVT, VT, nullptr, |
| F.getCallingConv(), AssertOp)); |
| } |
| |
| i += NumParts; |
| } |
| |
| // We don't need to do anything else for unused arguments. |
| if (ArgValues.empty()) |
| continue; |
| |
| // Note down frame index. |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) |
| FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); |
| |
| SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), |
| SDB->getCurSDLoc()); |
| |
| SDB->setValue(&Arg, Res); |
| if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { |
| // We want to associate the argument with the frame index, among |
| // involved operands, that correspond to the lowest address. The |
| // getCopyFromParts function, called earlier, is swapping the order of |
| // the operands to BUILD_PAIR depending on endianness. The result of |
| // that swapping is that the least significant bits of the argument will |
| // be in the first operand of the BUILD_PAIR node, and the most |
| // significant bits will be in the second operand. |
| unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| if (LoadSDNode *LNode = |
| dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) |
| FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); |
| } |
| |
| // Analyses past this point are naive and don't expect an assertion. |
| if (Res.getOpcode() == ISD::AssertZext) |
| Res = Res.getOperand(0); |
| |
| // Update the SwiftErrorVRegDefMap. |
| if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { |
| unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); |
| if (Register::isVirtualRegister(Reg)) |
| SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), |
| Reg); |
| } |
| |
| // If this argument is live outside of the entry block, insert a copy from |
| // wherever we got it to the vreg that other BB's will reference it as. |
| if (Res.getOpcode() == ISD::CopyFromReg) { |
| // If we can, though, try to skip creating an unnecessary vreg. |
| // FIXME: This isn't very clean... it would be nice to make this more |
| // general. |
| unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); |
| if (Register::isVirtualRegister(Reg)) { |
| FuncInfo->ValueMap[&Arg] = Reg; |
| continue; |
| } |
| } |
| if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { |
| FuncInfo->InitializeRegForValue(&Arg); |
| SDB->CopyToExportRegsIfNeeded(&Arg); |
| } |
| } |
| |
| if (!Chains.empty()) { |
| Chains.push_back(NewRoot); |
| NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); |
| } |
| |
| DAG.setRoot(NewRoot); |
| |
| assert(i == InVals.size() && "Argument register count mismatch!"); |
| |
| // If any argument copy elisions occurred and we have debug info, update the |
| // stale frame indices used in the dbg.declare variable info table. |
| MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); |
| if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { |
| for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { |
| auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); |
| if (I != ArgCopyElisionFrameIndexMap.end()) |
| VI.Slot = I->second; |
| } |
| } |
| |
| // Finally, if the target has anything special to do, allow it to do so. |
| EmitFunctionEntryCode(); |
| } |
| |
| /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to |
| /// ensure constants are generated when needed. Remember the virtual registers |
| /// that need to be added to the Machine PHI nodes as input. We cannot just |
| /// directly add them, because expansion might result in multiple MBB's for one |
| /// BB. As such, the start of the BB might correspond to a different MBB than |
| /// the end. |
| void |
| SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { |
| const Instruction *TI = LLVMBB->getTerminator(); |
| |
| SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; |
| |
| // Check PHI nodes in successors that expect a value to be available from this |
| // block. |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| const BasicBlock *SuccBB = TI->getSuccessor(succ); |
| if (!isa<PHINode>(SuccBB->begin())) continue; |
| MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; |
| |
| // If this terminator has multiple identical successors (common for |
| // switches), only handle each succ once. |
| if (!SuccsHandled.insert(SuccMBB).second) |
| continue; |
| |
| MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (const PHINode &PN : SuccBB->phis()) { |
| // Ignore dead phi's. |
| if (PN.use_empty()) |
| continue; |
| |
| // Skip empty types |
| if (PN.getType()->isEmptyTy()) |
| continue; |
| |
| unsigned Reg; |
| const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); |
| |
| if (const Constant *C = dyn_cast<Constant>(PHIOp)) { |
| unsigned &RegOut = ConstantsOut[C]; |
| if (RegOut == 0) { |
| RegOut = FuncInfo.CreateRegs(C); |
| CopyValueToVirtualRegister(C, RegOut); |
| } |
| Reg = RegOut; |
| } else { |
| DenseMap<const Value *, unsigned>::iterator I = |
| FuncInfo.ValueMap.find(PHIOp); |
| if (I != FuncInfo.ValueMap.end()) |
| Reg = I->second; |
| else { |
| assert(isa<AllocaInst>(PHIOp) && |
| FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && |
| "Didn't codegen value into a register!??"); |
| Reg = FuncInfo.CreateRegs(PHIOp); |
| CopyValueToVirtualRegister(PHIOp, Reg); |
| } |
| } |
| |
| // Remember that this register needs to added to the machine PHI node as |
| // the input for this MBB. |
| SmallVector<EVT, 4> ValueVTs; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); |
| for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { |
| EVT VT = ValueVTs[vti]; |
| unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); |
| for (unsigned i = 0, e = NumRegisters; i != e; ++i) |
| FuncInfo.PHINodesToUpdate.push_back( |
| std::make_pair(&*MBBI++, Reg + i)); |
| Reg += NumRegisters; |
| } |
| } |
| } |
| |
| ConstantsOut.clear(); |
| } |
| |
| /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB |
| /// is 0. |
| MachineBasicBlock * |
| SelectionDAGBuilder::StackProtectorDescriptor:: |
| AddSuccessorMBB(const BasicBlock *BB, |
| MachineBasicBlock *ParentMBB, |
| bool IsLikely, |
| MachineBasicBlock *SuccMBB) { |
| // If SuccBB has not been created yet, create it. |
| if (!SuccMBB) { |
| MachineFunction *MF = ParentMBB->getParent(); |
| MachineFunction::iterator BBI(ParentMBB); |
| SuccMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(++BBI, SuccMBB); |
| } |
| // Add it as a successor of ParentMBB. |
| ParentMBB->addSuccessor( |
| SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); |
| return SuccMBB; |
| } |
| |
| MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { |
| MachineFunction::iterator I(MBB); |
| if (++I == FuncInfo.MF->end()) |
| return nullptr; |
| return &*I; |
| } |
| |
| /// During lowering new call nodes can be created (such as memset, etc.). |
| /// Those will become new roots of the current DAG, but complications arise |
| /// when they are tail calls. In such cases, the call lowering will update |
| /// the root, but the builder still needs to know that a tail call has been |
| /// lowered in order to avoid generating an additional return. |
| void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { |
| // If the node is null, we do have a tail call. |
| if (MaybeTC.getNode() != nullptr) |
| DAG.setRoot(MaybeTC); |
| else |
| HasTailCall = true; |
| } |
| |
| void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, |
| MachineBasicBlock *SwitchMBB, |
| MachineBasicBlock *DefaultMBB) { |
| MachineFunction *CurMF = FuncInfo.MF; |
| MachineBasicBlock *NextMBB = nullptr; |
| MachineFunction::iterator BBI(W.MBB); |
| if (++BBI != FuncInfo.MF->end()) |
| NextMBB = &*BBI; |
| |
| unsigned Size = W.LastCluster - W.FirstCluster + 1; |
| |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| |
| if (Size == 2 && W.MBB == SwitchMBB) { |
| // If any two of the cases has the same destination, and if one value |
| // is the same as the other, but has one bit unset that the other has set, |
| // use bit manipulation to do two compares at once. For example: |
| // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" |
| // TODO: This could be extended to merge any 2 cases in switches with 3 |
| // cases. |
| // TODO: Handle cases where W.CaseBB != SwitchBB. |
| CaseCluster &Small = *W.FirstCluster; |
| CaseCluster &Big = *W.LastCluster; |
| |
| if (Small.Low == Small.High && Big.Low == Big.High && |
| Small.MBB == Big.MBB) { |
| const APInt &SmallValue = Small.Low->getValue(); |
| const APInt &BigValue = Big.Low->getValue(); |
| |
| // Check that there is only one bit different. |
| APInt CommonBit = BigValue ^ SmallValue; |
| if (CommonBit.isPowerOf2()) { |
| SDValue CondLHS = getValue(Cond); |
| EVT VT = CondLHS.getValueType(); |
| SDLoc DL = getCurSDLoc(); |
| |
| SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, |
| DAG.getConstant(CommonBit, DL, VT)); |
| SDValue Cond = DAG.getSetCC( |
| DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), |
| ISD::SETEQ); |
| |
| // Update successor info. |
| // Both Small and Big will jump to Small.BB, so we sum up the |
| // probabilities. |
| addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); |
| if (BPI) |
| addSuccessorWithProb( |
| SwitchMBB, DefaultMBB, |
| // The default destination is the first successor in IR. |
| BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); |
| else |
| addSuccessorWithProb(SwitchMBB, DefaultMBB); |
| |
| // Insert the true branch. |
| SDValue BrCond = |
| DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, |
| DAG.getBasicBlock(Small.MBB)); |
| // Insert the false branch. |
| BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, |
| DAG.getBasicBlock(DefaultMBB)); |
| |
| DAG.setRoot(BrCond); |
| return; |
| } |
| } |
| } |
| |
| if (TM.getOptLevel() != CodeGenOpt::None) { |
| // Here, we order cases by probability so the most likely case will be |
| // checked first. However, two clusters can have the same probability in |
| // which case their relative ordering is non-deterministic. So we use Low |
| // as a tie-breaker as clusters are guaranteed to never overlap. |
| llvm::sort(W.FirstCluster, W.LastCluster + 1, |
| [](const CaseCluster &a, const CaseCluster &b) { |
| return a.Prob != b.Prob ? |
| a.Prob > b.Prob : |
| a.Low->getValue().slt(b.Low->getValue()); |
| }); |
| |
| // Rearrange the case blocks so that the last one falls through if possible |
| // without changing the order of probabilities. |
| for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { |
| --I; |
| if (I->Prob > W.LastCluster->Prob) |
| break; |
| if (I->Kind == CC_Range && I->MBB == NextMBB) { |
| std::swap(*I, *W.LastCluster); |
| break; |
| } |
| } |
| } |
| |
| // Compute total probability. |
| BranchProbability DefaultProb = W.DefaultProb; |
| BranchProbability UnhandledProbs = DefaultProb; |
| for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) |
| UnhandledProbs += I->Prob; |
| |
| MachineBasicBlock *CurMBB = W.MBB; |
| for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { |
| bool FallthroughUnreachable = false; |
| MachineBasicBlock *Fallthrough; |
| if (I == W.LastCluster) { |
| // For the last cluster, fall through to the default destination. |
| Fallthrough = DefaultMBB; |
| FallthroughUnreachable = isa<UnreachableInst>( |
| DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); |
| } else { |
| Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); |
| CurMF->insert(BBI, Fallthrough); |
| // Put Cond in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(Cond); |
| } |
| UnhandledProbs -= I->Prob; |
| |
| switch (I->Kind) { |
| case CC_JumpTable: { |
| // FIXME: Optimize away range check based on pivot comparisons. |
| JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; |
| SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; |
| |
| // The jump block hasn't been inserted yet; insert it here. |
| MachineBasicBlock *JumpMBB = JT->MBB; |
| CurMF->insert(BBI, JumpMBB); |
| |
| auto JumpProb = I->Prob; |
| auto FallthroughProb = UnhandledProbs; |
| |
| // If the default statement is a target of the jump table, we evenly |
| // distribute the default probability to successors of CurMBB. Also |
| // update the probability on the edge from JumpMBB to Fallthrough. |
| for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), |
| SE = JumpMBB->succ_end(); |
| SI != SE; ++SI) { |
| if (*SI == DefaultMBB) { |
| JumpProb += DefaultProb / 2; |
| FallthroughProb -= DefaultProb / 2; |
| JumpMBB->setSuccProbability(SI, DefaultProb / 2); |
| JumpMBB->normalizeSuccProbs(); |
| break; |
| } |
| } |
| |
| if (FallthroughUnreachable) { |
| // Skip the range check if the fallthrough block is unreachable. |
| JTH->OmitRangeCheck = true; |
| } |
| |
| if (!JTH->OmitRangeCheck) |
| addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); |
| addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); |
| CurMBB->normalizeSuccProbs(); |
| |
| // The jump table header will be inserted in our current block, do the |
| // range check, and fall through to our fallthrough block. |
| JTH->HeaderBB = CurMBB; |
| JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. |
| |
| // If we're in the right place, emit the jump table header right now. |
| if (CurMBB == SwitchMBB) { |
| visitJumpTableHeader(*JT, *JTH, SwitchMBB); |
| JTH->Emitted = true; |
| } |
| break; |
| } |
| case CC_BitTests: { |
| // FIXME: Optimize away range check based on pivot comparisons. |
| BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; |
| |
| // The bit test blocks haven't been inserted yet; insert them here. |
| for (BitTestCase &BTC : BTB->Cases) |
| CurMF->insert(BBI, BTC.ThisBB); |
| |
| // Fill in fields of the BitTestBlock. |
| BTB->Parent = CurMBB; |
| BTB->Default = Fallthrough; |
| |
| BTB->DefaultProb = UnhandledProbs; |
| // If the cases in bit test don't form a contiguous range, we evenly |
| // distribute the probability on the edge to Fallthrough to two |
| // successors of CurMBB. |
| if (!BTB->ContiguousRange) { |
| BTB->Prob += DefaultProb / 2; |
| BTB->DefaultProb -= DefaultProb / 2; |
| } |
| |
| if (FallthroughUnreachable) { |
| // Skip the range check if the fallthrough block is unreachable. |
| BTB->OmitRangeCheck = true; |
| } |
| |
| // If we're in the right place, emit the bit test header right now. |
| if (CurMBB == SwitchMBB) { |
| visitBitTestHeader(*BTB, SwitchMBB); |
| BTB->Emitted = true; |
| } |
| break; |
| } |
| case CC_Range: { |
| const Value *RHS, *LHS, *MHS; |
| ISD::CondCode CC; |
| if (I->Low == I->High) { |
| // Check Cond == I->Low. |
| CC = ISD::SETEQ; |
| LHS = Cond; |
| RHS=I->Low; |
| MHS = nullptr; |
| } else { |
| // Check I->Low <= Cond <= I->High. |
| CC = ISD::SETLE; |
| LHS = I->Low; |
| MHS = Cond; |
| RHS = I->High; |
| } |
| |
| // If Fallthrough is unreachable, fold away the comparison. |
| if (FallthroughUnreachable) |
| CC = ISD::SETTRUE; |
| |
| // The false probability is the sum of all unhandled cases. |
| CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, |
| getCurSDLoc(), I->Prob, UnhandledProbs); |
| |
| if (CurMBB == SwitchMBB) |
| visitSwitchCase(CB, SwitchMBB); |
| else |
| SL->SwitchCases.push_back(CB); |
| |
| break; |
| } |
| } |
| CurMBB = Fallthrough; |
| } |
| } |
| |
| unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, |
| CaseClusterIt First, |
| CaseClusterIt Last) { |
| return std::count_if(First, Last + 1, [&](const CaseCluster &X) { |
| if (X.Prob != CC.Prob) |
| return X.Prob > CC.Prob; |
| |
| // Ties are broken by comparing the case value. |
| return X.Low->getValue().slt(CC.Low->getValue()); |
| }); |
| } |
| |
| void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, |
| const SwitchWorkListItem &W, |
| Value *Cond, |
| MachineBasicBlock *SwitchMBB) { |
| assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && |
| "Clusters not sorted?"); |
| |
| assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); |
| |
| // Balance the tree based on branch probabilities to create a near-optimal (in |
| // terms of search time given key frequency) binary search tree. See e.g. Kurt |
| // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). |
| CaseClusterIt LastLeft = W.FirstCluster; |
| CaseClusterIt FirstRight = W.LastCluster; |
| auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; |
| auto RightProb = FirstRight->Prob + W.DefaultProb / 2; |
| |
| // Move LastLeft and FirstRight towards each other from opposite directions to |
| // find a partitioning of the clusters which balances the probability on both |
| // sides. If LeftProb and RightProb are equal, alternate which side is |
| // taken to ensure 0-probability nodes are distributed evenly. |
| unsigned I = 0; |
| while (LastLeft + 1 < FirstRight) { |
| if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) |
| LeftProb += (++LastLeft)->Prob; |
| else |
| RightProb += (--FirstRight)->Prob; |
| I++; |
| } |
| |
| while (true) { |
| // Our binary search tree differs from a typical BST in that ours can have up |
| // to three values in each leaf. The pivot selection above doesn't take that |
| // into account, which means the tree might require more nodes and be less |
| // efficient. We compensate for this here. |
| |
| unsigned NumLeft = LastLeft - W.FirstCluster + 1; |
| unsigned NumRight = W.LastCluster - FirstRight + 1; |
| |
| if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { |
| // If one side has less than 3 clusters, and the other has more than 3, |
| // consider taking a cluster from the other side. |
| |
| if (NumLeft < NumRight) { |
| // Consider moving the first cluster on the right to the left side. |
| CaseCluster &CC = *FirstRight; |
| unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); |
| unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); |
| if (LeftSideRank <= RightSideRank) { |
| // Moving the cluster to the left does not demote it. |
| ++LastLeft; |
| ++FirstRight; |
| continue; |
| } |
| } else { |
| assert(NumRight < NumLeft); |
| // Consider moving the last element on the left to the right side. |
| CaseCluster &CC = *LastLeft; |
| unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); |
| unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); |
| if (RightSideRank <= LeftSideRank) { |
| // Moving the cluster to the right does not demot it. |
| --LastLeft; |
| --FirstRight; |
| continue; |
| } |
| } |
| } |
| break; |
| } |
| |
| assert(LastLeft + 1 == FirstRight); |
| assert(LastLeft >= W.FirstCluster); |
| assert(FirstRight <= W.LastCluster); |
| |
| // Use the first element on the right as pivot since we will make less-than |
| // comparisons against it. |
| CaseClusterIt PivotCluster = FirstRight; |
| assert(PivotCluster > W.FirstCluster); |
| assert(PivotCluster <= W.LastCluster); |
| |
| CaseClusterIt FirstLeft = W.FirstCluster; |
| CaseClusterIt LastRight = W.LastCluster; |
| |
| const ConstantInt *Pivot = PivotCluster->Low; |
| |
| // New blocks will be inserted immediately after the current one. |
| MachineFunction::iterator BBI(W.MBB); |
| ++BBI; |
| |
| // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, |
| // we can branch to its destination directly if it's squeezed exactly in |
| // between the known lower bound and Pivot - 1. |
| MachineBasicBlock *LeftMBB; |
| if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && |
| FirstLeft->Low == W.GE && |
| (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { |
| LeftMBB = FirstLeft->MBB; |
| } else { |
| LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); |
| FuncInfo.MF->insert(BBI, LeftMBB); |
| WorkList.push_back( |
| {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); |
| // Put Cond in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(Cond); |
| } |
| |
| // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a |
| // single cluster, RHS.Low == Pivot, and we can branch to its destination |
| // directly if RHS.High equals the current upper bound. |
| MachineBasicBlock *RightMBB; |
| if (FirstRight == LastRight && FirstRight->Kind == CC_Range && |
| W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { |
| RightMBB = FirstRight->MBB; |
| } else { |
| RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); |
| FuncInfo.MF->insert(BBI, RightMBB); |
| WorkList.push_back( |
| {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); |
| // Put Cond in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(Cond); |
| } |
| |
| // Create the CaseBlock record that will be used to lower the branch. |
| CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, |
| getCurSDLoc(), LeftProb, RightProb); |
| |
| if (W.MBB == SwitchMBB) |
| visitSwitchCase(CB, SwitchMBB); |
| else |
| SL->SwitchCases.push_back(CB); |
| } |
| |
| // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb |
| // from the swith statement. |
| static BranchProbability scaleCaseProbality(BranchProbability CaseProb, |
| BranchProbability PeeledCaseProb) { |
| if (PeeledCaseProb == BranchProbability::getOne()) |
| return BranchProbability::getZero(); |
| BranchProbability SwitchProb = PeeledCaseProb.getCompl(); |
| |
| uint32_t Numerator = CaseProb.getNumerator(); |
| uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); |
| return BranchProbability(Numerator, std::max(Numerator, Denominator)); |
| } |
| |
| // Try to peel the top probability case if it exceeds the threshold. |
| // Return current MachineBasicBlock for the switch statement if the peeling |
| // does not occur. |
| // If the peeling is performed, return the newly created MachineBasicBlock |
| // for the peeled switch statement. Also update Clusters to remove the peeled |
| // case. PeeledCaseProb is the BranchProbability for the peeled case. |
| MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( |
| const SwitchInst &SI, CaseClusterVector &Clusters, |
| BranchProbability &PeeledCaseProb) { |
| MachineBasicBlock *SwitchMBB = FuncInfo.MBB; |
| // Don't perform if there is only one cluster or optimizing for size. |
| if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || |
| TM.getOptLevel() == CodeGenOpt::None || |
| SwitchMBB->getParent()->getFunction().hasMinSize()) |
| return SwitchMBB; |
| |
| BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); |
| unsigned PeeledCaseIndex = 0; |
| bool SwitchPeeled = false; |
| for (unsigned Index = 0; Index < Clusters.size(); ++Index) { |
| CaseCluster &CC = Clusters[Index]; |
| if (CC.Prob < TopCaseProb) |
| continue; |
| TopCaseProb = CC.Prob; |
| PeeledCaseIndex = Index; |
| SwitchPeeled = true; |
| } |
| if (!SwitchPeeled) |
| return SwitchMBB; |
| |
| LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " |
| << TopCaseProb << "\n"); |
| |
| // Record the MBB for the peeled switch statement. |
| MachineFunction::iterator BBI(SwitchMBB); |
| ++BBI; |
| MachineBasicBlock *PeeledSwitchMBB = |
| FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); |
| FuncInfo.MF->insert(BBI, PeeledSwitchMBB); |
| |
| ExportFromCurrentBlock(SI.getCondition()); |
| auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; |
| SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, |
| nullptr, nullptr, TopCaseProb.getCompl()}; |
| lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); |
| |
| Clusters.erase(PeeledCaseIt); |
| for (CaseCluster &CC : Clusters) { |
| LLVM_DEBUG( |
| dbgs() << "Scale the probablity for one cluster, before scaling: " |
| << CC.Prob << "\n"); |
| CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); |
| LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); |
| } |
| PeeledCaseProb = TopCaseProb; |
| return PeeledSwitchMBB; |
| } |
| |
| void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { |
| // Extract cases from the switch. |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| CaseClusterVector Clusters; |
| Clusters.reserve(SI.getNumCases()); |
| for (auto I : SI.cases()) { |
| MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; |
| const ConstantInt *CaseVal = I.getCaseValue(); |
| BranchProbability Prob = |
| BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) |
| : BranchProbability(1, SI.getNumCases() + 1); |
| Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); |
| } |
| |
| MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; |
| |
| // Cluster adjacent cases with the same destination. We do this at all |
| // optimization levels because it's cheap to do and will make codegen faster |
| // if there are many clusters. |
| sortAndRangeify(Clusters); |
| |
| // The branch probablity of the peeled case. |
| BranchProbability PeeledCaseProb = BranchProbability::getZero(); |
| MachineBasicBlock *PeeledSwitchMBB = |
| peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); |
| |
| // If there is only the default destination, jump there directly. |
| MachineBasicBlock *SwitchMBB = FuncInfo.MBB; |
| if (Clusters.empty()) { |
| assert(PeeledSwitchMBB == SwitchMBB); |
| SwitchMBB->addSuccessor(DefaultMBB); |
| if (DefaultMBB != NextBlock(SwitchMBB)) { |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, |
| getControlRoot(), DAG.getBasicBlock(DefaultMBB))); |
| } |
| return; |
| } |
| |
| SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); |
| SL->findBitTestClusters(Clusters, &SI); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Case clusters: "; |
| for (const CaseCluster &C : Clusters) { |
| if (C.Kind == CC_JumpTable) |
| dbgs() << "JT:"; |
| if (C.Kind == CC_BitTests) |
| dbgs() << "BT:"; |
| |
| C.Low->getValue().print(dbgs(), true); |
| if (C.Low != C.High) { |
| dbgs() << '-'; |
| C.High->getValue().print(dbgs(), true); |
| } |
| dbgs() << ' '; |
| } |
| dbgs() << '\n'; |
| }); |
| |
| assert(!Clusters.empty()); |
| SwitchWorkList WorkList; |
| CaseClusterIt First = Clusters.begin(); |
| CaseClusterIt Last = Clusters.end() - 1; |
| auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); |
| // Scale the branchprobability for DefaultMBB if the peel occurs and |
| // DefaultMBB is not replaced. |
| if (PeeledCaseProb != BranchProbability::getZero() && |
| DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) |
| DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); |
| WorkList.push_back( |
| {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); |
| |
| while (!WorkList.empty()) { |
| SwitchWorkListItem W = WorkList.back(); |
| WorkList.pop_back(); |
| unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; |
| |
| if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && |
| !DefaultMBB->getParent()->getFunction().hasMinSize()) { |
| // For optimized builds, lower large range as a balanced binary tree. |
| splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); |
| continue; |
| } |
| |
| lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); |
| } |
| } |
| |
| void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { |
| SDValue N = getValue(I.getOperand(0)); |
| setValue(&I, N); |
| } |