| // Copyright 2019 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "SpirvShader.hpp" |
| |
| #include "SamplerCore.hpp" // TODO: Figure out what's needed. |
| #include "Device/Config.hpp" |
| #include "System/Debug.hpp" |
| #include "System/Math.hpp" |
| #include "Vulkan/VkDescriptorSetLayout.hpp" |
| #include "Vulkan/VkDevice.hpp" |
| #include "Vulkan/VkImageView.hpp" |
| #include "Vulkan/VkSampler.hpp" |
| |
| #include <spirv/unified1/spirv.hpp> |
| |
| #include <climits> |
| #include <mutex> |
| |
| namespace sw { |
| |
| SpirvShader::ImageSampler *SpirvShader::getImageSampler(uint32_t inst, vk::SampledImageDescriptor const *imageDescriptor, const vk::Sampler *sampler) |
| { |
| ImageInstruction instruction(inst); |
| const auto samplerId = sampler ? sampler->id : 0; |
| ASSERT(imageDescriptor->imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch)); |
| ASSERT(imageDescriptor->device); |
| |
| vk::Device::SamplingRoutineCache::Key key = { inst, imageDescriptor->imageViewId, samplerId }; |
| |
| vk::Device::SamplingRoutineCache *cache = imageDescriptor->device->getSamplingRoutineCache(); |
| |
| auto createSamplingRoutine = [&](const vk::Device::SamplingRoutineCache::Key &key) { |
| auto type = imageDescriptor->type; |
| |
| Sampler samplerState = {}; |
| samplerState.textureType = type; |
| samplerState.textureFormat = imageDescriptor->format; |
| |
| samplerState.addressingModeU = convertAddressingMode(0, sampler, type); |
| samplerState.addressingModeV = convertAddressingMode(1, sampler, type); |
| samplerState.addressingModeW = convertAddressingMode(2, sampler, type); |
| |
| samplerState.mipmapFilter = convertMipmapMode(sampler); |
| samplerState.swizzle = imageDescriptor->swizzle; |
| samplerState.gatherComponent = instruction.gatherComponent; |
| |
| if(sampler) |
| { |
| samplerState.textureFilter = convertFilterMode(sampler, type, instruction); |
| samplerState.border = sampler->borderColor; |
| |
| samplerState.mipmapFilter = convertMipmapMode(sampler); |
| samplerState.highPrecisionFiltering = (sampler->filteringPrecision == VK_SAMPLER_FILTERING_PRECISION_MODE_HIGH_GOOGLE); |
| |
| samplerState.compareEnable = (sampler->compareEnable != VK_FALSE); |
| samplerState.compareOp = sampler->compareOp; |
| samplerState.unnormalizedCoordinates = (sampler->unnormalizedCoordinates != VK_FALSE); |
| |
| samplerState.ycbcrModel = sampler->ycbcrModel; |
| samplerState.studioSwing = sampler->studioSwing; |
| samplerState.swappedChroma = sampler->swappedChroma; |
| |
| samplerState.mipLodBias = sampler->mipLodBias; |
| samplerState.maxAnisotropy = sampler->maxAnisotropy; |
| samplerState.minLod = sampler->minLod; |
| samplerState.maxLod = sampler->maxLod; |
| } |
| else |
| { |
| // OpImageFetch does not take a sampler descriptor, but for VK_EXT_image_robustness |
| // requires replacing invalid texels with zero. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| samplerState.border = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; |
| } |
| |
| return emitSamplerRoutine(instruction, samplerState); |
| }; |
| |
| auto routine = cache->getOrCreate(key, createSamplingRoutine); |
| |
| return (ImageSampler *)(routine->getEntry()); |
| } |
| |
| std::shared_ptr<rr::Routine> SpirvShader::emitSamplerRoutine(ImageInstruction instruction, const Sampler &samplerState) |
| { |
| // TODO(b/129523279): Hold a separate mutex lock for the sampler being built. |
| rr::Function<Void(Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function; |
| { |
| Pointer<Byte> texture = function.Arg<0>(); |
| Pointer<SIMD::Float> in = function.Arg<1>(); |
| Pointer<SIMD::Float> out = function.Arg<2>(); |
| Pointer<Byte> constants = function.Arg<3>(); |
| |
| SIMD::Float uvwa[4] = { 0, 0, 0, 0 }; |
| SIMD::Float dRef = 0; |
| SIMD::Float lodOrBias = 0; // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod). |
| Vector4f dsx = { 0, 0, 0, 0 }; |
| Vector4f dsy = { 0, 0, 0, 0 }; |
| Vector4i offset = { 0, 0, 0, 0 }; |
| SIMD::Int sampleId = 0; |
| SamplerFunction samplerFunction = instruction.getSamplerFunction(); |
| |
| uint32_t i = 0; |
| for(; i < instruction.coordinates; i++) |
| { |
| uvwa[i] = in[i]; |
| } |
| |
| if(instruction.isDref()) |
| { |
| dRef = in[i]; |
| i++; |
| } |
| |
| if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch) |
| { |
| lodOrBias = in[i]; |
| i++; |
| } |
| else if(instruction.samplerMethod == Grad) |
| { |
| for(uint32_t j = 0; j < instruction.grad; j++, i++) |
| { |
| dsx[j] = in[i]; |
| } |
| |
| for(uint32_t j = 0; j < instruction.grad; j++, i++) |
| { |
| dsy[j] = in[i]; |
| } |
| } |
| |
| for(uint32_t j = 0; j < instruction.offset; j++, i++) |
| { |
| offset[j] = As<SIMD::Int>(in[i]); |
| } |
| |
| if(instruction.sample) |
| { |
| sampleId = As<SIMD::Int>(in[i]); |
| } |
| |
| SamplerCore s(constants, samplerState); |
| |
| // For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes |
| // a single LOD per four elements, so we sample the image again for each LOD separately. |
| if(samplerFunction.method == Lod || samplerFunction.method == Grad) // TODO(b/133868964): Also handle divergent Bias and Fetch with Lod. |
| { |
| auto lod = Pointer<Float>(&lodOrBias); |
| |
| For(Int i = 0, i < SIMD::Width, i++) |
| { |
| SIMD::Float dPdx; |
| SIMD::Float dPdy; |
| |
| dPdx.x = Pointer<Float>(&dsx.x)[i]; |
| dPdx.y = Pointer<Float>(&dsx.y)[i]; |
| dPdx.z = Pointer<Float>(&dsx.z)[i]; |
| |
| dPdy.x = Pointer<Float>(&dsy.x)[i]; |
| dPdy.y = Pointer<Float>(&dsy.y)[i]; |
| dPdy.z = Pointer<Float>(&dsy.z)[i]; |
| |
| Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lod[i], dPdx, dPdy, offset, sampleId, samplerFunction); |
| |
| Pointer<Float> rgba = out; |
| rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i]; |
| rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i]; |
| rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i]; |
| rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i]; |
| } |
| } |
| else |
| { |
| Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lodOrBias.x, (dsx.x), (dsy.x), offset, sampleId, samplerFunction); |
| |
| Pointer<SIMD::Float> rgba = out; |
| rgba[0] = sample.x; |
| rgba[1] = sample.y; |
| rgba[2] = sample.z; |
| rgba[3] = sample.w; |
| } |
| } |
| |
| return function("sampler"); |
| } |
| |
| sw::FilterType SpirvShader::convertFilterMode(const vk::Sampler *sampler, VkImageViewType imageViewType, ImageInstruction instruction) |
| { |
| if(instruction.samplerMethod == Gather) |
| { |
| return FILTER_GATHER; |
| } |
| |
| if(instruction.samplerMethod == Fetch) |
| { |
| return FILTER_POINT; |
| } |
| |
| if(sampler->anisotropyEnable != VK_FALSE) |
| { |
| if(imageViewType == VK_IMAGE_VIEW_TYPE_2D || imageViewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY) |
| { |
| if(instruction.samplerMethod != Lod) // TODO(b/162926129): Support anisotropic filtering with explicit LOD. |
| { |
| return FILTER_ANISOTROPIC; |
| } |
| } |
| } |
| |
| switch(sampler->magFilter) |
| { |
| case VK_FILTER_NEAREST: |
| switch(sampler->minFilter) |
| { |
| case VK_FILTER_NEAREST: return FILTER_POINT; |
| case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT; |
| default: |
| UNSUPPORTED("minFilter %d", sampler->minFilter); |
| return FILTER_POINT; |
| } |
| break; |
| case VK_FILTER_LINEAR: |
| switch(sampler->minFilter) |
| { |
| case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR; |
| case VK_FILTER_LINEAR: return FILTER_LINEAR; |
| default: |
| UNSUPPORTED("minFilter %d", sampler->minFilter); |
| return FILTER_POINT; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| UNSUPPORTED("magFilter %d", sampler->magFilter); |
| return FILTER_POINT; |
| } |
| |
| sw::MipmapType SpirvShader::convertMipmapMode(const vk::Sampler *sampler) |
| { |
| if(!sampler) |
| { |
| return MIPMAP_POINT; // Samplerless operations (OpImageFetch) can take an integer Lod operand. |
| } |
| |
| if(sampler->ycbcrModel != VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) |
| { |
| // TODO(b/151263485): Check image view level count instead. |
| return MIPMAP_NONE; |
| } |
| |
| switch(sampler->mipmapMode) |
| { |
| case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT; |
| case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR; |
| default: |
| UNSUPPORTED("mipmapMode %d", sampler->mipmapMode); |
| return MIPMAP_POINT; |
| } |
| } |
| |
| sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, const vk::Sampler *sampler, VkImageViewType imageViewType) |
| { |
| switch(imageViewType) |
| { |
| case VK_IMAGE_VIEW_TYPE_1D: |
| case VK_IMAGE_VIEW_TYPE_1D_ARRAY: |
| if(coordinateIndex >= 1) |
| { |
| return ADDRESSING_UNUSED; |
| } |
| break; |
| case VK_IMAGE_VIEW_TYPE_2D: |
| case VK_IMAGE_VIEW_TYPE_2D_ARRAY: |
| if(coordinateIndex == 2) |
| { |
| return ADDRESSING_UNUSED; |
| } |
| break; |
| |
| case VK_IMAGE_VIEW_TYPE_3D: |
| break; |
| |
| case VK_IMAGE_VIEW_TYPE_CUBE: |
| case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: |
| if(coordinateIndex <= 1) // Cube faces themselves are addressed as 2D images. |
| { |
| // Vulkan 1.1 spec: |
| // "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then |
| // VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges |
| // is performed as described earlier in the Cube map edge handling section." |
| // This corresponds with our 'SEAMLESS' addressing mode. |
| return ADDRESSING_SEAMLESS; |
| } |
| else // coordinateIndex == 2 |
| { |
| // The cube face is an index into 2D array layers. |
| return ADDRESSING_CUBEFACE; |
| } |
| break; |
| |
| default: |
| UNSUPPORTED("imageViewType %d", imageViewType); |
| return ADDRESSING_WRAP; |
| } |
| |
| if(!sampler) |
| { |
| // OpImageFetch does not take a sampler descriptor, but still needs a valid |
| // addressing mode that prevents out-of-bounds accesses: |
| // "The value returned by a read of an invalid texel is undefined, unless that |
| // read operation is from a buffer resource and the robustBufferAccess feature |
| // is enabled. In that case, an invalid texel is replaced as described by the |
| // robustBufferAccess feature." - Vulkan 1.1 |
| |
| // VK_EXT_image_robustness requires nullifying out-of-bounds accesses. |
| // ADDRESSING_BORDER causes texel replacement to be performed. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| return ADDRESSING_BORDER; |
| } |
| |
| VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| switch(coordinateIndex) |
| { |
| case 0: addressMode = sampler->addressModeU; break; |
| case 1: addressMode = sampler->addressModeV; break; |
| case 2: addressMode = sampler->addressModeW; break; |
| default: UNSUPPORTED("coordinateIndex: %d", coordinateIndex); |
| } |
| |
| switch(addressMode) |
| { |
| case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP; |
| case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR; |
| case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP; |
| case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER; |
| case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE; |
| default: |
| UNSUPPORTED("addressMode %d", addressMode); |
| return ADDRESSING_WRAP; |
| } |
| } |
| |
| } // namespace sw |