| //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run |
| // both before and after the DAG is legalized. |
| // |
| // This pass is not a substitute for the LLVM IR instcombine pass. This pass is |
| // primarily intended to handle simplification opportunities that are implicit |
| // in the LLVM IR and exposed by the various codegen lowering phases. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IntervalMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/CodeGen/DAGCombine.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <optional> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <variant> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dagcombine" |
| |
| STATISTIC(NodesCombined , "Number of dag nodes combined"); |
| STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); |
| STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); |
| STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); |
| STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); |
| STATISTIC(SlicedLoads, "Number of load sliced"); |
| STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); |
| |
| static cl::opt<bool> |
| CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, |
| cl::desc("Enable DAG combiner's use of IR alias analysis")); |
| |
| static cl::opt<bool> |
| UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), |
| cl::desc("Enable DAG combiner's use of TBAA")); |
| |
| #ifndef NDEBUG |
| static cl::opt<std::string> |
| CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, |
| cl::desc("Only use DAG-combiner alias analysis in this" |
| " function")); |
| #endif |
| |
| /// Hidden option to stress test load slicing, i.e., when this option |
| /// is enabled, load slicing bypasses most of its profitability guards. |
| static cl::opt<bool> |
| StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, |
| cl::desc("Bypass the profitability model of load slicing"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner may split indexing from loads")); |
| |
| static cl::opt<bool> |
| EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner enable merging multiple stores " |
| "into a wider store")); |
| |
| static cl::opt<unsigned> TokenFactorInlineLimit( |
| "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), |
| cl::desc("Limit the number of operands to inline for Token Factors")); |
| |
| static cl::opt<unsigned> StoreMergeDependenceLimit( |
| "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), |
| cl::desc("Limit the number of times for the same StoreNode and RootNode " |
| "to bail out in store merging dependence check")); |
| |
| static cl::opt<bool> EnableReduceLoadOpStoreWidth( |
| "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner enable reducing the width of load/op/store " |
| "sequence")); |
| |
| static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( |
| "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner enable load/<replace bytes>/store with " |
| "a narrower store")); |
| |
| static cl::opt<bool> EnableVectorFCopySignExtendRound( |
| "combiner-vector-fcopysign-extend-round", cl::Hidden, cl::init(false), |
| cl::desc( |
| "Enable merging extends and rounds into FCOPYSIGN on vector types")); |
| |
| namespace { |
| |
| class DAGCombiner { |
| SelectionDAG &DAG; |
| const TargetLowering &TLI; |
| const SelectionDAGTargetInfo *STI; |
| CombineLevel Level = BeforeLegalizeTypes; |
| CodeGenOpt::Level OptLevel; |
| bool LegalDAG = false; |
| bool LegalOperations = false; |
| bool LegalTypes = false; |
| bool ForCodeSize; |
| bool DisableGenericCombines; |
| |
| /// Worklist of all of the nodes that need to be simplified. |
| /// |
| /// This must behave as a stack -- new nodes to process are pushed onto the |
| /// back and when processing we pop off of the back. |
| /// |
| /// The worklist will not contain duplicates but may contain null entries |
| /// due to nodes being deleted from the underlying DAG. |
| SmallVector<SDNode *, 64> Worklist; |
| |
| /// Mapping from an SDNode to its position on the worklist. |
| /// |
| /// This is used to find and remove nodes from the worklist (by nulling |
| /// them) when they are deleted from the underlying DAG. It relies on |
| /// stable indices of nodes within the worklist. |
| DenseMap<SDNode *, unsigned> WorklistMap; |
| /// This records all nodes attempted to add to the worklist since we |
| /// considered a new worklist entry. As we keep do not add duplicate nodes |
| /// in the worklist, this is different from the tail of the worklist. |
| SmallSetVector<SDNode *, 32> PruningList; |
| |
| /// Set of nodes which have been combined (at least once). |
| /// |
| /// This is used to allow us to reliably add any operands of a DAG node |
| /// which have not yet been combined to the worklist. |
| SmallPtrSet<SDNode *, 32> CombinedNodes; |
| |
| /// Map from candidate StoreNode to the pair of RootNode and count. |
| /// The count is used to track how many times we have seen the StoreNode |
| /// with the same RootNode bail out in dependence check. If we have seen |
| /// the bail out for the same pair many times over a limit, we won't |
| /// consider the StoreNode with the same RootNode as store merging |
| /// candidate again. |
| DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; |
| |
| // AA - Used for DAG load/store alias analysis. |
| AliasAnalysis *AA; |
| |
| /// When an instruction is simplified, add all users of the instruction to |
| /// the work lists because they might get more simplified now. |
| void AddUsersToWorklist(SDNode *N) { |
| for (SDNode *Node : N->uses()) |
| AddToWorklist(Node); |
| } |
| |
| /// Convenient shorthand to add a node and all of its user to the worklist. |
| void AddToWorklistWithUsers(SDNode *N) { |
| AddUsersToWorklist(N); |
| AddToWorklist(N); |
| } |
| |
| // Prune potentially dangling nodes. This is called after |
| // any visit to a node, but should also be called during a visit after any |
| // failed combine which may have created a DAG node. |
| void clearAddedDanglingWorklistEntries() { |
| // Check any nodes added to the worklist to see if they are prunable. |
| while (!PruningList.empty()) { |
| auto *N = PruningList.pop_back_val(); |
| if (N->use_empty()) |
| recursivelyDeleteUnusedNodes(N); |
| } |
| } |
| |
| SDNode *getNextWorklistEntry() { |
| // Before we do any work, remove nodes that are not in use. |
| clearAddedDanglingWorklistEntries(); |
| SDNode *N = nullptr; |
| // The Worklist holds the SDNodes in order, but it may contain null |
| // entries. |
| while (!N && !Worklist.empty()) { |
| N = Worklist.pop_back_val(); |
| } |
| |
| if (N) { |
| bool GoodWorklistEntry = WorklistMap.erase(N); |
| (void)GoodWorklistEntry; |
| assert(GoodWorklistEntry && |
| "Found a worklist entry without a corresponding map entry!"); |
| } |
| return N; |
| } |
| |
| /// Call the node-specific routine that folds each particular type of node. |
| SDValue visit(SDNode *N); |
| |
| public: |
| DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) |
| : DAG(D), TLI(D.getTargetLoweringInfo()), |
| STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL), AA(AA) { |
| ForCodeSize = DAG.shouldOptForSize(); |
| DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); |
| |
| MaximumLegalStoreInBits = 0; |
| // We use the minimum store size here, since that's all we can guarantee |
| // for the scalable vector types. |
| for (MVT VT : MVT::all_valuetypes()) |
| if (EVT(VT).isSimple() && VT != MVT::Other && |
| TLI.isTypeLegal(EVT(VT)) && |
| VT.getSizeInBits().getKnownMinValue() >= MaximumLegalStoreInBits) |
| MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinValue(); |
| } |
| |
| void ConsiderForPruning(SDNode *N) { |
| // Mark this for potential pruning. |
| PruningList.insert(N); |
| } |
| |
| /// Add to the worklist making sure its instance is at the back (next to be |
| /// processed.) |
| void AddToWorklist(SDNode *N) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Deleted Node added to Worklist"); |
| |
| // Skip handle nodes as they can't usefully be combined and confuse the |
| // zero-use deletion strategy. |
| if (N->getOpcode() == ISD::HANDLENODE) |
| return; |
| |
| ConsiderForPruning(N); |
| |
| if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) |
| Worklist.push_back(N); |
| } |
| |
| /// Remove all instances of N from the worklist. |
| void removeFromWorklist(SDNode *N) { |
| CombinedNodes.erase(N); |
| PruningList.remove(N); |
| StoreRootCountMap.erase(N); |
| |
| auto It = WorklistMap.find(N); |
| if (It == WorklistMap.end()) |
| return; // Not in the worklist. |
| |
| // Null out the entry rather than erasing it to avoid a linear operation. |
| Worklist[It->second] = nullptr; |
| WorklistMap.erase(It); |
| } |
| |
| void deleteAndRecombine(SDNode *N); |
| bool recursivelyDeleteUnusedNodes(SDNode *N); |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, |
| bool AddTo = true); |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { |
| return CombineTo(N, &Res, 1, AddTo); |
| } |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, |
| bool AddTo = true) { |
| SDValue To[] = { Res0, Res1 }; |
| return CombineTo(N, To, 2, AddTo); |
| } |
| |
| void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); |
| |
| private: |
| unsigned MaximumLegalStoreInBits; |
| |
| /// Check the specified integer node value to see if it can be simplified or |
| /// if things it uses can be simplified by bit propagation. |
| /// If so, return true. |
| bool SimplifyDemandedBits(SDValue Op) { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| APInt DemandedBits = APInt::getAllOnes(BitWidth); |
| return SimplifyDemandedBits(Op, DemandedBits); |
| } |
| |
| bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| KnownBits Known; |
| if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| /// Check the specified vector node value to see if it can be simplified or |
| /// if things it uses can be simplified as it only uses some of the |
| /// elements. If so, return true. |
| bool SimplifyDemandedVectorElts(SDValue Op) { |
| // TODO: For now just pretend it cannot be simplified. |
| if (Op.getValueType().isScalableVector()) |
| return false; |
| |
| unsigned NumElts = Op.getValueType().getVectorNumElements(); |
| APInt DemandedElts = APInt::getAllOnes(NumElts); |
| return SimplifyDemandedVectorElts(Op, DemandedElts); |
| } |
| |
| bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| const APInt &DemandedElts, |
| bool AssumeSingleUse = false); |
| bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, |
| bool AssumeSingleUse = false); |
| |
| bool CombineToPreIndexedLoadStore(SDNode *N); |
| bool CombineToPostIndexedLoadStore(SDNode *N); |
| SDValue SplitIndexingFromLoad(LoadSDNode *LD); |
| bool SliceUpLoad(SDNode *N); |
| |
| // Scalars have size 0 to distinguish from singleton vectors. |
| SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); |
| bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); |
| bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); |
| |
| /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed |
| /// load. |
| /// |
| /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. |
| /// \param InVecVT type of the input vector to EVE with bitcasts resolved. |
| /// \param EltNo index of the vector element to load. |
| /// \param OriginalLoad load that EVE came from to be replaced. |
| /// \returns EVE on success SDValue() on failure. |
| SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, |
| SDValue EltNo, |
| LoadSDNode *OriginalLoad); |
| void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); |
| SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); |
| SDValue SExtPromoteOperand(SDValue Op, EVT PVT); |
| SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); |
| SDValue PromoteIntBinOp(SDValue Op); |
| SDValue PromoteIntShiftOp(SDValue Op); |
| SDValue PromoteExtend(SDValue Op); |
| bool PromoteLoad(SDValue Op); |
| |
| SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, |
| SDValue RHS, SDValue True, SDValue False, |
| ISD::CondCode CC); |
| |
| /// Call the node-specific routine that knows how to fold each |
| /// particular type of node. If that doesn't do anything, try the |
| /// target-specific DAG combines. |
| SDValue combine(SDNode *N); |
| |
| // Visitation implementation - Implement dag node combining for different |
| // node types. The semantics are as follows: |
| // Return Value: |
| // SDValue.getNode() == 0 - No change was made |
| // SDValue.getNode() == N - N was replaced, is dead and has been handled. |
| // otherwise - N should be replaced by the returned Operand. |
| // |
| SDValue visitTokenFactor(SDNode *N); |
| SDValue visitMERGE_VALUES(SDNode *N); |
| SDValue visitADD(SDNode *N); |
| SDValue visitADDLike(SDNode *N); |
| SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); |
| SDValue visitSUB(SDNode *N); |
| SDValue visitADDSAT(SDNode *N); |
| SDValue visitSUBSAT(SDNode *N); |
| SDValue visitADDC(SDNode *N); |
| SDValue visitADDO(SDNode *N); |
| SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitSUBC(SDNode *N); |
| SDValue visitSUBO(SDNode *N); |
| SDValue visitADDE(SDNode *N); |
| SDValue visitADDCARRY(SDNode *N); |
| SDValue visitSADDO_CARRY(SDNode *N); |
| SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); |
| SDValue visitSUBE(SDNode *N); |
| SDValue visitSUBCARRY(SDNode *N); |
| SDValue visitSSUBO_CARRY(SDNode *N); |
| SDValue visitMUL(SDNode *N); |
| SDValue visitMULFIX(SDNode *N); |
| SDValue useDivRem(SDNode *N); |
| SDValue visitSDIV(SDNode *N); |
| SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitUDIV(SDNode *N); |
| SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitREM(SDNode *N); |
| SDValue visitMULHU(SDNode *N); |
| SDValue visitMULHS(SDNode *N); |
| SDValue visitAVG(SDNode *N); |
| SDValue visitSMUL_LOHI(SDNode *N); |
| SDValue visitUMUL_LOHI(SDNode *N); |
| SDValue visitMULO(SDNode *N); |
| SDValue visitIMINMAX(SDNode *N); |
| SDValue visitAND(SDNode *N); |
| SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitOR(SDNode *N); |
| SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitXOR(SDNode *N); |
| SDValue SimplifyVCastOp(SDNode *N, const SDLoc &DL); |
| SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL); |
| SDValue visitSHL(SDNode *N); |
| SDValue visitSRA(SDNode *N); |
| SDValue visitSRL(SDNode *N); |
| SDValue visitFunnelShift(SDNode *N); |
| SDValue visitSHLSAT(SDNode *N); |
| SDValue visitRotate(SDNode *N); |
| SDValue visitABS(SDNode *N); |
| SDValue visitBSWAP(SDNode *N); |
| SDValue visitBITREVERSE(SDNode *N); |
| SDValue visitCTLZ(SDNode *N); |
| SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); |
| SDValue visitCTTZ(SDNode *N); |
| SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); |
| SDValue visitCTPOP(SDNode *N); |
| SDValue visitSELECT(SDNode *N); |
| SDValue visitVSELECT(SDNode *N); |
| SDValue visitSELECT_CC(SDNode *N); |
| SDValue visitSETCC(SDNode *N); |
| SDValue visitSETCCCARRY(SDNode *N); |
| SDValue visitSIGN_EXTEND(SDNode *N); |
| SDValue visitZERO_EXTEND(SDNode *N); |
| SDValue visitANY_EXTEND(SDNode *N); |
| SDValue visitAssertExt(SDNode *N); |
| SDValue visitAssertAlign(SDNode *N); |
| SDValue visitSIGN_EXTEND_INREG(SDNode *N); |
| SDValue visitEXTEND_VECTOR_INREG(SDNode *N); |
| SDValue visitTRUNCATE(SDNode *N); |
| SDValue visitBITCAST(SDNode *N); |
| SDValue visitFREEZE(SDNode *N); |
| SDValue visitBUILD_PAIR(SDNode *N); |
| SDValue visitFADD(SDNode *N); |
| SDValue visitSTRICT_FADD(SDNode *N); |
| SDValue visitFSUB(SDNode *N); |
| SDValue visitFMUL(SDNode *N); |
| SDValue visitFMA(SDNode *N); |
| SDValue visitFDIV(SDNode *N); |
| SDValue visitFREM(SDNode *N); |
| SDValue visitFSQRT(SDNode *N); |
| SDValue visitFCOPYSIGN(SDNode *N); |
| SDValue visitFPOW(SDNode *N); |
| SDValue visitSINT_TO_FP(SDNode *N); |
| SDValue visitUINT_TO_FP(SDNode *N); |
| SDValue visitFP_TO_SINT(SDNode *N); |
| SDValue visitFP_TO_UINT(SDNode *N); |
| SDValue visitFP_ROUND(SDNode *N); |
| SDValue visitFP_EXTEND(SDNode *N); |
| SDValue visitFNEG(SDNode *N); |
| SDValue visitFABS(SDNode *N); |
| SDValue visitFCEIL(SDNode *N); |
| SDValue visitFTRUNC(SDNode *N); |
| SDValue visitFFLOOR(SDNode *N); |
| SDValue visitFMinMax(SDNode *N); |
| SDValue visitBRCOND(SDNode *N); |
| SDValue visitBR_CC(SDNode *N); |
| SDValue visitLOAD(SDNode *N); |
| |
| SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); |
| SDValue replaceStoreOfFPConstant(StoreSDNode *ST); |
| |
| bool refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(SDNode *N); |
| |
| SDValue visitSTORE(SDNode *N); |
| SDValue visitLIFETIME_END(SDNode *N); |
| SDValue visitINSERT_VECTOR_ELT(SDNode *N); |
| SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue visitBUILD_VECTOR(SDNode *N); |
| SDValue visitCONCAT_VECTORS(SDNode *N); |
| SDValue visitEXTRACT_SUBVECTOR(SDNode *N); |
| SDValue visitVECTOR_SHUFFLE(SDNode *N); |
| SDValue visitSCALAR_TO_VECTOR(SDNode *N); |
| SDValue visitINSERT_SUBVECTOR(SDNode *N); |
| SDValue visitMLOAD(SDNode *N); |
| SDValue visitMSTORE(SDNode *N); |
| SDValue visitMGATHER(SDNode *N); |
| SDValue visitMSCATTER(SDNode *N); |
| SDValue visitVPGATHER(SDNode *N); |
| SDValue visitVPSCATTER(SDNode *N); |
| SDValue visitFP_TO_FP16(SDNode *N); |
| SDValue visitFP16_TO_FP(SDNode *N); |
| SDValue visitFP_TO_BF16(SDNode *N); |
| SDValue visitVECREDUCE(SDNode *N); |
| SDValue visitVPOp(SDNode *N); |
| |
| SDValue visitFADDForFMACombine(SDNode *N); |
| SDValue visitFSUBForFMACombine(SDNode *N); |
| SDValue visitFMULForFMADistributiveCombine(SDNode *N); |
| |
| SDValue XformToShuffleWithZero(SDNode *N); |
| bool reassociationCanBreakAddressingModePattern(unsigned Opc, |
| const SDLoc &DL, |
| SDNode *N, |
| SDValue N0, |
| SDValue N1); |
| SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1); |
| SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1, SDNodeFlags Flags); |
| |
| SDValue visitShiftByConstant(SDNode *N); |
| |
| SDValue foldSelectOfConstants(SDNode *N); |
| SDValue foldVSelectOfConstants(SDNode *N); |
| SDValue foldBinOpIntoSelect(SDNode *BO); |
| bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); |
| SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); |
| SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); |
| SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC, |
| bool NotExtCompare = false); |
| SDValue convertSelectOfFPConstantsToLoadOffset( |
| const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, |
| ISD::CondCode CC); |
| SDValue foldSignChangeInBitcast(SDNode *N); |
| SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC); |
| SDValue foldSelectOfBinops(SDNode *N); |
| SDValue foldSextSetcc(SDNode *N); |
| SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, |
| const SDLoc &DL); |
| SDValue foldSubToUSubSat(EVT DstVT, SDNode *N); |
| SDValue foldABSToABD(SDNode *N); |
| SDValue unfoldMaskedMerge(SDNode *N); |
| SDValue unfoldExtremeBitClearingToShifts(SDNode *N); |
| SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, |
| const SDLoc &DL, bool foldBooleans); |
| SDValue rebuildSetCC(SDValue N); |
| |
| bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, |
| SDValue &CC, bool MatchStrict = false) const; |
| bool isOneUseSetCC(SDValue N) const; |
| |
| SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp); |
| SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); |
| SDValue CombineExtLoad(SDNode *N); |
| SDValue CombineZExtLogicopShiftLoad(SDNode *N); |
| SDValue combineRepeatedFPDivisors(SDNode *N); |
| SDValue mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex); |
| SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); |
| SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); |
| SDValue BuildSDIV(SDNode *N); |
| SDValue BuildSDIVPow2(SDNode *N); |
| SDValue BuildUDIV(SDNode *N); |
| SDValue BuildSREMPow2(SDNode *N); |
| SDValue buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N); |
| SDValue BuildLogBase2(SDValue V, const SDLoc &DL); |
| SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); |
| SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); |
| SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal); |
| SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal); |
| SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, |
| bool DemandHighBits = true); |
| SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); |
| SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, |
| SDValue InnerPos, SDValue InnerNeg, bool HasPos, |
| unsigned PosOpcode, unsigned NegOpcode, |
| const SDLoc &DL); |
| SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, |
| SDValue InnerPos, SDValue InnerNeg, bool HasPos, |
| unsigned PosOpcode, unsigned NegOpcode, |
| const SDLoc &DL); |
| SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); |
| SDValue MatchLoadCombine(SDNode *N); |
| SDValue mergeTruncStores(StoreSDNode *N); |
| SDValue reduceLoadWidth(SDNode *N); |
| SDValue ReduceLoadOpStoreWidth(SDNode *N); |
| SDValue splitMergedValStore(StoreSDNode *ST); |
| SDValue TransformFPLoadStorePair(SDNode *N); |
| SDValue convertBuildVecZextToZext(SDNode *N); |
| SDValue convertBuildVecZextToBuildVecWithZeros(SDNode *N); |
| SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); |
| SDValue reduceBuildVecTruncToBitCast(SDNode *N); |
| SDValue reduceBuildVecToShuffle(SDNode *N); |
| SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, |
| ArrayRef<int> VectorMask, SDValue VecIn1, |
| SDValue VecIn2, unsigned LeftIdx, |
| bool DidSplitVec); |
| SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); |
| |
| /// Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void GatherAllAliases(SDNode *N, SDValue OriginalChain, |
| SmallVectorImpl<SDValue> &Aliases); |
| |
| /// Return true if there is any possibility that the two addresses overlap. |
| bool mayAlias(SDNode *Op0, SDNode *Op1) const; |
| |
| /// Walk up chain skipping non-aliasing memory nodes, looking for a better |
| /// chain (aliasing node.) |
| SDValue FindBetterChain(SDNode *N, SDValue Chain); |
| |
| /// Try to replace a store and any possibly adjacent stores on |
| /// consecutive chains with better chains. Return true only if St is |
| /// replaced. |
| /// |
| /// Notice that other chains may still be replaced even if the function |
| /// returns false. |
| bool findBetterNeighborChains(StoreSDNode *St); |
| |
| // Helper for findBetterNeighborChains. Walk up store chain add additional |
| // chained stores that do not overlap and can be parallelized. |
| bool parallelizeChainedStores(StoreSDNode *St); |
| |
| /// Holds a pointer to an LSBaseSDNode as well as information on where it |
| /// is located in a sequence of memory operations connected by a chain. |
| struct MemOpLink { |
| // Ptr to the mem node. |
| LSBaseSDNode *MemNode; |
| |
| // Offset from the base ptr. |
| int64_t OffsetFromBase; |
| |
| MemOpLink(LSBaseSDNode *N, int64_t Offset) |
| : MemNode(N), OffsetFromBase(Offset) {} |
| }; |
| |
| // Classify the origin of a stored value. |
| enum class StoreSource { Unknown, Constant, Extract, Load }; |
| StoreSource getStoreSource(SDValue StoreVal) { |
| switch (StoreVal.getOpcode()) { |
| case ISD::Constant: |
| case ISD::ConstantFP: |
| return StoreSource::Constant; |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::EXTRACT_SUBVECTOR: |
| return StoreSource::Extract; |
| case ISD::LOAD: |
| return StoreSource::Load; |
| default: |
| return StoreSource::Unknown; |
| } |
| } |
| |
| /// This is a helper function for visitMUL to check the profitability |
| /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). |
| /// MulNode is the original multiply, AddNode is (add x, c1), |
| /// and ConstNode is c2. |
| bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode, |
| SDValue ConstNode); |
| |
| /// This is a helper function for visitAND and visitZERO_EXTEND. Returns |
| /// true if the (and (load x) c) pattern matches an extload. ExtVT returns |
| /// the type of the loaded value to be extended. |
| bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, |
| EVT LoadResultTy, EVT &ExtVT); |
| |
| /// Helper function to calculate whether the given Load/Store can have its |
| /// width reduced to ExtVT. |
| bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, |
| EVT &MemVT, unsigned ShAmt = 0); |
| |
| /// Used by BackwardsPropagateMask to find suitable loads. |
| bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, |
| SmallPtrSetImpl<SDNode*> &NodesWithConsts, |
| ConstantSDNode *Mask, SDNode *&NodeToMask); |
| /// Attempt to propagate a given AND node back to load leaves so that they |
| /// can be combined into narrow loads. |
| bool BackwardsPropagateMask(SDNode *N); |
| |
| /// Helper function for mergeConsecutiveStores which merges the component |
| /// store chains. |
| SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumStores); |
| |
| /// This is a helper function for mergeConsecutiveStores. When the source |
| /// elements of the consecutive stores are all constants or all extracted |
| /// vector elements, try to merge them into one larger store introducing |
| /// bitcasts if necessary. \return True if a merged store was created. |
| bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, |
| EVT MemVT, unsigned NumStores, |
| bool IsConstantSrc, bool UseVector, |
| bool UseTrunc); |
| |
| /// This is a helper function for mergeConsecutiveStores. Stores that |
| /// potentially may be merged with St are placed in StoreNodes. RootNode is |
| /// a chain predecessor to all store candidates. |
| void getStoreMergeCandidates(StoreSDNode *St, |
| SmallVectorImpl<MemOpLink> &StoreNodes, |
| SDNode *&Root); |
| |
| /// Helper function for mergeConsecutiveStores. Checks if candidate stores |
| /// have indirect dependency through their operands. RootNode is the |
| /// predecessor to all stores calculated by getStoreMergeCandidates and is |
| /// used to prune the dependency check. \return True if safe to merge. |
| bool checkMergeStoreCandidatesForDependencies( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, |
| SDNode *RootNode); |
| |
| /// This is a helper function for mergeConsecutiveStores. Given a list of |
| /// store candidates, find the first N that are consecutive in memory. |
| /// Returns 0 if there are not at least 2 consecutive stores to try merging. |
| unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, |
| int64_t ElementSizeBytes) const; |
| |
| /// This is a helper function for mergeConsecutiveStores. It is used for |
| /// store chains that are composed entirely of constant values. |
| bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumConsecutiveStores, |
| EVT MemVT, SDNode *Root, bool AllowVectors); |
| |
| /// This is a helper function for mergeConsecutiveStores. It is used for |
| /// store chains that are composed entirely of extracted vector elements. |
| /// When extracting multiple vector elements, try to store them in one |
| /// vector store rather than a sequence of scalar stores. |
| bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumConsecutiveStores, EVT MemVT, |
| SDNode *Root); |
| |
| /// This is a helper function for mergeConsecutiveStores. It is used for |
| /// store chains that are composed entirely of loaded values. |
| bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumConsecutiveStores, EVT MemVT, |
| SDNode *Root, bool AllowVectors, |
| bool IsNonTemporalStore, bool IsNonTemporalLoad); |
| |
| /// Merge consecutive store operations into a wide store. |
| /// This optimization uses wide integers or vectors when possible. |
| /// \return true if stores were merged. |
| bool mergeConsecutiveStores(StoreSDNode *St); |
| |
| /// Try to transform a truncation where C is a constant: |
| /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) |
| /// |
| /// \p N needs to be a truncation and its first operand an AND. Other |
| /// requirements are checked by the function (e.g. that trunc is |
| /// single-use) and if missed an empty SDValue is returned. |
| SDValue distributeTruncateThroughAnd(SDNode *N); |
| |
| /// Helper function to determine whether the target supports operation |
| /// given by \p Opcode for type \p VT, that is, whether the operation |
| /// is legal or custom before legalizing operations, and whether is |
| /// legal (but not custom) after legalization. |
| bool hasOperation(unsigned Opcode, EVT VT) { |
| return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); |
| } |
| |
| public: |
| /// Runs the dag combiner on all nodes in the work list |
| void Run(CombineLevel AtLevel); |
| |
| SelectionDAG &getDAG() const { return DAG; } |
| |
| /// Returns a type large enough to hold any valid shift amount - before type |
| /// legalization these can be huge. |
| EVT getShiftAmountTy(EVT LHSTy) { |
| assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); |
| return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); |
| } |
| |
| /// This method returns true if we are running before type legalization or |
| /// if the specified VT is legal. |
| bool isTypeLegal(const EVT &VT) { |
| if (!LegalTypes) return true; |
| return TLI.isTypeLegal(VT); |
| } |
| |
| /// Convenience wrapper around TargetLowering::getSetCCResultType |
| EVT getSetCCResultType(EVT VT) const { |
| return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| } |
| |
| void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, |
| SDValue OrigLoad, SDValue ExtLoad, |
| ISD::NodeType ExtType); |
| }; |
| |
| /// This class is a DAGUpdateListener that removes any deleted |
| /// nodes from the worklist. |
| class WorklistRemover : public SelectionDAG::DAGUpdateListener { |
| DAGCombiner &DC; |
| |
| public: |
| explicit WorklistRemover(DAGCombiner &dc) |
| : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { |
| DC.removeFromWorklist(N); |
| } |
| }; |
| |
| class WorklistInserter : public SelectionDAG::DAGUpdateListener { |
| DAGCombiner &DC; |
| |
| public: |
| explicit WorklistInserter(DAGCombiner &dc) |
| : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} |
| |
| // FIXME: Ideally we could add N to the worklist, but this causes exponential |
| // compile time costs in large DAGs, e.g. Halide. |
| void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering::DAGCombinerInfo implementation |
| //===----------------------------------------------------------------------===// |
| |
| void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { |
| ((DAGCombiner*)DC)->AddToWorklist(N); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDValue Res, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); |
| } |
| |
| bool TargetLowering::DAGCombinerInfo:: |
| recursivelyDeleteUnusedNodes(SDNode *N) { |
| return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); |
| } |
| |
| void TargetLowering::DAGCombinerInfo:: |
| CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { |
| return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::deleteAndRecombine(SDNode *N) { |
| removeFromWorklist(N); |
| |
| // If the operands of this node are only used by the node, they will now be |
| // dead. Make sure to re-visit them and recursively delete dead nodes. |
| for (const SDValue &Op : N->ops()) |
| // For an operand generating multiple values, one of the values may |
| // become dead allowing further simplification (e.g. split index |
| // arithmetic from an indexed load). |
| if (Op->hasOneUse() || Op->getNumValues() > 1) |
| AddToWorklist(Op.getNode()); |
| |
| DAG.DeleteNode(N); |
| } |
| |
| // APInts must be the same size for most operations, this helper |
| // function zero extends the shorter of the pair so that they match. |
| // We provide an Offset so that we can create bitwidths that won't overflow. |
| static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { |
| unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); |
| LHS = LHS.zext(Bits); |
| RHS = RHS.zext(Bits); |
| } |
| |
| // Return true if this node is a setcc, or is a select_cc |
| // that selects between the target values used for true and false, making it |
| // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to |
| // the appropriate nodes based on the type of node we are checking. This |
| // simplifies life a bit for the callers. |
| bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, |
| SDValue &CC, bool MatchStrict) const { |
| if (N.getOpcode() == ISD::SETCC) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(2); |
| return true; |
| } |
| |
| if (MatchStrict && |
| (N.getOpcode() == ISD::STRICT_FSETCC || |
| N.getOpcode() == ISD::STRICT_FSETCCS)) { |
| LHS = N.getOperand(1); |
| RHS = N.getOperand(2); |
| CC = N.getOperand(3); |
| return true; |
| } |
| |
| if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) || |
| !TLI.isConstFalseVal(N.getOperand(3))) |
| return false; |
| |
| if (TLI.getBooleanContents(N.getValueType()) == |
| TargetLowering::UndefinedBooleanContent) |
| return false; |
| |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(4); |
| return true; |
| } |
| |
| /// Return true if this is a SetCC-equivalent operation with only one use. |
| /// If this is true, it allows the users to invert the operation for free when |
| /// it is profitable to do so. |
| bool DAGCombiner::isOneUseSetCC(SDValue N) const { |
| SDValue N0, N1, N2; |
| if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { |
| if (!ScalarTy.isSimple()) |
| return false; |
| |
| uint64_t MaskForTy = 0ULL; |
| switch (ScalarTy.getSimpleVT().SimpleTy) { |
| case MVT::i8: |
| MaskForTy = 0xFFULL; |
| break; |
| case MVT::i16: |
| MaskForTy = 0xFFFFULL; |
| break; |
| case MVT::i32: |
| MaskForTy = 0xFFFFFFFFULL; |
| break; |
| default: |
| return false; |
| break; |
| } |
| |
| APInt Val; |
| if (ISD::isConstantSplatVector(N, Val)) |
| return Val.getLimitedValue() == MaskForTy; |
| |
| return false; |
| } |
| |
| // Determines if it is a constant integer or a splat/build vector of constant |
| // integers (and undefs). |
| // Do not permit build vector implicit truncation. |
| static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) |
| return !(Const->isOpaque() && NoOpaques); |
| if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) |
| return false; |
| unsigned BitWidth = N.getScalarValueSizeInBits(); |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); |
| if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || |
| (Const->isOpaque() && NoOpaques)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with |
| // undef's. |
| static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { |
| if (V.getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| return isConstantOrConstantVector(V, NoOpaques) || |
| ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); |
| } |
| |
| // Determine if this an indexed load with an opaque target constant index. |
| static bool canSplitIdx(LoadSDNode *LD) { |
| return MaySplitLoadIndex && |
| (LD->getOperand(2).getOpcode() != ISD::TargetConstant || |
| !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); |
| } |
| |
| bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, |
| const SDLoc &DL, |
| SDNode *N, |
| SDValue N0, |
| SDValue N1) { |
| // Currently this only tries to ensure we don't undo the GEP splits done by |
| // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, |
| // we check if the following transformation would be problematic: |
| // (load/store (add, (add, x, offset1), offset2)) -> |
| // (load/store (add, x, offset1+offset2)). |
| |
| // (load/store (add, (add, x, y), offset2)) -> |
| // (load/store (add, (add, x, offset2), y)). |
| |
| if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) |
| return false; |
| |
| auto *C2 = dyn_cast<ConstantSDNode>(N1); |
| if (!C2) |
| return false; |
| |
| const APInt &C2APIntVal = C2->getAPIntValue(); |
| if (C2APIntVal.getSignificantBits() > 64) |
| return false; |
| |
| if (auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| if (N0.hasOneUse()) |
| return false; |
| |
| const APInt &C1APIntVal = C1->getAPIntValue(); |
| const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; |
| if (CombinedValueIntVal.getSignificantBits() > 64) |
| return false; |
| const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); |
| |
| for (SDNode *Node : N->uses()) { |
| if (auto *LoadStore = dyn_cast<MemSDNode>(Node)) { |
| // Is x[offset2] already not a legal addressing mode? If so then |
| // reassociating the constants breaks nothing (we test offset2 because |
| // that's the one we hope to fold into the load or store). |
| TargetLoweringBase::AddrMode AM; |
| AM.HasBaseReg = true; |
| AM.BaseOffs = C2APIntVal.getSExtValue(); |
| EVT VT = LoadStore->getMemoryVT(); |
| unsigned AS = LoadStore->getAddressSpace(); |
| Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); |
| if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) |
| continue; |
| |
| // Would x[offset1+offset2] still be a legal addressing mode? |
| AM.BaseOffs = CombinedValue; |
| if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) |
| return true; |
| } |
| } |
| } else { |
| if (auto *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(1))) |
| if (GA->getOpcode() == ISD::GlobalAddress && TLI.isOffsetFoldingLegal(GA)) |
| return false; |
| |
| for (SDNode *Node : N->uses()) { |
| auto *LoadStore = dyn_cast<MemSDNode>(Node); |
| if (!LoadStore) |
| return false; |
| |
| // Is x[offset2] a legal addressing mode? If so then |
| // reassociating the constants breaks address pattern |
| TargetLoweringBase::AddrMode AM; |
| AM.HasBaseReg = true; |
| AM.BaseOffs = C2APIntVal.getSExtValue(); |
| EVT VT = LoadStore->getMemoryVT(); |
| unsigned AS = LoadStore->getAddressSpace(); |
| Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); |
| if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression |
| // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. |
| SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, |
| SDValue N0, SDValue N1) { |
| EVT VT = N0.getValueType(); |
| |
| if (N0.getOpcode() != Opc) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N01))) { |
| if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N1))) { |
| // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) |
| if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) |
| return DAG.getNode(Opc, DL, VT, N00, OpNode); |
| return SDValue(); |
| } |
| if (TLI.isReassocProfitable(DAG, N0, N1)) { |
| // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) |
| // iff (op x, c1) has one use |
| SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1); |
| return DAG.getNode(Opc, DL, VT, OpNode, N01); |
| } |
| } |
| |
| // Check for repeated operand logic simplifications. |
| if (Opc == ISD::AND || Opc == ISD::OR) { |
| // (N00 & N01) & N00 --> N00 & N01 |
| // (N00 & N01) & N01 --> N00 & N01 |
| // (N00 | N01) | N00 --> N00 | N01 |
| // (N00 | N01) | N01 --> N00 | N01 |
| if (N1 == N00 || N1 == N01) |
| return N0; |
| } |
| if (Opc == ISD::XOR) { |
| // (N00 ^ N01) ^ N00 --> N01 |
| if (N1 == N00) |
| return N01; |
| // (N00 ^ N01) ^ N01 --> N00 |
| if (N1 == N01) |
| return N00; |
| } |
| |
| if (TLI.isReassocProfitable(DAG, N0, N1)) { |
| if (N1 != N01) { |
| // Reassociate if (op N00, N1) already exist |
| if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N00, N1})) { |
| // if Op (Op N00, N1), N01 already exist |
| // we need to stop reassciate to avoid dead loop |
| if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N01})) |
| return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N01); |
| } |
| } |
| |
| if (N1 != N00) { |
| // Reassociate if (op N01, N1) already exist |
| if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N01, N1})) { |
| // if Op (Op N01, N1), N00 already exist |
| // we need to stop reassciate to avoid dead loop |
| if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N00})) |
| return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N00); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try to reassociate commutative binops. |
| SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1, SDNodeFlags Flags) { |
| assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); |
| |
| // Floating-point reassociation is not allowed without loose FP math. |
| if (N0.getValueType().isFloatingPoint() || |
| N1.getValueType().isFloatingPoint()) |
| if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) |
| return SDValue(); |
| |
| if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) |
| return Combined; |
| if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) |
| return Combined; |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, |
| bool AddTo) { |
| assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; |
| To[0].dump(&DAG); |
| dbgs() << " and " << NumTo - 1 << " other values\n"); |
| for (unsigned i = 0, e = NumTo; i != e; ++i) |
| assert((!To[i].getNode() || |
| N->getValueType(i) == To[i].getValueType()) && |
| "Cannot combine value to value of different type!"); |
| |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesWith(N, To); |
| if (AddTo) { |
| // Push the new nodes and any users onto the worklist |
| for (unsigned i = 0, e = NumTo; i != e; ++i) { |
| if (To[i].getNode()) |
| AddToWorklistWithUsers(To[i].getNode()); |
| } |
| } |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (N->use_empty()) |
| deleteAndRecombine(N); |
| return SDValue(N, 0); |
| } |
| |
| void DAGCombiner:: |
| CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG); |
| dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n'); |
| |
| // Replace all uses. |
| DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); |
| |
| // Push the new node and any (possibly new) users onto the worklist. |
| AddToWorklistWithUsers(TLO.New.getNode()); |
| |
| // Finally, if the node is now dead, remove it from the graph. |
| recursivelyDeleteUnusedNodes(TLO.Old.getNode()); |
| } |
| |
| /// Check the specified integer node value to see if it can be simplified or if |
| /// things it uses can be simplified by bit propagation. If so, return true. |
| bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| const APInt &DemandedElts, |
| bool AssumeSingleUse) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| KnownBits Known; |
| if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, |
| AssumeSingleUse)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| /// Check the specified vector node value to see if it can be simplified or |
| /// if things it uses can be simplified as it only uses some of the elements. |
| /// If so, return true. |
| bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, |
| const APInt &DemandedElts, |
| bool AssumeSingleUse) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| APInt KnownUndef, KnownZero; |
| if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, |
| TLO, 0, AssumeSingleUse)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { |
| SDLoc DL(Load); |
| EVT VT = Load->getValueType(0); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); |
| |
| LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; |
| Trunc.dump(&DAG); dbgs() << '\n'); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); |
| |
| AddToWorklist(Trunc.getNode()); |
| recursivelyDeleteUnusedNodes(Load); |
| } |
| |
| SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { |
| Replace = false; |
| SDLoc DL(Op); |
| if (ISD::isUNINDEXEDLoad(Op.getNode())) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| EVT MemVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD |
| : LD->getExtensionType(); |
| Replace = true; |
| return DAG.getExtLoad(ExtType, DL, PVT, |
| LD->getChain(), LD->getBasePtr(), |
| MemVT, LD->getMemOperand()); |
| } |
| |
| unsigned Opc = Op.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::AssertSext: |
| if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) |
| return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); |
| break; |
| case ISD::AssertZext: |
| if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) |
| return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); |
| break; |
| case ISD::Constant: { |
| unsigned ExtOpc = |
| Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| return DAG.getNode(ExtOpc, DL, PVT, Op); |
| } |
| } |
| |
| if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) |
| return SDValue(); |
| return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); |
| } |
| |
| SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { |
| if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) |
| return SDValue(); |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| bool Replace = false; |
| SDValue NewOp = PromoteOperand(Op, PVT, Replace); |
| if (!NewOp.getNode()) |
| return SDValue(); |
| AddToWorklist(NewOp.getNode()); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, |
| DAG.getValueType(OldVT)); |
| } |
| |
| SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| bool Replace = false; |
| SDValue NewOp = PromoteOperand(Op, PVT, Replace); |
| if (!NewOp.getNode()) |
| return SDValue(); |
| AddToWorklist(NewOp.getNode()); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); |
| return DAG.getZeroExtendInReg(NewOp, DL, OldVT); |
| } |
| |
| /// Promote the specified integer binary operation if the target indicates it is |
| /// beneficial. e.g. On x86, it's usually better to promote i16 operations to |
| /// i32 since i16 instructions are longer. |
| SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); |
| |
| bool Replace0 = false; |
| SDValue N0 = Op.getOperand(0); |
| SDValue NN0 = PromoteOperand(N0, PVT, Replace0); |
| |
| bool Replace1 = false; |
| SDValue N1 = Op.getOperand(1); |
| SDValue NN1 = PromoteOperand(N1, PVT, Replace1); |
| SDLoc DL(Op); |
| |
| SDValue RV = |
| DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); |
| |
| // We are always replacing N0/N1's use in N and only need additional |
| // replacements if there are additional uses. |
| // Note: We are checking uses of the *nodes* (SDNode) rather than values |
| // (SDValue) here because the node may reference multiple values |
| // (for example, the chain value of a load node). |
| Replace0 &= !N0->hasOneUse(); |
| Replace1 &= (N0 != N1) && !N1->hasOneUse(); |
| |
| // Combine Op here so it is preserved past replacements. |
| CombineTo(Op.getNode(), RV); |
| |
| // If operands have a use ordering, make sure we deal with |
| // predecessor first. |
| if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) { |
| std::swap(N0, N1); |
| std::swap(NN0, NN1); |
| } |
| |
| if (Replace0) { |
| AddToWorklist(NN0.getNode()); |
| ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); |
| } |
| if (Replace1) { |
| AddToWorklist(NN1.getNode()); |
| ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); |
| } |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| /// Promote the specified integer shift operation if the target indicates it is |
| /// beneficial. e.g. On x86, it's usually better to promote i16 operations to |
| /// i32 since i16 instructions are longer. |
| SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); |
| |
| bool Replace = false; |
| SDValue N0 = Op.getOperand(0); |
| if (Opc == ISD::SRA) |
| N0 = SExtPromoteOperand(N0, PVT); |
| else if (Opc == ISD::SRL) |
| N0 = ZExtPromoteOperand(N0, PVT); |
| else |
| N0 = PromoteOperand(N0, PVT, Replace); |
| |
| if (!N0.getNode()) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| SDValue N1 = Op.getOperand(1); |
| SDValue RV = |
| DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); |
| |
| // Deal with Op being deleted. |
| if (Op && Op.getOpcode() != ISD::DELETED_NODE) |
| return RV; |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::PromoteExtend(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); |
| return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); |
| } |
| return SDValue(); |
| } |
| |
| bool DAGCombiner::PromoteLoad(SDValue Op) { |
| if (!LegalOperations) |
| return false; |
| |
| if (!ISD::isUNINDEXEDLoad(Op.getNode())) |
| return false; |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return false; |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return false; |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| SDLoc DL(Op); |
| SDNode *N = Op.getNode(); |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT MemVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD |
| : LD->getExtensionType(); |
| SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, |
| LD->getChain(), LD->getBasePtr(), |
| MemVT, LD->getMemOperand()); |
| SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; |
| Result.dump(&DAG); dbgs() << '\n'); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); |
| |
| AddToWorklist(Result.getNode()); |
| recursivelyDeleteUnusedNodes(N); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Recursively delete a node which has no uses and any operands for |
| /// which it is the only use. |
| /// |
| /// Note that this both deletes the nodes and removes them from the worklist. |
| /// It also adds any nodes who have had a user deleted to the worklist as they |
| /// may now have only one use and subject to other combines. |
| bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { |
| if (!N->use_empty()) |
| return false; |
| |
| SmallSetVector<SDNode *, 16> Nodes; |
| Nodes.insert(N); |
| do { |
| N = Nodes.pop_back_val(); |
| if (!N) |
| continue; |
| |
| if (N->use_empty()) { |
| for (const SDValue &ChildN : N->op_values()) |
| Nodes.insert(ChildN.getNode()); |
| |
| removeFromWorklist(N); |
| DAG.DeleteNode(N); |
| } else { |
| AddToWorklist(N); |
| } |
| } while (!Nodes.empty()); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main DAG Combiner implementation |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::Run(CombineLevel AtLevel) { |
| // set the instance variables, so that the various visit routines may use it. |
| Level = AtLevel; |
| LegalDAG = Level >= AfterLegalizeDAG; |
| LegalOperations = Level >= AfterLegalizeVectorOps; |
| LegalTypes = Level >= AfterLegalizeTypes; |
| |
| WorklistInserter AddNodes(*this); |
| |
| // Add all the dag nodes to the worklist. |
| for (SDNode &Node : DAG.allnodes()) |
| AddToWorklist(&Node); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted, and tracking any |
| // changes of the root. |
| HandleSDNode Dummy(DAG.getRoot()); |
| |
| // While we have a valid worklist entry node, try to combine it. |
| while (SDNode *N = getNextWorklistEntry()) { |
| // If N has no uses, it is dead. Make sure to revisit all N's operands once |
| // N is deleted from the DAG, since they too may now be dead or may have a |
| // reduced number of uses, allowing other xforms. |
| if (recursivelyDeleteUnusedNodes(N)) |
| continue; |
| |
| WorklistRemover DeadNodes(*this); |
| |
| // If this combine is running after legalizing the DAG, re-legalize any |
| // nodes pulled off the worklist. |
| if (LegalDAG) { |
| SmallSetVector<SDNode *, 16> UpdatedNodes; |
| bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); |
| |
| for (SDNode *LN : UpdatedNodes) |
| AddToWorklistWithUsers(LN); |
| |
| if (!NIsValid) |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); |
| |
| // Add any operands of the new node which have not yet been combined to the |
| // worklist as well. Because the worklist uniques things already, this |
| // won't repeatedly process the same operand. |
| CombinedNodes.insert(N); |
| for (const SDValue &ChildN : N->op_values()) |
| if (!CombinedNodes.count(ChildN.getNode())) |
| AddToWorklist(ChildN.getNode()); |
| |
| SDValue RV = combine(N); |
| |
| if (!RV.getNode()) |
| continue; |
| |
| ++NodesCombined; |
| |
| // If we get back the same node we passed in, rather than a new node or |
| // zero, we know that the node must have defined multiple values and |
| // CombineTo was used. Since CombineTo takes care of the worklist |
| // mechanics for us, we have no work to do in this case. |
| if (RV.getNode() == N) |
| continue; |
| |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| RV.getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned new node!"); |
| |
| LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG)); |
| |
| if (N->getNumValues() == RV->getNumValues()) |
| DAG.ReplaceAllUsesWith(N, RV.getNode()); |
| else { |
| assert(N->getValueType(0) == RV.getValueType() && |
| N->getNumValues() == 1 && "Type mismatch"); |
| DAG.ReplaceAllUsesWith(N, &RV); |
| } |
| |
| // Push the new node and any users onto the worklist. Omit this if the |
| // new node is the EntryToken (e.g. if a store managed to get optimized |
| // out), because re-visiting the EntryToken and its users will not uncover |
| // any additional opportunities, but there may be a large number of such |
| // users, potentially causing compile time explosion. |
| if (RV.getOpcode() != ISD::EntryToken) { |
| AddToWorklist(RV.getNode()); |
| AddUsersToWorklist(RV.getNode()); |
| } |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. This will also take care of adding any |
| // operands which have lost a user to the worklist. |
| recursivelyDeleteUnusedNodes(N); |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| DAG.setRoot(Dummy.getValue()); |
| DAG.RemoveDeadNodes(); |
| } |
| |
| SDValue DAGCombiner::visit(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::TokenFactor: return visitTokenFactor(N); |
| case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); |
| case ISD::ADD: return visitADD(N); |
| case ISD::SUB: return visitSUB(N); |
| case ISD::SADDSAT: |
| case ISD::UADDSAT: return visitADDSAT(N); |
| case ISD::SSUBSAT: |
| case ISD::USUBSAT: return visitSUBSAT(N); |
| case ISD::ADDC: return visitADDC(N); |
| case ISD::SADDO: |
| case ISD::UADDO: return visitADDO(N); |
| case ISD::SUBC: return visitSUBC(N); |
| case ISD::SSUBO: |
| case ISD::USUBO: return visitSUBO(N); |
| case ISD::ADDE: return visitADDE(N); |
| case ISD::ADDCARRY: return visitADDCARRY(N); |
| case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); |
| case ISD::SUBE: return visitSUBE(N); |
| case ISD::SUBCARRY: return visitSUBCARRY(N); |
| case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); |
| case ISD::SMULFIX: |
| case ISD::SMULFIXSAT: |
| case ISD::UMULFIX: |
| case ISD::UMULFIXSAT: return visitMULFIX(N); |
| case ISD::MUL: return visitMUL(N); |
| case ISD::SDIV: return visitSDIV(N); |
| case ISD::UDIV: return visitUDIV(N); |
| case ISD::SREM: |
| case ISD::UREM: return visitREM(N); |
| case ISD::MULHU: return visitMULHU(N); |
| case ISD::MULHS: return visitMULHS(N); |
| case ISD::AVGFLOORS: |
| case ISD::AVGFLOORU: |
| case ISD::AVGCEILS: |
| case ISD::AVGCEILU: return visitAVG(N); |
| case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); |
| case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); |
| case ISD::SMULO: |
| case ISD::UMULO: return visitMULO(N); |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: return visitIMINMAX(N); |
| case ISD::AND: return visitAND(N); |
| case ISD::OR: return visitOR(N); |
| case ISD::XOR: return visitXOR(N); |
| case ISD::SHL: return visitSHL(N); |
| case ISD::SRA: return visitSRA(N); |
| case ISD::SRL: return visitSRL(N); |
| case ISD::ROTR: |
| case ISD::ROTL: return visitRotate(N); |
| case ISD::FSHL: |
| case ISD::FSHR: return visitFunnelShift(N); |
| case ISD::SSHLSAT: |
| case ISD::USHLSAT: return visitSHLSAT(N); |
| case ISD::ABS: return visitABS(N); |
| case ISD::BSWAP: return visitBSWAP(N); |
| case ISD::BITREVERSE: return visitBITREVERSE(N); |
| case ISD::CTLZ: return visitCTLZ(N); |
| case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); |
| case ISD::CTTZ: return visitCTTZ(N); |
| case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); |
| case ISD::CTPOP: return visitCTPOP(N); |
| case ISD::SELECT: return visitSELECT(N); |
| case ISD::VSELECT: return visitVSELECT(N); |
| case ISD::SELECT_CC: return visitSELECT_CC(N); |
| case ISD::SETCC: return visitSETCC(N); |
| case ISD::SETCCCARRY: return visitSETCCCARRY(N); |
| case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); |
| case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); |
| case ISD::ANY_EXTEND: return visitANY_EXTEND(N); |
| case ISD::AssertSext: |
| case ISD::AssertZext: return visitAssertExt(N); |
| case ISD::AssertAlign: return visitAssertAlign(N); |
| case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| case ISD::ANY_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); |
| case ISD::TRUNCATE: return visitTRUNCATE(N); |
| case ISD::BITCAST: return visitBITCAST(N); |
| case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); |
| case ISD::FADD: return visitFADD(N); |
| case ISD::STRICT_FADD: return visitSTRICT_FADD(N); |
| case ISD::FSUB: return visitFSUB(N); |
| case ISD::FMUL: return visitFMUL(N); |
| case ISD::FMA: return visitFMA(N); |
| case ISD::FDIV: return visitFDIV(N); |
| case ISD::FREM: return visitFREM(N); |
| case ISD::FSQRT: return visitFSQRT(N); |
| case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); |
| case ISD::FPOW: return visitFPOW(N); |
| case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); |
| case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); |
| case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); |
| case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); |
| case ISD::FP_ROUND: return visitFP_ROUND(N); |
| case ISD::FP_EXTEND: return visitFP_EXTEND(N); |
| case ISD::FNEG: return visitFNEG(N); |
| case ISD::FABS: return visitFABS(N); |
| case ISD::FFLOOR: return visitFFLOOR(N); |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINIMUM: |
| case ISD::FMAXIMUM: return visitFMinMax(N); |
| case ISD::FCEIL: return visitFCEIL(N); |
| case ISD::FTRUNC: return visitFTRUNC(N); |
| case ISD::BRCOND: return visitBRCOND(N); |
| case ISD::BR_CC: return visitBR_CC(N); |
| case ISD::LOAD: return visitLOAD(N); |
| case ISD::STORE: return visitSTORE(N); |
| case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); |
| case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); |
| case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); |
| case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); |
| case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); |
| case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); |
| case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); |
| case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); |
| case ISD::MGATHER: return visitMGATHER(N); |
| case ISD::MLOAD: return visitMLOAD(N); |
| case ISD::MSCATTER: return visitMSCATTER(N); |
| case ISD::MSTORE: return visitMSTORE(N); |
| case ISD::LIFETIME_END: return visitLIFETIME_END(N); |
| case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); |
| case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); |
| case ISD::FP_TO_BF16: return visitFP_TO_BF16(N); |
| case ISD::FREEZE: return visitFREEZE(N); |
| case ISD::VECREDUCE_FADD: |
| case ISD::VECREDUCE_FMUL: |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_MUL: |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); |
| #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC: |
| #include "llvm/IR/VPIntrinsics.def" |
| return visitVPOp(N); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::combine(SDNode *N) { |
| SDValue RV; |
| if (!DisableGenericCombines) |
| RV = visit(N); |
| |
| // If nothing happened, try a target-specific DAG combine. |
| if (!RV.getNode()) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned NULL!"); |
| |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END || |
| TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { |
| |
| // Expose the DAG combiner to the target combiner impls. |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, Level, false, this); |
| |
| RV = TLI.PerformDAGCombine(N, DagCombineInfo); |
| } |
| } |
| |
| // If nothing happened still, try promoting the operation. |
| if (!RV.getNode()) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| RV = PromoteIntBinOp(SDValue(N, 0)); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| RV = PromoteIntShiftOp(SDValue(N, 0)); |
| break; |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| RV = PromoteExtend(SDValue(N, 0)); |
| break; |
| case ISD::LOAD: |
| if (PromoteLoad(SDValue(N, 0))) |
| RV = SDValue(N, 0); |
| break; |
| } |
| } |
| |
| // If N is a commutative binary node, try to eliminate it if the commuted |
| // version is already present in the DAG. |
| if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode())) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Constant operands are canonicalized to RHS. |
| if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { |
| SDValue Ops[] = {N1, N0}; |
| SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, |
| N->getFlags()); |
| if (CSENode) |
| return SDValue(CSENode, 0); |
| } |
| } |
| |
| return RV; |
| } |
| |
| /// Given a node, return its input chain if it has one, otherwise return a null |
| /// sd operand. |
| static SDValue getInputChainForNode(SDNode *N) { |
| if (unsigned NumOps = N->getNumOperands()) { |
| if (N->getOperand(0).getValueType() == MVT::Other) |
| return N->getOperand(0); |
| if (N->getOperand(NumOps-1).getValueType() == MVT::Other) |
| return N->getOperand(NumOps-1); |
| for (unsigned i = 1; i < NumOps-1; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| return N->getOperand(i); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitTokenFactor(SDNode *N) { |
| // If N has two operands, where one has an input chain equal to the other, |
| // the 'other' chain is redundant. |
| if (N->getNumOperands() == 2) { |
| if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) |
| return N->getOperand(0); |
| if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) |
| return N->getOperand(1); |
| } |
| |
| // Don't simplify token factors if optnone. |
| if (OptLevel == CodeGenOpt::None) |
| return SDValue(); |
| |
| // Don't simplify the token factor if the node itself has too many operands. |
| if (N->getNumOperands() > TokenFactorInlineLimit) |
| return SDValue(); |
| |
| // If the sole user is a token factor, we should make sure we have a |
| // chance to merge them together. This prevents TF chains from inhibiting |
| // optimizations. |
| if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) |
| AddToWorklist(*(N->use_begin())); |
| |
| SmallVector<SDNode *, 8> TFs; // List of token factors to visit. |
| SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. |
| SmallPtrSet<SDNode*, 16> SeenOps; |
| bool Changed = false; // If we should replace this token factor. |
| |
| // Start out with this token factor. |
| TFs.push_back(N); |
| |
| // Iterate through token factors. The TFs grows when new token factors are |
| // encountered. |
| for (unsigned i = 0; i < TFs.size(); ++i) { |
| // Limit number of nodes to inline, to avoid quadratic compile times. |
| // We have to add the outstanding Token Factors to Ops, otherwise we might |
| // drop Ops from the resulting Token Factors. |
| if (Ops.size() > TokenFactorInlineLimit) { |
| for (unsigned j = i; j < TFs.size(); j++) |
| Ops.emplace_back(TFs[j], 0); |
| // Drop unprocessed Token Factors from TFs, so we do not add them to the |
| // combiner worklist later. |
| TFs.resize(i); |
| break; |
| } |
| |
| SDNode *TF = TFs[i]; |
| // Check each of the operands. |
| for (const SDValue &Op : TF->op_values()) { |
| switch (Op.getOpcode()) { |
| case ISD::EntryToken: |
| // Entry tokens don't need to be added to the list. They are |
| // redundant. |
| Changed = true; |
| break; |
| |
| case ISD::TokenFactor: |
| if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { |
| // Queue up for processing. |
| TFs.push_back(Op.getNode()); |
| Changed = true; |
| break; |
| } |
| [[fallthrough]]; |
| |
| default: |
| // Only add if it isn't already in the list. |
| if (SeenOps.insert(Op.getNode()).second) |
| Ops.push_back(Op); |
| else |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| // Re-visit inlined Token Factors, to clean them up in case they have been |
| // removed. Skip the first Token Factor, as this is the current node. |
| for (unsigned i = 1, e = TFs.size(); i < e; i++) |
| AddToWorklist(TFs[i]); |
| |
| // Remove Nodes that are chained to another node in the list. Do so |
| // by walking up chains breath-first stopping when we've seen |
| // another operand. In general we must climb to the EntryNode, but we can exit |
| // early if we find all remaining work is associated with just one operand as |
| // no further pruning is possible. |
| |
| // List of nodes to search through and original Ops from which they originate. |
| SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; |
| SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. |
| SmallPtrSet<SDNode *, 16> SeenChains; |
| bool DidPruneOps = false; |
| |
| unsigned NumLeftToConsider = 0; |
| for (const SDValue &Op : Ops) { |
| Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); |
| OpWorkCount.push_back(1); |
| } |
| |
| auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { |
| // If this is an Op, we can remove the op from the list. Remark any |
| // search associated with it as from the current OpNumber. |
| if (SeenOps.contains(Op)) { |
| Changed = true; |
| DidPruneOps = true; |
| unsigned OrigOpNumber = 0; |
| while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) |
| OrigOpNumber++; |
| assert((OrigOpNumber != Ops.size()) && |
| "expected to find TokenFactor Operand"); |
| // Re-mark worklist from OrigOpNumber to OpNumber |
| for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { |
| if (Worklist[i].second == OrigOpNumber) { |
| Worklist[i].second = OpNumber; |
| } |
| } |
| OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; |
| OpWorkCount[OrigOpNumber] = 0; |
| NumLeftToConsider--; |
| } |
| // Add if it's a new chain |
| if (SeenChains.insert(Op).second) { |
| OpWorkCount[OpNumber]++; |
| Worklist.push_back(std::make_pair(Op, OpNumber)); |
| } |
| }; |
| |
| for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { |
| // We need at least be consider at least 2 Ops to prune. |
| if (NumLeftToConsider <= 1) |
| break; |
| auto CurNode = Worklist[i].first; |
| auto CurOpNumber = Worklist[i].second; |
| assert((OpWorkCount[CurOpNumber] > 0) && |
| "Node should not appear in worklist"); |
| switch (CurNode->getOpcode()) { |
| case ISD::EntryToken: |
| // Hitting EntryToken is the only way for the search to terminate without |
| // hitting |
| // another operand's search. Prevent us from marking this operand |
| // considered. |
| NumLeftToConsider++; |
| break; |
| case ISD::TokenFactor: |
| for (const SDValue &Op : CurNode->op_values()) |
| AddToWorklist(i, Op.getNode(), CurOpNumber); |
| break; |
| case ISD::LIFETIME_START: |
| case ISD::LIFETIME_END: |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); |
| break; |
| default: |
| if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) |
| AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); |
| break; |
| } |
| OpWorkCount[CurOpNumber]--; |
| if (OpWorkCount[CurOpNumber] == 0) |
| NumLeftToConsider--; |
| } |
| |
| // If we've changed things around then replace token factor. |
| if (Changed) { |
| SDValue Result; |
| if (Ops.empty()) { |
| // The entry token is the only possible outcome. |
| Result = DAG.getEntryNode(); |
| } else { |
| if (DidPruneOps) { |
| SmallVector<SDValue, 8> PrunedOps; |
| // |
| for (const SDValue &Op : Ops) { |
| if (SeenChains.count(Op.getNode()) == 0) |
| PrunedOps.push_back(Op); |
| } |
| Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); |
| } else { |
| Result = DAG.getTokenFactor(SDLoc(N), Ops); |
| } |
| } |
| return Result; |
| } |
| return SDValue(); |
| } |
| |
| /// MERGE_VALUES can always be eliminated. |
| SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { |
| WorklistRemover DeadNodes(*this); |
| // Replacing results may cause a different MERGE_VALUES to suddenly |
| // be CSE'd with N, and carry its uses with it. Iterate until no |
| // uses remain, to ensure that the node can be safely deleted. |
| // First add the users of this node to the work list so that they |
| // can be tried again once they have new operands. |
| AddUsersToWorklist(N); |
| do { |
| // Do as a single replacement to avoid rewalking use lists. |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| Ops.push_back(N->getOperand(i)); |
| DAG.ReplaceAllUsesWith(N, Ops.data()); |
| } while (!N->use_empty()); |
| deleteAndRecombine(N); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a |
| /// ConstantSDNode pointer else nullptr. |
| static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); |
| return Const != nullptr && !Const->isOpaque() ? Const : nullptr; |
| } |
| |
| /// Return true if 'Use' is a load or a store that uses N as its base pointer |
| /// and that N may be folded in the load / store addressing mode. |
| static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| EVT VT; |
| unsigned AS; |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { |
| if (LD->isIndexed() || LD->getBasePtr().getNode() != N) |
| return false; |
| VT = LD->getMemoryVT(); |
| AS = LD->getAddressSpace(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { |
| if (ST->isIndexed() || ST->getBasePtr().getNode() != N) |
| return false; |
| VT = ST->getMemoryVT(); |
| AS = ST->getAddressSpace(); |
| } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { |
| if (LD->isIndexed() || LD->getBasePtr().getNode() != N) |
| return false; |
| VT = LD->getMemoryVT(); |
| AS = LD->getAddressSpace(); |
| } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { |
| if (ST->isIndexed() || ST->getBasePtr().getNode() != N) |
| return false; |
| VT = ST->getMemoryVT(); |
| AS = ST->getAddressSpace(); |
| } else { |
| return false; |
| } |
| |
| TargetLowering::AddrMode AM; |
| if (N->getOpcode() == ISD::ADD) { |
| AM.HasBaseReg = true; |
| ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (Offset) |
| // [reg +/- imm] |
| AM.BaseOffs = Offset->getSExtValue(); |
| else |
| // [reg +/- reg] |
| AM.Scale = 1; |
| } else if (N->getOpcode() == ISD::SUB) { |
| AM.HasBaseReg = true; |
| ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (Offset) |
| // [reg +/- imm] |
| AM.BaseOffs = -Offset->getSExtValue(); |
| else |
| // [reg +/- reg] |
| AM.Scale = 1; |
| } else { |
| return false; |
| } |
| |
| return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, |
| VT.getTypeForEVT(*DAG.getContext()), AS); |
| } |
| |
| /// This inverts a canonicalization in IR that replaces a variable select arm |
| /// with an identity constant. Codegen improves if we re-use the variable |
| /// operand rather than load a constant. This can also be converted into a |
| /// masked vector operation if the target supports it. |
| static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG, |
| bool ShouldCommuteOperands) { |
| // Match a select as operand 1. The identity constant that we are looking for |
| // is only valid as operand 1 of a non-commutative binop. |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (ShouldCommuteOperands) |
| std::swap(N0, N1); |
| |
| // TODO: Should this apply to scalar select too? |
| if (N1.getOpcode() != ISD::VSELECT || !N1.hasOneUse()) |
| return SDValue(); |
| |
| // We can't hoist div/rem because of immediate UB (not speculatable). |
| unsigned Opcode = N->getOpcode(); |
| if (!DAG.isSafeToSpeculativelyExecute(Opcode)) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDValue Cond = N1.getOperand(0); |
| SDValue TVal = N1.getOperand(1); |
| SDValue FVal = N1.getOperand(2); |
| |
| // This transform increases uses of N0, so freeze it to be safe. |
| // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal) |
| unsigned OpNo = ShouldCommuteOperands ? 0 : 1; |
| if (isNeutralConstant(Opcode, N->getFlags(), TVal, OpNo)) { |
| SDValue F0 = DAG.getFreeze(N0); |
| SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags()); |
| return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO); |
| } |
| // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0 |
| if (isNeutralConstant(Opcode, N->getFlags(), FVal, OpNo)) { |
| SDValue F0 = DAG.getFreeze(N0); |
| SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags()); |
| return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { |
| assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && |
| "Unexpected binary operator"); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| auto BinOpcode = BO->getOpcode(); |
| EVT VT = BO->getValueType(0); |
| if (TLI.shouldFoldSelectWithIdentityConstant(BinOpcode, VT)) { |
| if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false)) |
| return Sel; |
| |
| if (TLI.isCommutativeBinOp(BO->getOpcode())) |
| if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true)) |
| return Sel; |
| } |
| |
| // Don't do this unless the old select is going away. We want to eliminate the |
| // binary operator, not replace a binop with a select. |
| // TODO: Handle ISD::SELECT_CC. |
| unsigned SelOpNo = 0; |
| SDValue Sel = BO->getOperand(0); |
| if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { |
| SelOpNo = 1; |
| Sel = BO->getOperand(1); |
| } |
| |
| if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) |
| return SDValue(); |
| |
| SDValue CT = Sel.getOperand(1); |
| if (!isConstantOrConstantVector(CT, true) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(CT)) |
| return SDValue(); |
| |
| SDValue CF = Sel.getOperand(2); |
| if (!isConstantOrConstantVector(CF, true) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(CF)) |
| return SDValue(); |
| |
| // Bail out if any constants are opaque because we can't constant fold those. |
| // The exception is "and" and "or" with either 0 or -1 in which case we can |
| // propagate non constant operands into select. I.e.: |
| // and (select Cond, 0, -1), X --> select Cond, 0, X |
| // or X, (select Cond, -1, 0) --> select Cond, -1, X |
| bool CanFoldNonConst = |
| (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && |
| ((isNullOrNullSplat(CT) && isAllOnesOrAllOnesSplat(CF)) || |
| (isNullOrNullSplat(CF) && isAllOnesOrAllOnesSplat(CT))); |
| |
| SDValue CBO = BO->getOperand(SelOpNo ^ 1); |
| if (!CanFoldNonConst && |
| !isConstantOrConstantVector(CBO, true) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) |
| return SDValue(); |
| |
| SDLoc DL(Sel); |
| SDValue NewCT, NewCF; |
| |
| if (CanFoldNonConst) { |
| // If CBO is an opaque constant, we can't rely on getNode to constant fold. |
| if ((BinOpcode == ISD::AND && isNullOrNullSplat(CT)) || |
| (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CT))) |
| NewCT = CT; |
| else |
| NewCT = CBO; |
| |
| if ((BinOpcode == ISD::AND && isNullOrNullSplat(CF)) || |
| (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CF))) |
| NewCF = CF; |
| else |
| NewCF = CBO; |
| } else { |
| // We have a select-of-constants followed by a binary operator with a |
| // constant. Eliminate the binop by pulling the constant math into the |
| // select. Example: add (select Cond, CT, CF), CBO --> select Cond, CT + |
| // CBO, CF + CBO |
| NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) |
| : DAG.getNode(BinOpcode, DL, VT, CT, CBO); |
| if (!CanFoldNonConst && !NewCT.isUndef() && |
| !isConstantOrConstantVector(NewCT, true) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) |
| return SDValue(); |
| |
| NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) |
| : DAG.getNode(BinOpcode, DL, VT, CF, CBO); |
| if (!CanFoldNonConst && !NewCF.isUndef() && |
| !isConstantOrConstantVector(NewCF, true) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) |
| return SDValue(); |
| } |
| |
| SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); |
| SelectOp->setFlags(BO->getFlags()); |
| return SelectOp; |
| } |
| |
| static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Expecting add or sub"); |
| |
| // Match a constant operand and a zext operand for the math instruction: |
| // add Z, C |
| // sub C, Z |
| bool IsAdd = N->getOpcode() == ISD::ADD; |
| SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); |
| SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); |
| auto *CN = dyn_cast<ConstantSDNode>(C); |
| if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| |
| // Match the zext operand as a setcc of a boolean. |
| if (Z.getOperand(0).getOpcode() != ISD::SETCC || |
| Z.getOperand(0).getValueType() != MVT::i1) |
| return SDValue(); |
| |
| // Match the compare as: setcc (X & 1), 0, eq. |
| SDValue SetCC = Z.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); |
| if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || |
| SetCC.getOperand(0).getOpcode() != ISD::AND || |
| !isOneConstant(SetCC.getOperand(0).getOperand(1))) |
| return SDValue(); |
| |
| // We are adding/subtracting a constant and an inverted low bit. Turn that |
| // into a subtract/add of the low bit with incremented/decremented constant: |
| // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) |
| // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) |
| EVT VT = C.getValueType(); |
| SDLoc DL(N); |
| SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); |
| SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : |
| DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); |
| return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); |
| } |
| |
| /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into |
| /// a shift and add with a different constant. |
| static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Expecting add or sub"); |
| |
| // We need a constant operand for the add/sub, and the other operand is a |
| // logical shift right: add (srl), C or sub C, (srl). |
| bool IsAdd = N->getOpcode() == ISD::ADD; |
| SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); |
| SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); |
| if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || |
| ShiftOp.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| // The shift must be of a 'not' value. |
| SDValue Not = ShiftOp.getOperand(0); |
| if (!Not.hasOneUse() || !isBitwiseNot(Not)) |
| return SDValue(); |
| |
| // The shift must be moving the sign bit to the least-significant-bit. |
| EVT VT = ShiftOp.getValueType(); |
| SDValue ShAmt = ShiftOp.getOperand(1); |
| ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); |
| if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) |
| return SDValue(); |
| |
| // Eliminate the 'not' by adjusting the shift and add/sub constant: |
| // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) |
| // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) |
| SDLoc DL(N); |
| if (SDValue NewC = DAG.FoldConstantArithmetic( |
| IsAdd ? ISD::ADD : ISD::SUB, DL, VT, |
| {ConstantOp, DAG.getConstant(1, DL, VT)})) { |
| SDValue NewShift = DAG.getNode(IsAdd ? ISD::SRA : ISD::SRL, DL, VT, |
| Not.getOperand(0), ShAmt); |
| return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool isADDLike(SDValue V, const SelectionDAG &DAG) { |
| unsigned Opcode = V.getOpcode(); |
| if (Opcode == ISD::OR) |
| return DAG.haveNoCommonBitsSet(V.getOperand(0), V.getOperand(1)); |
| if (Opcode == ISD::XOR) |
| return isMinSignedConstant(V.getOperand(1)); |
| return false; |
| } |
| |
| /// Try to fold a node that behaves like an ADD (note that N isn't necessarily |
| /// an ISD::ADD here, it could for example be an ISD::OR if we know that there |
| /// are no common bits set in the operands). |
| SDValue DAGCombiner::visitADDLike(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (add x, undef) -> undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| |
| // fold (add c1, c2) -> c1+c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::ADD, DL, VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (add x, 0) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (add x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| if (N0.getOpcode() == ISD::SUB) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| |
| // fold ((A-c1)+c2) -> (A+(c2-c1)) |
| if (SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N01})) |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); |
| |
| // fold ((c1-A)+c2) -> (c1+c2)-A |
| if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N00})) |
| return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); |
| } |
| |
| // add (sext i1 X), 1 -> zext (not i1 X) |
| // We don't transform this pattern: |
| // add (zext i1 X), -1 -> sext (not i1 X) |
| // because most (?) targets generate better code for the zext form. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && |
| isOneOrOneSplat(N1)) { |
| SDValue X = N0.getOperand(0); |
| if ((!LegalOperations || |
| (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && |
| TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && |
| X.getScalarValueSizeInBits() == 1) { |
| SDValue Not = DAG.getNOT(DL, X, X.getValueType()); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); |
| } |
| } |
| |
| // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) |
| // iff (or x, c0) is equivalent to (add x, c0). |
| // Fold (add (xor x, c0), c1) -> (add x, (c0 + c1)) |
| // iff (xor x, c0) is equivalent to (add x, c0). |
| if (isADDLike(N0, DAG)) { |
| SDValue N01 = N0.getOperand(1); |
| if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N01})) |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add); |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate add |
| if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N, N0, N1)) { |
| if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) |
| return RADD; |
| |
| // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is |
| // equivalent to (add x, c). |
| // Reassociate (add (xor x, c), y) -> (add add(x, y), c)) if (xor x, c) is |
| // equivalent to (add x, c). |
| auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { |
| if (isADDLike(N0, DAG) && N0.hasOneUse() && |
| isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { |
| return DAG.getNode(ISD::ADD, DL, VT, |
| DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), |
| N0.getOperand(1)); |
| } |
| return SDValue(); |
| }; |
| if (SDValue Add = ReassociateAddOr(N0, N1)) |
| return Add; |
| if (SDValue Add = ReassociateAddOr(N1, N0)) |
| return Add; |
| } |
| // fold ((0-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); |
| |
| // fold (A + (0-B)) -> A-B |
| if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); |
| |
| // fold (A+(B-A)) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) |
| return N1.getOperand(0); |
| |
| // fold ((B-A)+A) -> B |
| if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) |
| return N0.getOperand(0); |
| |
| // fold ((A-B)+(C-A)) -> (C-B) |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && |
| N0.getOperand(0) == N1.getOperand(1)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N0.getOperand(1)); |
| |
| // fold ((A-B)+(B-C)) -> (A-C) |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && |
| N0.getOperand(1) == N1.getOperand(0)) |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), |
| N1.getOperand(1)); |
| |
| // fold (A+(B-(A+C))) to (B-C) |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && |
| N0 == N1.getOperand(1).getOperand(0)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N1.getOperand(1).getOperand(1)); |
| |
| // fold (A+(B-(C+A))) to (B-C) |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && |
| N0 == N1.getOperand(1).getOperand(1)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N1.getOperand(1).getOperand(0)); |
| |
| // fold (A+((B-A)+or-C)) to (B+or-C) |
| if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && |
| N1.getOperand(0).getOpcode() == ISD::SUB && |
| N0 == N1.getOperand(0).getOperand(1)) |
| return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), |
| N1.getOperand(1)); |
| |
| // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && |
| N0->hasOneUse() && N1->hasOneUse()) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| |
| if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), |
| DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); |
| } |
| |
| // fold (add (umax X, C), -C) --> (usubsat X, C) |
| if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { |
| auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { |
| return (!Max && !Op) || |
| (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); |
| }; |
| if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, |
| /*AllowUndefs*/ true)) |
| return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (isOneOrOneSplat(N1)) { |
| // fold (add (xor a, -1), 1) -> (sub 0, a) |
| if (isBitwiseNot(N0)) |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| N0.getOperand(0)); |
| |
| // fold (add (add (xor a, -1), b), 1) -> (sub b, a) |
| if (N0.getOpcode() == ISD::ADD) { |
| SDValue A, Xor; |
| |
| if (isBitwiseNot(N0.getOperand(0))) { |
| A = N0.getOperand(1); |
| Xor = N0.getOperand(0); |
| } else if (isBitwiseNot(N0.getOperand(1))) { |
| A = N0.getOperand(0); |
| Xor = N0.getOperand(1); |
| } |
| |
| if (Xor) |
| return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); |
| } |
| |
| // Look for: |
| // add (add x, y), 1 |
| // And if the target does not like this form then turn into: |
| // sub y, (xor x, -1) |
| if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD && |
| N0.hasOneUse()) { |
| SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), |
| DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); |
| } |
| } |
| |
| // (x - y) + -1 -> add (xor y, -1), x |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && |
| isAllOnesOrAllOnesSplat(N1)) { |
| SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); |
| return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); |
| } |
| |
| if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADD(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| if (SDValue Combined = visitADDLike(N)) |
| return Combined; |
| |
| if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubOfSignBit(N, DAG)) |
| return V; |
| |
| // fold (a+b) -> (a|b) iff a and b share no bits. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && |
| DAG.haveNoCommonBitsSet(N0, N1)) |
| return DAG.getNode(ISD::OR, DL, VT, N0, N1); |
| |
| // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). |
| if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { |
| const APInt &C0 = N0->getConstantOperandAPInt(0); |
| const APInt &C1 = N1->getConstantOperandAPInt(0); |
| return DAG.getVScale(DL, VT, C0 + C1); |
| } |
| |
| // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) |
| if (N0.getOpcode() == ISD::ADD && |
| N0.getOperand(1).getOpcode() == ISD::VSCALE && |
| N1.getOpcode() == ISD::VSCALE) { |
| const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); |
| const APInt &VS1 = N1->getConstantOperandAPInt(0); |
| SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); |
| } |
| |
| // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2)) |
| if (N0.getOpcode() == ISD::STEP_VECTOR && |
| N1.getOpcode() == ISD::STEP_VECTOR) { |
| const APInt &C0 = N0->getConstantOperandAPInt(0); |
| const APInt &C1 = N1->getConstantOperandAPInt(0); |
| APInt NewStep = C0 + C1; |
| return DAG.getStepVector(DL, VT, NewStep); |
| } |
| |
| // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) |
| if (N0.getOpcode() == ISD::ADD && |
| N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR && |
| N1.getOpcode() == ISD::STEP_VECTOR) { |
| const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); |
| const APInt &SV1 = N1->getConstantOperandAPInt(0); |
| APInt NewStep = SV0 + SV1; |
| SDValue SV = DAG.getStepVector(DL, VT, NewStep); |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDSAT(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (add_sat x, undef) -> -1 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getAllOnesConstant(DL, VT); |
| |
| // fold (add_sat c1, c2) -> c3 |
| if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(Opcode, DL, VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (add_sat x, 0) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (add_sat x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| // If it cannot overflow, transform into an add. |
| if (Opcode == ISD::UADDSAT) |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, N1); |
| |
| return SDValue(); |
| } |
| |
| static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { |
| bool Masked = false; |
| |
| // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. |
| while (true) { |
| if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { |
| Masked = true; |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| break; |
| } |
| |
| // If this is not a carry, return. |
| if (V.getResNo() != 1) |
| return SDValue(); |
| |
| if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && |
| V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) |
| return SDValue(); |
| |
| EVT VT = V->getValueType(0); |
| if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) |
| return SDValue(); |
| |
| // If the result is masked, then no matter what kind of bool it is we can |
| // return. If it isn't, then we need to make sure the bool type is either 0 or |
| // 1 and not other values. |
| if (Masked || |
| TLI.getBooleanContents(V.getValueType()) == |
| TargetLoweringBase::ZeroOrOneBooleanContent) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| /// Given the operands of an add/sub operation, see if the 2nd operand is a |
| /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert |
| /// the opcode and bypass the mask operation. |
| static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, |
| SelectionDAG &DAG, const SDLoc &DL) { |
| if (N1.getOpcode() == ISD::ZERO_EXTEND) |
| N1 = N1.getOperand(0); |
| |
| if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) |
| return SDValue(); |
| |
| EVT VT = N0.getValueType(); |
| SDValue N10 = N1.getOperand(0); |
| if (N10.getValueType() != VT && N10.getOpcode() == ISD::TRUNCATE) |
| N10 = N10.getOperand(0); |
| |
| if (N10.getValueType() != VT) |
| return SDValue(); |
| |
| if (DAG.ComputeNumSignBits(N10) != VT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| // add N0, (and (AssertSext X, i1), 1) --> sub N0, X |
| // sub N0, (and (AssertSext X, i1), 1) --> add N0, X |
| return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N10); |
| } |
| |
| /// Helper for doing combines based on N0 and N1 being added to each other. |
| SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, |
| SDNode *LocReference) { |
| EVT VT = N0.getValueType(); |
| SDLoc DL(LocReference); |
| |
| // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) |
| if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && |
| isNullOrNullSplat(N1.getOperand(0).getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, |
| DAG.getNode(ISD::SHL, DL, VT, |
| N1.getOperand(0).getOperand(1), |
| N1.getOperand(1))); |
| |
| if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) |
| return V; |
| |
| // Look for: |
| // add (add x, 1), y |
| // And if the target does not like this form then turn into: |
| // sub y, (xor x, -1) |
| if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD && |
| N0.hasOneUse() && isOneOrOneSplat(N0.getOperand(1))) { |
| SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), |
| DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N1, Not); |
| } |
| |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse()) { |
| // Hoist one-use subtraction by non-opaque constant: |
| // (x - C) + y -> (x + y) - C |
| // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. |
| if (isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); |
| } |
| // Hoist one-use subtraction from non-opaque constant: |
| // (C - x) + y -> (y - x) + C |
| if (isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); |
| } |
| } |
| |
| // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' |
| // rather than 'add 0/-1' (the zext should get folded). |
| // add (sext i1 Y), X --> sub X, (zext i1 Y) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND && |
| N0.getOperand(0).getScalarValueSizeInBits() == 1 && |
| TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); |
| return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); |
| } |
| |
| // add X, (sextinreg Y i1) -> sub X, (and Y 1) |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); |
| if (TN->getVT() == MVT::i1) { |
| SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), |
| DAG.getConstant(1, DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); |
| } |
| } |
| |
| // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) |
| if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && |
| N1.getResNo() == 0) |
| return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), |
| N0, N1.getOperand(0), N1.getOperand(2)); |
| |
| // (add X, Carry) -> (addcarry X, 0, Carry) |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) |
| if (SDValue Carry = getAsCarry(TLI, N1)) |
| return DAG.getNode(ISD::ADDCARRY, DL, |
| DAG.getVTList(VT, Carry.getValueType()), N0, |
| DAG.getConstant(0, DL, VT), Carry); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // canonicalize constant to RHS. |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); |
| |
| // fold (addc x, 0) -> x + no carry out |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, |
| DL, MVT::Glue)); |
| |
| // If it cannot overflow, transform into an add. |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| return SDValue(); |
| } |
| |
| /** |
| * Flips a boolean if it is cheaper to compute. If the Force parameters is set, |
| * then the flip also occurs if computing the inverse is the same cost. |
| * This function returns an empty SDValue in case it cannot flip the boolean |
| * without increasing the cost of the computation. If you want to flip a boolean |
| * no matter what, use DAG.getLogicalNOT. |
| */ |
| static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool Force) { |
| if (Force && isa<ConstantSDNode>(V)) |
| return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); |
| |
| if (V.getOpcode() != ISD::XOR) |
| return SDValue(); |
| |
| ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); |
| if (!Const) |
| return SDValue(); |
| |
| EVT VT = V.getValueType(); |
| |
| bool IsFlip = false; |
| switch(TLI.getBooleanContents(VT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| IsFlip = Const->isOne(); |
| break; |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| IsFlip = Const->isAllOnes(); |
| break; |
| case TargetLowering::UndefinedBooleanContent: |
| IsFlip = (Const->getAPIntValue() & 0x01) == 1; |
| break; |
| } |
| |
| if (IsFlip) |
| return V.getOperand(0); |
| if (Force) |
| return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| bool IsSigned = (ISD::SADDO == N->getOpcode()); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getUNDEF(CarryVT)); |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); |
| |
| // fold (addo x, 0) -> x + no carry out |
| if (isNullOrNullSplat(N1)) |
| return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); |
| |
| if (!IsSigned) { |
| // If it cannot overflow, transform into an add. |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. |
| if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { |
| SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), |
| DAG.getConstant(0, DL, VT), N0.getOperand(0)); |
| return CombineTo( |
| N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); |
| } |
| |
| if (SDValue Combined = visitUADDOLike(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitUADDOLike(N1, N0, N)) |
| return Combined; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N0.getValueType(); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) |
| // If Y + 1 cannot overflow. |
| if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { |
| SDValue Y = N1.getOperand(0); |
| SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); |
| if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, |
| N1.getOperand(2)); |
| } |
| |
| // (uaddo X, Carry) -> (addcarry X, 0, Carry) |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) |
| if (SDValue Carry = getAsCarry(TLI, N1)) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, |
| DAG.getConstant(0, SDLoc(N), VT), Carry); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), |
| N1, N0, CarryIn); |
| |
| // fold (adde x, y, false) -> (addc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) |
| return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDCARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); |
| |
| // fold (addcarry x, y, false) -> (uaddo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) |
| return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); |
| } |
| |
| // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. |
| if (isNullConstant(N0) && isNullConstant(N1)) { |
| EVT VT = N0.getValueType(); |
| EVT CarryVT = CarryIn.getValueType(); |
| SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); |
| AddToWorklist(CarryExt.getNode()); |
| return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, |
| DAG.getConstant(1, DL, VT)), |
| DAG.getConstant(0, DL, CarryVT)); |
| } |
| |
| if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) |
| return Combined; |
| |
| // We want to avoid useless duplication. |
| // TODO: This is done automatically for binary operations. As ADDCARRY is |
| // not a binary operation, this is not really possible to leverage this |
| // existing mechanism for it. However, if more operations require the same |
| // deduplication logic, then it may be worth generalize. |
| SDValue Ops[] = {N1, N0, CarryIn}; |
| SDNode *CSENode = |
| DAG.getNodeIfExists(ISD::ADDCARRY, N->getVTList(), Ops, N->getFlags()); |
| if (CSENode) |
| return SDValue(CSENode, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); |
| |
| // fold (saddo_carry x, y, false) -> (saddo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) |
| return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| /** |
| * If we are facing some sort of diamond carry propapagtion pattern try to |
| * break it up to generate something like: |
| * (addcarry X, 0, (addcarry A, B, Z):Carry) |
| * |
| * The end result is usually an increase in operation required, but because the |
| * carry is now linearized, other transforms can kick in and optimize the DAG. |
| * |
| * Patterns typically look something like |
| * (uaddo A, B) |
| * / \ |
| * Carry Sum |
| * | \ |
| * | (addcarry *, 0, Z) |
| * | / |
| * \ Carry |
| * | / |
| * (addcarry X, *, *) |
| * |
| * But numerous variation exist. Our goal is to identify A, B, X and Z and |
| * produce a combine with a single path for carry propagation. |
| */ |
| static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, |
| SDValue X, SDValue Carry0, SDValue Carry1, |
| SDNode *N) { |
| if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) |
| return SDValue(); |
| if (Carry1.getOpcode() != ISD::UADDO) |
| return SDValue(); |
| |
| SDValue Z; |
| |
| /** |
| * First look for a suitable Z. It will present itself in the form of |
| * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true |
| */ |
| if (Carry0.getOpcode() == ISD::ADDCARRY && |
| isNullConstant(Carry0.getOperand(1))) { |
| Z = Carry0.getOperand(2); |
| } else if (Carry0.getOpcode() == ISD::UADDO && |
| isOneConstant(Carry0.getOperand(1))) { |
| EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); |
| Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); |
| } else { |
| // We couldn't find a suitable Z. |
| return SDValue(); |
| } |
| |
| |
| auto cancelDiamond = [&](SDValue A,SDValue B) { |
| SDLoc DL(N); |
| SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); |
| Combiner.AddToWorklist(NewY.getNode()); |
| return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, |
| DAG.getConstant(0, DL, X.getValueType()), |
| NewY.getValue(1)); |
| }; |
| |
| /** |
| * (uaddo A, B) |
| * | |
| * Sum |
| * | |
| * (addcarry *, 0, Z) |
| */ |
| if (Carry0.getOperand(0) == Carry1.getValue(0)) { |
| return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); |
| } |
| |
| /** |
| * (addcarry A, 0, Z) |
| * | |
| * Sum |
| * | |
| * (uaddo *, B) |
| */ |
| if (Carry1.getOperand(0) == Carry0.getValue(0)) { |
| return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); |
| } |
| |
| if (Carry1.getOperand(1) == Carry0.getValue(0)) { |
| return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // If we are facing some sort of diamond carry/borrow in/out pattern try to |
| // match patterns like: |
| // |
| // (uaddo A, B) CarryIn |
| // | \ | |
| // | \ | |
| // PartialSum PartialCarryOutX / |
| // | | / |
| // | ____|____________/ |
| // | / | |
| // (uaddo *, *) \________ |
| // | \ \ |
| // | \ | |
| // | PartialCarryOutY | |
| // | \ | |
| // | \ / |
| // AddCarrySum | ______/ |
| // | / |
| // CarryOut = (or *, *) |
| // |
| // And generate ADDCARRY (or SUBCARRY) with two result values: |
| // |
| // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) |
| // |
| // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with |
| // a single path for carry/borrow out propagation: |
| static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI, |
| SDValue N0, SDValue N1, SDNode *N) { |
| SDValue Carry0 = getAsCarry(TLI, N0); |
| if (!Carry0) |
| return SDValue(); |
| SDValue Carry1 = getAsCarry(TLI, N1); |
| if (!Carry1) |
| return SDValue(); |
| |
| unsigned Opcode = Carry0.getOpcode(); |
| if (Opcode != Carry1.getOpcode()) |
| return SDValue(); |
| if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) |
| return SDValue(); |
| |
| // Canonicalize the add/sub of A and B (the top node in the above ASCII art) |
| // as Carry0 and the add/sub of the carry in as Carry1 (the middle node). |
| if (Carry1.getNode()->isOperandOf(Carry0.getNode())) |
| std::swap(Carry0, Carry1); |
| |
| // Check if nodes are connected in expected way. |
| if (Carry1.getOperand(0) != Carry0.getValue(0) && |
| Carry1.getOperand(1) != Carry0.getValue(0)) |
| return SDValue(); |
| |
| // The carry in value must be on the righthand side for subtraction. |
| unsigned CarryInOperandNum = |
| Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; |
| if (Opcode == ISD::USUBO && CarryInOperandNum != 1) |
| return SDValue(); |
| SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); |
| |
| unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; |
| if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) |
| return SDValue(); |
| |
| // Verify that the carry/borrow in is plausibly a carry/borrow bit. |
| // TODO: make getAsCarry() aware of how partial carries are merged. |
| if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| CarryIn = CarryIn.getOperand(0); |
| if (CarryIn.getValueType() != MVT::i1) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue Merged = |
| DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), |
| Carry0.getOperand(1), CarryIn); |
| |
| // Please note that because we have proven that the result of the UADDO/USUBO |
| // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can |
| // therefore prove that if the first UADDO/USUBO overflows, the second |
| // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the |
| // maximum value. |
| // |
| // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry |
| // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) |
| // |
| // This is important because it means that OR and XOR can be used to merge |
| // carry flags; and that AND can return a constant zero. |
| // |
| // TODO: match other operations that can merge flags (ADD, etc) |
| DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); |
| if (N->getOpcode() == ISD::AND) |
| return DAG.getConstant(0, DL, MVT::i1); |
| return Merged.getValue(1); |
| } |
| |
| SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, |
| SDNode *N) { |
| // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. |
| if (isBitwiseNot(N0)) |
| if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { |
| SDLoc DL(N); |
| SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, |
| N0.getOperand(0), NotC); |
| return CombineTo( |
| N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); |
| } |
| |
| // Iff the flag result is dead: |
| // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) |
| // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo |
| // or the dependency between the instructions. |
| if ((N0.getOpcode() == ISD::ADD || |
| (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && |
| N0.getValue(1) != CarryIn)) && |
| isNullConstant(N1) && !N->hasAnyUseOfValue(1)) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), |
| N0.getOperand(0), N0.getOperand(1), CarryIn); |
| |
| /** |
| * When one of the addcarry argument is itself a carry, we may be facing |
| * a diamond carry propagation. In which case we try to transform the DAG |
| * to ensure linear carry propagation if that is possible. |
| */ |
| if (auto Y = getAsCarry(TLI, N1)) { |
| // Because both are carries, Y and Z can be swapped. |
| if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) |
| return R; |
| if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) |
| return R; |
| } |
| |
| return SDValue(); |
| } |
| |
| // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a |
| // clamp/truncation if necessary. |
| static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| const SDLoc &DL) { |
| assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && |
| "Illegal truncation"); |
| |
| if (DstVT == SrcVT) |
| return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); |
| |
| // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by |
| // clamping RHS. |
| APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), |
| DstVT.getScalarSizeInBits()); |
| if (!DAG.MaskedValueIsZero(LHS, UpperBits)) |
| return SDValue(); |
| |
| SDValue SatLimit = |
| DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), |
| DstVT.getScalarSizeInBits()), |
| DL, SrcVT); |
| RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); |
| RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); |
| LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); |
| return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); |
| } |
| |
| // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to |
| // usubsat(a,b), optionally as a truncated type. |
| SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) { |
| if (N->getOpcode() != ISD::SUB || |
| !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) |
| return SDValue(); |
| |
| EVT SubVT = N->getValueType(0); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // Try to find umax(a,b) - b or a - umin(a,b) patterns |
| // they may be converted to usubsat(a,b). |
| if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { |
| SDValue MaxLHS = Op0.getOperand(0); |
| SDValue MaxRHS = Op0.getOperand(1); |
| if (MaxLHS == Op1) |
| return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N)); |
| if (MaxRHS == Op1) |
| return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N)); |
| } |
| |
| if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { |
| SDValue MinLHS = Op1.getOperand(0); |
| SDValue MinRHS = Op1.getOperand(1); |
| if (MinLHS == Op0) |
| return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N)); |
| if (MinRHS == Op0) |
| return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N)); |
| } |
| |
| // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) |
| if (Op1.getOpcode() == ISD::TRUNCATE && |
| Op1.getOperand(0).getOpcode() == ISD::UMIN && |
| Op1.getOperand(0).hasOneUse()) { |
| SDValue MinLHS = Op1.getOperand(0).getOperand(0); |
| SDValue MinRHS = Op1.getOperand(0).getOperand(1); |
| if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) |
| return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, |
| DAG, SDLoc(N)); |
| if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) |
| return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, |
| DAG, SDLoc(N)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Since it may not be valid to emit a fold to zero for vector initializers |
| // check if we can before folding. |
| static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, |
| SelectionDAG &DAG, bool LegalOperations) { |
| if (!VT.isVector()) |
| return DAG.getConstant(0, DL, VT); |
| if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) |
| return DAG.getConstant(0, DL, VT); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUB(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| auto PeekThroughFreeze = [](SDValue N) { |
| if (N->getOpcode() == ISD::FREEZE && N.hasOneUse()) |
| return N->getOperand(0); |
| return N; |
| }; |
| |
| // fold (sub x, x) -> 0 |
| // FIXME: Refactor this and xor and other similar operations together. |
| if (PeekThroughFreeze(N0) == PeekThroughFreeze(N1)) |
| return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // fold (sub c1, c2) -> c3 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (sub x, 0) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| |
| // fold (sub x, c) -> (add x, -c) |
| if (N1C) { |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); |
| } |
| |
| if (isNullOrNullSplat(N0)) { |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| // Right-shifting everything out but the sign bit followed by negation is |
| // the same as flipping arithmetic/logical shift type without the negation: |
| // -(X >>u 31) -> (X >>s 31) |
| // -(X >>s 31) -> (X >>u 31) |
| if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { |
| ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); |
| if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { |
| auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; |
| if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) |
| return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); |
| } |
| } |
| |
| // 0 - X --> 0 if the sub is NUW. |
| if (N->getFlags().hasNoUnsignedWrap()) |
| return N0; |
| |
| if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { |
| // N1 is either 0 or the minimum signed value. If the sub is NSW, then |
| // N1 must be 0 because negating the minimum signed value is undefined. |
| if (N->getFlags().hasNoSignedWrap()) |
| return N0; |
| |
| // 0 - X --> X if X is 0 or the minimum signed value. |
| return N1; |
| } |
| |
| // Convert 0 - abs(x). |
| if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() && |
| !TLI.isOperationLegalOrCustom(ISD::ABS, VT)) |
| if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true)) |
| return Result; |
| |
| // Fold neg(splat(neg(x)) -> splat(x) |
| if (VT.isVector()) { |
| SDValue N1S = DAG.getSplatValue(N1, true); |
| if (N1S && N1S.getOpcode() == ISD::SUB && |
| isNullConstant(N1S.getOperand(0))) |
| return DAG.getSplat(VT, DL, N1S.getOperand(1)); |
| } |
| } |
| |
| // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) |
| if (isAllOnesOrAllOnesSplat(N0)) |
| return DAG.getNode(ISD::XOR, DL, VT, N1, N0); |
| |
| // fold (A - (0-B)) -> A+B |
| if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); |
| |
| // fold A-(A-B) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) |
| return N1.getOperand(1); |
| |
| // fold (A+B)-A -> B |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) |
| return N0.getOperand(1); |
| |
| // fold (A+B)-B -> A |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) |
| return N0.getOperand(0); |
| |
| // fold (A+C1)-C2 -> A+(C1-C2) |
| if (N0.getOpcode() == ISD::ADD) { |
| SDValue N01 = N0.getOperand(1); |
| if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N01, N1})) |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); |
| } |
| |
| // fold C2-(A+C1) -> (C2-C1)-A |
| if (N1.getOpcode() == ISD::ADD) { |
| SDValue N11 = N1.getOperand(1); |
| if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11})) |
| return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); |
| } |
| |
| // fold (A-C1)-C2 -> A-(C1+C2) |
| if (N0.getOpcode() == ISD::SUB) { |
| SDValue N01 = N0.getOperand(1); |
| if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N01, N1})) |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); |
| } |
| |
| // fold (c1-A)-c2 -> (c1-c2)-A |
| if (N0.getOpcode() == ISD::SUB) { |
| SDValue N00 = N0.getOperand(0); |
| if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N00, N1})) |
| return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); |
| } |
| |
| // fold ((A+(B+or-C))-B) -> A+or-C |
| if (N0.getOpcode() == ISD::ADD && |
| (N0.getOperand(1).getOpcode() == ISD::SUB || |
| N0.getOperand(1).getOpcode() == ISD::ADD) && |
| N0.getOperand(1).getOperand(0) == N1) |
| return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(1)); |
| |
| // fold ((A+(C+B))-B) -> A+C |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && |
| N0.getOperand(1).getOperand(1) == N1) |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(0)); |
| |
| // fold ((A-(B-C))-C) -> A-B |
| if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && |
| N0.getOperand(1).getOperand(1) == N1) |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(0)); |
| |
| // fold (A-(B-C)) -> A+(C-B) |
| if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), |
| N1.getOperand(0))); |
| |
| // A - (A & B) -> A & (~B) |
| if (N1.getOpcode() == ISD::AND) { |
| SDValue A = N1.getOperand(0); |
| SDValue B = N1.getOperand(1); |
| if (A != N0) |
| std::swap(A, B); |
| if (A == N0 && |
| (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { |
| SDValue InvB = |
| DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::AND, DL, VT, A, InvB); |
| } |
| } |
| |
| // fold (X - (-Y * Z)) -> (X + (Y * Z)) |
| if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { |
| if (N1.getOperand(0).getOpcode() == ISD::SUB && |
| isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, |
| N1.getOperand(0).getOperand(1), |
| N1.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); |
| } |
| if (N1.getOperand(1).getOpcode() == ISD::SUB && |
| isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, |
| N1.getOperand(0), |
| N1.getOperand(1).getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); |
| } |
| } |
| |
| // If either operand of a sub is undef, the result is undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| |
| if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubOfSignBit(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) |
| return V; |
| |
| if (SDValue V = foldSubToUSubSat(VT, N)) |
| return V; |
| |
| // (x - y) - 1 -> add (xor y, -1), x |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && isOneOrOneSplat(N1)) { |
| SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), |
| DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); |
| } |
| |
| // Look for: |
| // sub y, (xor x, -1) |
| // And if the target does not like this form then turn into: |
| // add (add x, y), 1 |
| if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); |
| return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); |
| } |
| |
| // Hoist one-use addition by non-opaque constant: |
| // (x + C) - y -> (x - y) + C |
| if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && |
| isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); |
| } |
| // y - (x + C) -> (y - x) - C |
| if (N1.getOpcode() == ISD::ADD && N1.hasOneUse() && |
| isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); |
| return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); |
| } |
| // (x - C) - y -> (x - y) - C |
| // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && |
| isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); |
| } |
| // (C - x) - y -> C - (x + y) |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && |
| isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); |
| } |
| |
| // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' |
| // rather than 'sub 0/1' (the sext should get folded). |
| // sub X, (zext i1 Y) --> add X, (sext i1 Y) |
| if (N1.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOperand(0).getScalarValueSizeInBits() == 1 && |
| TLI.getBooleanContents(VT) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); |
| } |
| |
| // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { |
| if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { |
| SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); |
| SDValue S0 = N1.getOperand(0); |
| if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) |
| if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) |
| if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); |
| } |
| } |
| |
| // If the relocation model supports it, consider symbol offsets. |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) |
| if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { |
| // fold (sub Sym, c) -> Sym-c |
| if (N1C && GA->getOpcode() == ISD::GlobalAddress) |
| return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, |
| GA->getOffset() - |
| (uint64_t)N1C->getSExtValue()); |
| // fold (sub Sym+c1, Sym+c2) -> c1-c2 |
| if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) |
| if (GA->getGlobal() == GB->getGlobal()) |
| return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), |
| DL, VT); |
| } |
| |
| // sub X, (sextinreg Y i1) -> add X, (and Y 1) |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); |
| if (TN->getVT() == MVT::i1) { |
| SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), |
| DAG.getConstant(1, DL, VT)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); |
| } |
| } |
| |
| // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) |
| if (N1.getOpcode() == ISD::VSCALE && N1.hasOneUse()) { |
| const APInt &IntVal = N1.getConstantOperandAPInt(0); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); |
| } |
| |
| // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) |
| if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { |
| APInt NewStep = -N1.getConstantOperandAPInt(0); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getStepVector(DL, VT, NewStep)); |
| } |
| |
| // Prefer an add for more folding potential and possibly better codegen: |
| // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) |
| if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { |
| SDValue ShAmt = N1.getOperand(1); |
| ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); |
| if (ShAmtC && |
| ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { |
| SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); |
| } |
| } |
| |
| // As with the previous fold, prefer add for more folding potential. |
| // Subtracting SMIN/0 is the same as adding SMIN/0: |
| // N0 - (X << BW-1) --> N0 + (X << BW-1) |
| if (N1.getOpcode() == ISD::SHL) { |
| ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1)); |
| if (ShlC && ShlC->getAPIntValue() == VT.getScalarSizeInBits() - 1) |
| return DAG.getNode(ISD::ADD, DL, VT, N1, N0); |
| } |
| |
| // (sub (subcarry X, 0, Carry), Y) -> (subcarry X, Y, Carry) |
| if (N0.getOpcode() == ISD::SUBCARRY && isNullConstant(N0.getOperand(1)) && |
| N0.getResNo() == 0 && N0.hasOneUse()) |
| return DAG.getNode(ISD::SUBCARRY, DL, N0->getVTList(), |
| N0.getOperand(0), N1, N0.getOperand(2)); |
| |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { |
| // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) |
| if (SDValue Carry = getAsCarry(TLI, N0)) { |
| SDValue X = N1; |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); |
| return DAG.getNode(ISD::ADDCARRY, DL, |
| DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, |
| Carry); |
| } |
| } |
| |
| // If there's no chance of borrowing from adjacent bits, then sub is xor: |
| // sub C0, X --> xor X, C0 |
| if (ConstantSDNode *C0 = isConstOrConstSplat(N0)) { |
| if (!C0->isOpaque()) { |
| const APInt &C0Val = C0->getAPIntValue(); |
| const APInt &MaybeOnes = ~DAG.computeKnownBits(N1).Zero; |
| if ((C0Val - MaybeOnes) == (C0Val ^ MaybeOnes)) |
| return DAG.getNode(ISD::XOR, DL, VT, N1, N0); |
| } |
| } |
| |
| // max(a,b) - min(a,b) --> abd(a,b) |
| auto MatchSubMaxMin = [&](unsigned Max, unsigned Min, unsigned Abd) { |
| if (N0.getOpcode() != Max || N1.getOpcode() != Min) |
| return SDValue(); |
| if ((N0.getOperand(0) != N1.getOperand(0) || |
| N0.getOperand(1) != N1.getOperand(1)) && |
| (N0.getOperand(0) != N1.getOperand(1) || |
| N0.getOperand(1) != N1.getOperand(0))) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(Abd, VT)) |
| return SDValue(); |
| return DAG.getNode(Abd, DL, VT, N0.getOperand(0), N0.getOperand(1)); |
| }; |
| if (SDValue R = MatchSubMaxMin(ISD::SMAX, ISD::SMIN, ISD::ABDS)) |
| return R; |
| if (SDValue R = MatchSubMaxMin(ISD::UMAX, ISD::UMIN, ISD::ABDU)) |
| return R; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBSAT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (sub_sat x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (sub_sat x, x) -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (sub_sat c1, c2) -> c3 |
| if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (sub_sat x, 0) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (sub_sat x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an SUB. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // fold (subc x, x) -> 0 + no borrow |
| if (N0 == N1) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // fold (subc x, 0) -> x + no borrow |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow |
| if (isAllOnesConstant(N0)) |
| return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| bool IsSigned = (ISD::SSUBO == N->getOpcode()); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an SUB. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), |
| DAG.getUNDEF(CarryVT)); |
| |
| // fold (subo x, x) -> 0 + no borrow |
| if (N0 == N1) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| |
| // fold (subox, c) -> (addo x, -c) |
| if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { |
| return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, |
| DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); |
| } |
| |
| // fold (subo x, 0) -> x + no borrow |
| if (isNullOrNullSplat(N1)) |
| return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); |
| |
| // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow |
| if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) |
| return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (sube x, y, false) -> (subc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) |
| return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (subcarry x, y, false) -> (usubo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) |
| return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (ssubo_carry x, y, false) -> (ssubo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) |
| return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and |
| // UMULFIXSAT here. |
| SDValue DAGCombiner::visitMULFIX(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue Scale = N->getOperand(2); |
| EVT VT = N0.getValueType(); |
| |
| // fold (mulfix x, undef, scale) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // Canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); |
| |
| // fold (mulfix x, 0, scale) -> 0 |
| if (isNullConstant(N1)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMUL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (mul x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (mul c1, c2) -> c1*c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::MUL, DL, VT, N1, N0); |
| |
| bool N1IsConst = false; |
| bool N1IsOpaqueConst = false; |
| APInt ConstValue1; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); |
| assert((!N1IsConst || |
| ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && |
| "Splat APInt should be element width"); |
| } else { |
| N1IsConst = isa<ConstantSDNode>(N1); |
| if (N1IsConst) { |
| ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); |
| N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); |
| } |
| } |
| |
| // fold (mul x, 0) -> 0 |
| if (N1IsConst && ConstValue1.isZero()) |
| return N1; |
| |
| // fold (mul x, 1) -> x |
| if (N1IsConst && ConstValue1.isOne()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (mul x, -1) -> 0-x |
| if (N1IsConst && ConstValue1.isAllOnes()) |
| return DAG.getNegative(N0, DL, VT); |
| |
| // fold (mul x, (1 << c)) -> x << c |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1) && |
| (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); |
| return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); |
| } |
| |
| // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c |
| if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) { |
| unsigned Log2Val = (-ConstValue1).logBase2(); |
| // FIXME: If the input is something that is easily negated (e.g. a |
| // single-use add), we should put the negate there. |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), |
| DAG.getNode(ISD::SHL, DL, VT, N0, |
| DAG.getConstant(Log2Val, DL, |
| getShiftAmountTy(N0.getValueType())))); |
| } |
| |
| // Attempt to reuse an existing umul_lohi/smul_lohi node, but only if the |
| // hi result is in use in case we hit this mid-legalization. |
| for (unsigned LoHiOpc : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) { |
| if (!LegalOperations || TLI.isOperationLegalOrCustom(LoHiOpc, VT)) { |
| SDVTList LoHiVT = DAG.getVTList(VT, VT); |
| // TODO: Can we match commutable operands with getNodeIfExists? |
| if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N0, N1})) |
| if (LoHi->hasAnyUseOfValue(1)) |
| return SDValue(LoHi, 0); |
| if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N1, N0})) |
| if (LoHi->hasAnyUseOfValue(1)) |
| return SDValue(LoHi, 0); |
| } |
| } |
| |
| // Try to transform: |
| // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. |
| // mul x, (2^N + 1) --> add (shl x, N), x |
| // mul x, (2^N - 1) --> sub (shl x, N), x |
| // Examples: x * 33 --> (x << 5) + x |
| // x * 15 --> (x << 4) - x |
| // x * -33 --> -((x << 5) + x) |
| // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) |
| // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. |
| // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) |
| // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) |
| // Examples: x * 0x8800 --> (x << 15) + (x << 11) |
| // x * 0xf800 --> (x << 16) - (x << 11) |
| // x * -0x8800 --> -((x << 15) + (x << 11)) |
| // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) |
| if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { |
| // TODO: We could handle more general decomposition of any constant by |
| // having the target set a limit on number of ops and making a |
| // callback to determine that sequence (similar to sqrt expansion). |
| unsigned MathOp = ISD::DELETED_NODE; |
| APInt MulC = ConstValue1.abs(); |
| // The constant `2` should be treated as (2^0 + 1). |
| unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); |
| MulC.lshrInPlace(TZeros); |
| if ((MulC - 1).isPowerOf2()) |
| MathOp = ISD::ADD; |
| else if ((MulC + 1).isPowerOf2()) |
| MathOp = ISD::SUB; |
| |
| if (MathOp != ISD::DELETED_NODE) { |
| unsigned ShAmt = |
| MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); |
| ShAmt += TZeros; |
| assert(ShAmt < VT.getScalarSizeInBits() && |
| "multiply-by-constant generated out of bounds shift"); |
| SDValue Shl = |
| DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); |
| SDValue R = |
| TZeros ? DAG.getNode(MathOp, DL, VT, Shl, |
| DAG.getNode(ISD::SHL, DL, VT, N0, |
| DAG.getConstant(TZeros, DL, VT))) |
| : DAG.getNode(MathOp, DL, VT, Shl, N0); |
| if (ConstValue1.isNegative()) |
| R = DAG.getNegative(R, DL, VT); |
| return R; |
| } |
| } |
| |
| // (mul (shl X, c1), c2) -> (mul X, c2 << c1) |
| if (N0.getOpcode() == ISD::SHL) { |
| SDValue N01 = N0.getOperand(1); |
| if (SDValue C3 = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N1, N01})) |
| return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), C3); |
| } |
| |
| // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one |
| // use. |
| { |
| SDValue Sh, Y; |
| |
| // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). |
| if (N0.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N0.getOperand(1)) && N0->hasOneUse()) { |
| Sh = N0; Y = N1; |
| } else if (N1.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N1.getOperand(1)) && |
| N1->hasOneUse()) { |
| Sh = N1; Y = N0; |
| } |
| |
| if (Sh.getNode()) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, Sh.getOperand(0), Y); |
| return DAG.getNode(ISD::SHL, DL, VT, Mul, Sh.getOperand(1)); |
| } |
| } |
| |
| // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && |
| N0.getOpcode() == ISD::ADD && |
| DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && |
| isMulAddWithConstProfitable(N, N0, N1)) |
| return DAG.getNode( |
| ISD::ADD, DL, VT, |
| DAG.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1), |
| DAG.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1)); |
| |
| // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). |
| ConstantSDNode *NC1 = isConstOrConstSplat(N1); |
| if (N0.getOpcode() == ISD::VSCALE && NC1) { |
| const APInt &C0 = N0.getConstantOperandAPInt(0); |
| const APInt &C1 = NC1->getAPIntValue(); |
| return DAG.getVScale(DL, VT, C0 * C1); |
| } |
| |
| // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). |
| APInt MulVal; |
| if (N0.getOpcode() == ISD::STEP_VECTOR && |
| ISD::isConstantSplatVector(N1.getNode(), MulVal)) { |
| const APInt &C0 = N0.getConstantOperandAPInt(0); |
| APInt NewStep = C0 * MulVal; |
| return DAG.getStepVector(DL, VT, NewStep); |
| } |
| |
| // Fold ((mul x, 0/undef) -> 0, |
| // (mul x, 1) -> x) -> x) |
| // -> and(x, mask) |
| // We can replace vectors with '0' and '1' factors with a clearing mask. |
| if (VT.isFixedLengthVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| SmallBitVector ClearMask; |
| ClearMask.reserve(NumElts); |
| auto IsClearMask = [&ClearMask](ConstantSDNode *V) { |
| if (!V || V->isZero()) { |
| ClearMask.push_back(true); |
| return true; |
| } |
| ClearMask.push_back(false); |
| return V->isOne(); |
| }; |
| if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && |
| ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { |
| assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); |
| EVT LegalSVT = N1.getOperand(0).getValueType(); |
| SDValue Zero = DAG.getConstant(0, DL, LegalSVT); |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); |
| SmallVector<SDValue, 16> Mask(NumElts, AllOnes); |
| for (unsigned I = 0; I != NumElts; ++I) |
| if (ClearMask[I]) |
| Mask[I] = Zero; |
| return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); |
| } |
| } |
| |
| // reassociate mul |
| if (SDValue RMUL = reassociateOps(ISD::MUL, DL, N0, N1, N->getFlags())) |
| return RMUL; |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| /// Return true if divmod libcall is available. |
| static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, |
| const TargetLowering &TLI) { |
| RTLIB::Libcall LC; |
| EVT NodeType = Node->getValueType(0); |
| if (!NodeType.isSimple()) |
| return false; |
| switch (NodeType.getSimpleVT().SimpleTy) { |
| default: return false; // No libcall for vector types. |
| case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; |
| case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; |
| case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; |
| case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; |
| case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; |
| } |
| |
| return TLI.getLibcallName(LC) != nullptr; |
| } |
| |
| /// Issue divrem if both quotient and remainder are needed. |
| SDValue DAGCombiner::useDivRem(SDNode *Node) { |
| if (Node->use_empty()) |
| return SDValue(); // This is a dead node, leave it alone. |
| |
| unsigned Opcode = Node->getOpcode(); |
| bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| |
| // DivMod lib calls can still work on non-legal types if using lib-calls. |
| EVT VT = Node->getValueType(0); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) |
| return SDValue(); |
| |
| // If DIVREM is going to get expanded into a libcall, |
| // but there is no libcall available, then don't combine. |
| if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && |
| !isDivRemLibcallAvailable(Node, isSigned, TLI)) |
| return SDValue(); |
| |
| // If div is legal, it's better to do the normal expansion |
| unsigned OtherOpcode = 0; |
| if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { |
| OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; |
| if (TLI.isOperationLegalOrCustom(Opcode, VT)) |
| return SDValue(); |
| } else { |
| OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; |
| if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) |
| return SDValue(); |
| } |
| |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue combined; |
| for (SDNode *User : Op0->uses()) { |
| if (User == Node || User->getOpcode() == ISD::DELETED_NODE || |
| User->use_empty()) |
| continue; |
| // Convert the other matching node(s), too; |
| // otherwise, the DIVREM may get target-legalized into something |
| // target-specific that we won't be able to recognize. |
| unsigned UserOpc = User->getOpcode(); |
| if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && |
| User->getOperand(0) == Op0 && |
| User->getOperand(1) == Op1) { |
| if (!combined) { |
| if (UserOpc == OtherOpcode) { |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); |
| } else if (UserOpc == DivRemOpc) { |
| combined = SDValue(User, 0); |
| } else { |
| assert(UserOpc == Opcode); |
| continue; |
| } |
| } |
| if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) |
| CombineTo(User, combined); |
| else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) |
| CombineTo(User, combined.getValue(1)); |
| } |
| } |
| return combined; |
| } |
| |
| static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| unsigned Opc = N->getOpcode(); |
| bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // X / undef -> undef |
| // X % undef -> undef |
| // X / 0 -> undef |
| // X % 0 -> undef |
| // NOTE: This includes vectors where any divisor element is zero/undef. |
| if (DAG.isUndef(Opc, {N0, N1})) |
| return DAG.getUNDEF(VT); |
| |
| // undef / X -> 0 |
| // undef % X -> 0 |
| if (N0.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // 0 / X -> 0 |
| // 0 % X -> 0 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| if (N0C && N0C->isZero()) |
| return N0; |
| |
| // X / X -> 1 |
| // X % X -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); |
| |
| // X / 1 -> X |
| // X % 1 -> 0 |
| // If this is a boolean op (single-bit element type), we can't have |
| // division-by-zero or remainder-by-zero, so assume the divisor is 1. |
| // TODO: Similarly, if we're zero-extending a boolean divisor, then assume |
| // it's a 1. |
| if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) |
| return IsDiv ? N0 : DAG.getConstant(0, DL, VT); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| SDLoc DL(N); |
| |
| // fold (sdiv c1, c2) -> c1/c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (sdiv X, -1) -> 0-X |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N1C && N1C->isAllOnes()) |
| return DAG.getNegative(N0, DL, VT); |
| |
| // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) |
| if (N1C && N1C->getAPIntValue().isMinSignedValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT)); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 |
| if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); |
| |
| if (SDValue V = visitSDIVLike(N0, N1, N)) { |
| // If the corresponding remainder node exists, update its users with |
| // (Dividend - (Quotient * Divisor). |
| if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), |
| { N0, N1 })) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(Mul.getNode()); |
| AddToWorklist(Sub.getNode()); |
| CombineTo(RemNode, Sub); |
| } |
| return V; |
| } |
| |
| // sdiv, srem -> sdivrem |
| // If the divisor is constant, then return DIVREM only if isIntDivCheap() is |
| // true. Otherwise, we break the simplification logic in visitREM(). |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem; |
| |
| return SDValue(); |
| } |
| |
| static bool isDivisorPowerOfTwo(SDValue Divisor) { |
| // Helper for determining whether a value is a power-2 constant scalar or a |
| // vector of such elements. |
| auto IsPowerOfTwo = [](ConstantSDNode *C) { |
| if (C->isZero() || C->isOpaque()) |
| return false; |
| if (C->getAPIntValue().isPowerOf2()) |
| return true; |
| if (C->getAPIntValue().isNegatedPowerOf2()) |
| return true; |
| return false; |
| }; |
| |
| return ISD::matchUnaryPredicate(Divisor, IsPowerOfTwo); |
| } |
| |
| SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| |
| // fold (sdiv X, pow2) -> simple ops after legalize |
| // FIXME: We check for the exact bit here because the generic lowering gives |
| // better results in that case. The target-specific lowering should learn how |
| // to handle exact sdivs efficiently. |
| if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1)) { |
| // Target-specific implementation of sdiv x, pow2. |
| if (SDValue Res = BuildSDIVPow2(N)) |
| return Res; |
| |
| // Create constants that are functions of the shift amount value. |
| EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); |
| SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); |
| SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); |
| C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); |
| SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); |
| if (!isConstantOrConstantVector(Inexact)) |
| return SDValue(); |
| |
| // Splat the sign bit into the register |
| SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, |
| DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); |
| AddToWorklist(Sign.getNode()); |
| |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); |
| AddToWorklist(Srl.getNode()); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); |
| AddToWorklist(Add.getNode()); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); |
| AddToWorklist(Sra.getNode()); |
| |
| // Special case: (sdiv X, 1) -> X |
| // Special Case: (sdiv X, -1) -> 0-X |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); |
| SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); |
| SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); |
| SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); |
| Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); |
| |
| // If dividing by a positive value, we're done. Otherwise, the result must |
| // be negated. |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); |
| |
| // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. |
| SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); |
| SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); |
| return Res; |
| } |
| |
| // If integer divide is expensive and we satisfy the requirements, emit an |
| // alternate sequence. Targets may check function attributes for size/speed |
| // trade-offs. |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (isConstantOrConstantVector(N1) && |
| !TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue Op = BuildSDIV(N)) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| SDLoc DL(N); |
| |
| // fold (udiv c1, c2) -> c1/c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (udiv X, -1) -> select(X == -1, 1, 0) |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N1C && N1C->isAllOnes() && CCVT.isVector() == VT.isVector()) { |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT)); |
| } |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (SDValue V = visitUDIVLike(N0, N1, N)) { |
| // If the corresponding remainder node exists, update its users with |
| // (Dividend - (Quotient * Divisor). |
| if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), |
| { N0, N1 })) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(Mul.getNode()); |
| AddToWorklist(Sub.getNode()); |
| CombineTo(RemNode, Sub); |
| } |
| return V; |
| } |
| |
| // sdiv, srem -> sdivrem |
| // If the divisor is constant, then return DIVREM only if isIntDivCheap() is |
| // true. Otherwise, we break the simplification logic in visitREM(). |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // fold (udiv x, (1 << c)) -> x >>u c |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1)) { |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| AddToWorklist(LogBase2.getNode()); |
| |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); |
| AddToWorklist(Trunc.getNode()); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); |
| } |
| |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (N1.getOpcode() == ISD::SHL) { |
| SDValue N10 = N1.getOperand(0); |
| if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N10)) { |
| SDValue LogBase2 = BuildLogBase2(N10, DL); |
| AddToWorklist(LogBase2.getNode()); |
| |
| EVT ADDVT = N1.getOperand(1).getValueType(); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); |
| AddToWorklist(Trunc.getNode()); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Add); |
| } |
| } |
| |
| // fold (udiv x, c) -> alternate |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (isConstantOrConstantVector(N1) && |
| !TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue Op = BuildUDIV(N)) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N) { |
| if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1) && |
| !DAG.doesNodeExist(ISD::SDIV, N->getVTList(), {N0, N1})) { |
| // Target-specific implementation of srem x, pow2. |
| if (SDValue Res = BuildSREMPow2(N)) |
| return Res; |
| } |
| return SDValue(); |
| } |
| |
| // handles ISD::SREM and ISD::UREM |
| SDValue DAGCombiner::visitREM(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| bool isSigned = (Opcode == ISD::SREM); |
| SDLoc DL(N); |
| |
| // fold (rem c1, c2) -> c1%c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) |
| return C; |
| |
| // fold (urem X, -1) -> select(FX == -1, 0, FX) |
| // Freeze the numerator to avoid a miscompile with an undefined value. |
| if (!isSigned && llvm::isAllOnesOrAllOnesSplat(N1, /*AllowUndefs*/ false) && |
| CCVT.isVector() == VT.isVector()) { |
| SDValue F0 = DAG.getFreeze(N0); |
| SDValue EqualsNeg1 = DAG.getSetCC(DL, CCVT, F0, N1, ISD::SETEQ); |
| return DAG.getSelect(DL, VT, EqualsNeg1, DAG.getConstant(0, DL, VT), F0); |
| } |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (isSigned) { |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 |
| if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UREM, DL, VT, N0, N1); |
| } else { |
| if (DAG.isKnownToBeAPowerOfTwo(N1)) { |
| // fold (urem x, pow2) -> (and x, pow2-1) |
| SDValue NegOne = DAG.getAllOnesConstant(DL, VT); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0, Add); |
| } |
| // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) |
| // fold (urem x, (lshr pow2, y)) -> (and x, (add (lshr pow2, y), -1)) |
| // TODO: We should sink the following into isKnownToBePowerOfTwo |
| // using a OrZero parameter analogous to our handling in ValueTracking. |
| if ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) && |
| DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { |
| SDValue NegOne = DAG.getAllOnesConstant(DL, VT); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0, Add); |
| } |
| } |
| |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| |
| // If X/C can be simplified by the division-by-constant logic, lower |
| // X%C to the equivalent of X-X/C*C. |
| // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the |
| // speculative DIV must not cause a DIVREM conversion. We guard against this |
| // by skipping the simplification if isIntDivCheap(). When div is not cheap, |
| // combine will not return a DIVREM. Regardless, checking cheapness here |
| // makes sense since the simplification results in fatter code. |
| if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { |
| if (isSigned) { |
| // check if we can build faster implementation for srem |
| if (SDValue OptimizedRem = buildOptimizedSREM(N0, N1, N)) |
| return OptimizedRem; |
| } |
| |
| SDValue OptimizedDiv = |
| isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); |
| if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) { |
| // If the equivalent Div node also exists, update its users. |
| unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; |
| if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), |
| { N0, N1 })) |
| CombineTo(DivNode, OptimizedDiv); |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(OptimizedDiv.getNode()); |
| AddToWorklist(Mul.getNode()); |
| return Sub; |
| } |
| } |
| |
| // sdiv, srem -> sdivrem |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem.getValue(1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULHS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // fold (mulhs c1, c2) |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); |
| |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (mulhs x, 0) -> 0 |
| // do not return N1, because undef node may exist. |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return DAG.getConstant(0, DL, VT); |
| } |
| |
| // fold (mulhs x, 0) -> 0 |
| if (isNullConstant(N1)) |
| return N1; |
| |
| // fold (mulhs x, 1) -> (sra x, size(x)-1) |
| if (isOneConstant(N1)) |
| return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, |
| DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, |
| getShiftAmountTy(N0.getValueType()))); |
| |
| // fold (mulhs x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // If the type twice as wide is legal, transform the mulhs to a wider multiply |
| // plus a shift. |
| if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && |
| !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); |
| N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); |
| N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(N1.getValueType()))); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULHU(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // fold (mulhu c1, c2) |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); |
| |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (mulhu x, 0) -> 0 |
| // do not return N1, because undef node may exist. |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return DAG.getConstant(0, DL, VT); |
| } |
| |
| // fold (mulhu x, 0) -> 0 |
| if (isNullConstant(N1)) |
| return N1; |
| |
| // fold (mulhu x, 1) -> 0 |
| if (isOneConstant(N1)) |
| return DAG.getConstant(0, DL, N0.getValueType()); |
| |
| // fold (mulhu x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { |
| unsigned NumEltBits = VT.getScalarSizeInBits(); |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| SDValue SRLAmt = DAG.getNode( |
| ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); |
| } |
| |
| // If the type twice as wide is legal, transform the mulhu to a wider multiply |
| // plus a shift. |
| if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && |
| !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); |
| N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); |
| N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(N1.getValueType()))); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| } |
| } |
| |
| // Simplify the operands using demanded-bits information. |
| // We don't have demanded bits support for MULHU so this just enables constant |
| // folding based on known bits. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitAVG(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // fold (avg c1, c2) |
| if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0); |
| |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (avgfloor x, 0) -> x >> 1 |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { |
| if (Opcode == ISD::AVGFLOORS) |
| return DAG.getNode(ISD::SRA, DL, VT, N0, DAG.getConstant(1, DL, VT)); |
| if (Opcode == ISD::AVGFLOORU) |
| return DAG.getNode(ISD::SRL, DL, VT, N0, DAG.getConstant(1, DL, VT)); |
| } |
| } |
| |
| // fold (avg x, undef) -> x |
| if (N0.isUndef()) |
| return N1; |
| if (N1.isUndef()) |
| return N0; |
| |
| // TODO If we use avg for scalars anywhere, we can add (avgfl x, 0) -> x >> 1 |
| |
| return SDValue(); |
| } |
| |
| /// Perform optimizations common to nodes that compute two values. LoOp and HiOp |
| /// give the opcodes for the two computations that are being performed. Return |
| /// true if a simplification was made. |
| SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp) { |
| // If the high half is not needed, just compute the low half. |
| bool HiExists = N->hasAnyUseOfValue(1); |
| if (!HiExists && (!LegalOperations || |
| TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { |
| SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If the low half is not needed, just compute the high half. |
| bool LoExists = N->hasAnyUseOfValue(0); |
| if (!LoExists && (!LegalOperations || |
| TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { |
| SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If both halves are used, return as it is. |
| if (LoExists && HiExists) |
| return SDValue(); |
| |
| // If the two computed results can be simplified separately, separate them. |
| if (LoExists) { |
| SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); |
| AddToWorklist(Lo.getNode()); |
| SDValue LoOpt = combine(Lo.getNode()); |
| if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) |
| return CombineTo(N, LoOpt, LoOpt); |
| } |
| |
| if (HiExists) { |
| SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); |
| AddToWorklist(Hi.getNode()); |
| SDValue HiOpt = combine(Hi.getNode()); |
| if (HiOpt.getNode() && HiOpt != Hi && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) |
| return CombineTo(N, HiOpt, HiOpt); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { |
| if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) |
| return Res; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N1, N0); |
| |
| // If the type is twice as wide is legal, transform the mulhu to a wider |
| // multiply plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); |
| SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); |
| Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); |
| // Compute the high part as N1. |
| Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(Lo.getValueType()))); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); |
| // Compute the low part as N0. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); |
| return CombineTo(N, Lo, Hi); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { |
| if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) |
| return Res; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N1, N0); |
| |
| // (umul_lohi N0, 0) -> (0, 0) |
| if (isNullConstant(N1)) { |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| return CombineTo(N, Zero, Zero); |
| } |
| |
| // (umul_lohi N0, 1) -> (N0, 0) |
| if (isOneConstant(N1)) { |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| return CombineTo(N, N0, Zero); |
| } |
| |
| // If the type is twice as wide is legal, transform the mulhu to a wider |
| // multiply plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); |
| SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); |
| Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); |
| // Compute the high part as N1. |
| Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(Lo.getValueType()))); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); |
| // Compute the low part as N0. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); |
| return CombineTo(N, Lo, Hi); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| bool IsSigned = (ISD::SMULO == N->getOpcode()); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold operation with constant operands. |
| // TODO: Move this to FoldConstantArithmetic when it supports nodes with |
| // multiple results. |
| if (N0C && N1C) { |
| bool Overflow; |
| APInt Result = |
| IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) |
| : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); |
| return CombineTo(N, DAG.getConstant(Result, DL, VT), |
| DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); |
| } |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); |
| |
| // fold (mulo x, 0) -> 0 + no carry out |
| if (isNullOrNullSplat(N1)) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| // (mulo x, 2) -> (addo x, x) |
| // FIXME: This needs a freeze. |
| if (N1C && N1C->getAPIntValue() == 2 && |
| (!IsSigned || VT.getScalarSizeInBits() > 2)) |
| return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, |
| N->getVTList(), N0, N0); |
| |
| if (IsSigned) { |
| // A 1 bit SMULO overflows if both inputs are 1. |
| if (VT.getScalarSizeInBits() == 1) { |
| SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); |
| return CombineTo(N, And, |
| DAG.getSetCC(DL, CarryVT, And, |
| DAG.getConstant(0, DL, VT), ISD::SETNE)); |
| } |
| |
| // Multiplying n * m significant bits yields a result of n + m significant |
| // bits. If the total number of significant bits does not exceed the |
| // result bit width (minus 1), there is no overflow. |
| unsigned SignBits = DAG.ComputeNumSignBits(N0); |
| if (SignBits > 1) |
| SignBits += DAG.ComputeNumSignBits(N1); |
| if (SignBits > VT.getScalarSizeInBits() + 1) |
| return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), |
| DAG.getConstant(0, DL, CarryVT)); |
| } else { |
| KnownBits N1Known = DAG.computeKnownBits(N1); |
| KnownBits N0Known = DAG.computeKnownBits(N0); |
| bool Overflow; |
| (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow); |
| if (!Overflow) |
| return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), |
| DAG.getConstant(0, DL, CarryVT)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Function to calculate whether the Min/Max pair of SDNodes (potentially |
| // swapped around) make a signed saturate pattern, clamping to between a signed |
| // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW. |
| // Returns the node being clamped and the bitwidth of the clamp in BW. Should |
| // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the |
| // same as SimplifySelectCC. N0<N1 ? N2 : N3. |
| static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, |
| SDValue N3, ISD::CondCode CC, unsigned &BW, |
| bool &Unsigned) { |
| auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3, |
| ISD::CondCode CC) { |
| // The compare and select operand should be the same or the select operands |
| // should be truncated versions of the comparison. |
| if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) |
| return 0; |
| // The constants need to be the same or a truncated version of each other. |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| ConstantSDNode *N3C = isConstOrConstSplat(N3); |
| if (!N1C || !N3C) |
| return 0; |
| const APInt &C1 = N1C->getAPIntValue(); |
| const APInt &C2 = N3C->getAPIntValue(); |
| if (C1.getBitWidth() < C2.getBitWidth() || C1 != C2.sext(C1.getBitWidth())) |
| return 0; |
| return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0); |
| }; |
| |
| // Check the initial value is a SMIN/SMAX equivalent. |
| unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC); |
| if (!Opcode0) |
| return SDValue(); |
| |
| SDValue N00, N01, N02, N03; |
| ISD::CondCode N0CC; |
| switch (N0.getOpcode()) { |
| case ISD::SMIN: |
| case ISD::SMAX: |
| N00 = N02 = N0.getOperand(0); |
| N01 = N03 = N0.getOperand(1); |
| N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT; |
| break; |
| case ISD::SELECT_CC: |
| N00 = N0.getOperand(0); |
| N01 = N0.getOperand(1); |
| N02 = N0.getOperand(2); |
| N03 = N0.getOperand(3); |
| N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get(); |
| break; |
| case ISD::SELECT: |
| case ISD::VSELECT: |
| if (N0.getOperand(0).getOpcode() != ISD::SETCC) |
| return SDValue(); |
| N00 = N0.getOperand(0).getOperand(0); |
| N01 = N0.getOperand(0).getOperand(1); |
| N02 = N0.getOperand(1); |
| N03 = N0.getOperand(2); |
| N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get(); |
| break; |
| default: |
| return SDValue(); |
| } |
| |
| unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC); |
| if (!Opcode1 || Opcode0 == Opcode1) |
| return SDValue(); |
| |
| ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01); |
| ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1); |
| if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0)) |
| return SDValue(); |
| |
| const APInt &MinC = MinCOp->getAPIntValue(); |
| const APInt &MaxC = MaxCOp->getAPIntValue(); |
| APInt MinCPlus1 = MinC + 1; |
| if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) { |
| BW = MinCPlus1.exactLogBase2() + 1; |
| Unsigned = false; |
| return N02; |
| } |
| |
| if (MaxC == 0 && MinCPlus1.isPowerOf2()) { |
| BW = MinCPlus1.exactLogBase2(); |
| Unsigned = true; |
| return N02; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, |
| SDValue N3, ISD::CondCode CC, |
| SelectionDAG &DAG) { |
| unsigned BW; |
| bool Unsigned; |
| SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned); |
| if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT) |
| return SDValue(); |
| EVT FPVT = Fp.getOperand(0).getValueType(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); |
| if (FPVT.isVector()) |
| NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, |
| FPVT.getVectorElementCount()); |
| unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT; |
| if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT)) |
| return SDValue(); |
| SDLoc DL(Fp); |
| SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0), |
| DAG.getValueType(NewVT.getScalarType())); |
| return Unsigned ? DAG.getZExtOrTrunc(Sat, DL, N2->getValueType(0)) |
| : DAG.getSExtOrTrunc(Sat, DL, N2->getValueType(0)); |
| } |
| |
| static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, |
| SDValue N3, ISD::CondCode CC, |
| SelectionDAG &DAG) { |
| // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a |
| // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may |
| // be truncated versions of the the setcc (N0/N1). |
| if ((N0 != N2 && |
| (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) || |
| N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT) |
| return SDValue(); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| ConstantSDNode *N3C = isConstOrConstSplat(N3); |
| if (!N1C || !N3C) |
| return SDValue(); |
| const APInt &C1 = N1C->getAPIntValue(); |
| const APInt &C3 = N3C->getAPIntValue(); |
| if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() || |
| C1 != C3.zext(C1.getBitWidth())) |
| return SDValue(); |
| |
| unsigned BW = (C1 + 1).exactLogBase2(); |
| EVT FPVT = N0.getOperand(0).getValueType(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); |
| if (FPVT.isVector()) |
| NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, |
| FPVT.getVectorElementCount()); |
| if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(ISD::FP_TO_UINT_SAT, |
| FPVT, NewVT)) |
| return SDValue(); |
| |
| SDValue Sat = |
| DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0), |
| DAG.getValueType(NewVT.getScalarType())); |
| return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType()); |
| } |
| |
| SDValue DAGCombiner::visitIMINMAX(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned Opcode = N->getOpcode(); |
| SDLoc DL(N); |
| |
| // fold operation with constant operands. |
| if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) |
| return C; |
| |
| // If the operands are the same, this is a no-op. |
| if (N0 == N1) |
| return N0; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(Opcode, DL, VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. |
| // Only do this if the current op isn't legal and the flipped is. |
| if (!TLI.isOperationLegal(Opcode, VT) && |
| (N0.isUndef() || DAG.SignBitIsZero(N0)) && |
| (N1.isUndef() || DAG.SignBitIsZero(N1))) { |
| unsigned AltOpcode; |
| switch (Opcode) { |
| case ISD::SMIN: AltOpcode = ISD::UMIN; break; |
| case ISD::SMAX: AltOpcode = ISD::UMAX; break; |
| case ISD::UMIN: AltOpcode = ISD::SMIN; break; |
| case ISD::UMAX: AltOpcode = ISD::SMAX; break; |
| default: llvm_unreachable("Unknown MINMAX opcode"); |
| } |
| if (TLI.isOperationLegal(AltOpcode, VT)) |
| return DAG.getNode(AltOpcode, DL, VT, N0, N1); |
| } |
| |
| if (Opcode == ISD::SMIN || Opcode == ISD::SMAX) |
| if (SDValue S = PerformMinMaxFpToSatCombine( |
| N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG)) |
| return S; |
| if (Opcode == ISD::UMIN) |
| if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG)) |
| return S; |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| /// If this is a bitwise logic instruction and both operands have the same |
| /// opcode, try to sink the other opcode after the logic instruction. |
| SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned LogicOpcode = N->getOpcode(); |
| unsigned HandOpcode = N0.getOpcode(); |
| assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || |
| LogicOpcode == ISD::XOR) && "Expected logic opcode"); |
| assert(HandOpcode == N1.getOpcode() && "Bad input!"); |
| |
| // Bail early if none of these transforms apply. |
| if (N0.getNumOperands() == 0) |
| return SDValue(); |
| |
| // FIXME: We should check number of uses of the operands to not increase |
| // the instruction count for all transforms. |
| |
| // Handle size-changing casts. |
| SDValue X = N0.getOperand(0); |
| SDValue Y = N1.getOperand(0); |
| EVT XVT = X.getValueType(); |
| SDLoc DL(N); |
| if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || |
| HandOpcode == ISD::SIGN_EXTEND) { |
| // If both operands have other uses, this transform would create extra |
| // instructions without eliminating anything. |
| if (!N0.hasOneUse() && !N1.hasOneUse()) |
| return SDValue(); |
| // We need matching integer source types. |
| if (XVT != Y.getValueType()) |
| return SDValue(); |
| // Don't create an illegal op during or after legalization. Don't ever |
| // create an unsupported vector op. |
| if ((VT.isVector() || LegalOperations) && |
| !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) |
| return SDValue(); |
| // Avoid infinite looping with PromoteIntBinOp. |
| // TODO: Should we apply desirable/legal constraints to all opcodes? |
| if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && |
| !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) |
| return SDValue(); |
| // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| |
| // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) |
| if (HandOpcode == ISD::TRUNCATE) { |
| // If both operands have other uses, this transform would create extra |
| // instructions without eliminating anything. |
| if (!N0.hasOneUse() && !N1.hasOneUse()) |
| return SDValue(); |
| // We need matching source types. |
| if (XVT != Y.getValueType()) |
| return SDValue(); |
| // Don't create an illegal op during or after legalization. |
| if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) |
| return SDValue(); |
| // Be extra careful sinking truncate. If it's free, there's no benefit in |
| // widening a binop. Also, don't create a logic op on an illegal type. |
| if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) |
| return SDValue(); |
| if (!TLI.isTypeLegal(XVT)) |
| return SDValue(); |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| |
| // For binops SHL/SRL/SRA/AND: |
| // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z |
| if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || |
| HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| // If either operand has other uses, this transform is not an improvement. |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); |
| } |
| |
| // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) |
| if (HandOpcode == ISD::BSWAP) { |
| // If either operand has other uses, this transform is not an improvement. |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| |
| // For funnel shifts FSHL/FSHR: |
| // logic_op (OP x, x1, s), (OP y, y1, s) --> |
| // --> OP (logic_op x, y), (logic_op, x1, y1), s |
| if ((HandOpcode == ISD::FSHL || HandOpcode == ISD::FSHR) && |
| N0.getOperand(2) == N1.getOperand(2)) { |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| SDValue X1 = N0.getOperand(1); |
| SDValue Y1 = N1.getOperand(1); |
| SDValue S = N0.getOperand(2); |
| SDValue Logic0 = DAG.getNode(LogicOpcode, DL, VT, X, Y); |
| SDValue Logic1 = DAG.getNode(LogicOpcode, DL, VT, X1, Y1); |
| return DAG.getNode(HandOpcode, DL, VT, Logic0, Logic1, S); |
| } |
| |
| // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) |
| // Only perform this optimization up until type legalization, before |
| // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by |
| // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and |
| // we don't want to undo this promotion. |
| // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper |
| // on scalars. |
| if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && |
| Level <= AfterLegalizeTypes) { |
| // Input types must be integer and the same. |
| if (XVT.isInteger() && XVT == Y.getValueType() && |
| !(VT.isVector() && TLI.isTypeLegal(VT) && |
| !XVT.isVector() && !TLI.isTypeLegal(XVT))) { |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| } |
| |
| // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). |
| // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) |
| // If both shuffles use the same mask, and both shuffle within a single |
| // vector, then it is worthwhile to move the swizzle after the operation. |
| // The type-legalizer generates this pattern when loading illegal |
| // vector types from memory. In many cases this allows additional shuffle |
| // optimizations. |
| // There are other cases where moving the shuffle after the xor/and/or |
| // is profitable even if shuffles don't perform a swizzle. |
| // If both shuffles use the same mask, and both shuffles have the same first |
| // or second operand, then it might still be profitable to move the shuffle |
| // after the xor/and/or operation. |
| if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { |
| auto *SVN0 = cast<ShuffleVectorSDNode>(N0); |
| auto *SVN1 = cast<ShuffleVectorSDNode>(N1); |
| assert(X.getValueType() == Y.getValueType() && |
| "Inputs to shuffles are not the same type"); |
| |
| // Check that both shuffles use the same mask. The masks are known to be of |
| // the same length because the result vector type is the same. |
| // Check also that shuffles have only one use to avoid introducing extra |
| // instructions. |
| if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || |
| !SVN0->getMask().equals(SVN1->getMask())) |
| return SDValue(); |
| |
| // Don't try to fold this node if it requires introducing a |
| // build vector of all zeros that might be illegal at this stage. |
| SDValue ShOp = N0.getOperand(1); |
| if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) |
| ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) |
| if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, |
| N0.getOperand(0), N1.getOperand(0)); |
| return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); |
| } |
| |
| // Don't try to fold this node if it requires introducing a |
| // build vector of all zeros that might be illegal at this stage. |
| ShOp = N0.getOperand(0); |
| if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) |
| ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) |
| if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), |
| N1.getOperand(1)); |
| return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. |
| SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, |
| const SDLoc &DL) { |
| SDValue LL, LR, RL, RR, N0CC, N1CC; |
| if (!isSetCCEquivalent(N0, LL, LR, N0CC) || |
| !isSetCCEquivalent(N1, RL, RR, N1CC)) |
| return SDValue(); |
| |
| assert(N0.getValueType() == N1.getValueType() && |
| "Unexpected operand types for bitwise logic op"); |
| assert(LL.getValueType() == LR.getValueType() && |
| RL.getValueType() == RR.getValueType() && |
| "Unexpected operand types for setcc"); |
| |
| // If we're here post-legalization or the logic op type is not i1, the logic |
| // op type must match a setcc result type. Also, all folds require new |
| // operations on the left and right operands, so those types must match. |
| EVT VT = N0.getValueType(); |
| EVT OpVT = LL.getValueType(); |
| if (LegalOperations || VT.getScalarType() != MVT::i1) |
| if (VT != getSetCCResultType(OpVT)) |
| return SDValue(); |
| if (OpVT != RL.getValueType()) |
| return SDValue(); |
| |
| ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); |
| ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); |
| bool IsInteger = OpVT.isInteger(); |
| if (LR == RR && CC0 == CC1 && IsInteger) { |
| bool IsZero = isNullOrNullSplat(LR); |
| bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); |
| |
| // All bits clear? |
| bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; |
| // All sign bits clear? |
| bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; |
| // Any bits set? |
| bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; |
| // Any sign bits set? |
| bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; |
| |
| // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) |
| // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) |
| // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) |
| // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) |
| if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { |
| SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); |
| AddToWorklist(Or.getNode()); |
| return DAG.getSetCC(DL, VT, Or, LR, CC1); |
| } |
| |
| // All bits set? |
| bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; |
| // All sign bits set? |
| bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; |
| // Any bits clear? |
| bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; |
| // Any sign bits clear? |
| bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; |
| |
| // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) |
| // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) |
| // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) |
| // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) |
| if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); |
| AddToWorklist(And.getNode()); |
| return DAG.getSetCC(DL, VT, And, LR, CC1); |
| } |
| } |
| |
| // TODO: What is the 'or' equivalent of this fold? |
| // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) |
| if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && |
| IsInteger && CC0 == ISD::SETNE && |
| ((isNullConstant(LR) && isAllOnesConstant(RR)) || |
| (isAllOnesConstant(LR) && isNullConstant(RR)))) { |
| SDValue One = DAG.getConstant(1, DL, OpVT); |
| SDValue Two = DAG.getConstant(2, DL, OpVT); |
| SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); |
| AddToWorklist(Add.getNode()); |
| return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); |
| } |
| |
| // Try more general transforms if the predicates match and the only user of |
| // the compares is the 'and' or 'or'. |
| if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && |
| N0.hasOneUse() && N1.hasOneUse()) { |
| // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 |
| // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 |
| if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { |
| SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); |
| SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); |
| SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| return DAG.getSetCC(DL, VT, Or, Zero, CC1); |
| } |
| |
| // Turn compare of constants whose difference is 1 bit into add+and+setcc. |
| if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { |
| // Match a shared variable operand and 2 non-opaque constant operands. |
| auto MatchDiffPow2 = [&](ConstantSDNode *C0, ConstantSDNode *C1) { |
| // The difference of the constants must be a single bit. |
| const APInt &CMax = |
| APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); |
| const APInt &CMin = |
| APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); |
| return !C0->isOpaque() && !C1->isOpaque() && (CMax - CMin).isPowerOf2(); |
| }; |
| if (LL == RL && ISD::matchBinaryPredicate(LR, RR, MatchDiffPow2)) { |
| // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> |
| // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq |
| SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); |
| SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); |
| SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); |
| SDValue Mask = DAG.getNOT(DL, Diff, OpVT); |
| SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| return DAG.getSetCC(DL, VT, And, Zero, CC0); |
| } |
| } |
| } |
| |
| // Canonicalize equivalent operands to LL == RL. |
| if (LL == RR && LR == RL) { |
| CC1 = ISD::getSetCCSwappedOperands(CC1); |
| std::swap(RL, RR); |
| } |
| |
| // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) |
| // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) |
| if (LL == RL && LR == RR) { |
| ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) |
| : ISD::getSetCCOrOperation(CC0, CC1, OpVT); |
| if (NewCC != ISD::SETCC_INVALID && |
| (!LegalOperations || |
| (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && |
| TLI.isOperationLegal(ISD::SETCC, OpVT)))) |
| return DAG.getSetCC(DL, VT, LL, LR, NewCC); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// This contains all DAGCombine rules which reduce two values combined by |
| /// an And operation to a single value. This makes them reusable in the context |
| /// of visitSELECT(). Rules involving constants are not included as |
| /// visitSELECT() already handles those cases. |
| SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N1.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (and x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) |
| return V; |
| |
| // TODO: Rewrite this to return a new 'AND' instead of using CombineTo. |
| if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && |
| VT.getSizeInBits() <= 64 && N0->hasOneUse()) { |
| if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { |
| // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal |
| // immediate for an add, but it is legal if its top c2 bits are set, |
| // transform the ADD so the immediate doesn't need to be materialized |
| // in a register. |
| APInt ADDC = ADDI->getAPIntValue(); |
| APInt SRLC = SRLI->getAPIntValue(); |
| if (ADDC.getMinSignedBits() <= 64 && |
| SRLC.ult(VT.getSizeInBits()) && |
| !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { |
| APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), |
| SRLC.getZExtValue()); |
| if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { |
| ADDC |= Mask; |
| if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { |
| SDLoc DL0(N0); |
| SDValue NewAdd = |
| DAG.getNode(ISD::ADD, DL0, VT, |
| N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); |
| CombineTo(N0.getNode(), NewAdd); |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Reduce bit extract of low half of an integer to the narrower type. |
| // (and (srl i64:x, K), KMask) -> |
| // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) |
| if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { |
| if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| unsigned Size = VT.getSizeInBits(); |
| const APInt &AndMask = CAnd->getAPIntValue(); |
| unsigned ShiftBits = CShift->getZExtValue(); |
| |
| // Bail out, this node will probably disappear anyway. |
| if (ShiftBits == 0) |
| return SDValue(); |
| |
| unsigned MaskBits = AndMask.countTrailingOnes(); |
| EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); |
| |
| if (AndMask.isMask() && |
| // Required bits must not span the two halves of the integer and |
| // must fit in the half size type. |
| (ShiftBits + MaskBits <= Size / 2) && |
| TLI.isNarrowingProfitable(VT, HalfVT) && |
| TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && |
| TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && |
| TLI.isTruncateFree(VT, HalfVT) && |
| TLI.isZExtFree(HalfVT, VT)) { |
| // The isNarrowingProfitable is to avoid regressions on PPC and |
| // AArch64 which match a few 64-bit bit insert / bit extract patterns |
| // on downstream users of this. Those patterns could probably be |
| // extended to handle extensions mixed in. |
| |
| SDValue SL(N0); |
| assert(MaskBits <= Size); |
| |
| // Extracting the highest bit of the low half. |
| EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, |
| N0.getOperand(0)); |
| |
| SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); |
| SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); |
| SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); |
| SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); |
| return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, |
| EVT LoadResultTy, EVT &ExtVT) { |
| if (!AndC->getAPIntValue().isMask()) |
| return false; |
| |
| unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); |
| |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| EVT LoadedVT = LoadN->getMemoryVT(); |
| |
| if (ExtVT == LoadedVT && |
| (!LegalOperations || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { |
| // ZEXTLOAD will match without needing to change the size of the value being |
| // loaded. |
| return true; |
| } |
| |
| // Do not change the width of a volatile or atomic loads. |
| if (!LoadN->isSimple()) |
| return false; |
| |
| // Do not generate loads of non-round integer types since these can |
| // be expensive (and would be wrong if the type is not byte sized). |
| if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) |
| return false; |
| |
| if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) |
| return false; |
| |
| return true; |
| } |
| |
| bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, |
| ISD::LoadExtType ExtType, EVT &MemVT, |
| unsigned ShAmt) { |
| if (!LDST) |
| return false; |
| // Only allow byte offsets. |
| if (ShAmt % 8) |
| return false; |
| |
| // Do not generate loads of non-round integer types since these can |
| // be expensive (and would be wrong if the type is not byte sized). |
| if (!MemVT.isRound()) |
| return false; |
| |
| // Don't change the width of a volatile or atomic loads. |
| if (!LDST->isSimple()) |
| return false; |
| |
| EVT LdStMemVT = LDST->getMemoryVT(); |
| |
| // Bail out when changing the scalable property, since we can't be sure that |
| // we're actually narrowing here. |
| if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) |
| return false; |
| |
| // Verify that we are actually reducing a load width here. |
| if (LdStMemVT.bitsLT(MemVT)) |
| return false; |
| |
| // Ensure that this isn't going to produce an unsupported memory access. |
| if (ShAmt) { |
| assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); |
| const unsigned ByteShAmt = ShAmt / 8; |
| const Align LDSTAlign = LDST->getAlign(); |
| const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, |
| LDST->getAddressSpace(), NarrowAlign, |
| LDST->getMemOperand()->getFlags())) |
| return false; |
| } |
| |
| // It's not possible to generate a constant of extended or untyped type. |
| EVT PtrType = LDST->getBasePtr().getValueType(); |
| if (PtrType == MVT::Untyped || PtrType.isExtended()) |
| return false; |
| |
| if (isa<LoadSDNode>(LDST)) { |
| LoadSDNode *Load = cast<LoadSDNode>(LDST); |
| // Don't transform one with multiple uses, this would require adding a new |
| // load. |
| if (!SDValue(Load, 0).hasOneUse()) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) |
| return false; |
| |
| // For the transform to be legal, the load must produce only two values |
| // (the value loaded and the chain). Don't transform a pre-increment |
| // load, for example, which produces an extra value. Otherwise the |
| // transformation is not equivalent, and the downstream logic to replace |
| // uses gets things wrong. |
| if (Load->getNumValues() > 2) |
| return false; |
| |
| // If the load that we're shrinking is an extload and we're not just |
| // discarding the extension we can't simply shrink the load. Bail. |
| // TODO: It would be possible to merge the extensions in some cases. |
| if (Load->getExtensionType() != ISD::NON_EXTLOAD && |
| Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) |
| return false; |
| |
| if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) |
| return false; |
| } else { |
| assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); |
| StoreSDNode *Store = cast<StoreSDNode>(LDST); |
| // Can't write outside the original store |
| if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool DAGCombiner::SearchForAndLoads(SDNode *N, |
| SmallVectorImpl<LoadSDNode*> &Loads, |
| SmallPtrSetImpl<SDNode*> &NodesWithConsts, |
| ConstantSDNode *Mask, |
| SDNode *&NodeToMask) { |
| // Recursively search for the operands, looking for loads which can be |
| // narrowed. |
| for (SDValue Op : N->op_values()) { |
| if (Op.getValueType().isVector()) |
| return false; |
| |
| // Some constants may need fixing up later if they are too large. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && |
| (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) |
| NodesWithConsts.insert(N); |
| continue; |
| } |
| |
| if (!Op.hasOneUse()) |
| return false; |
| |
| switch(Op.getOpcode()) { |
| case ISD::LOAD: { |
| auto *Load = cast<LoadSDNode>(Op); |
| EVT ExtVT; |
| if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && |
| isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { |
| |
| // ZEXTLOAD is already small enough. |
| if (Load->getExtensionType() == ISD::ZEXTLOAD && |
| ExtVT.bitsGE(Load->getMemoryVT())) |
| continue; |
| |
| // Use LE to convert equal sized loads to zext. |
| if (ExtVT.bitsLE(Load->getMemoryVT())) |
| Loads.push_back(Load); |
| |
| continue; |
| } |
| return false; |
| } |
| case ISD::ZERO_EXTEND: |
| case ISD::AssertZext: { |
| unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); |
| EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| EVT VT = Op.getOpcode() == ISD::AssertZext ? |
| cast<VTSDNode>(Op.getOperand(1))->getVT() : |
| Op.getOperand(0).getValueType(); |
| |
| // We can accept extending nodes if the mask is wider or an equal |
| // width to the original type. |
| if (ExtVT.bitsGE(VT)) |
| continue; |
| break; |
| } |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::AND: |
| if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, |
| NodeToMask)) |
| return false; |
| continue; |
| } |
| |
| // Allow one node which will masked along with any loads found. |
| if (NodeToMask) |
| return false; |
| |
| // Also ensure that the node to be masked only produces one data result. |
| NodeToMask = Op.getNode(); |
| if (NodeToMask->getNumValues() > 1) { |
| bool HasValue = false; |
| for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { |
| MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); |
| if (VT != MVT::Glue && VT != MVT::Other) { |
| if (HasValue) { |
| NodeToMask = nullptr; |
| return false; |
| } |
| HasValue = true; |
| } |
| } |
| assert(HasValue && "Node to be masked has no data result?"); |
| } |
| } |
| return true; |
| } |
| |
| bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { |
| auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!Mask) |
| return false; |
| |
| if (!Mask->getAPIntValue().isMask()) |
| return false; |
| |
| // No need to do anything if the and directly uses a load. |
| if (isa<LoadSDNode>(N->getOperand(0))) |
| return false; |
| |
| SmallVector<LoadSDNode*, 8> Loads; |
| SmallPtrSet<SDNode*, 2> NodesWithConsts; |
| SDNode *FixupNode = nullptr; |
| if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { |
| if (Loads.size() == 0) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); |
| SDValue MaskOp = N->getOperand(1); |
| |
| // If it exists, fixup the single node we allow in the tree that needs |
| // masking. |
| if (FixupNode) { |
| LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), |
| FixupNode->getValueType(0), |
| SDValue(FixupNode, 0), MaskOp); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); |
| if (And.getOpcode() == ISD ::AND) |
| DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); |
| } |
| |
| // Narrow any constants that need it. |
| for (auto *LogicN : NodesWithConsts) { |
| SDValue Op0 = LogicN->getOperand(0); |
| SDValue Op1 = LogicN->getOperand(1); |
| |
| if (isa<ConstantSDNode>(Op0)) |
| std::swap(Op0, Op1); |
| |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), |
| Op1, MaskOp); |
| |
| DAG.UpdateNodeOperands(LogicN, Op0, And); |
| } |
| |
| // Create narrow loads. |
| for (auto *Load : Loads) { |
| LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), |
| SDValue(Load, 0), MaskOp); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); |
| if (And.getOpcode() == ISD ::AND) |
| And = SDValue( |
| DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); |
| SDValue NewLoad = reduceLoadWidth(And.getNode()); |
| assert(NewLoad && |
| "Shouldn't be masking the load if it can't be narrowed"); |
| CombineTo(Load, NewLoad, NewLoad.getValue(1)); |
| } |
| DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); |
| return true; |
| } |
| return false; |
| } |
| |
| // Unfold |
| // x & (-1 'logical shift' y) |
| // To |
| // (x 'opposite logical shift' y) 'logical shift' y |
| // if it is better for performance. |
| SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { |
| assert(N->getOpcode() == ISD::AND); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Do we actually prefer shifts over mask? |
| if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) |
| return SDValue(); |
| |
| // Try to match (-1 '[outer] logical shift' y) |
| unsigned OuterShift; |
| unsigned InnerShift; // The opposite direction to the OuterShift. |
| SDValue Y; // Shift amount. |
| auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { |
| if (!M.hasOneUse()) |
| return false; |
| OuterShift = M->getOpcode(); |
| if (OuterShift == ISD::SHL) |
| InnerShift = ISD::SRL; |
| else if (OuterShift == ISD::SRL) |
| InnerShift = ISD::SHL; |
| else |
| return false; |
| if (!isAllOnesConstant(M->getOperand(0))) |
| return false; |
| Y = M->getOperand(1); |
| return true; |
| }; |
| |
| SDValue X; |
| if (matchMask(N1)) |
| X = N0; |
| else if (matchMask(N0)) |
| X = N1; |
| else |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // tmp = x 'opposite logical shift' y |
| SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); |
| // ret = tmp 'logical shift' y |
| SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); |
| |
| return T1; |
| } |
| |
| /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. |
| /// For a target with a bit test, this is expected to become test + set and save |
| /// at least 1 instruction. |
| static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { |
| assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); |
| |
| // This is probably not worthwhile without a supported type. |
| EVT VT = And->getValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // Look through an optional extension. |
| SDValue And0 = And->getOperand(0), And1 = And->getOperand(1); |
| if (And0.getOpcode() == ISD::ANY_EXTEND && And0.hasOneUse()) |
| And0 = And0.getOperand(0); |
| if (!isOneConstant(And1) || !And0.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Src = And0; |
| |
| // Attempt to find a 'not' op. |
| // TODO: Should we favor test+set even without the 'not' op? |
| bool FoundNot = false; |
| if (isBitwiseNot(Src)) { |
| FoundNot = true; |
| Src = Src.getOperand(0); |
| |
| // Look though an optional truncation. The source operand may not be the |
| // same type as the original 'and', but that is ok because we are masking |
| // off everything but the low bit. |
| if (Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse()) |
| Src = Src.getOperand(0); |
| } |
| |
| // Match a shift-right by constant. |
| if (Src.getOpcode() != ISD::SRL || !Src.hasOneUse()) |
| return SDValue(); |
| |
| // We might have looked through casts that make this transform invalid. |
| // TODO: If the source type is wider than the result type, do the mask and |
| // compare in the source type. |
| unsigned VTBitWidth = VT.getScalarSizeInBits(); |
| SDValue ShiftAmt = Src.getOperand(1); |
| auto *ShiftAmtC = dyn_cast<ConstantSDNode>(ShiftAmt); |
| if (!ShiftAmtC || !ShiftAmtC->getAPIntValue().ult(VTBitWidth)) |
| return SDValue(); |
| |
| // Set source to shift source. |
| Src = Src.getOperand(0); |
| |
| // Try again to find a 'not' op. |
| // TODO: Should we favor test+set even with two 'not' ops? |
| if (!FoundNot) { |
| if (!isBitwiseNot(Src)) |
| return SDValue(); |
| Src = Src.getOperand(0); |
| } |
| |
| if (!TLI.hasBitTest(Src, ShiftAmt)) |
| return SDValue(); |
| |
| // Turn this into a bit-test pattern using mask op + setcc: |
| // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 |
| // and (srl (not X), C)), 1 --> (and X, 1<<C) == 0 |
| SDLoc DL(And); |
| SDValue X = DAG.getZExtOrTrunc(Src, DL, VT); |
| EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue Mask = DAG.getConstant( |
| APInt::getOneBitSet(VTBitWidth, ShiftAmtC->getZExtValue()), DL, VT); |
| SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); |
| return DAG.getZExtOrTrunc(Setcc, DL, VT); |
| } |
| |
| /// For targets that support usubsat, match a bit-hack form of that operation |
| /// that ends in 'and' and convert it. |
| static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // Canonicalize SRA as operand 1. |
| if (N0.getOpcode() == ISD::SRA) |
| std::swap(N0, N1); |
| |
| // xor/add with SMIN (signmask) are logically equivalent. |
| if (N0.getOpcode() != ISD::XOR && N0.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| if (N1.getOpcode() != ISD::SRA || !N0.hasOneUse() || !N1.hasOneUse() || |
| N0.getOperand(0) != N1.getOperand(0)) |
| return SDValue(); |
| |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| ConstantSDNode *XorC = isConstOrConstSplat(N0.getOperand(1), true); |
| ConstantSDNode *SraC = isConstOrConstSplat(N1.getOperand(1), true); |
| if (!XorC || !XorC->getAPIntValue().isSignMask() || |
| !SraC || SraC->getAPIntValue() != BitWidth - 1) |
| return SDValue(); |
| |
| // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128 |
| // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128 |
| SDLoc DL(N); |
| SDValue SignMask = DAG.getConstant(XorC->getAPIntValue(), DL, VT); |
| return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), SignMask); |
| } |
| |
| /// Given a bitwise logic operation N with a matching bitwise logic operand, |
| /// fold a pattern where 2 of the source operands are identically shifted |
| /// values. For example: |
| /// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z |
| static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp, |
| SelectionDAG &DAG) { |
| unsigned LogicOpcode = N->getOpcode(); |
| assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || |
| LogicOpcode == ISD::XOR) |
| && "Expected bitwise logic operation"); |
| |
| if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse()) |
| return SDValue(); |
| |
| // Match another bitwise logic op and a shift. |
| unsigned ShiftOpcode = ShiftOp.getOpcode(); |
| if (LogicOp.getOpcode() != LogicOpcode || |
| !(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL || |
| ShiftOpcode == ISD::SRA)) |
| return SDValue(); |
| |
| // Match another shift op inside the first logic operand. Handle both commuted |
| // possibilities. |
| // LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z |
| // LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z |
| SDValue X1 = ShiftOp.getOperand(0); |
| SDValue Y = ShiftOp.getOperand(1); |
| SDValue X0, Z; |
| if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode && |
| LogicOp.getOperand(0).getOperand(1) == Y) { |
| X0 = LogicOp.getOperand(0).getOperand(0); |
| Z = LogicOp.getOperand(1); |
| } else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode && |
| LogicOp.getOperand(1).getOperand(1) == Y) { |
| X0 = LogicOp.getOperand(1).getOperand(0); |
| Z = LogicOp.getOperand(0); |
| } else { |
| return SDValue(); |
| } |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1); |
| SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y); |
| return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z); |
| } |
| |
| /// Given a tree of logic operations with shape like |
| /// (LOGIC (LOGIC (X, Y), LOGIC (Z, Y))) |
| /// try to match and fold shift operations with the same shift amount. |
| /// For example: |
| /// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) --> |
| /// --> LOGIC (SH (LOGIC X0, X1), Y), (LOGIC Z, W) |
| static SDValue foldLogicTreeOfShifts(SDNode *N, SDValue LeftHand, |
| SDValue RightHand, SelectionDAG &DAG) { |
| unsigned LogicOpcode = N->getOpcode(); |
| assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || |
| LogicOpcode == ISD::XOR)); |
| if (LeftHand.getOpcode() != LogicOpcode || |
| RightHand.getOpcode() != LogicOpcode) |
| return SDValue(); |
| if (!LeftHand.hasOneUse() || !RightHand.hasOneUse()) |
| return SDValue(); |
| |
| // Try to match one of following patterns: |
| // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) |
| // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC W, (SH X1, Y)) |
| // Note that foldLogicOfShifts will handle commuted versions of the left hand |
| // itself. |
| SDValue CombinedShifts, W; |
| SDValue R0 = RightHand.getOperand(0); |
| SDValue R1 = RightHand.getOperand(1); |
| if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R0, DAG))) |
| W = R1; |
| else if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R1, DAG))) |
| W = R0; |
| else |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| return DAG.getNode(LogicOpcode, DL, VT, CombinedShifts, W); |
| } |
| |
| SDValue DAGCombiner::visitAND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // x & x --> x |
| if (N0 == N1) |
| return N0; |
| |
| // fold (and c1, c2) -> c1&c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| // fold (and x, 0) -> 0, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| // do not return N1, because undef node may exist in N1 |
| return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), |
| SDLoc(N), N1.getValueType()); |
| |
| // fold (and x, -1) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) |
| return N0; |
| |
| // fold (and (masked_load) (splat_vec (x, ...))) to zext_masked_load |
| auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); |
| ConstantSDNode *Splat = isConstOrConstSplat(N1, true, true); |
| if (MLoad && MLoad->getExtensionType() == ISD::EXTLOAD && Splat && |
| N1.hasOneUse()) { |
| EVT LoadVT = MLoad->getMemoryVT(); |
| EVT ExtVT = VT; |
| if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { |
| // For this AND to be a zero extension of the masked load the elements |
| // of the BuildVec must mask the bottom bits of the extended element |
| // type |
| uint64_t ElementSize = |
| LoadVT.getVectorElementType().getScalarSizeInBits(); |
| if (Splat->getAPIntValue().isMask(ElementSize)) { |
| auto NewLoad = DAG.getMaskedLoad( |
| ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), |
| MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), |
| LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), |
| ISD::ZEXTLOAD, MLoad->isExpandingLoad()); |
| bool LoadHasOtherUsers = !N0.hasOneUse(); |
| CombineTo(N, NewLoad); |
| if (LoadHasOtherUsers) |
| CombineTo(MLoad, NewLoad.getValue(0), NewLoad.getValue(1)); |
| return SDValue(N, 0); |
| } |
| } |
| } |
| } |
| |
| // fold (and x, -1) -> x |
| if (isAllOnesConstant(N1)) |
| return N0; |
| |
| // if (and x, c) is known to be zero, return 0 |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate and |
| if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) |
| return RAND; |
| |
| // fold (and (or x, C), D) -> D if (C & D) == D |
| auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); |
| }; |
| if (N0.getOpcode() == ISD::OR && |
| ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) |
| return N1; |
| |
| // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| SDValue N0Op0 = N0.getOperand(0); |
| APInt Mask = ~N1C->getAPIntValue(); |
| Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); |
| if (DAG.MaskedValueIsZero(N0Op0, Mask)) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N0.getValueType(), N0Op0); |
| } |
| |
| // fold (and (ext (and V, c1)), c2) -> (and (ext V), (and c1, (ext c2))) |
| if (ISD::isExtOpcode(N0.getOpcode())) { |
| unsigned ExtOpc = N0.getOpcode(); |
| SDValue N0Op0 = N0.getOperand(0); |
| if (N0Op0.getOpcode() == ISD::AND && |
| (ExtOpc != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0Op0, VT)) && |
| DAG.isConstantIntBuildVectorOrConstantInt(N1) && |
| DAG.isConstantIntBuildVectorOrConstantInt(N0Op0.getOperand(1)) && |
| N0->hasOneUse() && N0Op0->hasOneUse()) { |
| SDLoc DL(N); |
| SDValue NewMask = |
| DAG.getNode(ISD::AND, DL, VT, N1, |
| DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(1))); |
| return DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(0)), |
| NewMask); |
| } |
| } |
| |
| // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> |
| // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must |
| // already be zero by virtue of the width of the base type of the load. |
| // |
| // the 'X' node here can either be nothing or an extract_vector_elt to catch |
| // more cases. |
| if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && |
| N0.getOperand(0).getOpcode() == ISD::LOAD && |
| N0.getOperand(0).getResNo() == 0) || |
| (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { |
| LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? |
| N0 : N0.getOperand(0) ); |
| |
| // Get the constant (if applicable) the zero'th operand is being ANDed with. |
| // This can be a pure constant or a vector splat, in which case we treat the |
| // vector as a scalar and use the splat value. |
| APInt Constant = APInt::getZero(1); |
| if (const ConstantSDNode *C = isConstOrConstSplat( |
| N1, /*AllowUndef=*/false, /*AllowTruncation=*/true)) { |
| Constant = C->getAPIntValue(); |
| } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { |
| APInt SplatValue, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, |
| SplatBitSize, HasAnyUndefs); |
| if (IsSplat) { |
| // Undef bits can contribute to a possible optimisation if set, so |
| // set them. |
| SplatValue |= SplatUndef; |
| |
| // The splat value may be something like "0x00FFFFFF", which means 0 for |
| // the first vector value and FF for the rest, repeating. We need a mask |
| // that will apply equally to all members of the vector, so AND all the |
| // lanes of the constant together. |
| unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); |
| |
| // If the splat value has been compressed to a bitlength lower |
| // than the size of the vector lane, we need to re-expand it to |
| // the lane size. |
| if (EltBitWidth > SplatBitSize) |
| for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); |
| SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) |
| SplatValue |= SplatValue.shl(SplatBitSize); |
| |
| // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a |
| // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. |
| if ((SplatBitSize % EltBitWidth) == 0) { |
| Constant = APInt::getAllOnes(EltBitWidth); |
| for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) |
| Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); |
| } |
| } |
| } |
| |
| // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is |
| // actually legal and isn't going to get expanded, else this is a false |
| // optimisation. |
| bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, |
| Load->getValueType(0), |
| Load->getMemoryVT()); |
| |
| // Resize the constant to the same size as the original memory access before |
| // extension. If it is still the AllOnesValue then this AND is completely |
| // unneeded. |
| Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); |
| |
| bool B; |
| switch (Load->getExtensionType()) { |
| default: B = false; break; |
| case ISD::EXTLOAD: B = CanZextLoadProfitably; break; |
| case ISD::ZEXTLOAD: |
| case ISD::NON_EXTLOAD: B = true; break; |
| } |
| |
| if (B && Constant.isAllOnes()) { |
| // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to |
| // preserve semantics once we get rid of the AND. |
| SDValue NewLoad(Load, 0); |
| |
| // Fold the AND away. NewLoad may get replaced immediately. |
| CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); |
| |
| if (Load->getExtensionType() == ISD::EXTLOAD) { |
| NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, |
| Load->getValueType(0), SDLoc(Load), |
| Load->getChain(), Load->getBasePtr(), |
| Load->getOffset(), Load->getMemoryVT(), |
| Load->getMemOperand()); |
| // Replace uses of the EXTLOAD with the new ZEXTLOAD. |
| if (Load->getNumValues() == 3) { |
| // PRE/POST_INC loads have 3 values. |
| SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), |
| NewLoad.getValue(2) }; |
| CombineTo(Load, To, 3, true); |
| } else { |
| CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); |
| } |
| } |
| |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // Try to convert a constant mask AND into a shuffle clear mask. |
| if (VT.isVector()) |
| if (SDValue Shuffle = XformToShuffleWithZero(N)) |
| return Shuffle; |
| |
| if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) |
| return Combined; |
| |
| if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && N1C && |
| ISD::isExtOpcode(N0.getOperand(0).getOpcode())) { |
| SDValue Ext = N0.getOperand(0); |
| EVT ExtVT = Ext->getValueType(0); |
| SDValue Extendee = Ext->getOperand(0); |
| |
| unsigned ScalarWidth = Extendee.getValueType().getScalarSizeInBits(); |
| if (N1C->getAPIntValue().isMask(ScalarWidth) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, ExtVT))) { |
| // (and (extract_subvector (zext|anyext|sext v) _) iN_mask) |
| // => (extract_subvector (iN_zeroext v)) |
| SDValue ZeroExtExtendee = |
| DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), ExtVT, Extendee); |
| |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, ZeroExtExtendee, |
| N0.getOperand(1)); |
| } |
| } |
| |
| // fold (and (masked_gather x)) -> (zext_masked_gather x) |
| if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { |
| EVT MemVT = GN0->getMemoryVT(); |
| EVT ScalarVT = MemVT.getScalarType(); |
| |
| if (SDValue(GN0, 0).hasOneUse() && |
| isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && |
| TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { |
| SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), |
| GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; |
| |
| SDValue ZExtLoad = DAG.getMaskedGather( |
| DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, |
| GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); |
| |
| CombineTo(N, ZExtLoad); |
| AddToWorklist(ZExtLoad.getNode()); |
| // Avoid recheck of N. |
| return SDValue(N, 0); |
| } |
| } |
| |
| // fold (and (load x), 255) -> (zextload x, i8) |
| // fold (and (extload x, i16), 255) -> (zextload x, i8) |
| if (N1C && N0.getOpcode() == ISD::LOAD && !VT.isVector()) |
| if (SDValue Res = reduceLoadWidth(N)) |
| return Res; |
| |
| if (LegalTypes) { |
| // Attempt to propagate the AND back up to the leaves which, if they're |
| // loads, can be combined to narrow loads and the AND node can be removed. |
| // Perform after legalization so that extend nodes will already be |
| // combined into the loads. |
| if (BackwardsPropagateMask(N)) |
| return SDValue(N, 0); |
| } |
| |
| if (SDValue Combined = visitANDLike(N0, N1, N)) |
| return Combined; |
| |
| // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) |
| return V; |
| |
| if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) |
| return R; |
| if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG)) |
| return R; |
| |
| // Masking the negated extension of a boolean is just the zero-extended |
| // boolean: |
| // and (sub 0, zext(bool X)), 1 --> zext(bool X) |
| // and (sub 0, sext(bool X)), 1 --> zext(bool X) |
| // |
| // Note: the SimplifyDemandedBits fold below can make an information-losing |
| // transform, and then we have no way to find this better fold. |
| if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { |
| if (isNullOrNullSplat(N0.getOperand(0))) { |
| SDValue SubRHS = N0.getOperand(1); |
| if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && |
| SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) |
| return SubRHS; |
| if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && |
| SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); |
| } |
| } |
| |
| // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) |
| // fold (and (sra)) -> (and (srl)) when possible. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (zext_inreg (extload x)) -> (zextload x) |
| // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use |
| if (ISD::isUNINDEXEDLoad(N0.getNode()) && |
| (ISD::isEXTLoad(N0.getNode()) || |
| (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| unsigned ExtBitSize = N1.getScalarValueSizeInBits(); |
| unsigned MemBitSize = MemVT.getScalarSizeInBits(); |
| APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); |
| if (DAG.MaskedValueIsZero(N1, ExtBits) && |
| ((!LegalOperations && LN0->isSimple()) || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { |
| SDValue ExtLoad = |
| DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), |
| LN0->getBasePtr(), MemVT, LN0->getMemOperand()); |
| AddToWorklist(N); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) |
| if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { |
| if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), |
| N0.getOperand(1), false)) |
| return BSwap; |
| } |
| |
| if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) |
| return Shifts; |
| |
| if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) |
| return V; |
| |
| // Recognize the following pattern: |
| // |
| // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) |
| // |
| // where bitmask is a mask that clears the upper bits of AndVT. The |
| // number of bits in bitmask must be a power of two. |
| auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { |
| if (LHS->getOpcode() != ISD::SIGN_EXTEND) |
| return false; |
| |
| auto *C = dyn_cast<ConstantSDNode>(RHS); |
| if (!C) |
| return false; |
| |
| if (!C->getAPIntValue().isMask( |
| LHS.getOperand(0).getValueType().getFixedSizeInBits())) |
| return false; |
| |
| return true; |
| }; |
| |
| // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). |
| if (IsAndZeroExtMask(N0, N1)) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); |
| |
| if (hasOperation(ISD::USUBSAT, VT)) |
| if (SDValue V = foldAndToUsubsat(N, DAG)) |
| return V; |
| |
| // Postpone until legalization completed to avoid interference with bswap |
| // folding |
| if (LegalOperations || VT.isVector()) |
| if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG)) |
| return R; |
| |
| return SDValue(); |
| } |
| |
| /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. |
| SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, |
| bool DemandHighBits) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) |
| bool LookPassAnd0 = false; |
| bool LookPassAnd1 = false; |
| if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) |
| std::swap(N0, N1); |
| if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() == ISD::AND) { |
| if (!N0->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| // Also handle 0xffff since the LHS is guaranteed to have zeros there. |
| // This is needed for X86. |
| if (!N01C || (N01C->getZExtValue() != 0xFF00 && |
| N01C->getZExtValue() != 0xFFFF)) |
| return SDValue(); |
| N0 = N0.getOperand(0); |
| LookPassAnd0 = true; |
| } |
| |
| if (N1.getOpcode() == ISD::AND) { |
| if (!N1->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C || N11C->getZExtValue() != 0xFF) |
| return SDValue(); |
| N1 = N1.getOperand(0); |
| LookPassAnd1 = true; |
| } |
| |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| if (!N0->hasOneUse() || !N1->hasOneUse()) |
| return SDValue(); |
| |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N01C || !N11C) |
| return SDValue(); |
| if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) |
| return SDValue(); |
| |
| // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) |
| SDValue N00 = N0->getOperand(0); |
| if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { |
| if (!N00->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); |
| if (!N001C || N001C->getZExtValue() != 0xFF) |
| return SDValue(); |
| N00 = N00.getOperand(0); |
| LookPassAnd0 = true; |
| } |
| |
| SDValue N10 = N1->getOperand(0); |
| if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { |
| if (!N10->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); |
| // Also allow 0xFFFF since the bits will be shifted out. This is needed |
| // for X86. |
| if (!N101C || (N101C->getZExtValue() != 0xFF00 && |
| N101C->getZExtValue() != 0xFFFF)) |
| return SDValue(); |
| N10 = N10.getOperand(0); |
| LookPassAnd1 = true; |
| } |
| |
| if (N00 != N10) |
| return SDValue(); |
| |
| // Make sure everything beyond the low halfword gets set to zero since the SRL |
| // 16 will clear the top bits. |
| unsigned OpSizeInBits = VT.getSizeInBits(); |
| if (OpSizeInBits > 16) { |
| // If the left-shift isn't masked out then the only way this is a bswap is |
| // if all bits beyond the low 8 are 0. In that case the entire pattern |
| // reduces to a left shift anyway: leave it for other parts of the combiner. |
| if (DemandHighBits && !LookPassAnd0) |
| return SDValue(); |
| |
| // However, if the right shift isn't masked out then it might be because |
| // it's not needed. See if we can spot that too. If the high bits aren't |
| // demanded, we only need bits 23:16 to be zero. Otherwise, we need all |
| // upper bits to be zero. |
| if (!LookPassAnd1) { |
| unsigned HighBit = DemandHighBits ? OpSizeInBits : 24; |
| if (!DAG.MaskedValueIsZero(N10, |
| APInt::getBitsSet(OpSizeInBits, 16, HighBit))) |
| return SDValue(); |
| } |
| } |
| |
| SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); |
| if (OpSizeInBits > 16) { |
| SDLoc DL(N); |
| Res = DAG.getNode(ISD::SRL, DL, VT, Res, |
| DAG.getConstant(OpSizeInBits - 16, DL, |
| getShiftAmountTy(VT))); |
| } |
| return Res; |
| } |
| |
| /// Return true if the specified node is an element that makes up a 32-bit |
| /// packed halfword byteswap. |
| /// ((x & 0x000000ff) << 8) | |
| /// ((x & 0x0000ff00) >> 8) | |
| /// ((x & 0x00ff0000) << 8) | |
| /// ((x & 0xff000000) >> 8) |
| static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { |
| if (!N->hasOneUse()) |
| return false; |
| |
| unsigned Opc = N.getOpcode(); |
| if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) |
| return false; |
| |
| SDValue N0 = N.getOperand(0); |
| unsigned Opc0 = N0.getOpcode(); |
| if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) |
| return false; |
| |
| ConstantSDNode *N1C = nullptr; |
| // SHL or SRL: look upstream for AND mask operand |
| if (Opc == ISD::AND) |
| N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| else if (Opc0 == ISD::AND) |
| N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!N1C) |
| return false; |
| |
| unsigned MaskByteOffset; |
| switch (N1C->getZExtValue()) { |
| default: |
| return false; |
| case 0xFF: MaskByteOffset = 0; break; |
| case 0xFF00: MaskByteOffset = 1; break; |
| case 0xFFFF: |
| // In case demanded bits didn't clear the bits that will be shifted out. |
| // This is needed for X86. |
| if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { |
| MaskByteOffset = 1; |
| break; |
| } |
| return false; |
| case 0xFF0000: MaskByteOffset = 2; break; |
| case 0xFF000000: MaskByteOffset = 3; break; |
| } |
| |
| // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). |
| if (Opc == ISD::AND) { |
| if (MaskByteOffset == 0 || MaskByteOffset == 2) { |
| // (x >> 8) & 0xff |
| // (x >> 8) & 0xff0000 |
| if (Opc0 != ISD::SRL) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } else { |
| // (x << 8) & 0xff00 |
| // (x << 8) & 0xff000000 |
| if (Opc0 != ISD::SHL) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } |
| } else if (Opc == ISD::SHL) { |
| // (x & 0xff) << 8 |
| // (x & 0xff0000) << 8 |
| if (MaskByteOffset != 0 && MaskByteOffset != 2) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } else { // Opc == ISD::SRL |
| // (x & 0xff00) >> 8 |
| // (x & 0xff000000) >> 8 |
| if (MaskByteOffset != 1 && MaskByteOffset != 3) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } |
| |
| if (Parts[MaskByteOffset]) |
| return false; |
| |
| Parts[MaskByteOffset] = N0.getOperand(0).getNode(); |
| return true; |
| } |
| |
| // Match 2 elements of a packed halfword bswap. |
| static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { |
| if (N.getOpcode() == ISD::OR) |
| return isBSwapHWordElement(N.getOperand(0), Parts) && |
| isBSwapHWordElement(N.getOperand(1), Parts); |
| |
| if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { |
| ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); |
| if (!C || C->getAPIntValue() != 16) |
| return false; |
| Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Match this pattern: |
| // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) |
| // And rewrite this to: |
| // (rotr (bswap A), 16) |
| static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, |
| SelectionDAG &DAG, SDNode *N, SDValue N0, |
| SDValue N1, EVT VT, EVT ShiftAmountTy) { |
| assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && |
| "MatchBSwapHWordOrAndAnd: expecting i32"); |
| if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) |
| return SDValue(); |
| if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) |
| return SDValue(); |
| // TODO: this is too restrictive; lifting this restriction requires more tests |
| if (!N0->hasOneUse() || !N1->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); |
| ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); |
| if (!Mask0 || !Mask1) |
| return SDValue(); |
| if (Mask0->getAPIntValue() != 0xff00ff00 || |
| Mask1->getAPIntValue() != 0x00ff00ff) |
| return SDValue(); |
| SDValue Shift0 = N0.getOperand(0); |
| SDValue Shift1 = N1.getOperand(0); |
| if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); |
| ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); |
| if (!ShiftAmt0 || !ShiftAmt1) |
| return SDValue(); |
| if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) |
| return SDValue(); |
| if (Shift0.getOperand(0) != Shift1.getOperand(0)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); |
| SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); |
| return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); |
| } |
| |
| /// Match a 32-bit packed halfword bswap. That is |
| /// ((x & 0x000000ff) << 8) | |
| /// ((x & 0x0000ff00) >> 8) | |
| /// ((x & 0x00ff0000) << 8) | |
| /// ((x & 0xff000000) >> 8) |
| /// => (rotl (bswap x), 16) |
| SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, |
| getShiftAmountTy(VT))) |
| return BSwap; |
| |
| // Try again with commuted operands. |
| if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, |
| getShiftAmountTy(VT))) |
| return BSwap; |
| |
| |
| // Look for either |
| // (or (bswaphpair), (bswaphpair)) |
| // (or (or (bswaphpair), (and)), (and)) |
| // (or (or (and), (bswaphpair)), (and)) |
| SDNode *Parts[4] = {}; |
| |
| if (isBSwapHWordPair(N0, Parts)) { |
| // (or (or (and), (and)), (or (and), (and))) |
| if (!isBSwapHWordPair(N1, Parts)) |
| return SDValue(); |
| } else if (N0.getOpcode() == ISD::OR) { |
| // (or (or (or (and), (and)), (and)), (and)) |
| if (!isBSwapHWordElement(N1, Parts)) |
| return SDValue(); |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && |
| !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) |
| return SDValue(); |
| } else { |
| return SDValue(); |
| } |
| |
| // Make sure the parts are all coming from the same node. |
| if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, |
| SDValue(Parts[0], 0)); |
| |
| // Result of the bswap should be rotated by 16. If it's not legal, then |
| // do (x << 16) | (x >> 16). |
| SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); |
| if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) |
| return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); |
| if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) |
| return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); |
| return DAG.getNode(ISD::OR, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), |
| DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); |
| } |
| |
| /// This contains all DAGCombine rules which reduce two values combined by |
| /// an Or operation to a single value \see visitANDLike(). |
| SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N1.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (or x, undef) -> -1 |
| if (!LegalOperations && (N0.isUndef() || N1.isUndef())) |
| return DAG.getAllOnesConstant(DL, VT); |
| |
| if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) |
| return V; |
| |
| // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. |
| if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && |
| // Don't increase # computations. |
| (N0->hasOneUse() || N1->hasOneUse())) { |
| // We can only do this xform if we know that bits from X that are set in C2 |
| // but not in C1 are already zero. Likewise for Y. |
| if (const ConstantSDNode *N0O1C = |
| getAsNonOpaqueConstant(N0.getOperand(1))) { |
| if (const ConstantSDNode *N1O1C = |
| getAsNonOpaqueConstant(N1.getOperand(1))) { |
| // We can only do this xform if we know that bits from X that are set in |
| // C2 but not in C1 are already zero. Likewise for Y. |
| const APInt &LHSMask = N0O1C->getAPIntValue(); |
| const APInt &RHSMask = N1O1C->getAPIntValue(); |
| |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && |
| DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { |
| SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, |
| N0.getOperand(0), N1.getOperand(0)); |
| return DAG.getNode(ISD::AND, DL, VT, X, |
| DAG.getConstant(LHSMask | RHSMask, DL, VT)); |
| } |
| } |
| } |
| } |
| |
| // (or (and X, M), (and X, N)) -> (and X, (or M, N)) |
| if (N0.getOpcode() == ISD::AND && |
| N1.getOpcode() == ISD::AND && |
| N0.getOperand(0) == N1.getOperand(0) && |
| // Don't increase # computations. |
| (N0->hasOneUse() || N1->hasOneUse())) { |
| SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, |
| N0.getOperand(1), N1.getOperand(1)); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// OR combines for which the commuted variant will be tried as well. |
| static SDValue visitORCommutative(SelectionDAG &DAG, SDValue N0, SDValue N1, |
| SDNode *N) { |
| EVT VT = N0.getValueType(); |
| if (N0.getOpcode() == ISD::AND) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| |
| // fold or (and x, y), x --> x |
| if (N00 == N1 || N01 == N1) |
| return N1; |
| |
| // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) |
| // TODO: Set AllowUndefs = true. |
| if (getBitwiseNotOperand(N01, N00, |
| /* AllowUndefs */ false) == N1) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N00, N1); |
| |
| // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) |
| if (getBitwiseNotOperand(N00, N01, |
| /* AllowUndefs */ false) == N1) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N01, N1); |
| } |
| |
| if (N0.getOpcode() == ISD::XOR) { |
| // fold or (xor x, y), x --> or x, y |
| // or (xor x, y), (x and/or y) --> or x, y |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| if (N00 == N1) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N01, N1); |
| if (N01 == N1) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N00, N1); |
| |
| if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) { |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| if ((N00 == N10 && N01 == N11) || (N00 == N11 && N01 == N10)) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N00, N01); |
| } |
| } |
| |
| if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) |
| return R; |
| |
| auto peekThroughZext = [](SDValue V) { |
| if (V->getOpcode() == ISD::ZERO_EXTEND) |
| return V->getOperand(0); |
| return V; |
| }; |
| |
| // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y |
| if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL && |
| N0.getOperand(0) == N1.getOperand(0) && |
| peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1))) |
| return N0; |
| |
| // (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y |
| if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL && |
| N0.getOperand(1) == N1.getOperand(0) && |
| peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1))) |
| return N0; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // x | x --> x |
| if (N0 == N1) |
| return N0; |
| |
| // fold (or c1, c2) -> c1|c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| // fold (or x, 0) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return N0; |
| |
| // fold (or x, -1) -> -1, vector edition |
| if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) |
| // do not return N1, because undef node may exist in N1 |
| return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); |
| |
| // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) |
| // Do this only if the resulting type / shuffle is legal. |
| auto *SV0 = dyn_cast<ShuffleVectorSDNode>(N0); |
| auto *SV1 = dyn_cast<ShuffleVectorSDNode>(N1); |
| if (SV0 && SV1 && TLI.isTypeLegal(VT)) { |
| bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); |
| bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); |
| bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); |
| bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); |
| // Ensure both shuffles have a zero input. |
| if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { |
| assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); |
| assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); |
| bool CanFold = true; |
| int NumElts = VT.getVectorNumElements(); |
| SmallVector<int, 4> Mask(NumElts, -1); |
| |
| for (int i = 0; i != NumElts; ++i) { |
| int M0 = SV0->getMaskElt(i); |
| int M1 = SV1->getMaskElt(i); |
| |
| // Determine if either index is pointing to a zero vector. |
| bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); |
| bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); |
| |
| // If one element is zero and the otherside is undef, keep undef. |
| // This also handles the case that both are undef. |
| if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) |
| continue; |
| |
| // Make sure only one of the elements is zero. |
| if (M0Zero == M1Zero) { |
| CanFold = false; |
| break; |
| } |
| |
| assert((M0 >= 0 || M1 >= 0) && "Undef index!"); |
| |
| // We have a zero and non-zero element. If the non-zero came from |
| // SV0 make the index a LHS index. If it came from SV1, make it |
| // a RHS index. We need to mod by NumElts because we don't care |
| // which operand it came from in the original shuffles. |
| Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; |
| } |
| |
| if (CanFold) { |
| SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); |
| SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); |
| |
| SDValue LegalShuffle = |
| TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, |
| Mask, DAG); |
| if (LegalShuffle) |
| return LegalShuffle; |
| } |
| } |
| } |
| } |
| |
| // fold (or x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| // fold (or x, -1) -> -1 |
| if (isAllOnesConstant(N1)) |
| return N1; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (or x, c) -> c iff (x & ~c) == 0 |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) |
| return N1; |
| |
| if (SDValue Combined = visitORLike(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) |
| return Combined; |
| |
| // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) |
| if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) |
| return BSwap; |
| if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) |
| return BSwap; |
| |
| // reassociate or |
| if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) |
| return ROR; |
| |
| // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) |
| // iff (c1 & c2) != 0 or c1/c2 are undef. |
| auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { |
| return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); |
| }; |
| if (N0.getOpcode() == ISD::AND && N0->hasOneUse() && |
| ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { |
| if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, |
| {N1, N0.getOperand(1)})) { |
| SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); |
| AddToWorklist(IOR.getNode()); |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); |
| } |
| } |
| |
| if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) |
| return Combined; |
| if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) |
| return Combined; |
| |
| // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) |
| return V; |
| |
| // See if this is some rotate idiom. |
| if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) |
| return Rot; |
| |
| if (SDValue Load = MatchLoadCombine(N)) |
| return Load; |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // If OR can be rewritten into ADD, try combines based on ADD. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && |
| DAG.haveNoCommonBitsSet(N0, N1)) |
| if (SDValue Combined = visitADDLike(N)) |
| return Combined; |
| |
| // Postpone until legalization completed to avoid interference with bswap |
| // folding |
| if (LegalOperations || VT.isVector()) |
| if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG)) |
| return R; |
| |
| return SDValue(); |
| } |
| |
| static SDValue stripConstantMask(const SelectionDAG &DAG, SDValue Op, |
| SDValue &Mask) { |
| if (Op.getOpcode() == ISD::AND && |
| DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { |
| Mask = Op.getOperand(1); |
| return Op.getOperand(0); |
| } |
| return Op; |
| } |
| |
| /// Match "(X shl/srl V1) & V2" where V2 may not be present. |
| static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift, |
| SDValue &Mask) { |
| Op = stripConstantMask(DAG, Op, Mask); |
| if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { |
| Shift = Op; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Helper function for visitOR to extract the needed side of a rotate idiom |
| /// from a shl/srl/mul/udiv. This is meant to handle cases where |
| /// InstCombine merged some outside op with one of the shifts from |
| /// the rotate pattern. |
| /// \returns An empty \c SDValue if the needed shift couldn't be extracted. |
| /// Otherwise, returns an expansion of \p ExtractFrom based on the following |
| /// patterns: |
| /// |
| /// (or (add v v) (shrl v bitwidth-1)): |
| /// expands (add v v) -> (shl v 1) |
| /// |
| /// (or (mul v c0) (shrl (mul v c1) c2)): |
| /// expands (mul v c0) -> (shl (mul v c1) c3) |
| /// |
| /// (or (udiv v c0) (shl (udiv v c1) c2)): |
| /// expands (udiv v c0) -> (shrl (udiv v c1) c3) |
| /// |
| /// (or (shl v c0) (shrl (shl v c1) c2)): |
| /// expands (shl v c0) -> (shl (shl v c1) c3) |
| /// |
| /// (or (shrl v c0) (shl (shrl v c1) c2)): |
| /// expands (shrl v c0) -> (shrl (shrl v c1) c3) |
| /// |
| /// Such that in all cases, c3+c2==bitwidth(op v c1). |
| static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, |
| SDValue ExtractFrom, SDValue &Mask, |
| const SDLoc &DL) { |
| assert(OppShift && ExtractFrom && "Empty SDValue"); |
| if (OppShift.getOpcode() != ISD::SHL && OppShift.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); |
| |
| // Value and Type of the shift. |
| SDValue OppShiftLHS = OppShift.getOperand(0); |
| EVT ShiftedVT = OppShiftLHS.getValueType(); |
| |
| // Amount of the existing shift. |
| ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); |
| |
| // (add v v) -> (shl v 1) |
| // TODO: Should this be a general DAG canonicalization? |
| if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && |
| ExtractFrom.getOpcode() == ISD::ADD && |
| ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && |
| ExtractFrom.getOperand(0) == OppShiftLHS && |
| OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) |
| return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, |
| DAG.getShiftAmountConstant(1, ShiftedVT, DL)); |
| |
| // Preconditions: |
| // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) |
| // |
| // Find opcode of the needed shift to be extracted from (op0 v c0). |
| unsigned Opcode = ISD::DELETED_NODE; |
| bool IsMulOrDiv = false; |
| // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift |
| // opcode or its arithmetic (mul or udiv) variant. |
| auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { |
| IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; |
| if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) |
| return false; |
| Opcode = NeededShift; |
| return true; |
| }; |
| // op0 must be either the needed shift opcode or the mul/udiv equivalent |
| // that the needed shift can be extracted from. |
| if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && |
| (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) |
| return SDValue(); |
| |
| // op0 must be the same opcode on both sides, have the same LHS argument, |
| // and produce the same value type. |
| if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || |
| OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || |
| ShiftedVT != ExtractFrom.getValueType()) |
| return SDValue(); |
| |
| // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. |
| ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); |
| // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. |
| ConstantSDNode *ExtractFromCst = |
| isConstOrConstSplat(ExtractFrom.getOperand(1)); |
| // TODO: We should be able to handle non-uniform constant vectors for these values |
| // Check that we have constant values. |
| if (!OppShiftCst || !OppShiftCst->getAPIntValue() || |
| !OppLHSCst || !OppLHSCst->getAPIntValue() || |
| !ExtractFromCst || !ExtractFromCst->getAPIntValue()) |
| return SDValue(); |
| |
| // Compute the shift amount we need to extract to complete the rotate. |
| const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); |
| if (OppShiftCst->getAPIntValue().ugt(VTWidth)) |
| return SDValue(); |
| APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); |
| // Normalize the bitwidth of the two mul/udiv/shift constant operands. |
| APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); |
| APInt OppLHSAmt = OppLHSCst->getAPIntValue(); |
| zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); |
| |
| // Now try extract the needed shift from the ExtractFrom op and see if the |
| // result matches up with the existing shift's LHS op. |
| if (IsMulOrDiv) { |
| // Op to extract from is a mul or udiv by a constant. |
| // Check: |
| // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 |
| // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 |
| const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), |
| NeededShiftAmt.getZExtValue()); |
| APInt ResultAmt; |
| APInt Rem; |
| APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); |
| if (Rem != 0 || ResultAmt != OppLHSAmt) |
| return SDValue(); |
| } else { |
| // Op to extract from is a shift by a constant. |
| // Check: |
| // c2 - (bitwidth(op0 v c0) - c1) == c0 |
| if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( |
| ExtractFromAmt.getBitWidth())) |
| return SDValue(); |
| } |
| |
| // Return the expanded shift op that should allow a rotate to be formed. |
| EVT ShiftVT = OppShift.getOperand(1).getValueType(); |
| EVT ResVT = ExtractFrom.getValueType(); |
| SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); |
| return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); |
| } |
| |
| // Return true if we can prove that, whenever Neg and Pos are both in the |
| // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that |
| // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: |
| // |
| // (or (shift1 X, Neg), (shift2 X, Pos)) |
| // |
| // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate |
| // in direction shift1 by Neg. The range [0, EltSize) means that we only need |
| // to consider shift amounts with defined behavior. |
| // |
| // The IsRotate flag should be set when the LHS of both shifts is the same. |
| // Otherwise if matching a general funnel shift, it should be clear. |
| static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, |
| SelectionDAG &DAG, bool IsRotate) { |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| // If EltSize is a power of 2 then: |
| // |
| // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) |
| // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). |
| // |
| // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check |
| // for the stronger condition: |
| // |
| // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] |
| // |
| // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) |
| // we can just replace Neg with Neg' for the rest of the function. |
| // |
| // In other cases we check for the even stronger condition: |
| // |
| // Neg == EltSize - Pos [B] |
| // |
| // for all Neg and Pos. Note that the (or ...) then invokes undefined |
| // behavior if Pos == 0 (and consequently Neg == EltSize). |
| // |
| // We could actually use [A] whenever EltSize is a power of 2, but the |
| // only extra cases that it would match are those uninteresting ones |
| // where Neg and Pos are never in range at the same time. E.g. for |
| // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) |
| // as well as (sub 32, Pos), but: |
| // |
| // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) |
| // |
| // always invokes undefined behavior for 32-bit X. |
| // |
| // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. |
| // This allows us to peek through any operations that only affect Mask's |
| // un-demanded bits. |
| // |
| // NOTE: We can only do this when matching operations which won't modify the |
| // least Log2(EltSize) significant bits and not a general funnel shift. |
| unsigned MaskLoBits = 0; |
| if (IsRotate && isPowerOf2_64(EltSize)) { |
| unsigned Bits = Log2_64(EltSize); |
| unsigned NegBits = Neg.getScalarValueSizeInBits(); |
| if (NegBits >= Bits) { |
| APInt DemandedBits = APInt::getLowBitsSet(NegBits, Bits); |
| if (SDValue Inner = |
| TLI.SimplifyMultipleUseDemandedBits(Neg, DemandedBits, DAG)) { |
| Neg = Inner; |
| MaskLoBits = Bits; |
| } |
| } |
| } |
| |
| // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. |
| if (Neg.getOpcode() != ISD::SUB) |
| return false; |
| ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); |
| if (!NegC) |
| return false; |
| SDValue NegOp1 = Neg.getOperand(1); |
| |
| // On the RHS of [A], if Pos is the result of operation on Pos' that won't |
| // affect Mask's demanded bits, just replace Pos with Pos'. These operations |
| // are redundant for the purpose of the equality. |
| if (MaskLoBits) { |
| unsigned PosBits = Pos.getScalarValueSizeInBits(); |
| if (PosBits >= MaskLoBits) { |
| APInt DemandedBits = APInt::getLowBitsSet(PosBits, MaskLoBits); |
| if (SDValue Inner = |
| TLI.SimplifyMultipleUseDemandedBits(Pos, DemandedBits, DAG)) { |
| Pos = Inner; |
| } |
| } |
| } |
| |
| // The condition we need is now: |
| // |
| // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask |
| // |
| // If NegOp1 == Pos then we need: |
| // |
| // EltSize & Mask == NegC & Mask |
| // |
| // (because "x & Mask" is a truncation and distributes through subtraction). |
| // |
| // We also need to account for a potential truncation of NegOp1 if the amount |
| // has already been legalized to a shift amount type. |
| APInt Width; |
| if ((Pos == NegOp1) || |
| (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) |
| Width = NegC->getAPIntValue(); |
| |
| // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. |
| // Then the condition we want to prove becomes: |
| // |
| // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask |
| // |
| // which, again because "x & Mask" is a truncation, becomes: |
| // |
| // NegC & Mask == (EltSize - PosC) & Mask |
| // EltSize & Mask == (NegC + PosC) & Mask |
| else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { |
| if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) |
| Width = PosC->getAPIntValue() + NegC->getAPIntValue(); |
| else |
| return false; |
| } else |
| return false; |
| |
| // Now we just need to check that EltSize & Mask == Width & Mask. |
| if (MaskLoBits) |
| // EltSize & Mask is 0 since Mask is EltSize - 1. |
| return Width.getLoBits(MaskLoBits) == 0; |
| return Width == EltSize; |
| } |
| |
| // A subroutine of MatchRotate used once we have found an OR of two opposite |
| // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces |
| // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the |
| // former being preferred if supported. InnerPos and InnerNeg are Pos and |
| // Neg with outer conversions stripped away. |
| SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, |
| SDValue Neg, SDValue InnerPos, |
| SDValue InnerNeg, bool HasPos, |
| unsigned PosOpcode, unsigned NegOpcode, |
| const SDLoc &DL) { |
| // fold (or (shl x, (*ext y)), |
| // (srl x, (*ext (sub 32, y)))) -> |
| // (rotl x, y) or (rotr x, (sub 32, y)) |
| // |
| // fold (or (shl x, (*ext (sub 32, y))), |
| // (srl x, (*ext y))) -> |
| // (rotr x, y) or (rotl x, (sub 32, y)) |
| EVT VT = Shifted.getValueType(); |
| if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, |
| /*IsRotate*/ true)) { |
| return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, |
| HasPos ? Pos : Neg); |
| } |
| |
| return SDValue(); |
| } |
| |
| // A subroutine of MatchRotate used once we have found an OR of two opposite |
| // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces |
| // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the |
| // former being preferred if supported. InnerPos and InnerNeg are Pos and |
| // Neg with outer conversions stripped away. |
| // TODO: Merge with MatchRotatePosNeg. |
| SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, |
| SDValue Neg, SDValue InnerPos, |
| SDValue InnerNeg, bool HasPos, |
| unsigned PosOpcode, unsigned NegOpcode, |
| const SDLoc &DL) { |
| EVT VT = N0.getValueType(); |
| unsigned EltBits = VT.getScalarSizeInBits(); |
| |
| // fold (or (shl x0, (*ext y)), |
| // (srl x1, (*ext (sub 32, y)))) -> |
| // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) |
| // |
| // fold (or (shl x0, (*ext (sub 32, y))), |
| // (srl x1, (*ext y))) -> |
| // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) |
| if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { |
| return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, |
| HasPos ? Pos : Neg); |
| } |
| |
| // Matching the shift+xor cases, we can't easily use the xor'd shift amount |
| // so for now just use the PosOpcode case if its legal. |
| // TODO: When can we use the NegOpcode case? |
| if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { |
| auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { |
| if (Op.getOpcode() != BinOpc) |
| return false; |
| ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); |
| return Cst && (Cst->getAPIntValue() == Imm); |
| }; |
| |
| // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) |
| // -> (fshl x0, x1, y) |
| if (IsBinOpImm(N1, ISD::SRL, 1) && |
| IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && |
| InnerPos == InnerNeg.getOperand(0) && |
| TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { |
| return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); |
| } |
| |
| // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) |
| // -> (fshr x0, x1, y) |
| if (IsBinOpImm(N0, ISD::SHL, 1) && |
| IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && |
| InnerNeg == InnerPos.getOperand(0) && |
| TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { |
| return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); |
| } |
| |
| // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) |
| // -> (fshr x0, x1, y) |
| // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && |
| IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && |
| InnerNeg == InnerPos.getOperand(0) && |
| TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { |
| return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // MatchRotate - Handle an 'or' of two operands. If this is one of the many |
| // idioms for rotate, and if the target supports rotation instructions, generate |
| // a rot[lr]. This also matches funnel shift patterns, similar to rotation but |
| // with different shifted sources. |
| SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { |
| EVT VT = LHS.getValueType(); |
| |
| // The target must have at least one rotate/funnel flavor. |
| // We still try to match rotate by constant pre-legalization. |
| // TODO: Support pre-legalization funnel-shift by constant. |
| bool HasROTL = hasOperation(ISD::ROTL, VT); |
| bool HasROTR = hasOperation(ISD::ROTR, VT); |
| bool HasFSHL = hasOperation(ISD::FSHL, VT); |
| bool HasFSHR = hasOperation(ISD::FSHR, VT); |
| |
| // If the type is going to be promoted and the target has enabled custom |
| // lowering for rotate, allow matching rotate by non-constants. Only allow |
| // this for scalar types. |
| if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) == |
| TargetLowering::TypePromoteInteger) { |
| HasROTL |= TLI.getOperationAction(ISD::ROTL, VT) == TargetLowering::Custom; |
| HasROTR |= TLI.getOperationAction(ISD::ROTR, VT) == TargetLowering::Custom; |
| } |
| |
| if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR) |
| return SDValue(); |
| |
| // Check for truncated rotate. |
| if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && |
| LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { |
| assert(LHS.getValueType() == RHS.getValueType()); |
| if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); |
| } |
| } |
| |
| // Match "(X shl/srl V1) & V2" where V2 may not be present. |
| SDValue LHSShift; // The shift. |
| SDValue LHSMask; // AND value if any. |
| matchRotateHalf(DAG, LHS, LHSShift, LHSMask); |
| |
| SDValue RHSShift; // The shift. |
| SDValue RHSMask; // AND value if any. |
| matchRotateHalf(DAG, RHS, RHSShift, RHSMask); |
| |
| // If neither side matched a rotate half, bail |
| if (!LHSShift && !RHSShift) |
| return SDValue(); |
| |
| // InstCombine may have combined a constant shl, srl, mul, or udiv with one |
| // side of the rotate, so try to handle that here. In all cases we need to |
| // pass the matched shift from the opposite side to compute the opcode and |
| // needed shift amount to extract. We still want to do this if both sides |
| // matched a rotate half because one half may be a potential overshift that |
| // can be broken down (ie if InstCombine merged two shl or srl ops into a |
| // single one). |
| |
| // Have LHS side of the rotate, try to extract the needed shift from the RHS. |
| if (LHSShift) |
| if (SDValue NewRHSShift = |
| extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) |
| RHSShift = NewRHSShift; |
| // Have RHS side of the rotate, try to extract the needed shift from the LHS. |
| if (RHSShift) |
| if (SDValue NewLHSShift = |
| extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) |
| LHSShift = NewLHSShift; |
| |
| // If a side is still missing, nothing else we can do. |
| if (!RHSShift || !LHSShift) |
| return SDValue(); |
| |
| // At this point we've matched or extracted a shift op on each side. |
| |
| if (LHSShift.getOpcode() == RHSShift.getOpcode()) |
| return SDValue(); // Shifts must disagree. |
| |
| // Canonicalize shl to left side in a shl/srl pair. |
| if (RHSShift.getOpcode() == ISD::SHL) { |
| std::swap(LHS, RHS); |
| std::swap(LHSShift, RHSShift); |
| std::swap(LHSMask, RHSMask); |
| } |
| |
| // Something has gone wrong - we've lost the shl/srl pair - bail. |
| if (LHSShift.getOpcode() != ISD::SHL || RHSShift.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| SDValue LHSShiftArg = LHSShift.getOperand(0); |
| SDValue LHSShiftAmt = LHSShift.getOperand(1); |
| SDValue RHSShiftArg = RHSShift.getOperand(0); |
| SDValue RHSShiftAmt = RHSShift.getOperand(1); |
| |
| auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; |
| }; |
| |
| auto ApplyMasks = [&](SDValue Res) { |
| // If there is an AND of either shifted operand, apply it to the result. |
| if (LHSMask.getNode() || RHSMask.getNode()) { |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); |
| SDValue Mask = AllOnes; |
| |
| if (LHSMask.getNode()) { |
| SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); |
| Mask = DAG.getNode(ISD::AND, DL, VT, Mask, |
| DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); |
| } |
| if (RHSMask.getNode()) { |
| SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); |
| Mask = DAG.getNode(ISD::AND, DL, VT, Mask, |
| DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); |
| } |
| |
| Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); |
| } |
| |
| return Res; |
| }; |
| |
| // TODO: Support pre-legalization funnel-shift by constant. |
| bool IsRotate = LHSShiftArg == RHSShiftArg; |
| if (!IsRotate && !(HasFSHL || HasFSHR)) { |
| if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() && |
| ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { |
| // Look for a disguised rotate by constant. |
| // The common shifted operand X may be hidden inside another 'or'. |
| SDValue X, Y; |
| auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) { |
| if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR) |
| return false; |
| if (CommonOp == Or.getOperand(0)) { |
| X = CommonOp; |
| Y = Or.getOperand(1); |
| return true; |
| } |
| if (CommonOp == Or.getOperand(1)) { |
| X = CommonOp; |
| Y = Or.getOperand(0); |
| return true; |
| } |
| return false; |
| }; |
| |
| SDValue Res; |
| if (matchOr(LHSShiftArg, RHSShiftArg)) { |
| // (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1) |
| SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt); |
| SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt); |
| Res = DAG.getNode(ISD::OR, DL, VT, RotX, ShlY); |
| } else if (matchOr(RHSShiftArg, LHSShiftArg)) { |
| // (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2) |
| SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt); |
| SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt); |
| Res = DAG.getNode(ISD::OR, DL, VT, RotX, SrlY); |
| } else { |
| return SDValue(); |
| } |
| |
| return ApplyMasks(Res); |
| } |
| |
| return SDValue(); // Requires funnel shift support. |
| } |
| |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) |
| // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) |
| // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) |
| // iff C1+C2 == EltSizeInBits |
| if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { |
| SDValue Res; |
| if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) { |
| bool UseROTL = !LegalOperations || HasROTL; |
| Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, |
| UseROTL ? LHSShiftAmt : RHSShiftAmt); |
| } else { |
| bool UseFSHL = !LegalOperations || HasFSHL; |
| Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, |
| RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt); |
| } |
| |
| return ApplyMasks(Res); |
| } |
| |
| // Even pre-legalization, we can't easily rotate/funnel-shift by a variable |
| // shift. |
| if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) |
| return SDValue(); |
| |
| // If there is a mask here, and we have a variable shift, we can't be sure |
| // that we're masking out the right stuff. |
| if (LHSMask.getNode() || RHSMask.getNode()) |
| return SDValue(); |
| |
| // If the shift amount is sign/zext/any-extended just peel it off. |
| SDValue LExtOp0 = LHSShiftAmt; |
| SDValue RExtOp0 = RHSShiftAmt; |
| if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && |
| (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { |
| LExtOp0 = LHSShiftAmt.getOperand(0); |
| RExtOp0 = RHSShiftAmt.getOperand(0); |
| } |
| |
| if (IsRotate && (HasROTL || HasROTR)) { |
| SDValue TryL = |
| MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, |
| RExtOp0, HasROTL, ISD::ROTL, ISD::ROTR, DL); |
| if (TryL) |
| return TryL; |
| |
| SDValue TryR = |
| MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, |
| LExtOp0, HasROTR, ISD::ROTR, ISD::ROTL, DL); |
| if (TryR) |
| return TryR; |
| } |
| |
| SDValue TryL = |
| MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, |
| LExtOp0, RExtOp0, HasFSHL, ISD::FSHL, ISD::FSHR, DL); |
| if (TryL) |
| return TryL; |
| |
| SDValue TryR = |
| MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, |
| RExtOp0, LExtOp0, HasFSHR, ISD::FSHR, ISD::FSHL, DL); |
| if (TryR) |
| return TryR; |
| |
| return SDValue(); |
| } |
| |
| namespace { |
| |
| /// Represents known origin of an individual byte in load combine pattern. The |
| /// value of the byte is either constant zero or comes from memory. |
| struct ByteProvider { |
| // For constant zero providers Load is set to nullptr. For memory providers |
| // Load represents the node which loads the byte from memory. |
| // ByteOffset is the offset of the byte in the value produced by the load. |
| LoadSDNode *Load = nullptr; |
| unsigned ByteOffset = 0; |
| unsigned VectorOffset = 0; |
| |
| ByteProvider() = default; |
| |
| static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset, |
| unsigned VectorOffset) { |
| return ByteProvider(Load, ByteOffset, VectorOffset); |
| } |
| |
| static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0, 0); } |
| |
| bool isConstantZero() const { return !Load; } |
| bool isMemory() const { return Load; } |
| |
| bool operator==(const ByteProvider &Other) const { |
| return Other.Load == Load && Other.ByteOffset == ByteOffset && |
| Other.VectorOffset == VectorOffset; |
| } |
| |
| private: |
| ByteProvider(LoadSDNode *Load, unsigned ByteOffset, unsigned VectorOffset) |
| : Load(Load), ByteOffset(ByteOffset), VectorOffset(VectorOffset) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Recursively traverses the expression calculating the origin of the requested |
| /// byte of the given value. Returns std::nullopt if the provider can't be |
| /// calculated. |
| /// |
| /// For all the values except the root of the expression, we verify that the |
| /// value has exactly one use and if not then return std::nullopt. This way if |
| /// the origin of the byte is returned it's guaranteed that the values which |
| /// contribute to the byte are not used outside of this expression. |
| |
| /// However, there is a special case when dealing with vector loads -- we allow |
| /// more than one use if the load is a vector type. Since the values that |
| /// contribute to the byte ultimately come from the ExtractVectorElements of the |
| /// Load, we don't care if the Load has uses other than ExtractVectorElements, |
| /// because those operations are independent from the pattern to be combined. |
| /// For vector loads, we simply care that the ByteProviders are adjacent |
| /// positions of the same vector, and their index matches the byte that is being |
| /// provided. This is captured by the \p VectorIndex algorithm. \p VectorIndex |
| /// is the index used in an ExtractVectorElement, and \p StartingIndex is the |
| /// byte position we are trying to provide for the LoadCombine. If these do |
| /// not match, then we can not combine the vector loads. \p Index uses the |
| /// byte position we are trying to provide for and is matched against the |
| /// shl and load size. The \p Index algorithm ensures the requested byte is |
| /// provided for by the pattern, and the pattern does not over provide bytes. |
| /// |
| /// |
| /// The supported LoadCombine pattern for vector loads is as follows |
| /// or |
| /// / \ |
| /// or shl |
| /// / \ | |
| /// or shl zext |
| /// / \ | | |
| /// shl zext zext EVE* |
| /// | | | | |
| /// zext EVE* EVE* LOAD |
| /// | | | |
| /// EVE* LOAD LOAD |
| /// | |
| /// LOAD |
| /// |
| /// *ExtractVectorElement |
| static const std::optional<ByteProvider> |
| calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, |
| std::optional<uint64_t> VectorIndex, |
| unsigned StartingIndex = 0) { |
| |
| // Typical i64 by i8 pattern requires recursion up to 8 calls depth |
| if (Depth == 10) |
| return std::nullopt; |
| |
| // Only allow multiple uses if the instruction is a vector load (in which |
| // case we will use the load for every ExtractVectorElement) |
| if (Depth && !Op.hasOneUse() && |
| (Op.getOpcode() != ISD::LOAD || !Op.getValueType().isVector())) |
| return std::nullopt; |
| |
| // Fail to combine if we have encountered anything but a LOAD after handling |
| // an ExtractVectorElement. |
| if (Op.getOpcode() != ISD::LOAD && VectorIndex.has_value()) |
| return std::nullopt; |
| |
| unsigned BitWidth = Op.getValueSizeInBits(); |
| if (BitWidth % 8 != 0) |
| return std::nullopt; |
| unsigned ByteWidth = BitWidth / 8; |
| assert(Index < ByteWidth && "invalid index requested"); |
| (void) ByteWidth; |
| |
| switch (Op.getOpcode()) { |
| case ISD::OR: { |
| auto LHS = |
| calculateByteProvider(Op->getOperand(0), Index, Depth + 1, VectorIndex); |
| if (!LHS) |
| return std::nullopt; |
| auto RHS = |
| calculateByteProvider(Op->getOperand(1), Index, Depth + 1, VectorIndex); |
| if (!RHS) |
| return std::nullopt; |
| |
| if (LHS->isConstantZero()) |
| return RHS; |
| if (RHS->isConstantZero()) |
| return LHS; |
| return std::nullopt; |
| } |
| case ISD::SHL: { |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!ShiftOp) |
| return std::nullopt; |
| |
| uint64_t BitShift = ShiftOp->getZExtValue(); |
| |
| if (BitShift % 8 != 0) |
| return std::nullopt; |
| uint64_t ByteShift = BitShift / 8; |
| |
| // If we are shifting by an amount greater than the index we are trying to |
| // provide, then do not provide anything. Otherwise, subtract the index by |
| // the amount we shifted by. |
| return Index < ByteShift |
| ? ByteProvider::getConstantZero() |
| : calculateByteProvider(Op->getOperand(0), Index - ByteShift, |
| Depth + 1, VectorIndex, Index); |
| } |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: { |
| SDValue NarrowOp = Op->getOperand(0); |
| unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return std::nullopt; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| if (Index >= NarrowByteWidth) |
| return Op.getOpcode() == ISD::ZERO_EXTEND |
| ? std::optional<ByteProvider>(ByteProvider::getConstantZero()) |
| : std::nullopt; |
| return calculateByteProvider(NarrowOp, Index, Depth + 1, VectorIndex, |
| StartingIndex); |
| } |
| case ISD::BSWAP: |
| return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, |
| Depth + 1, VectorIndex, StartingIndex); |
| case ISD::EXTRACT_VECTOR_ELT: { |
| auto OffsetOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!OffsetOp) |
| return std::nullopt; |
| |
| VectorIndex = OffsetOp->getZExtValue(); |
| |
| SDValue NarrowOp = Op->getOperand(0); |
| unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return std::nullopt; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| // Check to see if the position of the element in the vector corresponds |
| // with the byte we are trying to provide for. In the case of a vector of |
| // i8, this simply means the VectorIndex == StartingIndex. For non i8 cases, |
| // the element will provide a range of bytes. For example, if we have a |
| // vector of i16s, each element provides two bytes (V[1] provides byte 2 and |
| // 3). |
| if (*VectorIndex * NarrowByteWidth > StartingIndex) |
| return std::nullopt; |
| if ((*VectorIndex + 1) * NarrowByteWidth <= StartingIndex) |
| return std::nullopt; |
| |
| return calculateByteProvider(Op->getOperand(0), Index, Depth + 1, |
| VectorIndex, StartingIndex); |
| } |
| case ISD::LOAD: { |
| auto L = cast<LoadSDNode>(Op.getNode()); |
| if (!L->isSimple() || L->isIndexed()) |
| return std::nullopt; |
| |
| unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return std::nullopt; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| // If the width of the load does not reach byte we are trying to provide for |
| // and it is not a ZEXTLOAD, then the load does not provide for the byte in |
| // question |
| if (Index >= NarrowByteWidth) |
| return L->getExtensionType() == ISD::ZEXTLOAD |
| ? std::optional<ByteProvider>(ByteProvider::getConstantZero()) |
| : std::nullopt; |
| |
| unsigned BPVectorIndex = VectorIndex.value_or(0U); |
| return ByteProvider::getMemory(L, Index, BPVectorIndex); |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| static unsigned littleEndianByteAt(unsigned BW, unsigned i) { |
| return i; |
| } |
| |
| static unsigned bigEndianByteAt(unsigned BW, unsigned i) { |
| return BW - i - 1; |
| } |
| |
| // Check if the bytes offsets we are looking at match with either big or |
| // little endian value loaded. Return true for big endian, false for little |
| // endian, and std::nullopt if match failed. |
| static std::optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, |
| int64_t FirstOffset) { |
| // The endian can be decided only when it is 2 bytes at least. |
| unsigned Width = ByteOffsets.size(); |
| if (Width < 2) |
| return std::nullopt; |
| |
| bool BigEndian = true, LittleEndian = true; |
| for (unsigned i = 0; i < Width; i++) { |
| int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; |
| LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); |
| BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); |
| if (!BigEndian && !LittleEndian) |
| return std::nullopt; |
| } |
| |
| assert((BigEndian != LittleEndian) && "It should be either big endian or" |
| "little endian"); |
| return BigEndian; |
| } |
| |
| static SDValue stripTruncAndExt(SDValue Value) { |
| switch (Value.getOpcode()) { |
| case ISD::TRUNCATE: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: |
| return stripTruncAndExt(Value.getOperand(0)); |
| } |
| return Value; |
| } |
| |
| /// Match a pattern where a wide type scalar value is stored by several narrow |
| /// stores. Fold it into a single store or a BSWAP and a store if the targets |
| /// supports it. |
| /// |
| /// Assuming little endian target: |
| /// i8 *p = ... |
| /// i32 val = ... |
| /// p[0] = (val >> 0) & 0xFF; |
| /// p[1] = (val >> 8) & 0xFF; |
| /// p[2] = (val >> 16) & 0xFF; |
| /// p[3] = (val >> 24) & 0xFF; |
| /// => |
| /// *((i32)p) = val; |
| /// |
| /// i8 *p = ... |
| /// i32 val = ... |
| /// p[0] = (val >> 24) & 0xFF; |
| /// p[1] = (val >> 16) & 0xFF; |
| /// p[2] = (val >> 8) & 0xFF; |
| /// p[3] = (val >> 0) & 0xFF; |
| /// => |
| /// *((i32)p) = BSWAP(val); |
| SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { |
| // The matching looks for "store (trunc x)" patterns that appear early but are |
| // likely to be replaced by truncating store nodes during combining. |
| // TODO: If there is evidence that running this later would help, this |
| // limitation could be removed. Legality checks may need to be added |
| // for the created store and optional bswap/rotate. |
| if (LegalOperations || OptLevel == CodeGenOpt::None) |
| return SDValue(); |
| |
| // We only handle merging simple stores of 1-4 bytes. |
| // TODO: Allow unordered atomics when wider type is legal (see D66309) |
| EVT MemVT = N->getMemoryVT(); |
| if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || |
| !N->isSimple() || N->isIndexed()) |
| return SDValue(); |
| |
| // Collect all of the stores in the chain. |
| SDValue Chain = N->getChain(); |
| SmallVector<StoreSDNode *, 8> Stores = {N}; |
| while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { |
| // All stores must be the same size to ensure that we are writing all of the |
| // bytes in the wide value. |
| // This store should have exactly one use as a chain operand for another |
| // store in the merging set. If there are other chain uses, then the |
| // transform may not be safe because order of loads/stores outside of this |
| // set may not be preserved. |
| // TODO: We could allow multiple sizes by tracking each stored byte. |
| if (Store->getMemoryVT() != MemVT || !Store->isSimple() || |
| Store->isIndexed() || !Store->hasOneUse()) |
| return SDValue(); |
| Stores.push_back(Store); |
| Chain = Store->getChain(); |
| } |
| // There is no reason to continue if we do not have at least a pair of stores. |
| if (Stores.size() < 2) |
| return SDValue(); |
| |
| // Handle simple types only. |
| LLVMContext &Context = *DAG.getContext(); |
| unsigned NumStores = Stores.size(); |
| unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); |
| unsigned WideNumBits = NumStores * NarrowNumBits; |
| EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); |
| if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) |
| return SDValue(); |
| |
| // Check if all bytes of the source value that we are looking at are stored |
| // to the same base address. Collect offsets from Base address into OffsetMap. |
| SDValue SourceValue; |
| SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); |
| int64_t FirstOffset = INT64_MAX; |
| StoreSDNode *FirstStore = nullptr; |
| std::optional<BaseIndexOffset> Base; |
| for (auto *Store : Stores) { |
| // All the stores store different parts of the CombinedValue. A truncate is |
| // required to get the partial value. |
| SDValue Trunc = Store->getValue(); |
| if (Trunc.getOpcode() != ISD::TRUNCATE) |
| return SDValue(); |
| // Other than the first/last part, a shift operation is required to get the |
| // offset. |
| int64_t Offset = 0; |
| SDValue WideVal = Trunc.getOperand(0); |
| if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && |
| isa<ConstantSDNode>(WideVal.getOperand(1))) { |
| // The shift amount must be a constant multiple of the narrow type. |
| // It is translated to the offset address in the wide source value "y". |
| // |
| // x = srl y, ShiftAmtC |
| // i8 z = trunc x |
| // store z, ... |
| uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); |
| if (ShiftAmtC % NarrowNumBits != 0) |
| return SDValue(); |
| |
| Offset = ShiftAmtC / NarrowNumBits; |
| WideVal = WideVal.getOperand(0); |
| } |
| |
| // Stores must share the same source value with different offsets. |
| // Truncate and extends should be stripped to get the single source value. |
| if (!SourceValue) |
| SourceValue = WideVal; |
| else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) |
| return SDValue(); |
| else if (SourceValue.getValueType() != WideVT) { |
| if (WideVal.getValueType() == WideVT || |
| WideVal.getScalarValueSizeInBits() > |
| SourceValue.getScalarValueSizeInBits()) |
| SourceValue = WideVal; |
| // Give up if the source value type is smaller than the store size. |
| if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) |
| return SDValue(); |
| } |
| |
| // Stores must share the same base address. |
| BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); |
| int64_t ByteOffsetFromBase = 0; |
| if (!Base) |
| Base = Ptr; |
| else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) |
| return SDValue(); |
| |
| // Remember the first store. |
| if (ByteOffsetFromBase < FirstOffset) { |
| FirstStore = Store; |
| FirstOffset = ByteOffsetFromBase; |
| } |
| // Map the offset in the store and the offset in the combined value, and |
| // early return if it has been set before. |
| if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) |
| return SDValue(); |
| OffsetMap[Offset] = ByteOffsetFromBase; |
| } |
| |
| assert(FirstOffset != INT64_MAX && "First byte offset must be set"); |
| assert(FirstStore && "First store must be set"); |
| |
| // Check that a store of the wide type is both allowed and fast on the target |
| const DataLayout &Layout = DAG.getDataLayout(); |
| unsigned Fast = 0; |
| bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, |
| *FirstStore->getMemOperand(), &Fast); |
| if (!Allowed || !Fast) |
| return SDValue(); |
| |
| // Check if the pieces of the value are going to the expected places in memory |
| // to merge the stores. |
| auto checkOffsets = [&](bool MatchLittleEndian) { |
| if (MatchLittleEndian) { |
| for (unsigned i = 0; i != NumStores; ++i) |
| if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) |
| return false; |
| } else { // MatchBigEndian by reversing loop counter. |
| for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) |
| if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) |
| return false; |
| } |
| return true; |
| }; |
| |
| // Check if the offsets line up for the native data layout of this target. |
| bool NeedBswap = false; |
| bool NeedRotate = false; |
| if (!checkOffsets(Layout.isLittleEndian())) { |
| // Special-case: check if byte offsets line up for the opposite endian. |
| if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) |
| NeedBswap = true; |
| else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) |
| NeedRotate = true; |
| else |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| if (WideVT != SourceValue.getValueType()) { |
| assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && |
| "Unexpected store value to merge"); |
| SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); |
| } |
| |
| // Before legalize we can introduce illegal bswaps/rotates which will be later |
| // converted to an explicit bswap sequence. This way we end up with a single |
| // store and byte shuffling instead of several stores and byte shuffling. |
| if (NeedBswap) { |
| SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); |
| } else if (NeedRotate) { |
| assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); |
| SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); |
| SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); |
| } |
| |
| SDValue NewStore = |
| DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), |
| FirstStore->getPointerInfo(), FirstStore->getAlign()); |
| |
| // Rely on other DAG combine rules to remove the other individual stores. |
| DAG.ReplaceAllUsesWith(N, NewStore.getNode()); |
| return NewStore; |
| } |
| |
| /// Match a pattern where a wide type scalar value is loaded by several narrow |
| /// loads and combined by shifts and ors. Fold it into a single load or a load |
| /// and a BSWAP if the targets supports it. |
| /// |
| /// Assuming little endian target: |
| /// i8 *a = ... |
| /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) |
| /// => |
| /// i32 val = *((i32)a) |
| /// |
| /// i8 *a = ... |
| /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] |
| /// => |
| /// i32 val = BSWAP(*((i32)a)) |
| /// |
| /// TODO: This rule matches complex patterns with OR node roots and doesn't |
| /// interact well with the worklist mechanism. When a part of the pattern is |
| /// updated (e.g. one of the loads) its direct users are put into the worklist, |
| /// but the root node of the pattern which triggers the load combine is not |
| /// necessarily a direct user of the changed node. For example, once the address |
| /// of t28 load is reassociated load combine won't be triggered: |
| /// t25: i32 = add t4, Constant:i32<2> |
| /// t26: i64 = sign_extend t25 |
| /// t27: i64 = add t2, t26 |
| /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 |
| /// t29: i32 = zero_extend t28 |
| /// t32: i32 = shl t29, Constant:i8<8> |
| /// t33: i32 = or t23, t32 |
| /// As a possible fix visitLoad can check if the load can be a part of a load |
| /// combine pattern and add corresponding OR roots to the worklist. |
| SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { |
| assert(N->getOpcode() == ISD::OR && |
| "Can only match load combining against OR nodes"); |
| |
| // Handles simple types only |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| unsigned ByteWidth = VT.getSizeInBits() / 8; |
| |
| bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); |
| auto MemoryByteOffset = [&] (ByteProvider P) { |
| assert(P.isMemory() && "Must be a memory byte provider"); |
| unsigned LoadBitWidth = P.Load->getMemoryVT().getScalarSizeInBits(); |
| |
| assert(LoadBitWidth % 8 == 0 && |
| "can only analyze providers for individual bytes not bit"); |
| unsigned LoadByteWidth = LoadBitWidth / 8; |
| return IsBigEndianTarget |
| ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) |
| : littleEndianByteAt(LoadByteWidth, P.ByteOffset); |
| }; |
| |
| std::optional<BaseIndexOffset> Base; |
| SDValue Chain; |
| |
| SmallPtrSet<LoadSDNode *, 8> Loads; |
| std::optional<ByteProvider> FirstByteProvider; |
| int64_t FirstOffset = INT64_MAX; |
| |
| // Check if all the bytes of the OR we are looking at are loaded from the same |
| // base address. Collect bytes offsets from Base address in ByteOffsets. |
| SmallVector<int64_t, 8> ByteOffsets(ByteWidth); |
| unsigned ZeroExtendedBytes = 0; |
| for (int i = ByteWidth - 1; i >= 0; --i) { |
| auto P = |
| calculateByteProvider(SDValue(N, 0), i, 0, /*VectorIndex*/ std::nullopt, |
| /*StartingIndex*/ i); |
| if (!P) |
| return SDValue(); |
| |
| if (P->isConstantZero()) { |
| // It's OK for the N most significant bytes to be 0, we can just |
| // zero-extend the load. |
| if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) |
| return SDValue(); |
| continue; |
| } |
| assert(P->isMemory() && "provenance should either be memory or zero"); |
| |
| LoadSDNode *L = P->Load; |
| |
| // All loads must share the same chain |
| SDValue LChain = L->getChain(); |
| if (!Chain) |
| Chain = LChain; |
| else if (Chain != LChain) |
| return SDValue(); |
| |
| // Loads must share the same base address |
| BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); |
| int64_t ByteOffsetFromBase = 0; |
| |
| // For vector loads, the expected load combine pattern will have an |
| // ExtractElement for each index in the vector. While each of these |
| // ExtractElements will be accessing the same base address as determined |
| // by the load instruction, the actual bytes they interact with will differ |
| // due to different ExtractElement indices. To accurately determine the |
| // byte position of an ExtractElement, we offset the base load ptr with |
| // the index multiplied by the byte size of each element in the vector. |
| if (L->getMemoryVT().isVector()) { |
| unsigned LoadWidthInBit = L->getMemoryVT().getScalarSizeInBits(); |
| if (LoadWidthInBit % 8 != 0) |
| return SDValue(); |
| unsigned ByteOffsetFromVector = P->VectorOffset * LoadWidthInBit / 8; |
| Ptr.addToOffset(ByteOffsetFromVector); |
| } |
| |
| if (!Base) |
| Base = Ptr; |
| |
| else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) |
| return SDValue(); |
| |
| // Calculate the offset of the current byte from the base address |
| ByteOffsetFromBase += MemoryByteOffset(*P); |
| ByteOffsets[i] = ByteOffsetFromBase; |
| |
| // Remember the first byte load |
| if (ByteOffsetFromBase < FirstOffset) { |
| FirstByteProvider = P; |
| FirstOffset = ByteOffsetFromBase; |
| } |
| |
| Loads.insert(L); |
| } |
| |
| assert(!Loads.empty() && "All the bytes of the value must be loaded from " |
| "memory, so there must be at least one load which produces the value"); |
| assert(Base && "Base address of the accessed memory location must be set"); |
| assert(FirstOffset != INT64_MAX && "First byte offset must be set"); |
| |
| bool NeedsZext = ZeroExtendedBytes > 0; |
| |
| EVT MemVT = |
| EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); |
| |
| if (!MemVT.isSimple()) |
| return SDValue(); |
| |
| // Before legalize we can introduce too wide illegal loads which will be later |
| // split into legal sized loads. This enables us to combine i64 load by i8 |
| // patterns to a couple of i32 loads on 32 bit targets. |
| if (LegalOperations && |
| !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, |
| MemVT)) |
| return SDValue(); |
| |
| // Check if the bytes of the OR we are looking at match with either big or |
| // little endian value load |
| std::optional<bool> IsBigEndian = isBigEndian( |
| ArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); |
| if (!IsBigEndian) |
| return SDValue(); |
| |
| assert(FirstByteProvider && "must be set"); |
| |
| // Ensure that the first byte is loaded from zero offset of the first load. |
| // So the combined value can be loaded from the first load address. |
| if (MemoryByteOffset(*FirstByteProvider) != 0) |
| return SDValue(); |
| LoadSDNode *FirstLoad = FirstByteProvider->Load; |
| |
| // The node we are looking at matches with the pattern, check if we can |
| // replace it with a single (possibly zero-extended) load and bswap + shift if |
| // needed. |
| |
| // If the load needs byte swap check if the target supports it |
| bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; |
| |
| // Before legalize we can introduce illegal bswaps which will be later |
| // converted to an explicit bswap sequence. This way we end up with a single |
| // load and byte shuffling instead of several loads and byte shuffling. |
| // We do not introduce illegal bswaps when zero-extending as this tends to |
| // introduce too many arithmetic instructions. |
| if (NeedsBswap && (LegalOperations || NeedsZext) && |
| !TLI.isOperationLegal(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // If we need to bswap and zero extend, we have to insert a shift. Check that |
| // it is legal. |
| if (NeedsBswap && NeedsZext && LegalOperations && |
| !TLI.isOperationLegal(ISD::SHL, VT)) |
| return SDValue(); |
| |
| // Check that a load of the wide type is both allowed and fast on the target |
| unsigned Fast = 0; |
| bool Allowed = |
| TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, |
| *FirstLoad->getMemOperand(), &Fast); |
| if (!Allowed || !Fast) |
| return SDValue(); |
| |
| SDValue NewLoad = |
| DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, |
| Chain, FirstLoad->getBasePtr(), |
| FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); |
| |
| // Transfer chain users from old loads to the new load. |
| for (LoadSDNode *L : Loads) |
| DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); |
| |
| if (!NeedsBswap) |
| return NewLoad; |
| |
| SDValue ShiftedLoad = |
| NeedsZext |
| ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, |
| DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, |
| SDLoc(N), LegalOperations)) |
| : NewLoad; |
| return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); |
| } |
| |
| // If the target has andn, bsl, or a similar bit-select instruction, |
| // we want to unfold masked merge, with canonical pattern of: |
| // | A | |B| |
| // ((x ^ y) & m) ^ y |
| // | D | |
| // Into: |
| // (x & m) | (y & ~m) |
| // If y is a constant, m is not a 'not', and the 'andn' does not work with |
| // immediates, we unfold into a different pattern: |
| // ~(~x & m) & (m | y) |
| // If x is a constant, m is a 'not', and the 'andn' does not work with |
| // immediates, we unfold into a different pattern: |
| // (x | ~m) & ~(~m & ~y) |
| // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at |
| // the very least that breaks andnpd / andnps patterns, and because those |
| // patterns are simplified in IR and shouldn't be created in the DAG |
| SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { |
| assert(N->getOpcode() == ISD::XOR); |
| |
| // Don't touch 'not' (i.e. where y = -1). |
| if (isAllOnesOrAllOnesSplat(N->getOperand(1))) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // There are 3 commutable operators in the pattern, |
| // so we have to deal with 8 possible variants of the basic pattern. |
| SDValue X, Y, M; |
| auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { |
| if (And.getOpcode() != ISD::AND || !And.hasOneUse()) |
| return false; |
| SDValue Xor = And.getOperand(XorIdx); |
| if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) |
| return false; |
| SDValue Xor0 = Xor.getOperand(0); |
| SDValue Xor1 = Xor.getOperand(1); |
| // Don't touch 'not' (i.e. where y = -1). |
| if (isAllOnesOrAllOnesSplat(Xor1)) |
| return false; |
| if (Other == Xor0) |
| std::swap(Xor0, Xor1); |
| if (Other != Xor1) |
| return false; |
| X = Xor0; |
| Y = Xor1; |
| M = And.getOperand(XorIdx ? 0 : 1); |
| return true; |
| }; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && |
| !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) |
| return SDValue(); |
| |
| // Don't do anything if the mask is constant. This should not be reachable. |
| // InstCombine should have already unfolded this pattern, and DAGCombiner |
| // probably shouldn't produce it, too. |
| if (isa<ConstantSDNode>(M.getNode())) |
| return SDValue(); |
| |
| // We can transform if the target has AndNot |
| if (!TLI.hasAndNot(M)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // If Y is a constant, check that 'andn' works with immediates. Unless M is |
| // a bitwise not that would already allow ANDN to be used. |
| if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) { |
| assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); |
| // If not, we need to do a bit more work to make sure andn is still used. |
| SDValue NotX = DAG.getNOT(DL, X, VT); |
| SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); |
| SDValue NotLHS = DAG.getNOT(DL, LHS, VT); |
| SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); |
| return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); |
| } |
| |
| // If X is a constant and M is a bitwise not, check that 'andn' works with |
| // immediates. |
| if (!TLI.hasAndNot(X) && isBitwiseNot(M)) { |
| assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable."); |
| // If not, we need to do a bit more work to make sure andn is still used. |
| SDValue NotM = M.getOperand(0); |
| SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM); |
| SDValue NotY = DAG.getNOT(DL, Y, VT); |
| SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY); |
| SDValue NotRHS = DAG.getNOT(DL, RHS, VT); |
| return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS); |
| } |
| |
| SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); |
| SDValue NotM = DAG.getNOT(DL, M, VT); |
| SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); |
| |
| return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); |
| } |
| |
| SDValue DAGCombiner::visitXOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (xor undef, undef) -> 0. This is a common idiom (misuse). |
| if (N0.isUndef() && N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (xor x, undef) -> undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| |
| // fold (xor c1, c2) -> c1^c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::XOR, DL, VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // fold (xor x, 0) -> x, vector edition |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (xor x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate xor |
| if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) |
| return RXOR; |
| |
| // fold (a^b) -> (a|b) iff a and b share no bits. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && |
| DAG.haveNoCommonBitsSet(N0, N1)) |
| return DAG.getNode(ISD::OR, DL, VT, N0, N1); |
| |
| // look for 'add-like' folds: |
| // XOR(N0,MIN_SIGNED_VALUE) == ADD(N0,MIN_SIGNED_VALUE) |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && |
| isMinSignedConstant(N1)) |
| if (SDValue Combined = visitADDLike(N)) |
| return Combined; |
| |
| // fold !(x cc y) -> (x !cc y) |
| unsigned N0Opcode = N0.getOpcode(); |
| SDValue LHS, RHS, CC; |
| if (TLI.isConstTrueVal(N1) && |
| isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true)) { |
| ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| LHS.getValueType()); |
| if (!LegalOperations || |
| TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { |
| switch (N0Opcode) { |
| default: |
| llvm_unreachable("Unhandled SetCC Equivalent!"); |
| case ISD::SETCC: |
| return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); |
| case ISD::SELECT_CC: |
| return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), |
| N0.getOperand(3), NotCC); |
| case ISD::STRICT_FSETCC: |
| case ISD::STRICT_FSETCCS: { |
| if (N0.hasOneUse()) { |
| // FIXME Can we handle multiple uses? Could we token factor the chain |
| // results from the new/old setcc? |
| SDValue SetCC = |
| DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, |
| N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); |
| CombineTo(N, SetCC); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); |
| recursivelyDeleteUnusedNodes(N0.getNode()); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) |
| if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && |
| isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ |
| SDValue V = N0.getOperand(0); |
| SDLoc DL0(N0); |
| V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, |
| DAG.getConstant(1, DL0, V.getValueType())); |
| AddToWorklist(V.getNode()); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); |
| } |
| |
| // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc |
| if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && |
| (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { |
| SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); |
| if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { |
| unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; |
| N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 |
| N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 |
| AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); |
| return DAG.getNode(NewOpcode, DL, VT, N00, N01); |
| } |
| } |
| // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants |
| if (isAllOnesConstant(N1) && N0.hasOneUse() && |
| (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { |
| SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); |
| if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { |
| unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; |
| N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 |
| N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 |
| AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); |
| return DAG.getNode(NewOpcode, DL, VT, N00, N01); |
| } |
| } |
| |
| // fold (not (neg x)) -> (add X, -1) |
| // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if |
| // Y is a constant or the subtract has a single use. |
| if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && |
| isNullConstant(N0.getOperand(0))) { |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), |
| DAG.getAllOnesConstant(DL, VT)); |
| } |
| |
| // fold (not (add X, -1)) -> (neg X) |
| if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && |
| isAllOnesOrAllOnesSplat(N0.getOperand(1))) { |
| return DAG.getNegative(N0.getOperand(0), DL, VT); |
| } |
| |
| // fold (xor (and x, y), y) -> (and (not x), y) |
| if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { |
| SDValue X = N0.getOperand(0); |
| SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); |
| AddToWorklist(NotX.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, NotX, N1); |
| } |
| |
| // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { |
| SDValue A = N0Opcode == ISD::ADD ? N0 : N1; |
| SDValue S = N0Opcode == ISD::SRA ? N0 : N1; |
| if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { |
| SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); |
| SDValue S0 = S.getOperand(0); |
| if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) |
| if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) |
| if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) |
| return DAG.getNode(ISD::ABS, DL, VT, S0); |
| } |
| } |
| |
| // fold (xor x, x) -> 0 |
| if (N0 == N1) |
| return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // fold (xor (shl 1, x), -1) -> (rotl ~1, x) |
| // Here is a concrete example of this equivalence: |
| // i16 x == 14 |
| // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 |
| // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 |
| // |
| // => |
| // |
| // i16 ~1 == 0b1111111111111110 |
| // i16 rol(~1, 14) == 0b1011111111111111 |
| // |
| // Some additional tips to help conceptualize this transform: |
| // - Try to see the operation as placing a single zero in a value of all ones. |
| // - There exists no value for x which would allow the result to contain zero. |
| // - Values of x larger than the bitwidth are undefined and do not require a |
| // consistent result. |
| // - Pushing the zero left requires shifting one bits in from the right. |
| // A rotate left of ~1 is a nice way of achieving the desired result. |
| if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && |
| isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { |
| return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), |
| N0.getOperand(1)); |
| } |
| |
| // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) |
| if (N0Opcode == N1.getOpcode()) |
| if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) |
| return V; |
| |
| if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) |
| return R; |
| if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG)) |
| return R; |
| if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG)) |
| return R; |
| |
| // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable |
| if (SDValue MM = unfoldMaskedMerge(N)) |
| return MM; |
| |
| // Simplify the expression using non-local knowledge. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| /// If we have a shift-by-constant of a bitwise logic op that itself has a |
| /// shift-by-constant operand with identical opcode, we may be able to convert |
| /// that into 2 independent shifts followed by the logic op. This is a |
| /// throughput improvement. |
| static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { |
| // Match a one-use bitwise logic op. |
| SDValue LogicOp = Shift->getOperand(0); |
| if (!LogicOp.hasOneUse()) |
| return SDValue(); |
| |
| unsigned LogicOpcode = LogicOp.getOpcode(); |
| if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && |
| LogicOpcode != ISD::XOR) |
| return SDValue(); |
| |
| // Find a matching one-use shift by constant. |
| unsigned ShiftOpcode = Shift->getOpcode(); |
| SDValue C1 = Shift->getOperand(1); |
| ConstantSDNode *C1Node = isConstOrConstSplat(C1); |
| assert(C1Node && "Expected a shift with constant operand"); |
| const APInt &C1Val = C1Node->getAPIntValue(); |
| auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, |
| const APInt *&ShiftAmtVal) { |
| if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) |
| return false; |
| |
| ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); |
| if (!ShiftCNode) |
| return false; |
| |
| // Capture the shifted operand and shift amount value. |
| ShiftOp = V.getOperand(0); |
| ShiftAmtVal = &ShiftCNode->getAPIntValue(); |
| |
| // Shift amount types do not have to match their operand type, so check that |
| // the constants are the same width. |
| if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) |
| return false; |
| |
| // The fold is not valid if the sum of the shift values exceeds bitwidth. |
| if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) |
| return false; |
| |
| return true; |
| }; |
| |
| // Logic ops are commutative, so check each operand for a match. |
| SDValue X, Y; |
| const APInt *C0Val; |
| if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) |
| Y = LogicOp.getOperand(1); |
| else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) |
| Y = LogicOp.getOperand(0); |
| else |
| return SDValue(); |
| |
| // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) |
| SDLoc DL(Shift); |
| EVT VT = Shift->getValueType(0); |
| EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); |
| SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); |
| SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); |
| SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); |
| return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); |
| } |
| |
| /// Handle transforms common to the three shifts, when the shift amount is a |
| /// constant. |
| /// We are looking for: (shift being one of shl/sra/srl) |
| /// shift (binop X, C0), C1 |
| /// And want to transform into: |
| /// binop (shift X, C1), (shift C0, C1) |
| SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { |
| assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); |
| |
| // Do not turn a 'not' into a regular xor. |
| if (isBitwiseNot(N->getOperand(0))) |
| return SDValue(); |
| |
| // The inner binop must be one-use, since we want to replace it. |
| SDValue LHS = N->getOperand(0); |
| if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) |
| return SDValue(); |
| |
| // Fold shift(bitop(shift(x,c1),y), c2) -> bitop(shift(x,c1+c2),shift(y,c2)). |
| if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) |
| return R; |
| |
| // We want to pull some binops through shifts, so that we have (and (shift)) |
| // instead of (shift (and)), likewise for add, or, xor, etc. This sort of |
| // thing happens with address calculations, so it's important to canonicalize |
| // it. |
| switch (LHS.getOpcode()) { |
| default: |
| return SDValue(); |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::AND: |
| break; |
| case ISD::ADD: |
| if (N->getOpcode() != ISD::SHL) |
| return SDValue(); // only shl(add) not sr[al](add). |
| break; |
| } |
| |
| // FIXME: disable this unless the input to the binop is a shift by a constant |
| // or is copy/select. Enable this in other cases when figure out it's exactly |
| // profitable. |
| SDValue BinOpLHSVal = LHS.getOperand(0); |
| bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || |
| BinOpLHSVal.getOpcode() == ISD::SRA || |
| BinOpLHSVal.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); |
| bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || |
| BinOpLHSVal.getOpcode() == ISD::SELECT; |
| |
| if (!IsShiftByConstant && !IsCopyOrSelect) |
| return SDValue(); |
| |
| if (IsCopyOrSelect && N->hasOneUse()) |
| return SDValue(); |
| |
| // Attempt to fold the constants, shifting the binop RHS by the shift amount. |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| if (SDValue NewRHS = DAG.FoldConstantArithmetic( |
| N->getOpcode(), DL, VT, {LHS.getOperand(1), N->getOperand(1)})) { |
| SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), |
| N->getOperand(1)); |
| return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { |
| assert(N->getOpcode() == ISD::TRUNCATE); |
| assert(N->getOperand(0).getOpcode() == ISD::AND); |
| |
| // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) |
| EVT TruncVT = N->getValueType(0); |
| if (N->hasOneUse() && N->getOperand(0).hasOneUse() && |
| TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { |
| SDValue N01 = N->getOperand(0).getOperand(1); |
| if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { |
| SDLoc DL(N); |
| SDValue N00 = N->getOperand(0).getOperand(0); |
| SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); |
| SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); |
| AddToWorklist(Trunc00.getNode()); |
| AddToWorklist(Trunc01.getNode()); |
| return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitRotate(SDNode *N) { |
| SDLoc dl(N); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| unsigned Bitsize = VT.getScalarSizeInBits(); |
| |
| // fold (rot x, 0) -> x |
| if (isNullOrNullSplat(N1)) |
| return N0; |
| |
| // fold (rot x, c) -> x iff (c % BitSize) == 0 |
| if (isPowerOf2_32(Bitsize) && Bitsize > 1) { |
| APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); |
| if (DAG.MaskedValueIsZero(N1, ModuloMask)) |
| return N0; |
| } |
| |
| // fold (rot x, c) -> (rot x, c % BitSize) |
| bool OutOfRange = false; |
| auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { |
| OutOfRange |= C->getAPIntValue().uge(Bitsize); |
| return true; |
| }; |
| if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { |
| EVT AmtVT = N1.getValueType(); |
| SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); |
| if (SDValue Amt = |
| DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) |
| return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); |
| } |
| |
| // rot i16 X, 8 --> bswap X |
| auto *RotAmtC = isConstOrConstSplat(N1); |
| if (RotAmtC && RotAmtC->getAPIntValue() == 8 && |
| VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) |
| return DAG.getNode(ISD::BSWAP, dl, VT, N0); |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); |
| } |
| |
| unsigned NextOp = N0.getOpcode(); |
| |
| // fold (rot* (rot* x, c2), c1) |
| // -> (rot* x, ((c1 % bitsize) +- (c2 % bitsize) + bitsize) % bitsize) |
| if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { |
| SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); |
| SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); |
| if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { |
| EVT ShiftVT = C1->getValueType(0); |
| bool SameSide = (N->getOpcode() == NextOp); |
| unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; |
| SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); |
| SDValue Norm1 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT, |
| {N1, BitsizeC}); |
| SDValue Norm2 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT, |
| {N0.getOperand(1), BitsizeC}); |
| if (Norm1 && Norm2) |
| if (SDValue CombinedShift = DAG.FoldConstantArithmetic( |
| CombineOp, dl, ShiftVT, {Norm1, Norm2})) { |
| CombinedShift = DAG.FoldConstantArithmetic(ISD::ADD, dl, ShiftVT, |
| {CombinedShift, BitsizeC}); |
| SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( |
| ISD::UREM, dl, ShiftVT, {CombinedShift, BitsizeC}); |
| return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), |
| CombinedShiftNorm); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSHL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| EVT ShiftVT = N1.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold (shl c1, c2) -> c1<<c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); |
| // If setcc produces all-one true value then: |
| // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) |
| if (N1CV && N1CV->isConstant()) { |
| if (N0.getOpcode() == ISD::AND) { |
| SDValue N00 = N0->getOperand(0); |
| SDValue N01 = N0->getOperand(1); |
| BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); |
| |
| if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && |
| TLI.getBooleanContents(N00.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| if (SDValue C = |
| DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); |
| } |
| } |
| } |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // if (shl x, c) is known to be zero, return 0 |
| if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SHL) { |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDLoc DL(N); |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) |
| // For this to be valid, the second form must not preserve any of the bits |
| // that are shifted out by the inner shift in the first form. This means |
| // the outer shift size must be >= the number of bits added by the ext. |
| // As a corollary, we don't care what kind of ext it is. |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) && |
| N0.getOperand(0).getOpcode() == ISD::SHL) { |
| SDValue N0Op0 = N0.getOperand(0); |
| SDValue InnerShiftAmt = N0Op0.getOperand(1); |
| EVT InnerVT = N0Op0.getValueType(); |
| uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); |
| |
| auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return c2.uge(OpSizeInBits - InnerBitwidth) && |
| (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return c2.uge(OpSizeInBits - InnerBitwidth) && |
| (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDLoc DL(N); |
| SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); |
| SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); |
| Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); |
| return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); |
| } |
| } |
| |
| // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) |
| // Only fold this if the inner zext has no other uses to avoid increasing |
| // the total number of instructions. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::SRL) { |
| SDValue N0Op0 = N0.getOperand(0); |
| SDValue InnerShiftAmt = N0Op0.getOperand(1); |
| |
| auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2); |
| return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); |
| }; |
| if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDLoc DL(N); |
| EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); |
| SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); |
| NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); |
| AddToWorklist(NewSHL.getNode()); |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) { |
| auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| const APInt &LHSC = LHS->getAPIntValue(); |
| const APInt &RHSC = RHS->getAPIntValue(); |
| return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) && |
| LHSC.getZExtValue() <= RHSC.getZExtValue(); |
| }; |
| |
| SDLoc DL(N); |
| |
| // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 |
| // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 >= C2 |
| if (N0->getFlags().hasExact()) { |
| if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01); |
| return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff); |
| } |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1); |
| return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Diff); |
| } |
| } |
| |
| // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or |
| // (and (srl x, (sub c1, c2), MASK) |
| // Only fold this if the inner shift has no other uses -- if it does, |
| // folding this will increase the total number of instructions. |
| if (N0.getOpcode() == ISD::SRL && |
| (N0.getOperand(1) == N1 || N0.hasOneUse()) && |
| TLI.shouldFoldConstantShiftPairToMask(N, Level)) { |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1); |
| SDValue Mask = DAG.getAllOnesConstant(DL, VT); |
| Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N01); |
| Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, Diff); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff); |
| return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); |
| } |
| if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01); |
| SDValue Mask = DAG.getAllOnesConstant(DL, VT); |
| Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N1); |
| SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff); |
| return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); |
| } |
| } |
| } |
| |
| // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) |
| if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && |
| isConstantOrConstantVector(N1, /* No Opaques */ true)) { |
| SDLoc DL(N); |
| SDValue AllBits = DAG.getAllOnesConstant(DL, VT); |
| SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); |
| } |
| |
| // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) |
| // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) |
| // Variant of version done on multiply, except mul by a power of 2 is turned |
| // into a shift. |
| if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && |
| N0->hasOneUse() && |
| isConstantOrConstantVector(N1, /* No Opaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && |
| TLI.isDesirableToCommuteWithShift(N, Level)) { |
| SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); |
| SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); |
| AddToWorklist(Shl0.getNode()); |
| AddToWorklist(Shl1.getNode()); |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); |
| } |
| |
| // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) |
| if (N0.getOpcode() == ISD::MUL && N0->hasOneUse()) { |
| SDValue N01 = N0.getOperand(1); |
| if (SDValue Shl = |
| DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1})) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); |
| } |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSHL = visitShiftByConstant(N)) |
| return NewSHL; |
| |
| // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). |
| if (N0.getOpcode() == ISD::VSCALE && N1C) { |
| const APInt &C0 = N0.getConstantOperandAPInt(0); |
| const APInt &C1 = N1C->getAPIntValue(); |
| return DAG.getVScale(SDLoc(N), VT, C0 << C1); |
| } |
| |
| // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). |
| APInt ShlVal; |
| if (N0.getOpcode() == ISD::STEP_VECTOR && |
| ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { |
| const APInt &C0 = N0.getConstantOperandAPInt(0); |
| if (ShlVal.ult(C0.getBitWidth())) { |
| APInt NewStep = C0 << ShlVal; |
| return DAG.getStepVector(SDLoc(N), VT, NewStep); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Transform a right shift of a multiply into a multiply-high. |
| // Examples: |
| // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) |
| // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) |
| static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && |
| "SRL or SRA node is required here!"); |
| |
| // Check the shift amount. Proceed with the transformation if the shift |
| // amount is constant. |
| ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); |
| if (!ShiftAmtSrc) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // The operation feeding into the shift must be a multiply. |
| SDValue ShiftOperand = N->getOperand(0); |
| if (ShiftOperand.getOpcode() != ISD::MUL) |
| return SDValue(); |
| |
| // Both operands must be equivalent extend nodes. |
| SDValue LeftOp = ShiftOperand.getOperand(0); |
| SDValue RightOp = ShiftOperand.getOperand(1); |
| |
| bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; |
| bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; |
| |
| if (!IsSignExt && !IsZeroExt) |
| return SDValue(); |
| |
| EVT NarrowVT = LeftOp.getOperand(0).getValueType(); |
| unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); |
| |
| // return true if U may use the lower bits of its operands |
| auto UserOfLowerBits = [NarrowVTSize](SDNode *U) { |
| if (U->getOpcode() != ISD::SRL && U->getOpcode() != ISD::SRA) { |
| return true; |
| } |
| ConstantSDNode *UShiftAmtSrc = isConstOrConstSplat(U->getOperand(1)); |
| if (!UShiftAmtSrc) { |
| return true; |
| } |
| unsigned UShiftAmt = UShiftAmtSrc->getZExtValue(); |
| return UShiftAmt < NarrowVTSize; |
| }; |
| |
| // If the lower part of the MUL is also used and MUL_LOHI is supported |
| // do not introduce the MULH in favor of MUL_LOHI |
| unsigned MulLoHiOp = IsSignExt ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; |
| if (!ShiftOperand.hasOneUse() && |
| TLI.isOperationLegalOrCustom(MulLoHiOp, NarrowVT) && |
| llvm::any_of(ShiftOperand->uses(), UserOfLowerBits)) { |
| return SDValue(); |
| } |
| |
| SDValue MulhRightOp; |
| if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) { |
| unsigned ActiveBits = IsSignExt |
| ? Constant->getAPIntValue().getMinSignedBits() |
| : Constant->getAPIntValue().getActiveBits(); |
| if (ActiveBits > NarrowVTSize) |
| return SDValue(); |
| MulhRightOp = DAG.getConstant( |
| Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL, |
| NarrowVT); |
| } else { |
| if (LeftOp.getOpcode() != RightOp.getOpcode()) |
| return SDValue(); |
| // Check that the two extend nodes are the same type. |
| if (NarrowVT != RightOp.getOperand(0).getValueType()) |
| return SDValue(); |
| MulhRightOp = RightOp.getOperand(0); |
| } |
| |
| EVT WideVT = LeftOp.getValueType(); |
| // Proceed with the transformation if the wide types match. |
| assert((WideVT == RightOp.getValueType()) && |
| "Cannot have a multiply node with two different operand types."); |
| |
| // Proceed with the transformation if the wide type is twice as large |
| // as the narrow type. |
| if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) |
| return SDValue(); |
| |
| // Check the shift amount with the narrow type size. |
| // Proceed with the transformation if the shift amount is the width |
| // of the narrow type. |
| unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); |
| if (ShiftAmt != NarrowVTSize) |
| return SDValue(); |
| |
| // If the operation feeding into the MUL is a sign extend (sext), |
| // we use mulhs. Othewise, zero extends (zext) use mulhu. |
| unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; |
| |
| // Combine to mulh if mulh is legal/custom for the narrow type on the target. |
| if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) |
| return SDValue(); |
| |
| SDValue Result = |
| DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp); |
| return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT) |
| : DAG.getZExtOrTrunc(Result, DL, WideVT)); |
| } |
| |
| SDValue DAGCombiner::visitSRA(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold (sra c1, c2) -> (sra c1, c2) |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // Arithmetic shifting an all-sign-bit value is a no-op. |
| // fold (sra 0, x) -> 0 |
| // fold (sra -1, x) -> -1 |
| if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports |
| // sext_inreg. |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { |
| unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); |
| EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); |
| if (VT.isVector()) |
| ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, |
| VT.getVectorElementCount()); |
| if (!LegalOperations || |
| TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == |
| TargetLowering::Legal) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| N0.getOperand(0), DAG.getValueType(ExtVT)); |
| // Even if we can't convert to sext_inreg, we might be able to remove |
| // this shift pair if the input is already sign extended. |
| if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue()) |
| return N0.getOperand(0); |
| } |
| |
| // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) |
| // clamp (add c1, c2) to max shift. |
| if (N0.getOpcode() == ISD::SRA) { |
| SDLoc DL(N); |
| EVT ShiftVT = N1.getValueType(); |
| EVT ShiftSVT = ShiftVT.getScalarType(); |
| SmallVector<SDValue, 16> ShiftValues; |
| |
| auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| APInt Sum = c1 + c2; |
| unsigned ShiftSum = |
| Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); |
| ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); |
| return true; |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { |
| SDValue ShiftValue; |
| if (N1.getOpcode() == ISD::BUILD_VECTOR) |
| ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); |
| else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { |
| assert(ShiftValues.size() == 1 && |
| "Expected matchBinaryPredicate to return one element for " |
| "SPLAT_VECTORs"); |
| ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); |
| } else |
| ShiftValue = ShiftValues[0]; |
| return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); |
| } |
| } |
| |
| // fold (sra (shl X, m), (sub result_size, n)) |
| // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for |
| // result_size - n != m. |
| // If truncate is free for the target sext(shl) is likely to result in better |
| // code. |
| if (N0.getOpcode() == ISD::SHL && N1C) { |
| // Get the two constanst of the shifts, CN0 = m, CN = n. |
| const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); |
| if (N01C) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| // Determine what the truncate's result bitsize and type would be. |
| EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); |
| |
| if (VT.isVector()) |
| TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); |
| |
| // Determine the residual right-shift amount. |
| int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); |
| |
| // If the shift is not a no-op (in which case this should be just a sign |
| // extend already), the truncated to type is legal, sign_extend is legal |
| // on that type, and the truncate to that type is both legal and free, |
| // perform the transform. |
| if ((ShiftAmt > 0) && |
| TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && |
| TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && |
| TLI.isTruncateFree(VT, TruncVT)) { |
| SDLoc DL(N); |
| SDValue Amt = DAG.getConstant(ShiftAmt, DL, |
| getShiftAmountTy(N0.getOperand(0).getValueType())); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, |
| N0.getOperand(0), Amt); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, |
| Shift); |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, |
| N->getValueType(0), Trunc); |
| } |
| } |
| } |
| |
| // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. |
| // sra (add (shl X, N1C), AddC), N1C --> |
| // sext (add (trunc X to (width - N1C)), AddC') |
| // sra (sub AddC, (shl X, N1C)), N1C --> |
| // sext (sub AddC1',(trunc X to (width - N1C))) |
| if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB) && N1C && |
| N0.hasOneUse()) { |
| bool IsAdd = N0.getOpcode() == ISD::ADD; |
| SDValue Shl = N0.getOperand(IsAdd ? 0 : 1); |
| if (Shl.getOpcode() == ISD::SHL && Shl.getOperand(1) == N1 && |
| Shl.hasOneUse()) { |
| // TODO: AddC does not need to be a splat. |
| if (ConstantSDNode *AddC = |
| isConstOrConstSplat(N0.getOperand(IsAdd ? 1 : 0))) { |
| // Determine what the truncate's type would be and ask the target if |
| // that is a free operation. |
| LLVMContext &Ctx = *DAG.getContext(); |
| unsigned ShiftAmt = N1C->getZExtValue(); |
| EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); |
| if (VT.isVector()) |
| TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); |
| |
| // TODO: The simple type check probably belongs in the default hook |
| // implementation and/or target-specific overrides (because |
| // non-simple types likely require masking when legalized), but |
| // that restriction may conflict with other transforms. |
| if (TruncVT.isSimple() && isTypeLegal(TruncVT) && |
| TLI.isTruncateFree(VT, TruncVT)) { |
| SDLoc DL(N); |
| SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); |
| SDValue ShiftC = |
| DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).trunc( |
| TruncVT.getScalarSizeInBits()), |
| DL, TruncVT); |
| SDValue Add; |
| if (IsAdd) |
| Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); |
| else |
| Add = DAG.getNode(ISD::SUB, DL, TruncVT, ShiftC, Trunc); |
| return DAG.getSExtOrTrunc(Add, DL, VT); |
| } |
| } |
| } |
| } |
| |
| // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) |
| // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) |
| // if c1 is equal to the number of bits the trunc removes |
| // TODO - support non-uniform vector shift amounts. |
| if (N0.getOpcode() == ISD::TRUNCATE && |
| (N0.getOperand(0).getOpcode() == ISD::SRL || |
| N0.getOperand(0).getOpcode() == ISD::SRA) && |
| N0.getOperand(0).hasOneUse() && |
| N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { |
| SDValue N0Op0 = N0.getOperand(0); |
| if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { |
| EVT LargeVT = N0Op0.getValueType(); |
| unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; |
| if (LargeShift->getAPIntValue() == TruncBits) { |
| SDLoc DL(N); |
| EVT LargeShiftVT = getShiftAmountTy(LargeVT); |
| SDValue Amt = DAG.getZExtOrTrunc(N1, DL, LargeShiftVT); |
| Amt = DAG.getNode(ISD::ADD, DL, LargeShiftVT, Amt, |
| DAG.getConstant(TruncBits, DL, LargeShiftVT)); |
| SDValue SRA = |
| DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); |
| } |
| } |
| } |
| |
| // Simplify, based on bits shifted out of the LHS. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSRA = visitShiftByConstant(N)) |
| return NewSRA; |
| |
| // Try to transform this shift into a multiply-high if |
| // it matches the appropriate pattern detected in combineShiftToMULH. |
| if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) |
| return MULH; |
| |
| // Attempt to convert a sra of a load into a narrower sign-extending load. |
| if (SDValue NarrowLoad = reduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSRL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| EVT ShiftVT = N1.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold (srl c1, c2) -> c1 >>u c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // if (srl x, c) is known to be zero, return 0 |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N1C && |
| DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SRL) { |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDLoc DL(N); |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| if (N1C && N0.getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(0).getOpcode() == ISD::SRL) { |
| SDValue InnerShift = N0.getOperand(0); |
| // TODO - support non-uniform vector shift amounts. |
| if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { |
| uint64_t c1 = N001C->getZExtValue(); |
| uint64_t c2 = N1C->getZExtValue(); |
| EVT InnerShiftVT = InnerShift.getValueType(); |
| EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); |
| uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); |
| // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) |
| // This is only valid if the OpSizeInBits + c1 = size of inner shift. |
| if (c1 + OpSizeInBits == InnerShiftSize) { |
| SDLoc DL(N); |
| if (c1 + c2 >= InnerShiftSize) |
| return DAG.getConstant(0, DL, VT); |
| SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); |
| SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, |
| InnerShift.getOperand(0), NewShiftAmt); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); |
| } |
| // In the more general case, we can clear the high bits after the shift: |
| // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) |
| if (N0.hasOneUse() && InnerShift.hasOneUse() && |
| c1 + c2 < InnerShiftSize) { |
| SDLoc DL(N); |
| SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); |
| SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, |
| InnerShift.getOperand(0), NewShiftAmt); |
| SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, |
| OpSizeInBits - c2), |
| DL, InnerShiftVT); |
| SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, And); |
| } |
| } |
| } |
| |
| // fold (srl (shl x, c1), c2) -> (and (shl x, (sub c1, c2), MASK) or |
| // (and (srl x, (sub c2, c1), MASK) |
| if (N0.getOpcode() == ISD::SHL && |
| (N0.getOperand(1) == N1 || N0->hasOneUse()) && |
| TLI.shouldFoldConstantShiftPairToMask(N, Level)) { |
| auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| const APInt &LHSC = LHS->getAPIntValue(); |
| const APInt &RHSC = RHS->getAPIntValue(); |
| return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) && |
| LHSC.getZExtValue() <= RHSC.getZExtValue(); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDLoc DL(N); |
| SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1); |
| SDValue Mask = DAG.getAllOnesConstant(DL, VT); |
| Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N01); |
| Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, Diff); |
| SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff); |
| return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); |
| } |
| if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDLoc DL(N); |
| SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01); |
| SDValue Mask = DAG.getAllOnesConstant(DL, VT); |
| Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N1); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff); |
| return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); |
| } |
| } |
| |
| // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| // Shifting in all undef bits? |
| EVT SmallVT = N0.getOperand(0).getValueType(); |
| unsigned BitSize = SmallVT.getScalarSizeInBits(); |
| if (N1C->getAPIntValue().uge(BitSize)) |
| return DAG.getUNDEF(VT); |
| |
| if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { |
| uint64_t ShiftAmt = N1C->getZExtValue(); |
| SDLoc DL0(N0); |
| SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, |
| N0.getOperand(0), |
| DAG.getConstant(ShiftAmt, DL0, |
| getShiftAmountTy(SmallVT))); |
| AddToWorklist(SmallShift.getNode()); |
| APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), |
| DAG.getConstant(Mask, DL, VT)); |
| } |
| } |
| |
| // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign |
| // bit, which is unmodified by sra. |
| if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { |
| if (N0.getOpcode() == ISD::SRA) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); |
| } |
| |
| // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). |
| if (N1C && N0.getOpcode() == ISD::CTLZ && |
| N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { |
| KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); |
| |
| // If any of the input bits are KnownOne, then the input couldn't be all |
| // zeros, thus the result of the srl will always be zero. |
| if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); |
| |
| // If all of the bits input the to ctlz node are known to be zero, then |
| // the result of the ctlz is "32" and the result of the shift is one. |
| APInt UnknownBits = ~Known.Zero; |
| if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); |
| |
| // Otherwise, check to see if there is exactly one bit input to the ctlz. |
| if (UnknownBits.isPowerOf2()) { |
| // Okay, we know that only that the single bit specified by UnknownBits |
| // could be set on input to the CTLZ node. If this bit is set, the SRL |
| // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair |
| // to an SRL/XOR pair, which is likely to simplify more. |
| unsigned ShAmt = UnknownBits.countTrailingZeros(); |
| SDValue Op = N0.getOperand(0); |
| |
| if (ShAmt) { |
| SDLoc DL(N0); |
| Op = DAG.getNode(ISD::SRL, DL, VT, Op, |
| DAG.getConstant(ShAmt, DL, |
| getShiftAmountTy(Op.getValueType()))); |
| AddToWorklist(Op.getNode()); |
| } |
| |
| SDLoc DL(N); |
| return DAG.getNode(ISD::XOR, DL, VT, |
| Op, DAG.getConstant(1, DL, VT)); |
| } |
| } |
| |
| // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // fold operands of srl based on knowledge that the low bits are not |
| // demanded. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSRL = visitShiftByConstant(N)) |
| return NewSRL; |
| |
| // Attempt to convert a srl of a load into a narrower zero-extending load. |
| if (SDValue NarrowLoad = reduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| // Here is a common situation. We want to optimize: |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = srl i32 %b, 1 |
| // brcond i32 %c ... |
| // |
| // into |
| // |
| // %a = ... |
| // %b = and %a, 2 |
| // %c = setcc eq %b, 0 |
| // brcond %c ... |
| // |
| // However when after the source operand of SRL is optimized into AND, the SRL |
| // itself may not be optimized further. Look for it and add the BRCOND into |
| // the worklist. |
| // |
| // The also tends to happen for binary operations when SimplifyDemandedBits |
| // is involved. |
| // |
| // FIXME: This is unecessary if we process the DAG in topological order, |
| // which we plan to do. This workaround can be removed once the DAG is |
| // processed in topological order. |
| if (N->hasOneUse()) { |
| SDNode *Use = *N->use_begin(); |
| |
| // Look pass the truncate. |
| if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) |
| Use = *Use->use_begin(); |
| |
| if (Use->getOpcode() == ISD::BRCOND || Use->getOpcode() == ISD::AND || |
| Use->getOpcode() == ISD::OR || Use->getOpcode() == ISD::XOR) |
| AddToWorklist(Use); |
| } |
| |
| // Try to transform this shift into a multiply-high if |
| // it matches the appropriate pattern detected in combineShiftToMULH. |
| if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) |
| return MULH; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFunnelShift(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| bool IsFSHL = N->getOpcode() == ISD::FSHL; |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| |
| // fold (fshl N0, N1, 0) -> N0 |
| // fold (fshr N0, N1, 0) -> N1 |
| if (isPowerOf2_32(BitWidth)) |
| if (DAG.MaskedValueIsZero( |
| N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) |
| return IsFSHL ? N0 : N1; |
| |
| auto IsUndefOrZero = [](SDValue V) { |
| return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); |
| }; |
| |
| // TODO - support non-uniform vector shift amounts. |
| if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { |
| EVT ShAmtTy = N2.getValueType(); |
| |
| // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) |
| if (Cst->getAPIntValue().uge(BitWidth)) { |
| uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, |
| DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); |
| } |
| |
| unsigned ShAmt = Cst->getZExtValue(); |
| if (ShAmt == 0) |
| return IsFSHL ? N0 : N1; |
| |
| // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) |
| // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) |
| // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) |
| // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) |
| if (IsUndefOrZero(N0)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, |
| DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, |
| SDLoc(N), ShAmtTy)); |
| if (IsUndefOrZero(N1)) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, |
| DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, |
| SDLoc(N), ShAmtTy)); |
| |
| // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. |
| // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. |
| // TODO - bigendian support once we have test coverage. |
| // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? |
| // TODO - permit LHS EXTLOAD if extensions are shifted out. |
| if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && |
| !DAG.getDataLayout().isBigEndian()) { |
| auto *LHS = dyn_cast<LoadSDNode>(N0); |
| auto *RHS = dyn_cast<LoadSDNode>(N1); |
| if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && |
| LHS->getAddressSpace() == RHS->getAddressSpace() && |
| (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && |
| ISD::isNON_EXTLoad(LHS)) { |
| if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { |
| SDLoc DL(RHS); |
| uint64_t PtrOff = |
| IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); |
| Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); |
| unsigned Fast = 0; |
| if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, |
| RHS->getAddressSpace(), NewAlign, |
| RHS->getMemOperand()->getFlags(), &Fast) && |
| Fast) { |
| SDValue NewPtr = DAG.getMemBasePlusOffset( |
| RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); |
| AddToWorklist(NewPtr.getNode()); |
| SDValue Load = DAG.getLoad( |
| VT, DL, RHS->getChain(), NewPtr, |
| RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, |
| RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); |
| // Replace the old load's chain with the new load's chain. |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); |
| return Load; |
| } |
| } |
| } |
| } |
| } |
| |
| // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) |
| // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) |
| // iff We know the shift amount is in range. |
| // TODO: when is it worth doing SUB(BW, N2) as well? |
| if (isPowerOf2_32(BitWidth)) { |
| APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); |
| if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); |
| if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); |
| } |
| |
| // fold (fshl N0, N0, N2) -> (rotl N0, N2) |
| // fold (fshr N0, N0, N2) -> (rotr N0, N2) |
| // TODO: Investigate flipping this rotate if only one is legal, if funnel shift |
| // is legal as well we might be better off avoiding non-constant (BW - N2). |
| unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; |
| if (N0 == N1 && hasOperation(RotOpc, VT)) |
| return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); |
| |
| // Simplify, based on bits shifted out of N0/N1. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSHLSAT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| |
| // fold (*shlsat c1, c2) -> c1<<c2 |
| if (SDValue C = |
| DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) { |
| // fold (sshlsat x, c) -> (shl x, c) |
| if (N->getOpcode() == ISD::SSHLSAT && N1C && |
| N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0))) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N1); |
| |
| // fold (ushlsat x, c) -> (shl x, c) |
| if (N->getOpcode() == ISD::USHLSAT && N1C && |
| N1C->getAPIntValue().ule( |
| DAG.computeKnownBits(N0).countMinLeadingZeros())) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Given a ABS node, detect the following pattern: |
| // (ABS (SUB (EXTEND a), (EXTEND b))). |
| // Generates UABD/SABD instruction. |
| SDValue DAGCombiner::foldABSToABD(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| SDValue AbsOp1 = N->getOperand(0); |
| SDValue Op0, Op1; |
| |
| if (AbsOp1.getOpcode() != ISD::SUB) |
| return SDValue(); |
| |
| Op0 = AbsOp1.getOperand(0); |
| Op1 = AbsOp1.getOperand(1); |
| |
| unsigned Opc0 = Op0.getOpcode(); |
| // Check if the operands of the sub are (zero|sign)-extended. |
| if (Opc0 != Op1.getOpcode() || |
| (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) { |
| // fold (abs (sub nsw x, y)) -> abds(x, y) |
| if (AbsOp1->getFlags().hasNoSignedWrap() && |
| TLI.isOperationLegalOrCustom(ISD::ABDS, VT)) |
| return DAG.getNode(ISD::ABDS, SDLoc(N), VT, Op0, Op1); |
| return SDValue(); |
| } |
| |
| EVT VT1 = Op0.getOperand(0).getValueType(); |
| EVT VT2 = Op1.getOperand(0).getValueType(); |
| unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU; |
| |
| // fold abs(sext(x) - sext(y)) -> zext(abds(x, y)) |
| // fold abs(zext(x) - zext(y)) -> zext(abdu(x, y)) |
| // NOTE: Extensions must be equivalent. |
| if (VT1 == VT2 && TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) { |
| Op0 = Op0.getOperand(0); |
| Op1 = Op1.getOperand(0); |
| SDValue ABD = DAG.getNode(ABDOpcode, SDLoc(N), VT1, Op0, Op1); |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, ABD); |
| } |
| |
| // fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y)) |
| // fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y)) |
| if (TLI.isOperationLegalOrCustom(ABDOpcode, VT)) |
| return DAG.getNode(ABDOpcode, SDLoc(N), VT, Op0, Op1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitABS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (abs c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); |
| // fold (abs (abs x)) -> (abs x) |
| if (N0.getOpcode() == ISD::ABS) |
| return N0; |
| // fold (abs x) -> x iff not-negative |
| if (DAG.SignBitIsZero(N0)) |
| return N0; |
| |
| if (SDValue ABD = foldABSToABD(N)) |
| return ABD; |
| |
| // fold (abs (sign_extend_inreg x)) -> (zero_extend (abs (truncate x))) |
| // iff zero_extend/truncate are free. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| EVT ExtVT = cast<VTSDNode>(N0.getOperand(1))->getVT(); |
| if (TLI.isTruncateFree(VT, ExtVT) && TLI.isZExtFree(ExtVT, VT) && |
| TLI.isTypeDesirableForOp(ISD::ABS, ExtVT) && |
| hasOperation(ISD::ABS, ExtVT)) { |
| SDLoc DL(N); |
| return DAG.getNode( |
| ISD::ZERO_EXTEND, DL, VT, |
| DAG.getNode(ISD::ABS, DL, ExtVT, |
| DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N0.getOperand(0)))); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBSWAP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // fold (bswap c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::BSWAP, DL, VT, N0); |
| // fold (bswap (bswap x)) -> x |
| if (N0.getOpcode() == ISD::BSWAP) |
| return N0.getOperand(0); |
| |
| // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse |
| // isn't supported, it will be expanded to bswap followed by a manual reversal |
| // of bits in each byte. By placing bswaps before bitreverse, we can remove |
| // the two bswaps if the bitreverse gets expanded. |
| if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) { |
| SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0)); |
| return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap); |
| } |
| |
| // fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2)))))) |
| // iff x >= bw/2 (i.e. lower half is known zero) |
| unsigned BW = VT.getScalarSizeInBits(); |
| if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) { |
| auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2); |
| if (ShAmt && ShAmt->getAPIntValue().ult(BW) && |
| ShAmt->getZExtValue() >= (BW / 2) && |
| (ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) && |
| TLI.isTruncateFree(VT, HalfVT) && |
| (!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) { |
| SDValue Res = N0.getOperand(0); |
| if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2))) |
| Res = DAG.getNode(ISD::SHL, DL, VT, Res, |
| DAG.getConstant(NewShAmt, DL, getShiftAmountTy(VT))); |
| Res = DAG.getZExtOrTrunc(Res, DL, HalfVT); |
| Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res); |
| return DAG.getZExtOrTrunc(Res, DL, VT); |
| } |
| } |
| |
| // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as |
| // inverse-shift-of-bswap: |
| // bswap (X u<< C) --> (bswap X) u>> C |
| // bswap (X u>> C) --> (bswap X) u<< C |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && |
| N0.hasOneUse()) { |
| auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (ShAmt && ShAmt->getAPIntValue().ult(BW) && |
| ShAmt->getZExtValue() % 8 == 0) { |
| SDValue NewSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0)); |
| unsigned InverseShift = N0.getOpcode() == ISD::SHL ? ISD::SRL : ISD::SHL; |
| return DAG.getNode(InverseShift, DL, VT, NewSwap, N0.getOperand(1)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (bitreverse c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); |
| // fold (bitreverse (bitreverse x)) -> x |
| if (N0.getOpcode() == ISD::BITREVERSE) |
| return N0.getOperand(0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTLZ(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctlz c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); |
| |
| // If the value is known never to be zero, switch to the undef version. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { |
| if (DAG.isKnownNeverZero(N0)) |
| return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctlz_zero_undef c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTTZ(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (cttz c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); |
| |
| // If the value is known never to be zero, switch to the undef version. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { |
| if (DAG.isKnownNeverZero(N0)) |
| return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (cttz_zero_undef c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTPOP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctpop c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| // FIXME: This should be checking for no signed zeros on individual operands, as |
| // well as no nans. |
| static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, |
| SDValue RHS, |
| const TargetLowering &TLI) { |
| const TargetOptions &Options = DAG.getTarget().Options; |
| EVT VT = LHS.getValueType(); |
| |
| return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && |
| TLI.isProfitableToCombineMinNumMaxNum(VT) && |
| DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); |
| } |
| |
| static SDValue combineMinNumMaxNumImpl(const SDLoc &DL, EVT VT, SDValue LHS, |
| SDValue RHS, SDValue True, SDValue False, |
| ISD::CondCode CC, |
| const TargetLowering &TLI, |
| SelectionDAG &DAG) { |
| EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); |
| switch (CC) { |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETULT: |
| case ISD::SETULE: { |
| // Since it's known never nan to get here already, either fminnum or |
| // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is |
| // expanded in terms of it. |
| unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; |
| if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) |
| return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); |
| |
| unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; |
| if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| return SDValue(); |
| } |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: { |
| unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; |
| if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) |
| return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); |
| |
| unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; |
| if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| return SDValue(); |
| } |
| default: |
| return SDValue(); |
| } |
| } |
| |
| /// Generate Min/Max node |
| SDValue DAGCombiner::combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, |
| SDValue RHS, SDValue True, |
| SDValue False, ISD::CondCode CC) { |
| if ((LHS == True && RHS == False) || (LHS == False && RHS == True)) |
| return combineMinNumMaxNumImpl(DL, VT, LHS, RHS, True, False, CC, TLI, DAG); |
| |
| // If we can't directly match this, try to see if we can pull an fneg out of |
| // the select. |
| SDValue NegTrue = TLI.getCheaperOrNeutralNegatedExpression( |
| True, DAG, LegalOperations, ForCodeSize); |
| if (!NegTrue) |
| return SDValue(); |
| |
| HandleSDNode NegTrueHandle(NegTrue); |
| |
| // Try to unfold an fneg from the select if we are comparing the negated |
| // constant. |
| // |
| // select (setcc x, K) (fneg x), -K -> fneg(minnum(x, K)) |
| // |
| // TODO: Handle fabs |
| if (LHS == NegTrue) { |
| // If we can't directly match this, try to see if we can pull an fneg out of |
| // the select. |
| SDValue NegRHS = TLI.getCheaperOrNeutralNegatedExpression( |
| RHS, DAG, LegalOperations, ForCodeSize); |
| if (NegRHS) { |
| HandleSDNode NegRHSHandle(NegRHS); |
| if (NegRHS == False) { |
| SDValue Combined = combineMinNumMaxNumImpl(DL, VT, LHS, RHS, NegTrue, |
| False, CC, TLI, DAG); |
| if (Combined) |
| return DAG.getNode(ISD::FNEG, DL, VT, Combined); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If a (v)select has a condition value that is a sign-bit test, try to smear |
| /// the condition operand sign-bit across the value width and use it as a mask. |
| static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { |
| SDValue Cond = N->getOperand(0); |
| SDValue C1 = N->getOperand(1); |
| SDValue C2 = N->getOperand(2); |
| if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || |
| VT != Cond.getOperand(0).getValueType()) |
| return SDValue(); |
| |
| // The inverted-condition + commuted-select variants of these patterns are |
| // canonicalized to these forms in IR. |
| SDValue X = Cond.getOperand(0); |
| SDValue CondC = Cond.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && |
| isAllOnesOrAllOnesSplat(C2)) { |
| // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 |
| SDLoc DL(N); |
| SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); |
| return DAG.getNode(ISD::OR, DL, VT, Sra, C1); |
| } |
| if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { |
| // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 |
| SDLoc DL(N); |
| SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); |
| return DAG.getNode(ISD::AND, DL, VT, Sra, C1); |
| } |
| return SDValue(); |
| } |
| |
| static bool shouldConvertSelectOfConstantsToMath(const SDValue &Cond, EVT VT, |
| const TargetLowering &TLI) { |
| if (!TLI.convertSelectOfConstantsToMath(VT)) |
| return false; |
| |
| if (Cond.getOpcode() != ISD::SETCC || !Cond->hasOneUse()) |
| return true; |
| if (!TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) |
| return true; |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| if (CC == ISD::SETLT && isNullOrNullSplat(Cond.getOperand(1))) |
| return true; |
| if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond.getOperand(1))) |
| return true; |
| |
| return false; |
| } |
| |
| SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { |
| SDValue Cond = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT CondVT = Cond.getValueType(); |
| SDLoc DL(N); |
| |
| if (!VT.isInteger()) |
| return SDValue(); |
| |
| auto *C1 = dyn_cast<ConstantSDNode>(N1); |
| auto *C2 = dyn_cast<ConstantSDNode>(N2); |
| if (!C1 || !C2) |
| return SDValue(); |
| |
| if (CondVT != MVT::i1 || LegalOperations) { |
| // fold (select Cond, 0, 1) -> (xor Cond, 1) |
| // We can't do this reliably if integer based booleans have different contents |
| // to floating point based booleans. This is because we can't tell whether we |
| // have an integer-based boolean or a floating-point-based boolean unless we |
| // can find the SETCC that produced it and inspect its operands. This is |
| // fairly easy if C is the SETCC node, but it can potentially be |
| // undiscoverable (or not reasonably discoverable). For example, it could be |
| // in another basic block or it could require searching a complicated |
| // expression. |
| if (CondVT.isInteger() && |
| TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| C1->isZero() && C2->isOne()) { |
| SDValue NotCond = |
| DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); |
| if (VT.bitsEq(CondVT)) |
| return NotCond; |
| return DAG.getZExtOrTrunc(NotCond, DL, VT); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Only do this before legalization to avoid conflicting with target-specific |
| // transforms in the other direction (create a select from a zext/sext). There |
| // is also a target-independent combine here in DAGCombiner in the other |
| // direction for (select Cond, -1, 0) when the condition is not i1. |
| assert(CondVT == MVT::i1 && !LegalOperations); |
| |
| // select Cond, 1, 0 --> zext (Cond) |
| if (C1->isOne() && C2->isZero()) |
| return DAG.getZExtOrTrunc(Cond, DL, VT); |
| |
| // select Cond, -1, 0 --> sext (Cond) |
| if (C1->isAllOnes() && C2->isZero()) |
| return DAG.getSExtOrTrunc(Cond, DL, VT); |
| |
| // select Cond, 0, 1 --> zext (!Cond) |
| if (C1->isZero() && C2->isOne()) { |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| NotCond = DAG.getZExtOrTrunc(NotCond, DL, VT); |
| return NotCond; |
| } |
| |
| // select Cond, 0, -1 --> sext (!Cond) |
| if (C1->isZero() && C2->isAllOnes()) { |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT); |
| return NotCond; |
| } |
| |
| // Use a target hook because some targets may prefer to transform in the |
| // other direction. |
| if (!shouldConvertSelectOfConstantsToMath(Cond, VT, TLI)) |
| return SDValue(); |
| |
| // For any constants that differ by 1, we can transform the select into |
| // an extend and add. |
| const APInt &C1Val = C1->getAPIntValue(); |
| const APInt &C2Val = C2->getAPIntValue(); |
| |
| // select Cond, C1, C1-1 --> add (zext Cond), C1-1 |
| if (C1Val - 1 == C2Val) { |
| Cond = DAG.getZExtOrTrunc(Cond, DL, VT); |
| return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); |
| } |
| |
| // select Cond, C1, C1+1 --> add (sext Cond), C1+1 |
| if (C1Val + 1 == C2Val) { |
| Cond = DAG.getSExtOrTrunc(Cond, DL, VT); |
| return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); |
| } |
| |
| // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) |
| if (C1Val.isPowerOf2() && C2Val.isZero()) { |
| Cond = DAG.getZExtOrTrunc(Cond, DL, VT); |
| SDValue ShAmtC = |
| DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL); |
| return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); |
| } |
| |
| // select Cond, -1, C --> or (sext Cond), C |
| if (C1->isAllOnes()) { |
| Cond = DAG.getSExtOrTrunc(Cond, DL, VT); |
| return DAG.getNode(ISD::OR, DL, VT, Cond, N2); |
| } |
| |
| // select Cond, C, -1 --> or (sext (not Cond)), C |
| if (C2->isAllOnes()) { |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT); |
| return DAG.getNode(ISD::OR, DL, VT, NotCond, N1); |
| } |
| |
| if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && |
| "Expected a (v)select"); |
| SDValue Cond = N->getOperand(0); |
| SDValue T = N->getOperand(1), F = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) |
| return SDValue(); |
| |
| // select Cond, Cond, F --> or Cond, F |
| // select Cond, 1, F --> or Cond, F |
| if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F); |
| |
| // select Cond, T, Cond --> and Cond, T |
| // select Cond, T, 0 --> and Cond, T |
| if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T); |
| |
| // select Cond, T, 1 --> or (not Cond), T |
| if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { |
| SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T); |
| } |
| |
| // select Cond, 0, F --> and (not Cond), F |
| if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { |
| SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| if (N0.getOpcode() != ISD::SETCC || !N0.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Cond0 = N0.getOperand(0); |
| SDValue Cond1 = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| if (VT != Cond0.getValueType()) |
| return SDValue(); |
| |
| // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the |
| // compare is inverted from that pattern ("Cond0 s> -1"). |
| if (CC == ISD::SETLT && isNullOrNullSplat(Cond1)) |
| ; // This is the pattern we are looking for. |
| else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1)) |
| std::swap(N1, N2); |
| else |
| return SDValue(); |
| |
| // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & N1 |
| if (isNullOrNullSplat(N2)) { |
| SDLoc DL(N); |
| SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); |
| return DAG.getNode(ISD::AND, DL, VT, Sra, N1); |
| } |
| |
| // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | N2 |
| if (isAllOnesOrAllOnesSplat(N1)) { |
| SDLoc DL(N); |
| SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); |
| return DAG.getNode(ISD::OR, DL, VT, Sra, N2); |
| } |
| |
| // If we have to invert the sign bit mask, only do that transform if the |
| // target has a bitwise 'and not' instruction (the invert is free). |
| // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & N2 |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) { |
| SDLoc DL(N); |
| SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); |
| SDValue Not = DAG.getNOT(DL, Sra, VT); |
| return DAG.getNode(ISD::AND, DL, VT, Not, N2); |
| } |
| |
| // TODO: There's another pattern in this family, but it may require |
| // implementing hasOrNot() to check for profitability: |
| // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | N2 |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSELECT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT VT0 = N0.getValueType(); |
| SDLoc DL(N); |
| SDNodeFlags Flags = N->getFlags(); |
| |
| if (SDValue V = DAG.simplifySelect(N0, N1, N2)) |
| return V; |
| |
| if (SDValue V = foldBoolSelectToLogic(N, DAG)) |
| return V; |
| |
| // select (not Cond), N1, N2 -> select Cond, N2, N1 |
| if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { |
| SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); |
| SelectOp->setFlags(Flags); |
| return SelectOp; |
| } |
| |
| if (SDValue V = foldSelectOfConstants(N)) |
| return V; |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| if (VT0 == MVT::i1) { |
| // The code in this block deals with the following 2 equivalences: |
| // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) |
| // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) |
| // The target can specify its preferred form with the |
| // shouldNormalizeToSelectSequence() callback. However we always transform |
| // to the right anyway if we find the inner select exists in the DAG anyway |
| // and we always transform to the left side if we know that we can further |
| // optimize the combination of the conditions. |
| bool normalizeToSequence = |
| TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); |
| // select (and Cond0, Cond1), X, Y |
| // -> select Cond0, (select Cond1, X, Y), Y |
| if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { |
| SDValue Cond0 = N0->getOperand(0); |
| SDValue Cond1 = N0->getOperand(1); |
| SDValue InnerSelect = |
| DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); |
| if (normalizeToSequence || !InnerSelect.use_empty()) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, |
| InnerSelect, N2, Flags); |
| // Cleanup on failure. |
| if (InnerSelect.use_empty()) |
| recursivelyDeleteUnusedNodes(InnerSelect.getNode()); |
| } |
| // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) |
| if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { |
| SDValue Cond0 = N0->getOperand(0); |
| SDValue Cond1 = N0->getOperand(1); |
| SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), |
| Cond1, N1, N2, Flags); |
| if (normalizeToSequence || !InnerSelect.use_empty()) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, |
| InnerSelect, Flags); |
| // Cleanup on failure. |
| if (InnerSelect.use_empty()) |
| recursivelyDeleteUnusedNodes(InnerSelect.getNode()); |
| } |
| |
| // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y |
| if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { |
| SDValue N1_0 = N1->getOperand(0); |
| SDValue N1_1 = N1->getOperand(1); |
| SDValue N1_2 = N1->getOperand(2); |
| if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { |
| // Create the actual and node if we can generate good code for it. |
| if (!normalizeToSequence) { |
| SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, |
| N2, Flags); |
| } |
| // Otherwise see if we can optimize the "and" to a better pattern. |
| if (SDValue Combined = visitANDLike(N0, N1_0, N)) { |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, |
| N2, Flags); |
| } |
| } |
| } |
| // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y |
| if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { |
| SDValue N2_0 = N2->getOperand(0); |
| SDValue N2_1 = N2->getOperand(1); |
| SDValue N2_2 = N2->getOperand(2); |
| if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { |
| // Create the actual or node if we can generate good code for it. |
| if (!normalizeToSequence) { |
| SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, |
| N2_2, Flags); |
| } |
| // Otherwise see if we can optimize to a better pattern. |
| if (SDValue Combined = visitORLike(N0, N2_0, N)) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, |
| N2_2, Flags); |
| } |
| } |
| } |
| |
| // Fold selects based on a setcc into other things, such as min/max/abs. |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| |
| // select (fcmp lt x, y), x, y -> fminnum x, y |
| // select (fcmp gt x, y), x, y -> fmaxnum x, y |
| // |
| // This is OK if we don't care what happens if either operand is a NaN. |
| if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) |
| if (SDValue FMinMax = |
| combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, CC)) |
| return FMinMax; |
| |
| // Use 'unsigned add with overflow' to optimize an unsigned saturating add. |
| // This is conservatively limited to pre-legal-operations to give targets |
| // a chance to reverse the transform if they want to do that. Also, it is |
| // unlikely that the pattern would be formed late, so it's probably not |
| // worth going through the other checks. |
| if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && |
| CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && |
| N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { |
| auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); |
| auto *NotC = dyn_cast<ConstantSDNode>(Cond1); |
| if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { |
| // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> |
| // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 |
| // |
| // The IR equivalent of this transform would have this form: |
| // %a = add %x, C |
| // %c = icmp ugt %x, ~C |
| // %r = select %c, -1, %a |
| // => |
| // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) |
| // %u0 = extractvalue %u, 0 |
| // %u1 = extractvalue %u, 1 |
| // %r = select %u1, -1, %u0 |
| SDVTList VTs = DAG.getVTList(VT, VT0); |
| SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); |
| return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); |
| } |
| } |
| |
| if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || |
| (!LegalOperations && |
| TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { |
| // Any flags available in a select/setcc fold will be on the setcc as they |
| // migrated from fcmp |
| Flags = N0->getFlags(); |
| SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, |
| N2, N0.getOperand(2)); |
| SelectNode->setFlags(Flags); |
| return SelectNode; |
| } |
| |
| if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) |
| return NewSel; |
| } |
| |
| if (!VT.isVector()) |
| if (SDValue BinOp = foldSelectOfBinops(N)) |
| return BinOp; |
| |
| return SDValue(); |
| } |
| |
| // This function assumes all the vselect's arguments are CONCAT_VECTOR |
| // nodes and that the condition is a BV of ConstantSDNodes (or undefs). |
| static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue Cond = N->getOperand(0); |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| int NumElems = VT.getVectorNumElements(); |
| assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && |
| RHS.getOpcode() == ISD::CONCAT_VECTORS && |
| Cond.getOpcode() == ISD::BUILD_VECTOR); |
| |
| // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about |
| // binary ones here. |
| if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) |
| return SDValue(); |
| |
| // We're sure we have an even number of elements due to the |
| // concat_vectors we have as arguments to vselect. |
| // Skip BV elements until we find one that's not an UNDEF |
| // After we find an UNDEF element, keep looping until we get to half the |
| // length of the BV and see if all the non-undef nodes are the same. |
| ConstantSDNode *BottomHalf = nullptr; |
| for (int i = 0; i < NumElems / 2; ++i) { |
| if (Cond->getOperand(i)->isUndef()) |
| continue; |
| |
| if (BottomHalf == nullptr) |
| BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); |
| else if (Cond->getOperand(i).getNode() != BottomHalf) |
| return SDValue(); |
| } |
| |
| // Do the same for the second half of the BuildVector |
| ConstantSDNode *TopHalf = nullptr; |
| for (int i = NumElems / 2; i < NumElems; ++i) { |
| if (Cond->getOperand(i)->isUndef()) |
| continue; |
| |
| if (TopHalf == nullptr) |
| TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); |
| else if (Cond->getOperand(i).getNode() != TopHalf) |
| return SDValue(); |
| } |
| |
| assert(TopHalf && BottomHalf && |
| "One half of the selector was all UNDEFs and the other was all the " |
| "same value. This should have been addressed before this function."); |
| return DAG.getNode( |
| ISD::CONCAT_VECTORS, DL, VT, |
| BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0), |
| TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1)); |
| } |
| |
| bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled, |
| SelectionDAG &DAG, const SDLoc &DL) { |
| if (Index.getOpcode() != ISD::ADD) |
| return false; |
| |
| // Only perform the transformation when existing operands can be reused. |
| if (IndexIsScaled) |
| return false; |
| |
| if (!isNullConstant(BasePtr) && !Index.hasOneUse()) |
| return false; |
| |
| EVT VT = BasePtr.getValueType(); |
| if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(0)); |
| SplatVal && SplatVal.getValueType() == VT) { |
| if (isNullConstant(BasePtr)) |
| BasePtr = SplatVal; |
| else |
| BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal); |
| Index = Index.getOperand(1); |
| return true; |
| } |
| if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(1)); |
| SplatVal && SplatVal.getValueType() == VT) { |
| if (isNullConstant(BasePtr)) |
| BasePtr = SplatVal; |
| else |
| BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal); |
| Index = Index.getOperand(0); |
| return true; |
| } |
| return false; |
| } |
| |
| // Fold sext/zext of index into index type. |
| bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT, |
| SelectionDAG &DAG) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // It's always safe to look through zero extends. |
| if (Index.getOpcode() == ISD::ZERO_EXTEND) { |
| SDValue Op = Index.getOperand(0); |
| if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType(), DataVT)) { |
| IndexType = ISD::UNSIGNED_SCALED; |
| Index = Op; |
| return true; |
| } |
| if (ISD::isIndexTypeSigned(IndexType)) { |
| IndexType = ISD::UNSIGNED_SCALED; |
| return true; |
| } |
| } |
| |
| // It's only safe to look through sign extends when Index is signed. |
| if (Index.getOpcode() == ISD::SIGN_EXTEND && |
| ISD::isIndexTypeSigned(IndexType)) { |
| SDValue Op = Index.getOperand(0); |
| if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType(), DataVT)) { |
| Index = Op; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| SDValue DAGCombiner::visitVPSCATTER(SDNode *N) { |
| VPScatterSDNode *MSC = cast<VPScatterSDNode>(N); |
| SDValue Mask = MSC->getMask(); |
| SDValue Chain = MSC->getChain(); |
| SDValue Index = MSC->getIndex(); |
| SDValue Scale = MSC->getScale(); |
| SDValue StoreVal = MSC->getValue(); |
| SDValue BasePtr = MSC->getBasePtr(); |
| SDValue VL = MSC->getVectorLength(); |
| ISD::MemIndexType IndexType = MSC->getIndexType(); |
| SDLoc DL(N); |
| |
| // Zap scatters with a zero mask. |
| if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) |
| return Chain; |
| |
| if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) { |
| SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL}; |
| return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), |
| DL, Ops, MSC->getMemOperand(), IndexType); |
| } |
| |
| if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) { |
| SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL}; |
| return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), |
| DL, Ops, MSC->getMemOperand(), IndexType); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMSCATTER(SDNode *N) { |
| MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); |
| SDValue Mask = MSC->getMask(); |
| SDValue Chain = MSC->getChain(); |
| SDValue Index = MSC->getIndex(); |
| SDValue Scale = MSC->getScale(); |
| SDValue StoreVal = MSC->getValue(); |
| SDValue BasePtr = MSC->getBasePtr(); |
| ISD::MemIndexType IndexType = MSC->getIndexType(); |
| SDLoc DL(N); |
| |
| // Zap scatters with a zero mask. |
| if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) |
| return Chain; |
| |
| if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) { |
| SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; |
| return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), |
| DL, Ops, MSC->getMemOperand(), IndexType, |
| MSC->isTruncatingStore()); |
| } |
| |
| if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) { |
| SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; |
| return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), |
| DL, Ops, MSC->getMemOperand(), IndexType, |
| MSC->isTruncatingStore()); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMSTORE(SDNode *N) { |
| MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); |
| SDValue Mask = MST->getMask(); |
| SDValue Chain = MST->getChain(); |
| SDValue Value = MST->getValue(); |
| SDValue Ptr = MST->getBasePtr(); |
| SDLoc DL(N); |
| |
| // Zap masked stores with a zero mask. |
| if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) |
| return Chain; |
| |
| // If this is a masked load with an all ones mask, we can use a unmasked load. |
| // FIXME: Can we do this for indexed, compressing, or truncating stores? |
| if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() && |
| !MST->isCompressingStore() && !MST->isTruncatingStore()) |
| return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), |
| MST->getBasePtr(), MST->getPointerInfo(), |
| MST->getOriginalAlign(), MachineMemOperand::MOStore, |
| MST->getAAInfo()); |
| |
| // Try transforming N to an indexed store. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| if (MST->isTruncatingStore() && MST->isUnindexed() && |
| Value.getValueType().isInteger() && |
| (!isa<ConstantSDNode>(Value) || |
| !cast<ConstantSDNode>(Value)->isOpaque())) { |
| APInt TruncDemandedBits = |
| APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), |
| MST->getMemoryVT().getScalarSizeInBits()); |
| |
| // See if we can simplify the operation with |
| // SimplifyDemandedBits, which only works if the value has a single use. |
| if (SimplifyDemandedBits(Value, TruncDemandedBits)) { |
| // Re-visit the store if anything changed and the store hasn't been merged |
| // with another node (N is deleted) SimplifyDemandedBits will add Value's |
| // node back to the worklist if necessary, but we also need to re-visit |
| // the Store node itself. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| } |
| |
| // If this is a TRUNC followed by a masked store, fold this into a masked |
| // truncating store. We can do this even if this is already a masked |
| // truncstore. |
| // TODO: Try combine to masked compress store if possiable. |
| if ((Value.getOpcode() == ISD::TRUNCATE) && Value->hasOneUse() && |
| MST->isUnindexed() && !MST->isCompressingStore() && |
| TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), |
| MST->getMemoryVT(), LegalOperations)) { |
| auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(), |
| Value.getOperand(0).getValueType()); |
| return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, |
| MST->getOffset(), Mask, MST->getMemoryVT(), |
| MST->getMemOperand(), MST->getAddressingMode(), |
| /*IsTruncating=*/true); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitVPGATHER(SDNode *N) { |
| VPGatherSDNode *MGT = cast<VPGatherSDNode>(N); |
| SDValue Mask = MGT->getMask(); |
| SDValue Chain = MGT->getChain(); |
| SDValue Index = MGT->getIndex(); |
| SDValue Scale = MGT->getScale(); |
| SDValue BasePtr = MGT->getBasePtr(); |
| SDValue VL = MGT->getVectorLength(); |
| ISD::MemIndexType IndexType = MGT->getIndexType(); |
| SDLoc DL(N); |
| |
| if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) { |
| SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL}; |
| return DAG.getGatherVP( |
| DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, |
| Ops, MGT->getMemOperand(), IndexType); |
| } |
| |
| if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) { |
| SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL}; |
| return DAG.getGatherVP( |
| DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, |
| Ops, MGT->getMemOperand(), IndexType); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMGATHER(SDNode *N) { |
| MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); |
| SDValue Mask = MGT->getMask(); |
| SDValue Chain = MGT->getChain(); |
| SDValue Index = MGT->getIndex(); |
| SDValue Scale = MGT->getScale(); |
| SDValue PassThru = MGT->getPassThru(); |
| SDValue BasePtr = MGT->getBasePtr(); |
| ISD::MemIndexType IndexType = MGT->getIndexType(); |
| SDLoc DL(N); |
| |
| // Zap gathers with a zero mask. |
| if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) |
| return CombineTo(N, PassThru, MGT->getChain()); |
| |
| if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) { |
| SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; |
| return DAG.getMaskedGather( |
| DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, |
| Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType()); |
| } |
| |
| if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) { |
| SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; |
| return DAG.getMaskedGather( |
| DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, |
| Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType()); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMLOAD(SDNode *N) { |
| MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); |
| SDValue Mask = MLD->getMask(); |
| SDLoc DL(N); |
| |
| // Zap masked loads with a zero mask. |
| if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) |
| return CombineTo(N, MLD->getPassThru(), MLD->getChain()); |
| |
| // If this is a masked load with an all ones mask, we can use a unmasked load. |
| // FIXME: Can we do this for indexed, expanding, or extending loads? |
| if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() && |
| !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) { |
| SDValue NewLd = DAG.getLoad( |
| N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(), |
| MLD->getPointerInfo(), MLD->getOriginalAlign(), |
| MachineMemOperand::MOLoad, MLD->getAAInfo(), MLD->getRanges()); |
| return CombineTo(N, NewLd, NewLd.getValue(1)); |
| } |
| |
| // Try transforming N to an indexed load. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| /// A vector select of 2 constant vectors can be simplified to math/logic to |
| /// avoid a variable select instruction and possibly avoid constant loads. |
| SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { |
| SDValue Cond = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || |
| !shouldConvertSelectOfConstantsToMath(Cond, VT, TLI) || |
| !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || |
| !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) |
| return SDValue(); |
| |
| // Check if we can use the condition value to increment/decrement a single |
| // constant value. This simplifies a select to an add and removes a constant |
| // load/materialization from the general case. |
| bool AllAddOne = true; |
| bool AllSubOne = true; |
| unsigned Elts = VT.getVectorNumElements(); |
| for (unsigned i = 0; i != Elts; ++i) { |
| SDValue N1Elt = N1.getOperand(i); |
| SDValue N2Elt = N2.getOperand(i); |
| if (N1Elt.isUndef() || N2Elt.isUndef()) |
| continue; |
| if (N1Elt.getValueType() != N2Elt.getValueType()) |
| continue; |
| |
| const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); |
| const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); |
| if (C1 != C2 + 1) |
| AllAddOne = false; |
| if (C1 != C2 - 1) |
| AllSubOne = false; |
| } |
| |
| // Further simplifications for the extra-special cases where the constants are |
| // all 0 or all -1 should be implemented as folds of these patterns. |
| SDLoc DL(N); |
| if (AllAddOne || AllSubOne) { |
| // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C |
| // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C |
| auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; |
| SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); |
| } |
| |
| // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) |
| APInt Pow2C; |
| if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && |
| isNullOrNullSplat(N2)) { |
| SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); |
| SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); |
| return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); |
| } |
| |
| if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) |
| return V; |
| |
| // The general case for select-of-constants: |
| // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 |
| // ...but that only makes sense if a vselect is slower than 2 logic ops, so |
| // leave that to a machine-specific pass. |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitVSELECT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (SDValue V = DAG.simplifySelect(N0, N1, N2)) |
| return V; |
| |
| if (SDValue V = foldBoolSelectToLogic(N, DAG)) |
| return V; |
| |
| // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 |
| if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) |
| return DAG.getSelect(DL, VT, F, N2, N1); |
| |
| // Canonicalize integer abs. |
| // vselect (setg[te] X, 0), X, -X -> |
| // vselect (setgt X, -1), X, -X -> |
| // vselect (setl[te] X, 0), -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| bool isAbs = false; |
| bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); |
| |
| if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || |
| (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && |
| N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) |
| isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); |
| else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && |
| N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) |
| isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); |
| |
| if (isAbs) { |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) |
| return DAG.getNode(ISD::ABS, DL, VT, LHS); |
| |
| SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, |
| DL, getShiftAmountTy(VT))); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); |
| AddToWorklist(Shift.getNode()); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); |
| } |
| |
| // vselect x, y (fcmp lt x, y) -> fminnum x, y |
| // vselect x, y (fcmp gt x, y) -> fmaxnum x, y |
| // |
| // This is OK if we don't care about what happens if either operand is a |
| // NaN. |
| // |
| if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { |
| if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC)) |
| return FMinMax; |
| } |
| |
| if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) |
| return S; |
| if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) |
| return S; |
| |
| // If this select has a condition (setcc) with narrower operands than the |
| // select, try to widen the compare to match the select width. |
| // TODO: This should be extended to handle any constant. |
| // TODO: This could be extended to handle non-loading patterns, but that |
| // requires thorough testing to avoid regressions. |
| if (isNullOrNullSplat(RHS)) { |
| EVT NarrowVT = LHS.getValueType(); |
| EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); |
| EVT SetCCVT = getSetCCResultType(LHS.getValueType()); |
| unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); |
| unsigned WideWidth = WideVT.getScalarSizeInBits(); |
| bool IsSigned = isSignedIntSetCC(CC); |
| auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && |
| SetCCWidth != 1 && SetCCWidth < WideWidth && |
| TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && |
| TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { |
| // Both compare operands can be widened for free. The LHS can use an |
| // extended load, and the RHS is a constant: |
| // vselect (ext (setcc load(X), C)), N1, N2 --> |
| // vselect (setcc extload(X), C'), N1, N2 |
| auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); |
| SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); |
| EVT WideSetCCVT = getSetCCResultType(WideVT); |
| SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); |
| return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); |
| } |
| } |
| |
| // Match VSELECTs into add with unsigned saturation. |
| if (hasOperation(ISD::UADDSAT, VT)) { |
| // Check if one of the arms of the VSELECT is vector with all bits set. |
| // If it's on the left side invert the predicate to simplify logic below. |
| SDValue Other; |
| ISD::CondCode SatCC = CC; |
| if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { |
| Other = N2; |
| SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); |
| } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { |
| Other = N1; |
| } |
| |
| if (Other && Other.getOpcode() == ISD::ADD) { |
| SDValue CondLHS = LHS, CondRHS = RHS; |
| SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); |
| |
| // Canonicalize condition operands. |
| if (SatCC == ISD::SETUGE) { |
| std::swap(CondLHS, CondRHS); |
| SatCC = ISD::SETULE; |
| } |
| |
| // We can test against either of the addition operands. |
| // x <= x+y ? x+y : ~0 --> uaddsat x, y |
| // x+y >= x ? x+y : ~0 --> uaddsat x, y |
| if (SatCC == ISD::SETULE && Other == CondRHS && |
| (OpLHS == CondLHS || OpRHS == CondLHS)) |
| return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); |
| |
| if (OpRHS.getOpcode() == CondRHS.getOpcode() && |
| (OpRHS.getOpcode() == ISD::BUILD_VECTOR || |
| OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && |
| CondLHS == OpLHS) { |
| // If the RHS is a constant we have to reverse the const |
| // canonicalization. |
| // x >= ~C ? x+C : ~0 --> uaddsat x, C |
| auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { |
| return Cond->getAPIntValue() == ~Op->getAPIntValue(); |
| }; |
| if (SatCC == ISD::SETULE && |
| ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) |
| return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); |
| } |
| } |
| } |
| |
| // Match VSELECTs into sub with unsigned saturation. |
| if (hasOperation(ISD::USUBSAT, VT)) { |
| // Check if one of the arms of the VSELECT is a zero vector. If it's on |
| // the left side invert the predicate to simplify logic below. |
| SDValue Other; |
| ISD::CondCode SatCC = CC; |
| if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { |
| Other = N2; |
| SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); |
| } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { |
| Other = N1; |
| } |
| |
| // zext(x) >= y ? trunc(zext(x) - y) : 0 |
| // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit))) |
| // zext(x) > y ? trunc(zext(x) - y) : 0 |
| // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit))) |
| if (Other && Other.getOpcode() == ISD::TRUNCATE && |
| Other.getOperand(0).getOpcode() == ISD::SUB && |
| (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)) { |
| SDValue OpLHS = Other.getOperand(0).getOperand(0); |
| SDValue OpRHS = Other.getOperand(0).getOperand(1); |
| if (LHS == OpLHS && RHS == OpRHS && LHS.getOpcode() == ISD::ZERO_EXTEND) |
| if (SDValue R = getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, |
| DAG, DL)) |
| return R; |
| } |
| |
| if (Other && Other.getNumOperands() == 2) { |
| SDValue CondRHS = RHS; |
| SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); |
| |
| if (OpLHS == LHS) { |
| // Look for a general sub with unsigned saturation first. |
| // x >= y ? x-y : 0 --> usubsat x, y |
| // x > y ? x-y : 0 --> usubsat x, y |
| if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && |
| Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) |
| return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); |
| |
| if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || |
| OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { |
| if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || |
| CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { |
| // If the RHS is a constant we have to reverse the const |
| // canonicalization. |
| // x > C-1 ? x+-C : 0 --> usubsat x, C |
| auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { |
| return (!Op && !Cond) || |
| (Op && Cond && |
| Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); |
| }; |
| if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && |
| ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, |
| /*AllowUndefs*/ true)) { |
| OpRHS = DAG.getNegative(OpRHS, DL, VT); |
| return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); |
| } |
| |
| // Another special case: If C was a sign bit, the sub has been |
| // canonicalized into a xor. |
| // FIXME: Would it be better to use computeKnownBits to |
| // determine whether it's safe to decanonicalize the xor? |
| // x s< 0 ? x^C : 0 --> usubsat x, C |
| APInt SplatValue; |
| if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && |
| ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && |
| ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && |
| SplatValue.isSignMask()) { |
| // Note that we have to rebuild the RHS constant here to |
| // ensure we don't rely on particular values of undef lanes. |
| OpRHS = DAG.getConstant(SplatValue, DL, VT); |
| return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| // Fold (vselect all_ones, N1, N2) -> N1 |
| if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) |
| return N1; |
| // Fold (vselect all_zeros, N1, N2) -> N2 |
| if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) |
| return N2; |
| |
| // The ConvertSelectToConcatVector function is assuming both the above |
| // checks for (vselect (build_vector all{ones,zeros) ...) have been made |
| // and addressed. |
| if (N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N2.getOpcode() == ISD::CONCAT_VECTORS && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { |
| if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) |
| return CV; |
| } |
| |
| if (SDValue V = foldVSelectOfConstants(N)) |
| return V; |
| |
| if (hasOperation(ISD::SRA, VT)) |
| if (SDValue V = foldVSelectToSignBitSplatMask(N, DAG)) |
| return V; |
| |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDValue N3 = N->getOperand(3); |
| SDValue N4 = N->getOperand(4); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N2 == N3) |
| return N2; |
| |
| // select_cc bool, 0, x, y, seteq -> select bool, y, x |
| if (CC == ISD::SETEQ && !LegalTypes && N0.getValueType() == MVT::i1 && |
| isNullConstant(N1)) |
| return DAG.getSelect(SDLoc(N), N2.getValueType(), N0, N3, N2); |
| |
| // Determine if the condition we're dealing with is constant |
| if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, |
| CC, SDLoc(N), false)) { |
| AddToWorklist(SCC.getNode()); |
| |
| // cond always true -> true val |
| // cond always false -> false val |
| if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) |
| return SCCC->isZero() ? N3 : N2; |
| |
| // When the condition is UNDEF, just return the first operand. This is |
| // coherent the DAG creation, no setcc node is created in this case |
| if (SCC->isUndef()) |
| return N2; |
| |
| // Fold to a simpler select_cc |
| if (SCC.getOpcode() == ISD::SETCC) { |
| SDValue SelectOp = DAG.getNode( |
| ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), |
| SCC.getOperand(1), N2, N3, SCC.getOperand(2)); |
| SelectOp->setFlags(SCC->getFlags()); |
| return SelectOp; |
| } |
| } |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N2, N3)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| // fold select_cc into other things, such as min/max/abs |
| return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); |
| } |
| |
| SDValue DAGCombiner::visitSETCC(SDNode *N) { |
| // setcc is very commonly used as an argument to brcond. This pattern |
| // also lend itself to numerous combines and, as a result, it is desired |
| // we keep the argument to a brcond as a setcc as much as possible. |
| bool PreferSetCC = |
| N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; |
| |
| ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| EVT VT = N->getValueType(0); |
| |
| // SETCC(FREEZE(X), CONST, Cond) |
| // => |
| // FREEZE(SETCC(X, CONST, Cond)) |
| // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) |
| // isn't equivalent to true or false. |
| // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to |
| // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. |
| // |
| // This transformation is beneficial because visitBRCOND can fold |
| // BRCOND(FREEZE(X)) to BRCOND(X). |
| |
| // Conservatively optimize integer comparisons only. |
| if (PreferSetCC) { |
| // Do this only when SETCC is going to be used by BRCOND. |
| |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| bool Updated = false; |
| |
| // Is 'X Cond C' always true or false? |
| auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { |
| bool False = (Cond == ISD::SETULT && C->isZero()) || |
| (Cond == ISD::SETLT && C->isMinSignedValue()) || |
| (Cond == ISD::SETUGT && C->isAllOnes()) || |
| (Cond == ISD::SETGT && C->isMaxSignedValue()); |
| bool True = (Cond == ISD::SETULE && C->isAllOnes()) || |
| (Cond == ISD::SETLE && C->isMaxSignedValue()) || |
| (Cond == ISD::SETUGE && C->isZero()) || |
| (Cond == ISD::SETGE && C->isMinSignedValue()); |
| return True || False; |
| }; |
| |
| if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) { |
| if (!IsAlwaysTrueOrFalse(Cond, N1C)) { |
| N0 = N0->getOperand(0); |
| Updated = true; |
| } |
| } |
| if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) { |
| if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), |
| N0C)) { |
| N1 = N1->getOperand(0); |
| Updated = true; |
| } |
| } |
| |
| if (Updated) |
| return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond)); |
| } |
| |
| SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond, |
| SDLoc(N), !PreferSetCC); |
| |
| if (!Combined) |
| return SDValue(); |
| |
| // If we prefer to have a setcc, and we don't, we'll try our best to |
| // recreate one using rebuildSetCC. |
| if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { |
| SDValue NewSetCC = rebuildSetCC(Combined); |
| |
| // We don't have anything interesting to combine to. |
| if (NewSetCC.getNode() == N) |
| return SDValue(); |
| |
| if (NewSetCC) |
| return NewSetCC; |
| } |
| |
| return Combined; |
| } |
| |
| SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue Carry = N->getOperand(2); |
| SDValue Cond = N->getOperand(3); |
| |
| // If Carry is false, fold to a regular SETCC. |
| if (isNullConstant(Carry)) |
| return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); |
| |
| return SDValue(); |
| } |
| |
| /// Check if N satisfies: |
| /// N is used once. |
| /// N is a Load. |
| /// The load is compatible with ExtOpcode. It means |
| /// If load has explicit zero/sign extension, ExpOpcode must have the same |
| /// extension. |
| /// Otherwise returns true. |
| static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { |
| if (!N.hasOneUse()) |
| return false; |
| |
| if (!isa<LoadSDNode>(N)) |
| return false; |
| |
| LoadSDNode *Load = cast<LoadSDNode>(N); |
| ISD::LoadExtType LoadExt = Load->getExtensionType(); |
| if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) |
| return true; |
| |
| // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same |
| // extension. |
| if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || |
| (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Fold |
| /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) |
| /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) |
| /// (aext (select c, load x, load y)) -> (select c, extload x, extload y) |
| /// This function is called by the DAGCombiner when visiting sext/zext/aext |
| /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). |
| static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, |
| SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || |
| Opcode == ISD::ANY_EXTEND) && |
| "Expected EXTEND dag node in input!"); |
| |
| if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || |
| !N0.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Op1 = N0->getOperand(1); |
| SDValue Op2 = N0->getOperand(2); |
| if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) |
| return SDValue(); |
| |
| auto ExtLoadOpcode = ISD::EXTLOAD; |
| if (Opcode == ISD::SIGN_EXTEND) |
| ExtLoadOpcode = ISD::SEXTLOAD; |
| else if (Opcode == ISD::ZERO_EXTEND) |
| ExtLoadOpcode = ISD::ZEXTLOAD; |
| |
| LoadSDNode *Load1 = cast<LoadSDNode>(Op1); |
| LoadSDNode *Load2 = cast<LoadSDNode>(Op2); |
| if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || |
| !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT())) |
| return SDValue(); |
| |
| SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); |
| SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); |
| return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); |
| } |
| |
| /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or |
| /// a build_vector of constants. |
| /// This function is called by the DAGCombiner when visiting sext/zext/aext |
| /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). |
| /// Vector extends are not folded if operations are legal; this is to |
| /// avoid introducing illegal build_vector dag nodes. |
| static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, |
| SelectionDAG &DAG, bool LegalTypes) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || |
| Opcode == ISD::ANY_EXTEND || |
| Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || |
| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || |
| Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && |
| "Expected EXTEND dag node in input!"); |
| |
| // fold (sext c1) -> c1 |
| // fold (zext c1) -> c1 |
| // fold (aext c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(Opcode, DL, VT, N0); |
| |
| // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) |
| // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) |
| // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) |
| if (N0->getOpcode() == ISD::SELECT) { |
| SDValue Op1 = N0->getOperand(1); |
| SDValue Op2 = N0->getOperand(2); |
| if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && |
| (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { |
| // For any_extend, choose sign extension of the constants to allow a |
| // possible further transform to sign_extend_inreg.i.e. |
| // |
| // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> |
| // t2: i64 = any_extend t1 |
| // --> |
| // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> |
| // --> |
| // t4: i64 = sign_extend_inreg t3 |
| unsigned FoldOpc = Opcode; |
| if (FoldOpc == ISD::ANY_EXTEND) |
| FoldOpc = ISD::SIGN_EXTEND; |
| return DAG.getSelect(DL, VT, N0->getOperand(0), |
| DAG.getNode(FoldOpc, DL, VT, Op1), |
| DAG.getNode(FoldOpc, DL, VT, Op2)); |
| } |
| } |
| |
| // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) |
| // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) |
| // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) |
| EVT SVT = VT.getScalarType(); |
| if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) |
| return SDValue(); |
| |
| // We can fold this node into a build_vector. |
| unsigned VTBits = SVT.getSizeInBits(); |
| unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); |
| SmallVector<SDValue, 8> Elts; |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDValue Op = N0.getOperand(i); |
| if (Op.isUndef()) { |
| if (Opcode == ISD::ANY_EXTEND || Opcode == ISD::ANY_EXTEND_VECTOR_INREG) |
| Elts.push_back(DAG.getUNDEF(SVT)); |
| else |
| Elts.push_back(DAG.getConstant(0, DL, SVT)); |
| continue; |
| } |
| |
| SDLoc DL(Op); |
| // Get the constant value and if needed trunc it to the size of the type. |
| // Nodes like build_vector might have constants wider than the scalar type. |
| APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); |
| if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) |
| Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); |
| else |
| Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); |
| } |
| |
| return DAG.getBuildVector(VT, DL, Elts); |
| } |
| |
| // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: |
| // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" |
| // transformation. Returns true if extension are possible and the above |
| // mentioned transformation is profitable. |
| static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, |
| unsigned ExtOpc, |
| SmallVectorImpl<SDNode *> &ExtendNodes, |
| const TargetLowering &TLI) { |
| bool HasCopyToRegUses = false; |
| bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); |
| for (SDNode::use_iterator UI = N0->use_begin(), UE = N0->use_end(); UI != UE; |
| ++UI) { |
| SDNode *User = *UI; |
| if (User == N) |
| continue; |
| if (UI.getUse().getResNo() != N0.getResNo()) |
| continue; |
| // FIXME: Only extend SETCC N, N and SETCC N, c for now. |
| if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); |
| if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) |
| // Sign bits will be lost after a zext. |
| return false; |
| bool Add = false; |
| for (unsigned i = 0; i != 2; ++i) { |
| SDValue UseOp = User->getOperand(i); |
| if (UseOp == N0) |
| continue; |
| if (!isa<ConstantSDNode>(UseOp)) |
| return false; |
| Add = true; |
| } |
| if (Add) |
| ExtendNodes.push_back(User); |
| continue; |
| } |
| // If truncates aren't free and there are users we can't |
| // extend, it isn't worthwhile. |
| if (!isTruncFree) |
| return false; |
| // Remember if this value is live-out. |
| if (User->getOpcode() == ISD::CopyToReg) |
| HasCopyToRegUses = true; |
| } |
| |
| if (HasCopyToRegUses) { |
| bool BothLiveOut = false; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDUse &Use = UI.getUse(); |
| if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { |
| BothLiveOut = true; |
| break; |
| } |
| } |
| if (BothLiveOut) |
| // Both unextended and extended values are live out. There had better be |
| // a good reason for the transformation. |
| return ExtendNodes.size(); |
| } |
| return true; |
| } |
| |
| void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, |
| SDValue OrigLoad, SDValue ExtLoad, |
| ISD::NodeType ExtType) { |
| // Extend SetCC uses if necessary. |
| SDLoc DL(ExtLoad); |
| for (SDNode *SetCC : SetCCs) { |
| SmallVector<SDValue, 4> Ops; |
| |
| for (unsigned j = 0; j != 2; ++j) { |
| SDValue SOp = SetCC->getOperand(j); |
| if (SOp == OrigLoad) |
| Ops.push_back(ExtLoad); |
| else |
| Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); |
| } |
| |
| Ops.push_back(SetCC->getOperand(2)); |
| CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); |
| } |
| } |
| |
| // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). |
| SDValue DAGCombiner::CombineExtLoad(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT DstVT = N->getValueType(0); |
| EVT SrcVT = N0.getValueType(); |
| |
| assert((N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND) && |
| "Unexpected node type (not an extend)!"); |
| |
| // fold (sext (load x)) to multiple smaller sextloads; same for zext. |
| // For example, on a target with legal v4i32, but illegal v8i32, turn: |
| // (v8i32 (sext (v8i16 (load x)))) |
| // into: |
| // (v8i32 (concat_vectors (v4i32 (sextload x)), |
| // (v4i32 (sextload (x + 16))))) |
| // Where uses of the original load, i.e.: |
| // (v8i16 (load x)) |
| // are replaced with: |
| // (v8i16 (truncate |
| // (v8i32 (concat_vectors (v4i32 (sextload x)), |
| // (v4i32 (sextload (x + 16))))))) |
| // |
| // This combine is only applicable to illegal, but splittable, vectors. |
| // All legal types, and illegal non-vector types, are handled elsewhere. |
| // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. |
| // |
| if (N0->getOpcode() != ISD::LOAD) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| |
| if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || |
| !N0.hasOneUse() || !LN0->isSimple() || |
| !DstVT.isVector() || !DstVT.isPow2VectorType() || |
| !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) |
| return SDValue(); |
| |
| ISD::LoadExtType ExtType = |
| N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| |
| // Try to split the vector types to get down to legal types. |
| EVT SplitSrcVT = SrcVT; |
| EVT SplitDstVT = DstVT; |
| while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && |
| SplitSrcVT.getVectorNumElements() > 1) { |
| SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; |
| SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; |
| } |
| |
| if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) |
| return SDValue(); |
| |
| assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); |
| |
| SDLoc DL(N); |
| const unsigned NumSplits = |
| DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); |
| const unsigned Stride = SplitSrcVT.getStoreSize(); |
| SmallVector<SDValue, 4> Loads; |
| SmallVector<SDValue, 4> Chains; |
| |
| SDValue BasePtr = LN0->getBasePtr(); |
| for (unsigned Idx = 0; Idx < NumSplits; Idx++) { |
| const unsigned Offset = Idx * Stride; |
| const Align Align = commonAlignment(LN0->getAlign(), Offset); |
| |
| SDValue SplitLoad = DAG.getExtLoad( |
| ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, |
| LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| |
| BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); |
| |
| Loads.push_back(SplitLoad.getValue(0)); |
| Chains.push_back(SplitLoad.getValue(1)); |
| } |
| |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); |
| |
| // Simplify TF. |
| AddToWorklist(NewChain.getNode()); |
| |
| CombineTo(N, NewValue); |
| |
| // Replace uses of the original load (before extension) |
| // with a truncate of the concatenated sextloaded vectors. |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); |
| ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); |
| CombineTo(N0.getNode(), Trunc, NewChain); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> |
| // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) |
| SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { |
| assert(N->getOpcode() == ISD::ZERO_EXTEND); |
| EVT VT = N->getValueType(0); |
| EVT OrigVT = N->getOperand(0).getValueType(); |
| if (TLI.isZExtFree(OrigVT, VT)) |
| return SDValue(); |
| |
| // and/or/xor |
| SDValue N0 = N->getOperand(0); |
| if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) || |
| N0.getOperand(1).getOpcode() != ISD::Constant || |
| (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) |
| return SDValue(); |
| |
| // shl/shr |
| SDValue N1 = N0->getOperand(0); |
| if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || |
| N1.getOperand(1).getOpcode() != ISD::Constant || |
| (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) |
| return SDValue(); |
| |
| // load |
| if (!isa<LoadSDNode>(N1.getOperand(0))) |
| return SDValue(); |
| LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); |
| EVT MemVT = Load->getMemoryVT(); |
| if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || |
| Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) |
| return SDValue(); |
| |
| |
| // If the shift op is SHL, the logic op must be AND, otherwise the result |
| // will be wrong. |
| if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), |
| ISD::ZERO_EXTEND, SetCCs, TLI)) |
| return SDValue(); |
| |
| // Actually do the transformation. |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, |
| Load->getChain(), Load->getBasePtr(), |
| Load->getMemoryVT(), Load->getMemOperand()); |
| |
| SDLoc DL1(N1); |
| SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, |
| N1.getOperand(1)); |
| |
| APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); |
| SDLoc DL0(N0); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, |
| DAG.getConstant(Mask, DL0, VT)); |
| |
| ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); |
| CombineTo(N, And); |
| if (SDValue(Load, 0).hasOneUse()) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), |
| Load->getValueType(0), ExtLoad); |
| CombineTo(Load, Trunc, ExtLoad.getValue(1)); |
| } |
| |
| // N0 is dead at this point. |
| recursivelyDeleteUnusedNodes(N0.getNode()); |
| |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| |
| /// If we're narrowing or widening the result of a vector select and the final |
| /// size is the same size as a setcc (compare) feeding the select, then try to |
| /// apply the cast operation to the select's operands because matching vector |
| /// sizes for a select condition and other operands should be more efficient. |
| SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { |
| unsigned CastOpcode = Cast->getOpcode(); |
| assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || |
| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || |
| CastOpcode == ISD::FP_ROUND) && |
| "Unexpected opcode for vector select narrowing/widening"); |
| |
| // We only do this transform before legal ops because the pattern may be |
| // obfuscated by target-specific operations after legalization. Do not create |
| // an illegal select op, however, because that may be difficult to lower. |
| EVT VT = Cast->getValueType(0); |
| if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) |
| return SDValue(); |
| |
| SDValue VSel = Cast->getOperand(0); |
| if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || |
| VSel.getOperand(0).getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| // Does the setcc have the same vector size as the casted select? |
| SDValue SetCC = VSel.getOperand(0); |
| EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); |
| if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) |
| SDValue A = VSel.getOperand(1); |
| SDValue B = VSel.getOperand(2); |
| SDValue CastA, CastB; |
| SDLoc DL(Cast); |
| if (CastOpcode == ISD::FP_ROUND) { |
| // FP_ROUND (fptrunc) has an extra flag operand to pass along. |
| CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); |
| CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); |
| } else { |
| CastA = DAG.getNode(CastOpcode, DL, VT, A); |
| CastB = DAG.getNode(CastOpcode, DL, VT, B); |
| } |
| return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); |
| } |
| |
| // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, |
| const TargetLowering &TLI, EVT VT, |
| bool LegalOperations, SDNode *N, |
| SDValue N0, ISD::LoadExtType ExtLoadType) { |
| SDNode *N0Node = N0.getNode(); |
| bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) |
| : ISD::isZEXTLoad(N0Node); |
| if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || |
| !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| if ((LegalOperations || !LN0->isSimple() || |
| VT.isVector()) && |
| !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) |
| return SDValue(); |
| |
| SDValue ExtLoad = |
| DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), |
| LN0->getBasePtr(), MemVT, LN0->getMemOperand()); |
| Combiner.CombineTo(N, ExtLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| if (LN0->use_empty()) |
| Combiner.recursivelyDeleteUnusedNodes(LN0); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| // Only generate vector extloads when 1) they're legal, and 2) they are |
| // deemed desirable by the target. |
| static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, |
| const TargetLowering &TLI, EVT VT, |
| bool LegalOperations, SDNode *N, SDValue N0, |
| ISD::LoadExtType ExtLoadType, |
| ISD::NodeType ExtOpc) { |
| // TODO: isFixedLengthVector() should be removed and any negative effects on |
| // code generation being the result of that target's implementation of |
| // isVectorLoadExtDesirable(). |
| if (!ISD::isNON_EXTLoad(N0.getNode()) || |
| !ISD::isUNINDEXEDLoad(N0.getNode()) || |
| ((LegalOperations || VT.isFixedLengthVector() || |
| !cast<LoadSDNode>(N0)->isSimple()) && |
| !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) |
| return {}; |
| |
| bool DoXform = true; |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); |
| if (VT.isVector()) |
| DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); |
| if (!DoXform) |
| return {}; |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); |
| // If the load value is used only by N, replace it via CombineTo N. |
| bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); |
| Combiner.CombineTo(N, ExtLoad); |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| Combiner.recursivelyDeleteUnusedNodes(LN0); |
| } else { |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); |
| Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, |
| const TargetLowering &TLI, EVT VT, |
| SDNode *N, SDValue N0, |
| ISD::LoadExtType ExtLoadType, |
| ISD::NodeType ExtOpc) { |
| if (!N0.hasOneUse()) |
| return SDValue(); |
| |
| MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); |
| if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) |
| return SDValue(); |
| |
| if (!TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0))) |
| return SDValue(); |
| |
| if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) |
| return SDValue(); |
| |
| SDLoc dl(Ld); |
| SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); |
| SDValue NewLoad = DAG.getMaskedLoad( |
| VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), |
| PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), |
| ExtLoadType, Ld->isExpandingLoad()); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); |
| return NewLoad; |
| } |
| |
| static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, |
| bool LegalOperations) { |
| assert((N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); |
| |
| SDValue SetCC = N->getOperand(0); |
| if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || |
| !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) |
| return SDValue(); |
| |
| SDValue X = SetCC.getOperand(0); |
| SDValue Ones = SetCC.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); |
| EVT VT = N->getValueType(0); |
| EVT XVT = X.getValueType(); |
| // setge X, C is canonicalized to setgt, so we do not need to match that |
| // pattern. The setlt sibling is folded in SimplifySelectCC() because it does |
| // not require the 'not' op. |
| if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { |
| // Invert and smear/shift the sign bit: |
| // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) |
| // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) |
| SDLoc DL(N); |
| unsigned ShCt = VT.getSizeInBits() - 1; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { |
| SDValue NotX = DAG.getNOT(DL, X, VT); |
| SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); |
| auto ShiftOpcode = |
| N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; |
| return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::foldSextSetcc(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| if (N0.getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| EVT VT = N->getValueType(0); |
| EVT N00VT = N00.getValueType(); |
| SDLoc DL(N); |
| |
| // Propagate fast-math-flags. |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags()); |
| |
| // On some architectures (such as SSE/NEON/etc) the SETCC result type is |
| // the same size as the compared operands. Try to optimize sext(setcc()) |
| // if this is the case. |
| if (VT.isVector() && !LegalOperations && |
| TLI.getBooleanContents(N00VT) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| EVT SVT = getSetCCResultType(N00VT); |
| |
| // If we already have the desired type, don't change it. |
| if (SVT != N0.getValueType()) { |
| // We know that the # elements of the results is the same as the |
| // # elements of the compare (and the # elements of the compare result |
| // for that matter). Check to see that they are the same size. If so, |
| // we know that the element size of the sext'd result matches the |
| // element size of the compare operands. |
| if (VT.getSizeInBits() == SVT.getSizeInBits()) |
| return DAG.getSetCC(DL, VT, N00, N01, CC); |
| |
| // If the desired elements are smaller or larger than the source |
| // elements, we can use a matching integer vector type and then |
| // truncate/sign extend. |
| EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); |
| if (SVT == MatchingVecType) { |
| SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); |
| return DAG.getSExtOrTrunc(VsetCC, DL, VT); |
| } |
| } |
| |
| // Try to eliminate the sext of a setcc by zexting the compare operands. |
| if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && |
| !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { |
| bool IsSignedCmp = ISD::isSignedIntSetCC(CC); |
| unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| |
| // We have an unsupported narrow vector compare op that would be legal |
| // if extended to the destination type. See if the compare operands |
| // can be freely extended to the destination type. |
| auto IsFreeToExtend = [&](SDValue V) { |
| if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) |
| return true; |
| // Match a simple, non-extended load that can be converted to a |
| // legal {z/s}ext-load. |
| // TODO: Allow widening of an existing {z/s}ext-load? |
| if (!(ISD::isNON_EXTLoad(V.getNode()) && |
| ISD::isUNINDEXEDLoad(V.getNode()) && |
| cast<LoadSDNode>(V)->isSimple() && |
| TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) |
| return false; |
| |
| // Non-chain users of this value must either be the setcc in this |
| // sequence or extends that can be folded into the new {z/s}ext-load. |
| for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end(); |
| UI != UE; ++UI) { |
| // Skip uses of the chain and the setcc. |
| SDNode *User = *UI; |
| if (UI.getUse().getResNo() != 0 || User == N0.getNode()) |
| continue; |
| // Extra users must have exactly the same cast we are about to create. |
| // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() |
| // is enhanced similarly. |
| if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) |
| return false; |
| } |
| return true; |
| }; |
| |
| if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { |
| SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); |
| SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); |
| return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); |
| } |
| } |
| } |
| |
| // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) |
| // Here, T can be 1 or -1, depending on the type of the setcc and |
| // getBooleanContents(). |
| unsigned SetCCWidth = N0.getScalarValueSizeInBits(); |
| |
| // To determine the "true" side of the select, we need to know the high bit |
| // of the value returned by the setcc if it evaluates to true. |
| // If the type of the setcc is i1, then the true case of the select is just |
| // sext(i1 1), that is, -1. |
| // If the type of the setcc is larger (say, i8) then the value of the high |
| // bit depends on getBooleanContents(), so ask TLI for a real "true" value |
| // of the appropriate width. |
| SDValue ExtTrueVal = (SetCCWidth == 1) |
| ? DAG.getAllOnesConstant(DL, VT) |
| : DAG.getBoolConstant(true, DL, VT, N00VT); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) |
| return SCC; |
| |
| if (!VT.isVector() && !shouldConvertSelectOfConstantsToMath(N0, VT, TLI)) { |
| EVT SetCCVT = getSetCCResultType(N00VT); |
| // Don't do this transform for i1 because there's a select transform |
| // that would reverse it. |
| // TODO: We should not do this transform at all without a target hook |
| // because a sext is likely cheaper than a select? |
| if (SetCCVT.getScalarSizeInBits() != 1 && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { |
| SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); |
| return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVCastOp(N, DL)) |
| return FoldedVOp; |
| |
| // sext(undef) = 0 because the top bit will all be the same. |
| if (N0.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| // fold (sext (sext x)) -> (sext x) |
| // fold (sext (aext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); |
| |
| // fold (sext (sext_inreg x)) -> (sext (trunc x)) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| SDValue N00 = N0.getOperand(0); |
| EVT ExtVT = cast<VTSDNode>(N0->getOperand(1))->getVT(); |
| if (N00.getOpcode() == ISD::TRUNCATE && |
| (!LegalTypes || TLI.isTypeLegal(ExtVT))) { |
| SDValue T = DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N00.getOperand(0)); |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, T); |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| // fold (sext (truncate (load x))) -> (sext (smaller load x)) |
| // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) |
| if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // See if the value being truncated is already sign extended. If so, just |
| // eliminate the trunc/sext pair. |
| SDValue Op = N0.getOperand(0); |
| unsigned OpBits = Op.getScalarValueSizeInBits(); |
| unsigned MidBits = N0.getScalarValueSizeInBits(); |
| unsigned DestBits = VT.getScalarSizeInBits(); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(Op); |
| |
| if (OpBits == DestBits) { |
| // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign |
| // bits, it is already ready. |
| if (NumSignBits > DestBits-MidBits) |
| return Op; |
| } else if (OpBits < DestBits) { |
| // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign |
| // bits, just sext from i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); |
| } else { |
| // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign |
| // bits, just truncate to i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| // fold (sext (truncate x)) -> (sextinreg x). |
| if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, |
| N0.getValueType())) { |
| if (OpBits < DestBits) |
| Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); |
| else if (OpBits > DestBits) |
| Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, |
| DAG.getValueType(N0.getValueType())); |
| } |
| } |
| |
| // Try to simplify (sext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::SEXTLOAD, ISD::SIGN_EXTEND)) |
| return foldedExt; |
| |
| if (SDValue foldedExt = |
| tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, |
| ISD::SIGN_EXTEND)) |
| return foldedExt; |
| |
| // fold (sext (load x)) to multiple smaller sextloads. |
| // Only on illegal but splittable vectors. |
| if (SDValue ExtLoad = CombineExtLoad(N)) |
| return ExtLoad; |
| |
| // Try to simplify (sext (sextload x)). |
| if (SDValue foldedExt = tryToFoldExtOfExtload( |
| DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) |
| return foldedExt; |
| |
| // fold (sext (and/or/xor (load x), cst)) -> |
| // (and/or/xor (sextload x), (sext cst)) |
| if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); |
| EVT MemVT = LN00->getMemoryVT(); |
| if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && |
| LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { |
| SmallVector<SDNode*, 4> SetCCs; |
| bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), |
| ISD::SIGN_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, |
| LN00->getChain(), LN00->getBasePtr(), |
| LN00->getMemoryVT(), |
| LN00->getMemOperand()); |
| APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, |
| ExtLoad, DAG.getConstant(Mask, DL, VT)); |
| ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); |
| bool NoReplaceTruncAnd = !N0.hasOneUse(); |
| bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); |
| CombineTo(N, And); |
| // If N0 has multiple uses, change other uses as well. |
| if (NoReplaceTruncAnd) { |
| SDValue TruncAnd = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); |
| CombineTo(N0.getNode(), TruncAnd); |
| } |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), |
| LN00->getValueType(0), ExtLoad); |
| CombineTo(LN00, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) |
| return V; |
| |
| if (SDValue V = foldSextSetcc(N)) |
| return V; |
| |
| // fold (sext x) -> (zext x) if the sign bit is known zero. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && |
| DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| // Eliminate this sign extend by doing a negation in the destination type: |
| // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && |
| isNullOrNullSplat(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && |
| TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { |
| SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); |
| return DAG.getNegative(Zext, DL, VT); |
| } |
| // Eliminate this sign extend by doing a decrement in the destination type: |
| // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) |
| if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && |
| isAllOnesOrAllOnesSplat(N0.getOperand(1)) && |
| N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && |
| TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { |
| SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); |
| return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); |
| } |
| |
| // fold sext (not i1 X) -> add (zext i1 X), -1 |
| // TODO: This could be extended to handle bool vectors. |
| if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && |
| (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && |
| TLI.isOperationLegal(ISD::ADD, VT)))) { |
| // If we can eliminate the 'not', the sext form should be better |
| if (SDValue NewXor = visitXOR(N0.getNode())) { |
| // Returning N0 is a form of in-visit replacement that may have |
| // invalidated N0. |
| if (NewXor.getNode() == N0.getNode()) { |
| // Return SDValue here as the xor should have already been replaced in |
| // this sext. |
| return SDValue(); |
| } |
| |
| // Return a new sext with the new xor. |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); |
| } |
| |
| SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); |
| return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); |
| } |
| |
| if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| // isTruncateOf - If N is a truncate of some other value, return true, record |
| // the value being truncated in Op and which of Op's bits are zero/one in Known. |
| // This function computes KnownBits to avoid a duplicated call to |
| // computeKnownBits in the caller. |
| static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, |
| KnownBits &Known) { |
| if (N->getOpcode() == ISD::TRUNCATE) { |
| Op = N->getOperand(0); |
| Known = DAG.computeKnownBits(Op); |
| return true; |
| } |
| |
| if (N.getOpcode() != ISD::SETCC || |
| N.getValueType().getScalarType() != MVT::i1 || |
| cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) |
| return false; |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| assert(Op0.getValueType() == Op1.getValueType()); |
| |
| if (isNullOrNullSplat(Op0)) |
| Op = Op1; |
| else if (isNullOrNullSplat(Op1)) |
| Op = Op0; |
| else |
| return false; |
| |
| Known = DAG.computeKnownBits(Op); |
| |
| return (Known.Zero | 1).isAllOnes(); |
| } |
| |
| /// Given an extending node with a pop-count operand, if the target does not |
| /// support a pop-count in the narrow source type but does support it in the |
| /// destination type, widen the pop-count to the destination type. |
| static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { |
| assert((Extend->getOpcode() == ISD::ZERO_EXTEND || |
| Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); |
| |
| SDValue CtPop = Extend->getOperand(0); |
| if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) |
| return SDValue(); |
| |
| EVT VT = Extend->getValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || |
| !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) |
| return SDValue(); |
| |
| // zext (ctpop X) --> ctpop (zext X) |
| SDLoc DL(Extend); |
| SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); |
| return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); |
| } |
| |
| // If we have (zext (abs X)) where X is a type that will be promoted by type |
| // legalization, convert to (abs (sext X)). But don't extend past a legal type. |
| static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG) { |
| assert(Extend->getOpcode() == ISD::ZERO_EXTEND && "Expected zero extend."); |
| |
| EVT VT = Extend->getValueType(0); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| SDValue Abs = Extend->getOperand(0); |
| if (Abs.getOpcode() != ISD::ABS || !Abs.hasOneUse()) |
| return SDValue(); |
| |
| EVT AbsVT = Abs.getValueType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.getTypeAction(*DAG.getContext(), AbsVT) != |
| TargetLowering::TypePromoteInteger) |
| return SDValue(); |
| |
| EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), AbsVT); |
| |
| SDValue SExt = |
| DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Abs), LegalVT, Abs.getOperand(0)); |
| SDValue NewAbs = DAG.getNode(ISD::ABS, SDLoc(Abs), LegalVT, SExt); |
| return DAG.getZExtOrTrunc(NewAbs, SDLoc(Extend), VT); |
| } |
| |
| SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVCastOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| // zext(undef) = 0 |
| if (N0.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| // fold (zext (zext x)) -> (zext x) |
| // fold (zext (aext x)) -> (zext x) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, |
| N0.getOperand(0)); |
| |
| // fold (zext (truncate x)) -> (zext x) or |
| // (zext (truncate x)) -> (truncate x) |
| // This is valid when the truncated bits of x are already zero. |
| SDValue Op; |
| KnownBits Known; |
| if (isTruncateOf(DAG, N0, Op, Known)) { |
| APInt TruncatedBits = |
| (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? |
| APInt(Op.getScalarValueSizeInBits(), 0) : |
| APInt::getBitsSet(Op.getScalarValueSizeInBits(), |
| N0.getScalarValueSizeInBits(), |
| std::min(Op.getScalarValueSizeInBits(), |
| VT.getScalarSizeInBits())); |
| if (TruncatedBits.isSubsetOf(Known.Zero)) |
| return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); |
| } |
| |
| // fold (zext (truncate x)) -> (and x, mask) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| // fold (zext (truncate (load x))) -> (zext (smaller load x)) |
| // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) |
| if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| EVT SrcVT = N0.getOperand(0).getValueType(); |
| EVT MinVT = N0.getValueType(); |
| |
| // Try to mask before the extension to avoid having to generate a larger mask, |
| // possibly over several sub-vectors. |
| if (SrcVT.bitsLT(VT) && VT.isVector()) { |
| if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && |
| TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { |
| SDValue Op = N0.getOperand(0); |
| Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); |
| AddToWorklist(Op.getNode()); |
| SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); |
| // Transfer the debug info; the new node is equivalent to N0. |
| DAG.transferDbgValues(N0, ZExtOrTrunc); |
| return ZExtOrTrunc; |
| } |
| } |
| |
| if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { |
| SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); |
| AddToWorklist(Op.getNode()); |
| SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); |
| // We may safely transfer the debug info describing the truncate node over |
| // to the equivalent and operation. |
| DAG.transferDbgValues(N0, And); |
| return And; |
| } |
| } |
| |
| // Fold (zext (and (trunc x), cst)) -> (and x, cst), |
| // if either of the casts is not free. |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), |
| N0.getValueType()) || |
| !TLI.isZExtFree(N0.getValueType(), VT))) { |
| SDValue X = N0.getOperand(0).getOperand(0); |
| X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); |
| APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, |
| X, DAG.getConstant(Mask, DL, VT)); |
| } |
| |
| // Try to simplify (zext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) |
| return foldedExt; |
| |
| if (SDValue foldedExt = |
| tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, |
| ISD::ZERO_EXTEND)) |
| return foldedExt; |
| |
| // fold (zext (load x)) to multiple smaller zextloads. |
| // Only on illegal but splittable vectors. |
| if (SDValue ExtLoad = CombineExtLoad(N)) |
| return ExtLoad; |
| |
| // fold (zext (and/or/xor (load x), cst)) -> |
| // (and/or/xor (zextload x), (zext cst)) |
| // Unless (and (load x) cst) will match as a zextload already and has |
| // additional users. |
| if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); |
| EVT MemVT = LN00->getMemoryVT(); |
| if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && |
| LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) { |
| if (N0.getOpcode() == ISD::AND) { |
| auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); |
| EVT LoadResultTy = AndC->getValueType(0); |
| EVT ExtVT; |
| if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) |
| DoXform = false; |
| } |
| } |
| if (DoXform) |
| DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), |
| ISD::ZERO_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, |
| LN00->getChain(), LN00->getBasePtr(), |
| LN00->getMemoryVT(), |
| LN00->getMemOperand()); |
| APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); |
| SDLoc DL(N); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, |
| ExtLoad, DAG.getConstant(Mask, DL, VT)); |
| ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); |
| bool NoReplaceTruncAnd = !N0.hasOneUse(); |
| bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); |
| CombineTo(N, And); |
| // If N0 has multiple uses, change other uses as well. |
| if (NoReplaceTruncAnd) { |
| SDValue TruncAnd = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); |
| CombineTo(N0.getNode(), TruncAnd); |
| } |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), |
| LN00->getValueType(0), ExtLoad); |
| CombineTo(LN00, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> |
| // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) |
| if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) |
| return ZExtLoad; |
| |
| // Try to simplify (zext (zextload x)). |
| if (SDValue foldedExt = tryToFoldExtOfExtload( |
| DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) |
| return foldedExt; |
| |
| if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| // Propagate fast-math-flags. |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags()); |
| |
| // Only do this before legalize for now. |
| if (!LegalOperations && VT.isVector() && |
| N0.getValueType().getVectorElementType() == MVT::i1) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (getSetCCResultType(N00VT) == N0.getValueType()) |
| return SDValue(); |
| |
| // We know that the # elements of the results is the same as the # |
| // elements of the compare (and the # elements of the compare result for |
| // that matter). Check to see that they are the same size. If so, we know |
| // that the element size of the sext'd result matches the element size of |
| // the compare operands. |
| SDLoc DL(N); |
| if (VT.getSizeInBits() == N00VT.getSizeInBits()) { |
| // zext(setcc) -> zext_in_reg(vsetcc) for vectors. |
| SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2)); |
| return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); |
| } |
| |
| // If the desired elements are smaller or larger than the source |
| // elements we can use a matching integer vector type and then |
| // truncate/any extend followed by zext_in_reg. |
| EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); |
| SDValue VsetCC = |
| DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2)); |
| return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, |
| N0.getValueType()); |
| } |
| |
| // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) |
| SDLoc DL(N); |
| EVT N0VT = N0.getValueType(); |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (SDValue SCC = SimplifySelectCC( |
| DL, N0.getOperand(0), N0.getOperand(1), |
| DAG.getBoolConstant(true, DL, N0VT, N00VT), |
| DAG.getBoolConstant(false, DL, N0VT, N00VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); |
| } |
| |
| // (zext (shl (zext x), cst)) -> (shl (zext x), cst) |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && |
| N0.hasOneUse()) { |
| SDValue ShAmt = N0.getOperand(1); |
| if (N0.getOpcode() == ISD::SHL) { |
| SDValue InnerZExt = N0.getOperand(0); |
| // If the original shl may be shifting out bits, do not perform this |
| // transformation. |
| unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - |
| InnerZExt.getOperand(0).getValueSizeInBits(); |
| if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| |
| // Ensure that the shift amount is wide enough for the shifted value. |
| if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) |
| ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); |
| |
| return DAG.getNode(N0.getOpcode(), DL, VT, |
| DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), |
| ShAmt); |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| if (SDValue NewCtPop = widenCtPop(N, DAG)) |
| return NewCtPop; |
| |
| if (SDValue V = widenAbs(N, DAG)) |
| return V; |
| |
| if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // aext(undef) = undef |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); |
| |
| // fold (aext (truncate (load x))) -> (aext (smaller load x)) |
| // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (aext (truncate x)) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); |
| |
| // Fold (aext (and (trunc x), cst)) -> (and x, cst) |
| // if the trunc is not free. |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), |
| N0.getValueType())) { |
| SDLoc DL(N); |
| SDValue X = DAG.getAnyExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); |
| SDValue Y = DAG.getNode(ISD::ANY_EXTEND, DL, VT, N0.getOperand(1)); |
| assert(isa<ConstantSDNode>(Y) && "Expected constant to be folded!"); |
| return DAG.getNode(ISD::AND, DL, VT, X, Y); |
| } |
| |
| // fold (aext (load x)) -> (aext (truncate (extload x))) |
| // None of the supported targets knows how to perform load and any_ext |
| // on vectors in one instruction, so attempt to fold to zext instead. |
| if (VT.isVector()) { |
| // Try to simplify (zext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) |
| return foldedExt; |
| } else if (ISD::isNON_EXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && |
| TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { |
| bool DoXform = true; |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = |
| ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), LN0->getBasePtr(), |
| N0.getValueType(), LN0->getMemOperand()); |
| ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); |
| // If the load value is used only by N, replace it via CombineTo N. |
| bool NoReplaceTrunc = N0.hasOneUse(); |
| CombineTo(N, ExtLoad); |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| recursivelyDeleteUnusedNodes(LN0); |
| } else { |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); |
| CombineTo(LN0, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (aext (zextload x)) -> (aext (truncate (zextload x))) |
| // fold (aext (sextload x)) -> (aext (truncate (sextload x))) |
| // fold (aext ( extload x)) -> (aext (truncate (extload x))) |
| if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| ISD::LoadExtType ExtType = LN0->getExtensionType(); |
| EVT MemVT = LN0->getMemoryVT(); |
| if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { |
| SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), |
| VT, LN0->getChain(), LN0->getBasePtr(), |
| MemVT, LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| recursivelyDeleteUnusedNodes(LN0); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| // Propagate fast-math-flags. |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags()); |
| |
| // For vectors: |
| // aext(setcc) -> vsetcc |
| // aext(setcc) -> truncate(vsetcc) |
| // aext(setcc) -> aext(vsetcc) |
| // Only do this before legalize for now. |
| if (VT.isVector() && !LegalOperations) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (getSetCCResultType(N00VT) == N0.getValueType()) |
| return SDValue(); |
| |
| // We know that the # elements of the results is the same as the |
| // # elements of the compare (and the # elements of the compare result |
| // for that matter). Check to see that they are the same size. If so, |
| // we know that the element size of the sext'd result matches the |
| // element size of the compare operands. |
| if (VT.getSizeInBits() == N00VT.getSizeInBits()) |
| return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| |
| // If the desired elements are smaller or larger than the source |
| // elements we can use a matching integer vector type and then |
| // truncate/any extend |
| EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); |
| SDValue VsetCC = |
| DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), |
| N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); |
| } |
| |
| // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| SDLoc DL(N); |
| if (SDValue SCC = SimplifySelectCC( |
| DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) |
| return SCC; |
| } |
| |
| if (SDValue NewCtPop = widenCtPop(N, DAG)) |
| return NewCtPop; |
| |
| if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitAssertExt(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT AssertVT = cast<VTSDNode>(N1)->getVT(); |
| |
| // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) |
| if (N0.getOpcode() == Opcode && |
| AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) |
| return N0; |
| |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == Opcode) { |
| // We have an assert, truncate, assert sandwich. Make one stronger assert |
| // by asserting on the smallest asserted type to the larger source type. |
| // This eliminates the later assert: |
| // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN |
| // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN |
| SDLoc DL(N); |
| SDValue BigA = N0.getOperand(0); |
| EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); |
| EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; |
| SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); |
| SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), |
| BigA.getOperand(0), MinAssertVTVal); |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); |
| } |
| |
| // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller |
| // than X. Just move the AssertZext in front of the truncate and drop the |
| // AssertSExt. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::AssertSext && |
| Opcode == ISD::AssertZext) { |
| SDValue BigA = N0.getOperand(0); |
| EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); |
| if (AssertVT.bitsLT(BigA_AssertVT)) { |
| SDLoc DL(N); |
| SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), |
| BigA.getOperand(0), N1); |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitAssertAlign(SDNode *N) { |
| SDLoc DL(N); |
| |
| Align AL = cast<AssertAlignSDNode>(N)->getAlign(); |
| SDValue N0 = N->getOperand(0); |
| |
| // Fold (assertalign (assertalign x, AL0), AL1) -> |
| // (assertalign x, max(AL0, AL1)) |
| if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) |
| return DAG.getAssertAlign(DL, N0.getOperand(0), |
| std::max(AL, AAN->getAlign())); |
| |
| // In rare cases, there are trivial arithmetic ops in source operands. Sink |
| // this assert down to source operands so that those arithmetic ops could be |
| // exposed to the DAG combining. |
| switch (N0.getOpcode()) { |
| default: |
| break; |
| case ISD::ADD: |
| case ISD::SUB: { |
| unsigned AlignShift = Log2(AL); |
| SDValue LHS = N0.getOperand(0); |
| SDValue RHS = N0.getOperand(1); |
| unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); |
| unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); |
| if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { |
| if (LHSAlignShift < AlignShift) |
| LHS = DAG.getAssertAlign(DL, LHS, AL); |
| if (RHSAlignShift < AlignShift) |
| RHS = DAG.getAssertAlign(DL, RHS, AL); |
| return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); |
| } |
| break; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If the result of a load is shifted/masked/truncated to an effectively |
| /// narrower type, try to transform the load to a narrower type and/or |
| /// use an extending load. |
| SDValue DAGCombiner::reduceLoadWidth(SDNode *N) { |
| unsigned Opc = N->getOpcode(); |
| |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT ExtVT = VT; |
| |
| // This transformation isn't valid for vector loads. |
| if (VT.isVector()) |
| return SDValue(); |
| |
| // The ShAmt variable is used to indicate that we've consumed a right |
| // shift. I.e. we want to narrow the width of the load by skipping to load the |
| // ShAmt least significant bits. |
| unsigned ShAmt = 0; |
| // A special case is when the least significant bits from the load are masked |
| // away, but using an AND rather than a right shift. HasShiftedOffset is used |
| // to indicate that the narrowed load should be left-shifted ShAmt bits to get |
| // the result. |
| bool HasShiftedOffset = false; |
| // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then |
| // extended to VT. |
| if (Opc == ISD::SIGN_EXTEND_INREG) { |
| ExtType = ISD::SEXTLOAD; |
| ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| } else if (Opc == ISD::SRL || Opc == ISD::SRA) { |
| // Another special-case: SRL/SRA is basically zero/sign-extending a narrower |
| // value, or it may be shifting a higher subword, half or byte into the |
| // lowest bits. |
| |
| // Only handle shift with constant shift amount, and the shiftee must be a |
| // load. |
| auto *LN = dyn_cast<LoadSDNode>(N0); |
| auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!N1C || !LN) |
| return SDValue(); |
| // If the shift amount is larger than the memory type then we're not |
| // accessing any of the loaded bytes. |
| ShAmt = N1C->getZExtValue(); |
| uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits(); |
| if (MemoryWidth <= ShAmt) |
| return SDValue(); |
| // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD. |
| ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD; |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); |
| // If original load is a SEXTLOAD then we can't simply replace it by a |
| // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD |
| // followed by a ZEXT, but that is not handled at the moment). Similarly if |
| // the original load is a ZEXTLOAD and we want to use a SEXTLOAD. |
| if ((LN->getExtensionType() == ISD::SEXTLOAD || |
| LN->getExtensionType() == ISD::ZEXTLOAD) && |
| LN->getExtensionType() != ExtType) |
| return SDValue(); |
| } else if (Opc == ISD::AND) { |
| // An AND with a constant mask is the same as a truncate + zero-extend. |
| auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!AndC) |
| return SDValue(); |
| |
| const APInt &Mask = AndC->getAPIntValue(); |
| unsigned ActiveBits = 0; |
| if (Mask.isMask()) { |
| ActiveBits = Mask.countTrailingOnes(); |
| } else if (Mask.isShiftedMask(ShAmt, ActiveBits)) { |
| HasShiftedOffset = true; |
| } else { |
| return SDValue(); |
| } |
| |
| ExtType = ISD::ZEXTLOAD; |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| } |
| |
| // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing |
| // a right shift. Here we redo some of those checks, to possibly adjust the |
| // ExtVT even further based on "a masking AND". We could also end up here for |
| // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks |
| // need to be done here as well. |
| if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) { |
| SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0; |
| // Bail out when the SRL has more than one use. This is done for historical |
| // (undocumented) reasons. Maybe intent was to guard the AND-masking below |
| // check below? And maybe it could be non-profitable to do the transform in |
| // case the SRL has multiple uses and we get here with Opc!=ISD::SRL? |
| // FIXME: Can't we just skip this check for the Opc==ISD::SRL case. |
| if (!SRL.hasOneUse()) |
| return SDValue(); |
| |
| // Only handle shift with constant shift amount, and the shiftee must be a |
| // load. |
| auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0)); |
| auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1)); |
| if (!SRL1C || !LN) |
| return SDValue(); |
| |
| // If the shift amount is larger than the input type then we're not |
| // accessing any of the loaded bytes. If the load was a zextload/extload |
| // then the result of the shift+trunc is zero/undef (handled elsewhere). |
| ShAmt = SRL1C->getZExtValue(); |
| uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits(); |
| if (ShAmt >= MemoryWidth) |
| return SDValue(); |
| |
| // Because a SRL must be assumed to *need* to zero-extend the high bits |
| // (as opposed to anyext the high bits), we can't combine the zextload |
| // lowering of SRL and an sextload. |
| if (LN->getExtensionType() == ISD::SEXTLOAD) |
| return SDValue(); |
| |
| // Avoid reading outside the memory accessed by the original load (could |
| // happened if we only adjust the load base pointer by ShAmt). Instead we |
| // try to narrow the load even further. The typical scenario here is: |
| // (i64 (truncate (i96 (srl (load x), 64)))) -> |
| // (i64 (truncate (i96 (zextload (load i32 + offset) from i32)))) |
| if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) { |
| // Don't replace sextload by zextload. |
| if (ExtType == ISD::SEXTLOAD) |
| return SDValue(); |
| // Narrow the load. |
| ExtType = ISD::ZEXTLOAD; |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); |
| } |
| |
| // If the SRL is only used by a masking AND, we may be able to adjust |
| // the ExtVT to make the AND redundant. |
| SDNode *Mask = *(SRL->use_begin()); |
| if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(Mask->getOperand(1))) { |
| const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); |
| if (ShiftMask.isMask()) { |
| EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), |
| ShiftMask.countTrailingOnes()); |
| // If the mask is smaller, recompute the type. |
| if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && |
| TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) |
| ExtVT = MaskedVT; |
| } |
| } |
| |
| N0 = SRL.getOperand(0); |
| } |
| |
| // If the load is shifted left (and the result isn't shifted back right), we |
| // can fold a truncate through the shift. The typical scenario is that N |
| // points at a TRUNCATE here so the attempted fold is: |
| // (truncate (shl (load x), c))) -> (shl (narrow load x), c) |
| // ShLeftAmt will indicate how much a narrowed load should be shifted left. |
| unsigned ShLeftAmt = 0; |
| if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && |
| ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { |
| if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| ShLeftAmt = N01->getZExtValue(); |
| N0 = N0.getOperand(0); |
| } |
| } |
| |
| // If we haven't found a load, we can't narrow it. |
| if (!isa<LoadSDNode>(N0)) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| // Reducing the width of a volatile load is illegal. For atomics, we may be |
| // able to reduce the width provided we never widen again. (see D66309) |
| if (!LN0->isSimple() || |
| !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) |
| return SDValue(); |
| |
| auto AdjustBigEndianShift = [&](unsigned ShAmt) { |
| unsigned LVTStoreBits = |
| LN0->getMemoryVT().getStoreSizeInBits().getFixedValue(); |
| unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedValue(); |
| return LVTStoreBits - EVTStoreBits - ShAmt; |
| }; |
| |
| // We need to adjust the pointer to the load by ShAmt bits in order to load |
| // the correct bytes. |
| unsigned PtrAdjustmentInBits = |
| DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt; |
| |
| uint64_t PtrOff = PtrAdjustmentInBits / 8; |
| Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); |
| SDLoc DL(LN0); |
| // The original load itself didn't wrap, so an offset within it doesn't. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), |
| TypeSize::Fixed(PtrOff), DL, Flags); |
| AddToWorklist(NewPtr.getNode()); |
| |
| SDValue Load; |
| if (ExtType == ISD::NON_EXTLOAD) |
| Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, |
| LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| else |
| Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, |
| LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, |
| NewAlign, LN0->getMemOperand()->getFlags(), |
| LN0->getAAInfo()); |
| |
| // Replace the old load's chain with the new load's chain. |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| |
| // Shift the result left, if we've swallowed a left shift. |
| SDValue Result = Load; |
| if (ShLeftAmt != 0) { |
| EVT ShImmTy = getShiftAmountTy(Result.getValueType()); |
| if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) |
| ShImmTy = VT; |
| // If the shift amount is as large as the result size (but, presumably, |
| // no larger than the source) then the useful bits of the result are |
| // zero; we can't simply return the shortened shift, because the result |
| // of that operation is undefined. |
| if (ShLeftAmt >= VT.getScalarSizeInBits()) |
| Result = DAG.getConstant(0, DL, VT); |
| else |
| Result = DAG.getNode(ISD::SHL, DL, VT, |
| Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); |
| } |
| |
| if (HasShiftedOffset) { |
| // We're using a shifted mask, so the load now has an offset. This means |
| // that data has been loaded into the lower bytes than it would have been |
| // before, so we need to shl the loaded data into the correct position in the |
| // register. |
| SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); |
| Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| } |
| |
| // Return the new loaded value. |
| return Result; |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT ExtVT = cast<VTSDNode>(N1)->getVT(); |
| unsigned VTBits = VT.getScalarSizeInBits(); |
| unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); |
| |
| // sext_vector_inreg(undef) = 0 because the top bit will all be the same. |
| if (N0.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // fold (sext_in_reg c1) -> c1 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); |
| |
| // If the input is already sign extended, just drop the extension. |
| if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0)) |
| return N0; |
| |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), |
| N1); |
| |
| // fold (sext_in_reg (sext x)) -> (sext x) |
| // fold (sext_in_reg (aext x)) -> (sext x) |
| // if x is small enough or if we know that x has more than 1 sign bit and the |
| // sign_extend_inreg is extending from one of them. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| unsigned N00Bits = N00.getScalarValueSizeInBits(); |
| if ((N00Bits <= ExtVTBits || |
| DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); |
| } |
| |
| // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) |
| // if x is small enough or if we know that x has more than 1 sign bit and the |
| // sign_extend_inreg is extending from one of them. |
| if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || |
| N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || |
| N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { |
| SDValue N00 = N0.getOperand(0); |
| unsigned N00Bits = N00.getScalarValueSizeInBits(); |
| unsigned DstElts = N0.getValueType().getVectorMinNumElements(); |
| unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); |
| bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; |
| APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); |
| if ((N00Bits == ExtVTBits || |
| (!IsZext && (N00Bits < ExtVTBits || |
| DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) && |
| (!LegalOperations || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); |
| } |
| |
| // fold (sext_in_reg (zext x)) -> (sext x) |
| // iff we are extending the source sign bit. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getScalarValueSizeInBits() == ExtVTBits && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); |
| } |
| |
| // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. |
| if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) |
| return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); |
| |
| // fold operands of sext_in_reg based on knowledge that the top bits are not |
| // demanded. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (sext_in_reg (load x)) -> (smaller sextload x) |
| // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) |
| if (SDValue NarrowLoad = reduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) |
| // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. |
| // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. |
| if (N0.getOpcode() == ISD::SRL) { |
| if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { |
| // We can turn this into an SRA iff the input to the SRL is already sign |
| // extended enough. |
| unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); |
| if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) |
| return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| } |
| |
| // fold (sext_inreg (extload x)) -> (sextload x) |
| // If sextload is not supported by target, we can only do the combine when |
| // load has one use. Doing otherwise can block folding the extload with other |
| // extends that the target does support. |
| if (ISD::isEXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && |
| ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && |
| N0.hasOneUse()) || |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), ExtVT, |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| AddToWorklist(ExtLoad.getNode()); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use |
| if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && |
| N0.hasOneUse() && |
| ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), ExtVT, |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) |
| // ignore it if the masked load is already sign extended |
| if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { |
| if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && |
| Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { |
| SDValue ExtMaskedLoad = DAG.getMaskedLoad( |
| VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), |
| Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), |
| Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); |
| CombineTo(N, ExtMaskedLoad); |
| CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) |
| if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { |
| if (SDValue(GN0, 0).hasOneUse() && |
| ExtVT == GN0->getMemoryVT() && |
| TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { |
| SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), |
| GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; |
| |
| SDValue ExtLoad = DAG.getMaskedGather( |
| DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, |
| GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); |
| |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| AddToWorklist(ExtLoad.getNode()); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) |
| if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { |
| if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), |
| N0.getOperand(1), false)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); |
| } |
| |
| // Fold (iM_signext_inreg |
| // (extract_subvector (zext|anyext|sext iN_v to _) _) |
| // from iN) |
| // -> (extract_subvector (signext iN_v to iM)) |
| if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && |
| ISD::isExtOpcode(N0.getOperand(0).getOpcode())) { |
| SDValue InnerExt = N0.getOperand(0); |
| EVT InnerExtVT = InnerExt->getValueType(0); |
| SDValue Extendee = InnerExt->getOperand(0); |
| |
| if (ExtVTBits == Extendee.getValueType().getScalarSizeInBits() && |
| (!LegalOperations || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND, InnerExtVT))) { |
| SDValue SignExtExtendee = |
| DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), InnerExtVT, Extendee); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, SignExtExtendee, |
| N0.getOperand(1)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue |
| foldExtendVectorInregToExtendOfSubvector(SDNode *N, const TargetLowering &TLI, |
| SelectionDAG &DAG, |
| bool LegalOperations) { |
| unsigned InregOpcode = N->getOpcode(); |
| unsigned Opcode = DAG.getOpcode_EXTEND(InregOpcode); |
| |
| SDValue Src = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT SrcVT = EVT::getVectorVT(*DAG.getContext(), |
| Src.getValueType().getVectorElementType(), |
| VT.getVectorElementCount()); |
| |
| assert((InregOpcode == ISD::SIGN_EXTEND_VECTOR_INREG || |
| InregOpcode == ISD::ZERO_EXTEND_VECTOR_INREG || |
| InregOpcode == ISD::ANY_EXTEND_VECTOR_INREG) && |
| "Expected EXTEND_VECTOR_INREG dag node in input!"); |
| |
| // Profitability check: our operand must be an one-use CONCAT_VECTORS. |
| // FIXME: one-use check may be overly restrictive |
| if (!Src.hasOneUse() || Src.getOpcode() != ISD::CONCAT_VECTORS) |
| return SDValue(); |
| |
| // Profitability check: we must be extending exactly one of it's operands. |
| // FIXME: this is probably overly restrictive. |
| Src = Src.getOperand(0); |
| if (Src.getValueType() != SrcVT) |
| return SDValue(); |
| |
| if (LegalOperations && !TLI.isOperationLegal(Opcode, VT)) |
| return SDValue(); |
| |
| return DAG.getNode(Opcode, SDLoc(N), VT, Src); |
| } |
| |
| SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) { |
| // aext_vector_inreg(undef) = undef because the top bits are undefined. |
| // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. |
| return N->getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG |
| ? DAG.getUNDEF(VT) |
| : DAG.getConstant(0, SDLoc(N), VT); |
| } |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (SDValue R = foldExtendVectorInregToExtendOfSubvector(N, TLI, DAG, |
| LegalOperations)) |
| return R; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT SrcVT = N0.getValueType(); |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| |
| // noop truncate |
| if (SrcVT == VT) |
| return N0; |
| |
| // fold (truncate (truncate x)) -> (truncate x) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); |
| |
| // fold (truncate c1) -> c1 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); |
| if (C.getNode() != N) |
| return C; |
| } |
| |
| // fold (truncate (ext x)) -> (ext x) or (truncate x) or x |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND) { |
| // if the source is smaller than the dest, we still need an extend. |
| if (N0.getOperand(0).getValueType().bitsLT(VT)) |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); |
| // if the source is larger than the dest, than we just need the truncate. |
| if (N0.getOperand(0).getValueType().bitsGT(VT)) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); |
| // if the source and dest are the same type, we can drop both the extend |
| // and the truncate. |
| return N0.getOperand(0); |
| } |
| |
| // Try to narrow a truncate-of-sext_in_reg to the destination type: |
| // trunc (sign_ext_inreg X, iM) to iN --> sign_ext_inreg (trunc X to iN), iM |
| if (!LegalTypes && N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| N0.hasOneUse()) { |
| SDValue X = N0.getOperand(0); |
| SDValue ExtVal = N0.getOperand(1); |
| EVT ExtVT = cast<VTSDNode>(ExtVal)->getVT(); |
| if (ExtVT.bitsLT(VT)) { |
| SDValue TrX = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, TrX, ExtVal); |
| } |
| } |
| |
| // If this is anyext(trunc), don't fold it, allow ourselves to be folded. |
| if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) |
| return SDValue(); |
| |
| // Fold extract-and-trunc into a narrow extract. For example: |
| // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) |
| // i32 y = TRUNCATE(i64 x) |
| // -- becomes -- |
| // v16i8 b = BITCAST (v2i64 val) |
| // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) |
| // |
| // Note: We only run this optimization after type legalization (which often |
| // creates this pattern) and before operation legalization after which |
| // we need to be more careful about the vector instructions that we generate. |
| if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { |
| EVT VecTy = N0.getOperand(0).getValueType(); |
| EVT ExTy = N0.getValueType(); |
| EVT TrTy = N->getValueType(0); |
| |
| auto EltCnt = VecTy.getVectorElementCount(); |
| unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); |
| auto NewEltCnt = EltCnt * SizeRatio; |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); |
| assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); |
| |
| SDValue EltNo = N0->getOperand(1); |
| if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { |
| int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); |
| |
| SDLoc DL(N); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, |
| DAG.getBitcast(NVT, N0.getOperand(0)), |
| DAG.getVectorIdxConstant(Index, DL)); |
| } |
| } |
| |
| // trunc (select c, a, b) -> select c, (trunc a), (trunc b) |
| if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && |
| TLI.isTruncateFree(SrcVT, VT)) { |
| SDLoc SL(N0); |
| SDValue Cond = N0.getOperand(0); |
| SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); |
| SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); |
| return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); |
| } |
| } |
| |
| // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() |
| if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && |
| TLI.isTypeDesirableForOp(ISD::SHL, VT)) { |
| SDValue Amt = N0.getOperand(1); |
| KnownBits Known = DAG.computeKnownBits(Amt); |
| unsigned Size = VT.getScalarSizeInBits(); |
| if (Known.countMaxActiveBits() <= Log2_32(Size)) { |
| SDLoc SL(N); |
| EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); |
| if (AmtVT != Amt.getValueType()) { |
| Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); |
| AddToWorklist(Amt.getNode()); |
| } |
| return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); |
| } |
| } |
| |
| if (SDValue V = foldSubToUSubSat(VT, N0.getNode())) |
| return V; |
| |
| // Attempt to pre-truncate BUILD_VECTOR sources. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && |
| TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && |
| // Avoid creating illegal types if running after type legalizer. |
| (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { |
| SDLoc DL(N); |
| EVT SVT = VT.getScalarType(); |
| SmallVector<SDValue, 8> TruncOps; |
| for (const SDValue &Op : N0->op_values()) { |
| SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); |
| TruncOps.push_back(TruncOp); |
| } |
| return DAG.getBuildVector(VT, DL, TruncOps); |
| } |
| |
| // Fold a series of buildvector, bitcast, and truncate if possible. |
| // For example fold |
| // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to |
| // (2xi32 (buildvector x, y)). |
| if (Level == AfterLegalizeVectorOps && VT.isVector() && |
| N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue BuildVect = N0.getOperand(0); |
| EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); |
| EVT TruncVecEltTy = VT.getVectorElementType(); |
| |
| // Check that the element types match. |
| if (BuildVectEltTy == TruncVecEltTy) { |
| // Now we only need to compute the offset of the truncated elements. |
| unsigned BuildVecNumElts = BuildVect.getNumOperands(); |
| unsigned TruncVecNumElts = VT.getVectorNumElements(); |
| unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; |
| |
| assert((BuildVecNumElts % TruncVecNumElts) == 0 && |
| "Invalid number of elements"); |
| |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) |
| Opnds.push_back(BuildVect.getOperand(i)); |
| |
| return DAG.getBuildVector(VT, SDLoc(N), Opnds); |
| } |
| } |
| |
| // fold (truncate (load x)) -> (smaller load x) |
| // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) |
| if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { |
| if (SDValue Reduced = reduceLoadWidth(N)) |
| return Reduced; |
| |
| // Handle the case where the load remains an extending load even |
| // after truncation. |
| if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { |
| SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), |
| VT, LN0->getChain(), LN0->getBasePtr(), |
| LN0->getMemoryVT(), |
| LN0->getMemOperand()); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); |
| return NewLoad; |
| } |
| } |
| } |
| |
| // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), |
| // where ... are all 'undef'. |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { |
| SmallVector<EVT, 8> VTs; |
| SDValue V; |
| unsigned Idx = 0; |
| unsigned NumDefs = 0; |
| |
| for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { |
| SDValue X = N0.getOperand(i); |
| if (!X.isUndef()) { |
| V = X; |
| Idx = i; |
| NumDefs++; |
| } |
| // Stop if more than one members are non-undef. |
| if (NumDefs > 1) |
| break; |
| |
| VTs.push_back(EVT::getVectorVT(*DAG.getContext(), |
| VT.getVectorElementType(), |
| X.getValueType().getVectorElementCount())); |
| } |
| |
| if (NumDefs == 0) |
| return DAG.getUNDEF(VT); |
| |
| if (NumDefs == 1) { |
| assert(V.getNode() && "The single defined operand is empty!"); |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (i != Idx) { |
| Opnds.push_back(DAG.getUNDEF(VTs[i])); |
| continue; |
| } |
| SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); |
| AddToWorklist(NV.getNode()); |
| Opnds.push_back(NV); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); |
| } |
| } |
| |
| // Fold truncate of a bitcast of a vector to an extract of the low vector |
| // element. |
| // |
| // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx |
| if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { |
| SDValue VecSrc = N0.getOperand(0); |
| EVT VecSrcVT = VecSrc.getValueType(); |
| if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && |
| (!LegalOperations || |
| TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { |
| SDLoc SL(N); |
| |
| unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, |
| DAG.getVectorIdxConstant(Idx, SL)); |
| } |
| } |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (truncate (extract_subvector(ext x))) -> |
| // (extract_subvector x) |
| // TODO: This can be generalized to cover cases where the truncate and extract |
| // do not fully cancel each other out. |
| if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::SIGN_EXTEND || |
| N00.getOpcode() == ISD::ZERO_EXTEND || |
| N00.getOpcode() == ISD::ANY_EXTEND) { |
| if (N00.getOperand(0)->getValueType(0).getVectorElementType() == |
| VT.getVectorElementType()) |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, |
| N00.getOperand(0), N0.getOperand(1)); |
| } |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| // Narrow a suitable binary operation with a non-opaque constant operand by |
| // moving it ahead of the truncate. This is limited to pre-legalization |
| // because targets may prefer a wider type during later combines and invert |
| // this transform. |
| switch (N0.getOpcode()) { |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| if (!LegalOperations && N0.hasOneUse() && |
| (isConstantOrConstantVector(N0.getOperand(0), true) || |
| isConstantOrConstantVector(N0.getOperand(1), true))) { |
| // TODO: We already restricted this to pre-legalization, but for vectors |
| // we are extra cautious to not create an unsupported operation. |
| // Target-specific changes are likely needed to avoid regressions here. |
| if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { |
| SDLoc DL(N); |
| SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); |
| SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); |
| return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); |
| } |
| } |
| break; |
| case ISD::ADDE: |
| case ISD::ADDCARRY: |
| // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) |
| // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) |
| // When the adde's carry is not used. |
| // We only do for addcarry before legalize operation |
| if (((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || |
| TLI.isOperationLegal(N0.getOpcode(), VT)) && |
| N0.hasOneUse() && !N0->hasAnyUseOfValue(1)) { |
| SDLoc DL(N); |
| SDValue X = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); |
| SDValue Y = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); |
| SDVTList VTs = DAG.getVTList(VT, N0->getValueType(1)); |
| return DAG.getNode(N0.getOpcode(), DL, VTs, X, Y, N0.getOperand(2)); |
| } |
| break; |
| case ISD::USUBSAT: |
| // Truncate the USUBSAT only if LHS is a known zero-extension, its not |
| // enough to know that the upper bits are zero we must ensure that we don't |
| // introduce an extra truncate. |
| if (!LegalOperations && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && |
| N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= |
| VT.getScalarSizeInBits() && |
| hasOperation(N0.getOpcode(), VT)) { |
| return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), |
| DAG, SDLoc(N)); |
| } |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDNode *getBuildPairElt(SDNode *N, unsigned i) { |
| SDValue Elt = N->getOperand(i); |
| if (Elt.getOpcode() != ISD::MERGE_VALUES) |
| return Elt.getNode(); |
| return Elt.getOperand(Elt.getResNo()).getNode(); |
| } |
| |
| /// build_pair (load, load) -> load |
| /// if load locations are consecutive. |
| SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { |
| assert(N->getOpcode() == ISD::BUILD_PAIR); |
| |
| auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); |
| auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); |
| |
| // A BUILD_PAIR is always having the least significant part in elt 0 and the |
| // most significant part in elt 1. So when combining into one large load, we |
| // need to consider the endianness. |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(LD1, LD2); |
| |
| if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || |
| !LD1->hasOneUse() || !LD2->hasOneUse() || |
| LD1->getAddressSpace() != LD2->getAddressSpace()) |
| return SDValue(); |
| |
| unsigned LD1Fast = 0; |
| EVT LD1VT = LD1->getValueType(0); |
| unsigned LD1Bytes = LD1VT.getStoreSize(); |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && |
| DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && |
| TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, |
| *LD1->getMemOperand(), &LD1Fast) && LD1Fast) |
| return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), |
| LD1->getPointerInfo(), LD1->getAlign()); |
| |
| return SDValue(); |
| } |
| |
| static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { |
| // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi |
| // and Lo parts; on big-endian machines it doesn't. |
| return DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| } |
| |
| static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // If this is not a bitcast to an FP type or if the target doesn't have |
| // IEEE754-compliant FP logic, we're done. |
| EVT VT = N->getValueType(0); |
| if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) |
| return SDValue(); |
| |
| // TODO: Handle cases where the integer constant is a different scalar |
| // bitwidth to the FP. |
| SDValue N0 = N->getOperand(0); |
| EVT SourceVT = N0.getValueType(); |
| if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| unsigned FPOpcode; |
| APInt SignMask; |
| switch (N0.getOpcode()) { |
| case ISD::AND: |
| FPOpcode = ISD::FABS; |
| SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); |
| break; |
| case ISD::XOR: |
| FPOpcode = ISD::FNEG; |
| SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); |
| break; |
| case ISD::OR: |
| FPOpcode = ISD::FABS; |
| SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); |
| break; |
| default: |
| return SDValue(); |
| } |
| |
| // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X |
| // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X |
| // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> |
| // fneg (fabs X) |
| SDValue LogicOp0 = N0.getOperand(0); |
| ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); |
| if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && |
| LogicOp0.getOpcode() == ISD::BITCAST && |
| LogicOp0.getOperand(0).getValueType() == VT) { |
| SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); |
| NumFPLogicOpsConv++; |
| if (N0.getOpcode() == ISD::OR) |
| return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); |
| return FPOp; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBITCAST(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // If the input is a BUILD_VECTOR with all constant elements, fold this now. |
| // Only do this before legalize types, unless both types are integer and the |
| // scalar type is legal. Only do this before legalize ops, since the target |
| // maybe depending on the bitcast. |
| // First check to see if this is all constant. |
| // TODO: Support FP bitcasts after legalize types. |
| if (VT.isVector() && |
| (!LegalTypes || |
| (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && |
| TLI.isTypeLegal(VT.getVectorElementType()))) && |
| N0.getOpcode() == ISD::BUILD_VECTOR && N0->hasOneUse() && |
| cast<BuildVectorSDNode>(N0)->isConstant()) |
| return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), |
| VT.getVectorElementType()); |
| |
| // If the input is a constant, let getNode fold it. |
| if (isIntOrFPConstant(N0)) { |
| // If we can't allow illegal operations, we need to check that this is just |
| // a fp -> int or int -> conversion and that the resulting operation will |
| // be legal. |
| if (!LegalOperations || |
| (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && |
| TLI.isOperationLegal(ISD::ConstantFP, VT)) || |
| (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && |
| TLI.isOperationLegal(ISD::Constant, VT))) { |
| SDValue C = DAG.getBitcast(VT, N0); |
| if (C.getNode() != N) |
| return C; |
| } |
| } |
| |
| // (conv (conv x, t1), t2) -> (conv x, t2) |
| if (N0.getOpcode() == ISD::BITCAST) |
| return DAG.getBitcast(VT, N0.getOperand(0)); |
| |
| // fold (conv (load x)) -> (load (conv*)x) |
| // If the resultant load doesn't need a higher alignment than the original! |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| // Do not remove the cast if the types differ in endian layout. |
| TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == |
| TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && |
| // If the load is volatile, we only want to change the load type if the |
| // resulting load is legal. Otherwise we might increase the number of |
| // memory accesses. We don't care if the original type was legal or not |
| // as we assume software couldn't rely on the number of accesses of an |
| // illegal type. |
| ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || |
| TLI.isOperationLegal(ISD::LOAD, VT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| |
| if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, |
| *LN0->getMemOperand())) { |
| SDValue Load = |
| DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), |
| LN0->getPointerInfo(), LN0->getAlign(), |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| return Load; |
| } |
| } |
| |
| if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) |
| return V; |
| |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| // |
| // For ppc_fp128: |
| // fold (bitcast (fneg x)) -> |
| // flipbit = signbit |
| // (xor (bitcast x) (build_pair flipbit, flipbit)) |
| // |
| // fold (bitcast (fabs x)) -> |
| // flipbit = (and (extract_element (bitcast x), 0), signbit) |
| // (xor (bitcast x) (build_pair flipbit, flipbit)) |
| // This often reduces constant pool loads. |
| if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || |
| (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && |
| N0->hasOneUse() && VT.isInteger() && !VT.isVector() && |
| !N0.getValueType().isVector()) { |
| SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); |
| AddToWorklist(NewConv.getNode()); |
| |
| SDLoc DL(N); |
| if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { |
| assert(VT.getSizeInBits() == 128); |
| SDValue SignBit = DAG.getConstant( |
| APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); |
| SDValue FlipBit; |
| if (N0.getOpcode() == ISD::FNEG) { |
| FlipBit = SignBit; |
| AddToWorklist(FlipBit.getNode()); |
| } else { |
| assert(N0.getOpcode() == ISD::FABS); |
| SDValue Hi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, |
| DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), |
| SDLoc(NewConv))); |
| AddToWorklist(Hi.getNode()); |
| FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); |
| AddToWorklist(FlipBit.getNode()); |
| } |
| SDValue FlipBits = |
| DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); |
| AddToWorklist(FlipBits.getNode()); |
| return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); |
| } |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); |
| if (N0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::XOR, DL, VT, |
| NewConv, DAG.getConstant(SignBit, DL, VT)); |
| assert(N0.getOpcode() == ISD::FABS); |
| return DAG.getNode(ISD::AND, DL, VT, |
| NewConv, DAG.getConstant(~SignBit, DL, VT)); |
| } |
| |
| // fold (bitconvert (fcopysign cst, x)) -> |
| // (or (and (bitconvert x), sign), (and cst, (not sign))) |
| // Note that we don't handle (copysign x, cst) because this can always be |
| // folded to an fneg or fabs. |
| // |
| // For ppc_fp128: |
| // fold (bitcast (fcopysign cst, x)) -> |
| // flipbit = (and (extract_element |
| // (xor (bitcast cst), (bitcast x)), 0), |
| // signbit) |
| // (xor (bitcast cst) (build_pair flipbit, flipbit)) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() && |
| isa<ConstantFPSDNode>(N0.getOperand(0)) && VT.isInteger() && |
| !VT.isVector()) { |
| unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); |
| EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); |
| if (isTypeLegal(IntXVT)) { |
| SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); |
| AddToWorklist(X.getNode()); |
| |
| // If X has a different width than the result/lhs, sext it or truncate it. |
| unsigned VTWidth = VT.getSizeInBits(); |
| if (OrigXWidth < VTWidth) { |
| X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); |
| AddToWorklist(X.getNode()); |
| } else if (OrigXWidth > VTWidth) { |
| // To get the sign bit in the right place, we have to shift it right |
| // before truncating. |
| SDLoc DL(X); |
| X = DAG.getNode(ISD::SRL, DL, |
| X.getValueType(), X, |
| DAG.getConstant(OrigXWidth-VTWidth, DL, |
| X.getValueType())); |
| AddToWorklist(X.getNode()); |
| X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); |
| AddToWorklist(X.getNode()); |
| } |
| |
| if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); |
| SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); |
| AddToWorklist(Cst.getNode()); |
| SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); |
| AddToWorklist(X.getNode()); |
| SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); |
| AddToWorklist(XorResult.getNode()); |
| SDValue XorResult64 = DAG.getNode( |
| ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, |
| DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), |
| SDLoc(XorResult))); |
| AddToWorklist(XorResult64.getNode()); |
| SDValue FlipBit = |
| DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, |
| DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); |
| AddToWorklist(FlipBit.getNode()); |
| SDValue FlipBits = |
| DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); |
| AddToWorklist(FlipBits.getNode()); |
| return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); |
| } |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); |
| X = DAG.getNode(ISD::AND, SDLoc(X), VT, |
| X, DAG.getConstant(SignBit, SDLoc(X), VT)); |
| AddToWorklist(X.getNode()); |
| |
| SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); |
| Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, |
| Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); |
| AddToWorklist(Cst.getNode()); |
| |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); |
| } |
| } |
| |
| // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. |
| if (N0.getOpcode() == ISD::BUILD_PAIR) |
| if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) |
| return CombineLD; |
| |
| // Remove double bitcasts from shuffles - this is often a legacy of |
| // XformToShuffleWithZero being used to combine bitmaskings (of |
| // float vectors bitcast to integer vectors) into shuffles. |
| // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) |
| if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && |
| N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && |
| VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && |
| !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); |
| |
| // If operands are a bitcast, peek through if it casts the original VT. |
| // If operands are a constant, just bitcast back to original VT. |
| auto PeekThroughBitcast = [&](SDValue Op) { |
| if (Op.getOpcode() == ISD::BITCAST && |
| Op.getOperand(0).getValueType() == VT) |
| return SDValue(Op.getOperand(0)); |
| if (Op.isUndef() || isAnyConstantBuildVector(Op)) |
| return DAG.getBitcast(VT, Op); |
| return SDValue(); |
| }; |
| |
| // FIXME: If either input vector is bitcast, try to convert the shuffle to |
| // the result type of this bitcast. This would eliminate at least one |
| // bitcast. See the transform in InstCombine. |
| SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); |
| SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); |
| if (!(SV0 && SV1)) |
| return SDValue(); |
| |
| int MaskScale = |
| VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); |
| SmallVector<int, 8> NewMask; |
| for (int M : SVN->getMask()) |
| for (int i = 0; i != MaskScale; ++i) |
| NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); |
| |
| SDValue LegalShuffle = |
| TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); |
| if (LegalShuffle) |
| return LegalShuffle; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| return CombineConsecutiveLoads(N, VT); |
| } |
| |
| SDValue DAGCombiner::visitFREEZE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| |
| if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) |
| return N0; |
| |
| // Fold freeze(op(x, ...)) -> op(freeze(x), ...). |
| // Try to push freeze through instructions that propagate but don't produce |
| // poison as far as possible. If an operand of freeze follows three |
| // conditions 1) one-use, 2) does not produce poison, and 3) has all but one |
| // guaranteed-non-poison operands (or is a BUILD_VECTOR or similar) then push |
| // the freeze through to the operands that are not guaranteed non-poison. |
| // NOTE: we will strip poison-generating flags, so ignore them here. |
| if (DAG.canCreateUndefOrPoison(N0, /*PoisonOnly*/ false, |
| /*ConsiderFlags*/ false) || |
| N0->getNumValues() != 1 || !N0->hasOneUse()) |
| return SDValue(); |
| |
| bool AllowMultipleMaybePoisonOperands = N0.getOpcode() == ISD::BUILD_VECTOR; |
| |
| SmallSetVector<SDValue, 8> MaybePoisonOperands; |
| for (SDValue Op : N0->ops()) { |
| if (DAG.isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ false, |
| /*Depth*/ 1)) |
| continue; |
| bool HadMaybePoisonOperands = !MaybePoisonOperands.empty(); |
| bool IsNewMaybePoisonOperand = MaybePoisonOperands.insert(Op); |
| if (!HadMaybePoisonOperands) |
| continue; |
| if (IsNewMaybePoisonOperand && !AllowMultipleMaybePoisonOperands) { |
| // Multiple maybe-poison ops when not allowed - bail out. |
| return SDValue(); |
| } |
| } |
| // NOTE: the whole op may be not guaranteed to not be undef or poison because |
| // it could create undef or poison due to it's poison-generating flags. |
| // So not finding any maybe-poison operands is fine. |
| |
| for (SDValue MaybePoisonOperand : MaybePoisonOperands) { |
| // Don't replace every single UNDEF everywhere with frozen UNDEF, though. |
| if (MaybePoisonOperand.getOpcode() == ISD::UNDEF) |
| continue; |
| // First, freeze each offending operand. |
| SDValue FrozenMaybePoisonOperand = DAG.getFreeze(MaybePoisonOperand); |
| // Then, change all other uses of unfrozen operand to use frozen operand. |
| DAG.ReplaceAllUsesOfValueWith(MaybePoisonOperand, FrozenMaybePoisonOperand); |
| if (FrozenMaybePoisonOperand.getOpcode() == ISD::FREEZE && |
| FrozenMaybePoisonOperand.getOperand(0) == FrozenMaybePoisonOperand) { |
| // But, that also updated the use in the freeze we just created, thus |
| // creating a cycle in a DAG. Let's undo that by mutating the freeze. |
| DAG.UpdateNodeOperands(FrozenMaybePoisonOperand.getNode(), |
| MaybePoisonOperand); |
| } |
| } |
| |
| // The whole node may have been updated, so the value we were holding |
| // may no longer be valid. Re-fetch the operand we're `freeze`ing. |
| N0 = N->getOperand(0); |
| |
| // Finally, recreate the node, it's operands were updated to use |
| // frozen operands, so we just need to use it's "original" operands. |
| SmallVector<SDValue> Ops(N0->op_begin(), N0->op_end()); |
| // Special-handle ISD::UNDEF, each single one of them can be it's own thing. |
| for (SDValue &Op : Ops) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| Op = DAG.getFreeze(Op); |
| } |
| // NOTE: this strips poison generating flags. |
| SDValue R = DAG.getNode(N0.getOpcode(), SDLoc(N0), N0->getVTList(), Ops); |
| assert(DAG.isGuaranteedNotToBeUndefOrPoison(R, /*PoisonOnly*/ false) && |
| "Can't create node that may be undef/poison!"); |
| return R; |
| } |
| |
| /// We know that BV is a build_vector node with Constant, ConstantFP or Undef |
| /// operands. DstEltVT indicates the destination element value type. |
| SDValue DAGCombiner:: |
| ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { |
| EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); |
| |
| // If this is already the right type, we're done. |
| if (SrcEltVT == DstEltVT) return SDValue(BV, 0); |
| |
| unsigned SrcBitSize = SrcEltVT.getSizeInBits(); |
| unsigned DstBitSize = DstEltVT.getSizeInBits(); |
| |
| // If this is a conversion of N elements of one type to N elements of another |
| // type, convert each element. This handles FP<->INT cases. |
| if (SrcBitSize == DstBitSize) { |
| SmallVector<SDValue, 8> Ops; |
| for (SDValue Op : BV->op_values()) { |
| // If the vector element type is not legal, the BUILD_VECTOR operands |
| // are promoted and implicitly truncated. Make that explicit here. |
| if (Op.getValueType() != SrcEltVT) |
| Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); |
| Ops.push_back(DAG.getBitcast(DstEltVT, Op)); |
| AddToWorklist(Ops.back().getNode()); |
| } |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, |
| BV->getValueType(0).getVectorNumElements()); |
| return DAG.getBuildVector(VT, SDLoc(BV), Ops); |
| } |
| |
| // Otherwise, we're growing or shrinking the elements. To avoid having to |
| // handle annoying details of growing/shrinking FP values, we convert them to |
| // int first. |
| if (SrcEltVT.isFloatingPoint()) { |
| // Convert the input float vector to a int vector where the elements are the |
| // same sizes. |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); |
| BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); |
| SrcEltVT = IntVT; |
| } |
| |
| // Now we know the input is an integer vector. If the output is a FP type, |
| // convert to integer first, then to FP of the right size. |
| if (DstEltVT.isFloatingPoint()) { |
| EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); |
| SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); |
| |
| // Next, convert to FP elements of the same size. |
| return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); |
| } |
| |
| // Okay, we know the src/dst types are both integers of differing types. |
| assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); |
| |
| // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a |
| // BuildVectorSDNode? |
| auto *BVN = cast<BuildVectorSDNode>(BV); |
| |
| // Extract the constant raw bit data. |
| BitVector UndefElements; |
| SmallVector<APInt> RawBits; |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| if (!BVN->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements)) |
| return SDValue(); |
| |
| SDLoc DL(BV); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned I = 0, E = RawBits.size(); I != E; ++I) { |
| if (UndefElements[I]) |
| Ops.push_back(DAG.getUNDEF(DstEltVT)); |
| else |
| Ops.push_back(DAG.getConstant(RawBits[I], DL, DstEltVT)); |
| } |
| |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| // Returns true if floating point contraction is allowed on the FMUL-SDValue |
| // `N` |
| static bool isContractableFMUL(const TargetOptions &Options, SDValue N) { |
| assert(N.getOpcode() == ISD::FMUL); |
| |
| return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || |
| N->getFlags().hasAllowContract(); |
| } |
| |
| // Returns true if `N` can assume no infinities involved in its computation. |
| static bool hasNoInfs(const TargetOptions &Options, SDValue N) { |
| return Options.NoInfsFPMath || N->getFlags().hasNoInfs(); |
| } |
| |
| /// Try to perform FMA combining on a given FADD node. |
| SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // Floating-point multiply-add with intermediate rounding. |
| bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| bool CanReassociate = |
| Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); |
| bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| Options.UnsafeFPMath || HasFMAD); |
| // If the addition is not contractable, do not combine. |
| if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) |
| return SDValue(); |
| |
| if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| auto isFusedOp = [&](SDValue N) { |
| unsigned Opcode = N.getOpcode(); |
| return Opcode == ISD::FMA || Opcode == ISD::FMAD; |
| }; |
| |
| // Is the node an FMUL and contractable either due to global flags or |
| // SDNodeFlags. |
| auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| return AllowFusionGlobally || N->getFlags().hasAllowContract(); |
| }; |
| // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), |
| // prefer to fold the multiply with fewer uses. |
| if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { |
| if (N0->use_size() > N1->use_size()) |
| std::swap(N0, N1); |
| } |
| |
| // fold (fadd (fmul x, y), z) -> (fma x, y, z) |
| if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), |
| N0.getOperand(1), N1); |
| } |
| |
| // fold (fadd x, (fmul y, z)) -> (fma y, z, x) |
| // Note: Commutes FADD operands. |
| if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), |
| N1.getOperand(1), N0); |
| } |
| |
| // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) |
| // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) |
| // This also works with nested fma instructions: |
| // fadd (fma A, B, (fma (C, D, (fmul (E, F))))), G --> |
| // fma A, B, (fma C, D, fma (E, F, G)) |
| // fadd (G, (fma A, B, (fma (C, D, (fmul (E, F)))))) --> |
| // fma A, B, (fma C, D, fma (E, F, G)). |
| // This requires reassociation because it changes the order of operations. |
| if (CanReassociate) { |
| SDValue FMA, E; |
| if (isFusedOp(N0) && N0.hasOneUse()) { |
| FMA = N0; |
| E = N1; |
| } else if (isFusedOp(N1) && N1.hasOneUse()) { |
| FMA = N1; |
| E = N0; |
| } |
| |
| SDValue TmpFMA = FMA; |
| while (E && isFusedOp(TmpFMA) && TmpFMA.hasOneUse()) { |
| SDValue FMul = TmpFMA->getOperand(2); |
| if (FMul.getOpcode() == ISD::FMUL && FMul.hasOneUse()) { |
| SDValue C = FMul.getOperand(0); |
| SDValue D = FMul.getOperand(1); |
| SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); |
| DAG.ReplaceAllUsesOfValueWith(FMul, CDE); |
| // Replacing the inner FMul could cause the outer FMA to be simplified |
| // away. |
| return FMA.getOpcode() == ISD::DELETED_NODE ? SDValue() : FMA; |
| } |
| |
| TmpFMA = TmpFMA->getOperand(2); |
| } |
| } |
| |
| // Look through FP_EXTEND nodes to do more combining. |
| |
| // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isContractableFMUL(N00) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), |
| N1); |
| } |
| } |
| |
| // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) |
| // Note: Commutes FADD operands. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isContractableFMUL(N10) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N10.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), |
| N0); |
| } |
| } |
| |
| // More folding opportunities when target permits. |
| if (Aggressive) { |
| // fold (fadd (fma x, y, (fpext (fmul u, v))), z) |
| // -> (fma x, y, (fma (fpext u), (fpext v), z)) |
| auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, |
| SDValue Z) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, U), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, V), |
| Z)); |
| }; |
| if (isFusedOp(N0)) { |
| SDValue N02 = N0.getOperand(2); |
| if (N02.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N020 = N02.getOperand(0); |
| if (isContractableFMUL(N020) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N020.getValueType())) { |
| return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), |
| N020.getOperand(0), N020.getOperand(1), |
| N1); |
| } |
| } |
| } |
| |
| // fold (fadd (fpext (fma x, y, (fmul u, v))), z) |
| // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, |
| SDValue Z) { |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, U), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); |
| }; |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isFusedOp(N00)) { |
| SDValue N002 = N00.getOperand(2); |
| if (isContractableFMUL(N002) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), |
| N002.getOperand(0), N002.getOperand(1), |
| N1); |
| } |
| } |
| } |
| |
| // fold (fadd x, (fma y, z, (fpext (fmul u, v))) |
| // -> (fma y, z, (fma (fpext u), (fpext v), x)) |
| if (isFusedOp(N1)) { |
| SDValue N12 = N1.getOperand(2); |
| if (N12.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N120 = N12.getOperand(0); |
| if (isContractableFMUL(N120) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N120.getValueType())) { |
| return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), |
| N120.getOperand(0), N120.getOperand(1), |
| N0); |
| } |
| } |
| } |
| |
| // fold (fadd x, (fpext (fma y, z, (fmul u, v))) |
| // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isFusedOp(N10)) { |
| SDValue N102 = N10.getOperand(2); |
| if (isContractableFMUL(N102) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N10.getValueType())) { |
| return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), |
| N102.getOperand(0), N102.getOperand(1), |
| N0); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to perform FMA combining on a given FSUB node. |
| SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| // Floating-point multiply-add with intermediate rounding. |
| bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| const SDNodeFlags Flags = N->getFlags(); |
| bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| Options.UnsafeFPMath || HasFMAD); |
| |
| // If the subtraction is not contractable, do not combine. |
| if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) |
| return SDValue(); |
| |
| if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); |
| |
| // Is the node an FMUL and contractable either due to global flags or |
| // SDNodeFlags. |
| auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| return AllowFusionGlobally || N->getFlags().hasAllowContract(); |
| }; |
| |
| // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) |
| auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { |
| if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), |
| XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); |
| } |
| return SDValue(); |
| }; |
| |
| // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) |
| // Note: Commutes FSUB operands. |
| auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { |
| if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), |
| YZ.getOperand(1), X); |
| } |
| return SDValue(); |
| }; |
| |
| // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), |
| // prefer to fold the multiply with fewer uses. |
| if (isContractableFMUL(N0) && isContractableFMUL(N1) && |
| (N0->use_size() > N1->use_size())) { |
| // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) |
| if (SDValue V = tryToFoldXSubYZ(N0, N1)) |
| return V; |
| // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) |
| if (SDValue V = tryToFoldXYSubZ(N0, N1)) |
| return V; |
| } else { |
| // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) |
| if (SDValue V = tryToFoldXYSubZ(N0, N1)) |
| return V; |
| // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) |
| if (SDValue V = tryToFoldXSubYZ(N0, N1)) |
| return V; |
| } |
| |
| // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) |
| if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && |
| (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { |
| SDValue N00 = N0.getOperand(0).getOperand(0); |
| SDValue N01 = N0.getOperand(0).getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N00), N01, |
| DAG.getNode(ISD::FNEG, SL, VT, N1)); |
| } |
| |
| // Look through FP_EXTEND nodes to do more combining. |
| |
| // fold (fsub (fpext (fmul x, y)), z) |
| // -> (fma (fpext x), (fpext y), (fneg z)) |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isContractableFMUL(N00) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, N1)); |
| } |
| } |
| |
| // fold (fsub x, (fpext (fmul y, z))) |
| // -> (fma (fneg (fpext y)), (fpext z), x) |
| // Note: Commutes FSUB operands. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isContractableFMUL(N10) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N10.getValueType())) { |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); |
| } |
| } |
| |
| // fold (fsub (fpext (fneg (fmul, x, y))), z) |
| // -> (fneg (fma (fpext x), (fpext y), z)) |
| // Note: This could be removed with appropriate canonicalization of the |
| // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the |
| // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent |
| // from implementing the canonicalization in visitFSUB. |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::FNEG) { |
| SDValue N000 = N00.getOperand(0); |
| if (isContractableFMUL(N000) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode( |
| ISD::FNEG, SL, VT, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), |
| N1)); |
| } |
| } |
| } |
| |
| // fold (fsub (fneg (fpext (fmul, x, y))), z) |
| // -> (fneg (fma (fpext x)), (fpext y), z) |
| // Note: This could be removed with appropriate canonicalization of the |
| // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the |
| // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent |
| // from implementing the canonicalization in visitFSUB. |
| if (N0.getOpcode() == ISD::FNEG) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N000 = N00.getOperand(0); |
| if (isContractableFMUL(N000) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N000.getValueType())) { |
| return DAG.getNode( |
| ISD::FNEG, SL, VT, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), |
| N1)); |
| } |
| } |
| } |
| |
| auto isReassociable = [Options](SDNode *N) { |
| return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); |
| }; |
| |
| auto isContractableAndReassociableFMUL = [&isContractableFMUL, |
| &isReassociable](SDValue N) { |
| return isContractableFMUL(N) && isReassociable(N.getNode()); |
| }; |
| |
| auto isFusedOp = [&](SDValue N) { |
| unsigned Opcode = N.getOpcode(); |
| return Opcode == ISD::FMA || Opcode == ISD::FMAD; |
| }; |
| |
| // More folding opportunities when target permits. |
| if (Aggressive && isReassociable(N)) { |
| bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); |
| // fold (fsub (fma x, y, (fmul u, v)), z) |
| // -> (fma x, y (fma u, v, (fneg z))) |
| if (CanFuse && isFusedOp(N0) && |
| isContractableAndReassociableFMUL(N0.getOperand(2)) && |
| N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), |
| N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(2).getOperand(0), |
| N0.getOperand(2).getOperand(1), |
| DAG.getNode(ISD::FNEG, SL, VT, N1))); |
| } |
| |
| // fold (fsub x, (fma y, z, (fmul u, v))) |
| // -> (fma (fneg y), z, (fma (fneg u), v, x)) |
| if (CanFuse && isFusedOp(N1) && |
| isContractableAndReassociableFMUL(N1.getOperand(2)) && |
| N1->hasOneUse() && NoSignedZero) { |
| SDValue N20 = N1.getOperand(2).getOperand(0); |
| SDValue N21 = N1.getOperand(2).getOperand(1); |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); |
| } |
| |
| // fold (fsub (fma x, y, (fpext (fmul u, v))), z) |
| // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) |
| if (isFusedOp(N0) && N0->hasOneUse()) { |
| SDValue N02 = N0.getOperand(2); |
| if (N02.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N020 = N02.getOperand(0); |
| if (isContractableAndReassociableFMUL(N020) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N020.getValueType())) { |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, N1))); |
| } |
| } |
| } |
| |
| // fold (fsub (fpext (fma x, y, (fmul u, v))), z) |
| // -> (fma (fpext x), (fpext y), |
| // (fma (fpext u), (fpext v), (fneg z))) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isFusedOp(N00)) { |
| SDValue N002 = N00.getOperand(2); |
| if (isContractableAndReassociableFMUL(N002) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), |
| DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, N1))); |
| } |
| } |
| } |
| |
| // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) |
| // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) |
| if (isFusedOp(N1) && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && |
| N1->hasOneUse()) { |
| SDValue N120 = N1.getOperand(2).getOperand(0); |
| if (isContractableAndReassociableFMUL(N120) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N120.getValueType())) { |
| SDValue N1200 = N120.getOperand(0); |
| SDValue N1201 = N120.getOperand(1); |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); |
| } |
| } |
| |
| // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) |
| // -> (fma (fneg (fpext y)), (fpext z), |
| // (fma (fneg (fpext u)), (fpext v), x)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N1.getOpcode() == ISD::FP_EXTEND && isFusedOp(N1.getOperand(0))) { |
| SDValue CvtSrc = N1.getOperand(0); |
| SDValue N100 = CvtSrc.getOperand(0); |
| SDValue N101 = CvtSrc.getOperand(1); |
| SDValue N102 = CvtSrc.getOperand(2); |
| if (isContractableAndReassociableFMUL(N102) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| CvtSrc.getValueType())) { |
| SDValue N1020 = N102.getOperand(0); |
| SDValue N1021 = N102.getOperand(1); |
| return DAG.getNode( |
| PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to perform FMA combining on a given FMUL node based on the distributive |
| /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, |
| /// subtraction instead of addition). |
| SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // The transforms below are incorrect when x == 0 and y == inf, because the |
| // intermediate multiplication produces a nan. |
| SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1; |
| if (!hasNoInfs(Options, FAdd)) |
| return SDValue(); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| isContractableFMUL(Options, SDValue(N, 0)) && |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // Floating-point multiply-add with intermediate rounding. This can result |
| // in a less precise result due to the changed rounding order. |
| bool HasFMAD = Options.UnsafeFPMath && |
| (LegalOperations && TLI.isFMADLegal(DAG, N)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) |
| // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) |
| auto FuseFADD = [&](SDValue X, SDValue Y) { |
| if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { |
| if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { |
| if (C->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| Y); |
| if (C->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y)); |
| } |
| } |
| return SDValue(); |
| }; |
| |
| if (SDValue FMA = FuseFADD(N0, N1)) |
| return FMA; |
| if (SDValue FMA = FuseFADD(N1, N0)) |
| return FMA; |
| |
| // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) |
| // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) |
| // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) |
| // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) |
| auto FuseFSUB = [&](SDValue X, SDValue Y) { |
| if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { |
| if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { |
| if (C0->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, |
| Y); |
| if (C0->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y)); |
| } |
| if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { |
| if (C1->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y)); |
| if (C1->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| Y); |
| } |
| } |
| return SDValue(); |
| }; |
| |
| if (SDValue FMA = FuseFSUB(N0, N1)) |
| return FMA; |
| if (SDValue FMA = FuseFSUB(N1, N0)) |
| return FMA; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFADD(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDNode *N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); |
| SDNode *N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| SDNodeFlags Flags = N->getFlags(); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) |
| return R; |
| |
| // fold (fadd c1, c2) -> c1 + c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FADD, DL, VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) |
| ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); |
| if (N1C && N1C->isZero()) |
| if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (fadd A, (fneg B)) -> (fsub A, B) |
| if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) |
| if (SDValue NegN1 = TLI.getCheaperNegatedExpression( |
| N1, DAG, LegalOperations, ForCodeSize)) |
| return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); |
| |
| // fold (fadd (fneg A), B) -> (fsub B, A) |
| if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) |
| if (SDValue NegN0 = TLI.getCheaperNegatedExpression( |
| N0, DAG, LegalOperations, ForCodeSize)) |
| return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); |
| |
| auto isFMulNegTwo = [](SDValue FMul) { |
| if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) |
| return false; |
| auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); |
| return C && C->isExactlyValue(-2.0); |
| }; |
| |
| // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) |
| if (isFMulNegTwo(N0)) { |
| SDValue B = N0.getOperand(0); |
| SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); |
| return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); |
| } |
| // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) |
| if (isFMulNegTwo(N1)) { |
| SDValue B = N1.getOperand(0); |
| SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); |
| return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); |
| } |
| |
| // No FP constant should be created after legalization as Instruction |
| // Selection pass has a hard time dealing with FP constants. |
| bool AllowNewConst = (Level < AfterLegalizeDAG); |
| |
| // If nnan is enabled, fold lots of things. |
| if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { |
| // If allowed, fold (fadd (fneg x), x) -> 0.0 |
| if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) |
| return DAG.getConstantFP(0.0, DL, VT); |
| |
| // If allowed, fold (fadd x, (fneg x)) -> 0.0 |
| if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) |
| return DAG.getConstantFP(0.0, DL, VT); |
| } |
| |
| // If 'unsafe math' or reassoc and nsz, fold lots of things. |
| // TODO: break out portions of the transformations below for which Unsafe is |
| // considered and which do not require both nsz and reassoc |
| if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || |
| (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && |
| AllowNewConst) { |
| // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 |
| if (N1CFP && N0.getOpcode() == ISD::FADD && |
| DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { |
| SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); |
| return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); |
| } |
| |
| // We can fold chains of FADD's of the same value into multiplications. |
| // This transform is not safe in general because we are reducing the number |
| // of rounding steps. |
| if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { |
| if (N0.getOpcode() == ISD::FMUL) { |
| SDNode *CFP00 = |
| DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); |
| SDNode *CFP01 = |
| DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); |
| |
| // (fadd (fmul x, c), x) -> (fmul x, c+1) |
| if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT)); |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); |
| } |
| |
| // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) |
| if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && |
| N1.getOperand(0) == N1.getOperand(1) && |
| N0.getOperand(0) == N1.getOperand(0)) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), |
| DAG.getConstantFP(2.0, DL, VT)); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::FMUL) { |
| SDNode *CFP10 = |
| DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); |
| SDNode *CFP11 = |
| DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); |
| |
| // (fadd x, (fmul x, c)) -> (fmul x, c+1) |
| if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT)); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); |
| } |
| |
| // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) |
| if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && |
| N0.getOperand(0) == N0.getOperand(1) && |
| N1.getOperand(0) == N0.getOperand(0)) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), |
| DAG.getConstantFP(2.0, DL, VT)); |
| return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::FADD) { |
| SDNode *CFP00 = |
| DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); |
| // (fadd (fadd x, x), x) -> (fmul x, 3.0) |
| if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && |
| (N0.getOperand(0) == N1)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, |
| DAG.getConstantFP(3.0, DL, VT)); |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::FADD) { |
| SDNode *CFP10 = |
| DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); |
| // (fadd x, (fadd x, x)) -> (fmul x, 3.0) |
| if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && |
| N1.getOperand(0) == N0) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getConstantFP(3.0, DL, VT)); |
| } |
| } |
| |
| // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) |
| if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && |
| N0.getOperand(0) == N0.getOperand(1) && |
| N1.getOperand(0) == N1.getOperand(1) && |
| N0.getOperand(0) == N1.getOperand(0)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), |
| DAG.getConstantFP(4.0, DL, VT)); |
| } |
| } |
| } // enable-unsafe-fp-math |
| |
| // FADD -> FMA combines: |
| if (SDValue Fused = visitFADDForFMACombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { |
| SDValue Chain = N->getOperand(0); |
| SDValue N0 = N->getOperand(1); |
| SDValue N1 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT ChainVT = N->getValueType(1); |
| SDLoc DL(N); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) |
| if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) |
| if (SDValue NegN1 = TLI.getCheaperNegatedExpression( |
| N1, DAG, LegalOperations, ForCodeSize)) { |
| return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), |
| {Chain, N0, NegN1}); |
| } |
| |
| // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) |
| if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) |
| if (SDValue NegN0 = TLI.getCheaperNegatedExpression( |
| N0, DAG, LegalOperations, ForCodeSize)) { |
| return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), |
| {Chain, N1, NegN0}); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFSUB(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); |
| ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) |
| return R; |
| |
| // fold (fsub c1, c2) -> c1-c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // (fsub A, 0) -> A |
| if (N1CFP && N1CFP->isZero()) { |
| if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || |
| Flags.hasNoSignedZeros()) { |
| return N0; |
| } |
| } |
| |
| if (N0 == N1) { |
| // (fsub x, x) -> 0.0 |
| if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) |
| return DAG.getConstantFP(0.0f, DL, VT); |
| } |
| |
| // (fsub -0.0, N1) -> -N1 |
| if (N0CFP && N0CFP->isZero()) { |
| if (N0CFP->isNegative() || |
| (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { |
| // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are |
| // flushed to zero, unless all users treat denorms as zero (DAZ). |
| // FIXME: This transform will change the sign of a NaN and the behavior |
| // of a signaling NaN. It is only valid when a NoNaN flag is present. |
| DenormalMode DenormMode = DAG.getDenormalMode(VT); |
| if (DenormMode == DenormalMode::getIEEE()) { |
| if (SDValue NegN1 = |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) |
| return NegN1; |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1); |
| } |
| } |
| } |
| |
| if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || |
| (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && |
| N1.getOpcode() == ISD::FADD) { |
| // X - (X + Y) -> -Y |
| if (N0 == N1->getOperand(0)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); |
| // X - (Y + X) -> -Y |
| if (N0 == N1->getOperand(1)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); |
| } |
| |
| // fold (fsub A, (fneg B)) -> (fadd A, B) |
| if (SDValue NegN1 = |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); |
| |
| // FSUB -> FMA combines: |
| if (SDValue Fused = visitFSUBForFMACombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMUL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) |
| return R; |
| |
| // fold (fmul c1, c2) -> c1*c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1})) |
| return C; |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { |
| // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && |
| N0.getOpcode() == ISD::FMUL) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| // Avoid an infinite loop by making sure that N00 is not a constant |
| // (the inner multiply has not been constant folded yet). |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { |
| SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); |
| return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); |
| } |
| } |
| |
| // Match a special-case: we convert X * 2.0 into fadd. |
| // fmul (fadd X, X), C -> fmul X, 2.0 * C |
| if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && |
| N0.getOperand(0) == N0.getOperand(1)) { |
| const SDValue Two = DAG.getConstantFP(2.0, DL, VT); |
| SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); |
| } |
| } |
| |
| // fold (fmul X, 2.0) -> (fadd X, X) |
| if (N1CFP && N1CFP->isExactlyValue(+2.0)) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, N0); |
| |
| // fold (fmul X, -1.0) -> (fsub -0.0, X) |
| if (N1CFP && N1CFP->isExactlyValue(-1.0)) { |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) { |
| return DAG.getNode(ISD::FSUB, DL, VT, |
| DAG.getConstantFP(-0.0, DL, VT), N0, Flags); |
| } |
| } |
| |
| // -N0 * -N1 --> N0 * N1 |
| TargetLowering::NegatibleCost CostN0 = |
| TargetLowering::NegatibleCost::Expensive; |
| TargetLowering::NegatibleCost CostN1 = |
| TargetLowering::NegatibleCost::Expensive; |
| SDValue NegN0 = |
| TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); |
| if (NegN0) { |
| HandleSDNode NegN0Handle(NegN0); |
| SDValue NegN1 = |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); |
| if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper || |
| CostN1 == TargetLowering::NegatibleCost::Cheaper)) |
| return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); |
| } |
| |
| // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) |
| // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) |
| if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && |
| (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && |
| TLI.isOperationLegal(ISD::FABS, VT)) { |
| SDValue Select = N0, X = N1; |
| if (Select.getOpcode() != ISD::SELECT) |
| std::swap(Select, X); |
| |
| SDValue Cond = Select.getOperand(0); |
| auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); |
| auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); |
| |
| if (TrueOpnd && FalseOpnd && |
| Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && |
| isa<ConstantFPSDNode>(Cond.getOperand(1)) && |
| cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| switch (CC) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETULT: |
| case ISD::SETOLE: |
| case ISD::SETULE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| std::swap(TrueOpnd, FalseOpnd); |
| [[fallthrough]]; |
| case ISD::SETOGT: |
| case ISD::SETUGT: |
| case ISD::SETOGE: |
| case ISD::SETUGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && |
| TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, DL, VT, |
| DAG.getNode(ISD::FABS, DL, VT, X)); |
| if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) |
| return DAG.getNode(ISD::FABS, DL, VT, X); |
| |
| break; |
| } |
| } |
| } |
| |
| // FMUL -> FMA combines: |
| if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMA(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| // FMA nodes have flags that propagate to the created nodes. |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| bool CanReassociate = |
| Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); |
| |
| // Constant fold FMA. |
| if (isa<ConstantFPSDNode>(N0) && |
| isa<ConstantFPSDNode>(N1) && |
| isa<ConstantFPSDNode>(N2)) { |
| return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); |
| } |
| |
| // (-N0 * -N1) + N2 --> (N0 * N1) + N2 |
| TargetLowering::NegatibleCost CostN0 = |
| TargetLowering::NegatibleCost::Expensive; |
| TargetLowering::NegatibleCost CostN1 = |
| TargetLowering::NegatibleCost::Expensive; |
| SDValue NegN0 = |
| TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); |
| if (NegN0) { |
| HandleSDNode NegN0Handle(NegN0); |
| SDValue NegN1 = |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); |
| if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper || |
| CostN1 == TargetLowering::NegatibleCost::Cheaper)) |
| return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); |
| } |
| |
| // FIXME: use fast math flags instead of Options.UnsafeFPMath |
| if (Options.UnsafeFPMath) { |
| if (N0CFP && N0CFP->isZero()) |
| return N2; |
| if (N1CFP && N1CFP->isZero()) |
| return N2; |
| } |
| |
| if (N0CFP && N0CFP->isExactlyValue(1.0)) |
| return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); |
| if (N1CFP && N1CFP->isExactlyValue(1.0)) |
| return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); |
| |
| // Canonicalize (fma c, x, y) -> (fma x, c, y) |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); |
| |
| if (CanReassociate) { |
| // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) |
| if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && |
| DAG.isConstantFPBuildVectorOrConstantFP(N1) && |
| DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); |
| } |
| |
| // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) |
| if (N0.getOpcode() == ISD::FMUL && |
| DAG.isConstantFPBuildVectorOrConstantFP(N1) && |
| DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { |
| return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), |
| DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), |
| N2); |
| } |
| } |
| |
| // (fma x, -1, y) -> (fadd (fneg x), y) |
| if (N1CFP) { |
| if (N1CFP->isExactlyValue(1.0)) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, N2); |
| |
| if (N1CFP->isExactlyValue(-1.0) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { |
| SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); |
| AddToWorklist(RHSNeg.getNode()); |
| return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); |
| } |
| |
| // fma (fneg x), K, y -> fma x -K, y |
| if (N0.getOpcode() == ISD::FNEG && |
| (TLI.isOperationLegal(ISD::ConstantFP, VT) || |
| (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, |
| ForCodeSize)))) { |
| return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), |
| DAG.getNode(ISD::FNEG, DL, VT, N1), N2); |
| } |
| } |
| |
| if (CanReassociate) { |
| // (fma x, c, x) -> (fmul x, (c+1)) |
| if (N1CFP && N0 == N2) { |
| return DAG.getNode( |
| ISD::FMUL, DL, VT, N0, |
| DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); |
| } |
| |
| // (fma x, c, (fneg x)) -> (fmul x, (c-1)) |
| if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { |
| return DAG.getNode( |
| ISD::FMUL, DL, VT, N0, |
| DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); |
| } |
| } |
| |
| // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) |
| // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) |
| if (!TLI.isFNegFree(VT)) |
| if (SDValue Neg = TLI.getCheaperNegatedExpression( |
| SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) |
| return DAG.getNode(ISD::FNEG, DL, VT, Neg); |
| return SDValue(); |
| } |
| |
| // Combine multiple FDIVs with the same divisor into multiple FMULs by the |
| // reciprocal. |
| // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) |
| // Notice that this is not always beneficial. One reason is different targets |
| // may have different costs for FDIV and FMUL, so sometimes the cost of two |
| // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason |
| // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". |
| SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { |
| // TODO: Limit this transform based on optsize/minsize - it always creates at |
| // least 1 extra instruction. But the perf win may be substantial enough |
| // that only minsize should restrict this. |
| bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; |
| const SDNodeFlags Flags = N->getFlags(); |
| if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) |
| return SDValue(); |
| |
| // Skip if current node is a reciprocal/fneg-reciprocal. |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); |
| if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) |
| return SDValue(); |
| |
| // Exit early if the target does not want this transform or if there can't |
| // possibly be enough uses of the divisor to make the transform worthwhile. |
| unsigned MinUses = TLI.combineRepeatedFPDivisors(); |
| |
| // For splat vectors, scale the number of uses by the splat factor. If we can |
| // convert the division into a scalar op, that will likely be much faster. |
| unsigned NumElts = 1; |
| EVT VT = N->getValueType(0); |
| if (VT.isVector() && DAG.isSplatValue(N1)) |
| NumElts = VT.getVectorMinNumElements(); |
| |
| if (!MinUses || (N1->use_size() * NumElts) < MinUses) |
| return SDValue(); |
| |
| // Find all FDIV users of the same divisor. |
| // Use a set because duplicates may be present in the user list. |
| SetVector<SDNode *> Users; |
| for (auto *U : N1->uses()) { |
| if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { |
| // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. |
| if (U->getOperand(1).getOpcode() == ISD::FSQRT && |
| U->getOperand(0) == U->getOperand(1).getOperand(0) && |
| U->getFlags().hasAllowReassociation() && |
| U->getFlags().hasNoSignedZeros()) |
| continue; |
| |
| // This division is eligible for optimization only if global unsafe math |
| // is enabled or if this division allows reciprocal formation. |
| if (UnsafeMath || U->getFlags().hasAllowReciprocal()) |
| Users.insert(U); |
| } |
| } |
| |
| // Now that we have the actual number of divisor uses, make sure it meets |
| // the minimum threshold specified by the target. |
| if ((Users.size() * NumElts) < MinUses) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); |
| SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); |
| |
| // Dividend / Divisor -> Dividend * Reciprocal |
| for (auto *U : Users) { |
| SDValue Dividend = U->getOperand(0); |
| if (Dividend != FPOne) { |
| SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, |
| Reciprocal, Flags); |
| CombineTo(U, NewNode); |
| } else if (U != Reciprocal.getNode()) { |
| // In the absence of fast-math-flags, this user node is always the |
| // same node as Reciprocal, but with FMF they may be different nodes. |
| CombineTo(U, Reciprocal); |
| } |
| } |
| return SDValue(N, 0); // N was replaced. |
| } |
| |
| SDValue DAGCombiner::visitFDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| SDNodeFlags Flags = N->getFlags(); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) |
| return R; |
| |
| // fold (fdiv c1, c2) -> c1/c2 |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1})) |
| return C; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) |
| return FoldedVOp; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (SDValue V = combineRepeatedFPDivisors(N)) |
| return V; |
| |
| if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { |
| // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. |
| if (auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1)) { |
| // Compute the reciprocal 1.0 / c2. |
| const APFloat &N1APF = N1CFP->getValueAPF(); |
| APFloat Recip(N1APF.getSemantics(), 1); // 1.0 |
| APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); |
| // Only do the transform if the reciprocal is a legal fp immediate that |
| // isn't too nasty (eg NaN, denormal, ...). |
| if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty |
| (!LegalOperations || |
| // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM |
| // backend)... we should handle this gracefully after Legalize. |
| // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || |
| TLI.isOperationLegal(ISD::ConstantFP, VT) || |
| TLI.isFPImmLegal(Recip, VT, ForCodeSize))) |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getConstantFP(Recip, DL, VT)); |
| } |
| |
| // If this FDIV is part of a reciprocal square root, it may be folded |
| // into a target-specific square root estimate instruction. |
| if (N1.getOpcode() == ISD::FSQRT) { |
| if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); |
| } else if (N1.getOpcode() == ISD::FP_EXTEND && |
| N1.getOperand(0).getOpcode() == ISD::FSQRT) { |
| if (SDValue RV = |
| buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { |
| RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); |
| AddToWorklist(RV.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); |
| } |
| } else if (N1.getOpcode() == ISD::FP_ROUND && |
| N1.getOperand(0).getOpcode() == ISD::FSQRT) { |
| if (SDValue RV = |
| buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { |
| RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); |
| AddToWorklist(RV.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); |
| } |
| } else if (N1.getOpcode() == ISD::FMUL) { |
| // Look through an FMUL. Even though this won't remove the FDIV directly, |
| // it's still worthwhile to get rid of the FSQRT if possible. |
| SDValue Sqrt, Y; |
| if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { |
| Sqrt = N1.getOperand(0); |
| Y = N1.getOperand(1); |
| } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { |
| Sqrt = N1.getOperand(1); |
| Y = N1.getOperand(0); |
| } |
| if (Sqrt.getNode()) { |
| // If the other multiply operand is known positive, pull it into the |
| // sqrt. That will eliminate the division if we convert to an estimate. |
| if (Flags.hasAllowReassociation() && N1.hasOneUse() && |
| N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { |
| SDValue A; |
| if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) |
| A = Y.getOperand(0); |
| else if (Y == Sqrt.getOperand(0)) |
| A = Y; |
| if (A) { |
| // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) |
| // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) |
| SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); |
| SDValue AAZ = |
| DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); |
| if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); |
| |
| // Estimate creation failed. Clean up speculatively created nodes. |
| recursivelyDeleteUnusedNodes(AAZ.getNode()); |
| } |
| } |
| |
| // We found a FSQRT, so try to make this fold: |
| // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) |
| if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { |
| SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); |
| AddToWorklist(Div.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); |
| } |
| } |
| } |
| |
| // Fold into a reciprocal estimate and multiply instead of a real divide. |
| if (Options.NoInfsFPMath || Flags.hasNoInfs()) |
| if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) |
| return RV; |
| } |
| |
| // Fold X/Sqrt(X) -> Sqrt(X) |
| if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && |
| (Options.UnsafeFPMath || Flags.hasAllowReassociation())) |
| if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) |
| return N1; |
| |
| // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) |
| TargetLowering::NegatibleCost CostN0 = |
| TargetLowering::NegatibleCost::Expensive; |
| TargetLowering::NegatibleCost CostN1 = |
| TargetLowering::NegatibleCost::Expensive; |
| SDValue NegN0 = |
| TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); |
| if (NegN0) { |
| HandleSDNode NegN0Handle(NegN0); |
| SDValue NegN1 = |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); |
| if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper || |
| CostN1 == TargetLowering::NegatibleCost::Cheaper)) |
| return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFREM(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDNodeFlags Flags = N->getFlags(); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) |
| return R; |
| |
| // fold (frem c1, c2) -> fmod(c1,c2) |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFSQRT(SDNode *N) { |
| SDNodeFlags Flags = N->getFlags(); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: |
| // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN |
| if (!Flags.hasApproximateFuncs() || |
| (!Options.NoInfsFPMath && !Flags.hasNoInfs())) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| if (TLI.isFsqrtCheap(N0, DAG)) |
| return SDValue(); |
| |
| // FSQRT nodes have flags that propagate to the created nodes. |
| // TODO: If this is N0/sqrt(N0), and we reach this node before trying to |
| // transform the fdiv, we may produce a sub-optimal estimate sequence |
| // because the reciprocal calculation may not have to filter out a |
| // 0.0 input. |
| return buildSqrtEstimate(N0, Flags); |
| } |
| |
| /// copysign(x, fp_extend(y)) -> copysign(x, y) |
| /// copysign(x, fp_round(y)) -> copysign(x, y) |
| static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { |
| SDValue N1 = N->getOperand(1); |
| if ((N1.getOpcode() == ISD::FP_EXTEND || |
| N1.getOpcode() == ISD::FP_ROUND)) { |
| EVT N1VT = N1->getValueType(0); |
| EVT N1Op0VT = N1->getOperand(0).getValueType(); |
| |
| // Always fold no-op FP casts. |
| if (N1VT == N1Op0VT) |
| return true; |
| |
| // Do not optimize out type conversion of f128 type yet. |
| // For some targets like x86_64, configuration is changed to keep one f128 |
| // value in one SSE register, but instruction selection cannot handle |
| // FCOPYSIGN on SSE registers yet. |
| if (N1Op0VT == MVT::f128) |
| return false; |
| |
| return !N1Op0VT.isVector() || EnableVectorFCopySignExtendRound; |
| } |
| return false; |
| } |
| |
| SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fcopysign c1, c2) -> fcopysign(c1,c2) |
| if (SDValue C = |
| DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { |
| const APFloat &V = N1C->getValueAPF(); |
| // copysign(x, c1) -> fabs(x) iff ispos(c1) |
| // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) |
| if (!V.isNegative()) { |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); |
| } else { |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, SDLoc(N), VT, |
| DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); |
| } |
| } |
| |
| // copysign(fabs(x), y) -> copysign(x, y) |
| // copysign(fneg(x), y) -> copysign(x, y) |
| // copysign(copysign(x,z), y) -> copysign(x, y) |
| if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || |
| N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); |
| |
| // copysign(x, abs(y)) -> abs(x) |
| if (N1.getOpcode() == ISD::FABS) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); |
| |
| // copysign(x, copysign(y,z)) -> copysign(x, z) |
| if (N1.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); |
| |
| // copysign(x, fp_extend(y)) -> copysign(x, y) |
| // copysign(x, fp_round(y)) -> copysign(x, y) |
| if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFPOW(SDNode *N) { |
| ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); |
| if (!ExponentC) |
| return SDValue(); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| // Try to convert x ** (1/3) into cube root. |
| // TODO: Handle the various flavors of long double. |
| // TODO: Since we're approximating, we don't need an exact 1/3 exponent. |
| // Some range near 1/3 should be fine. |
| EVT VT = N->getValueType(0); |
| if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || |
| (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { |
| // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. |
| // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. |
| // pow(-val, 1/3) = nan; cbrt(-val) = -num. |
| // For regular numbers, rounding may cause the results to differ. |
| // Therefore, we require { nsz ninf nnan afn } for this transform. |
| // TODO: We could select out the special cases if we don't have nsz/ninf. |
| SDNodeFlags Flags = N->getFlags(); |
| if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || |
| !Flags.hasApproximateFuncs()) |
| return SDValue(); |
| |
| // Do not create a cbrt() libcall if the target does not have it, and do not |
| // turn a pow that has lowering support into a cbrt() libcall. |
| if (!DAG.getLibInfo().has(LibFunc_cbrt) || |
| (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && |
| DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) |
| return SDValue(); |
| |
| return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); |
| } |
| |
| // Try to convert x ** (1/4) and x ** (3/4) into square roots. |
| // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. |
| // TODO: This could be extended (using a target hook) to handle smaller |
| // power-of-2 fractional exponents. |
| bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); |
| bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); |
| if (ExponentIs025 || ExponentIs075) { |
| // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. |
| // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. |
| // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. |
| // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. |
| // For regular numbers, rounding may cause the results to differ. |
| // Therefore, we require { nsz ninf afn } for this transform. |
| // TODO: We could select out the special cases if we don't have nsz/ninf. |
| SDNodeFlags Flags = N->getFlags(); |
| |
| // We only need no signed zeros for the 0.25 case. |
| if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || |
| !Flags.hasApproximateFuncs()) |
| return SDValue(); |
| |
| // Don't double the number of libcalls. We are trying to inline fast code. |
| if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) |
| return SDValue(); |
| |
| // Assume that libcalls are the smallest code. |
| // TODO: This restriction should probably be lifted for vectors. |
| if (ForCodeSize) |
| return SDValue(); |
| |
| // pow(X, 0.25) --> sqrt(sqrt(X)) |
| SDLoc DL(N); |
| SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); |
| SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); |
| if (ExponentIs025) |
| return SqrtSqrt; |
| // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) |
| return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // We only do this if the target has legal ftrunc. Otherwise, we'd likely be |
| // replacing casts with a libcall. We also must be allowed to ignore -0.0 |
| // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer |
| // conversions would return +0.0. |
| // FIXME: We should be able to use node-level FMF here. |
| // TODO: If strict math, should we use FABS (+ range check for signed cast)? |
| EVT VT = N->getValueType(0); |
| if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || |
| !DAG.getTarget().Options.NoSignedZerosFPMath) |
| return SDValue(); |
| |
| // fptosi/fptoui round towards zero, so converting from FP to integer and |
| // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X |
| SDValue N0 = N->getOperand(0); |
| if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && |
| N0.getOperand(0).getValueType() == VT) |
| return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); |
| |
| if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && |
| N0.getOperand(0).getValueType() == VT) |
| return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N0.getValueType(); |
| |
| // [us]itofp(undef) = 0, because the result value is bounded. |
| if (N0.isUndef()) |
| return DAG.getConstantFP(0.0, SDLoc(N), VT); |
| |
| // fold (sint_to_fp c1) -> c1fp |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| // ...but only if the target supports immediate floating-point values |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) |
| return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); |
| |
| // If the input is a legal type, and SINT_TO_FP is not legal on this target, |
| // but UINT_TO_FP is legal on this target, try to convert. |
| if (!hasOperation(ISD::SINT_TO_FP, OpVT) && |
| hasOperation(ISD::UINT_TO_FP, OpVT)) { |
| // If the sign bit is known to be zero, we can change this to UINT_TO_FP. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); |
| } |
| |
| // The next optimizations are desirable only if SELECT_CC can be lowered. |
| // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) |
| if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && |
| !VT.isVector() && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { |
| SDLoc DL(N); |
| return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), |
| DAG.getConstantFP(0.0, DL, VT)); |
| } |
| |
| // fold (sint_to_fp (zext (setcc x, y, cc))) -> |
| // (select (setcc x, y, cc), 1.0, 0.0) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && |
| N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { |
| SDLoc DL(N); |
| return DAG.getSelect(DL, VT, N0.getOperand(0), |
| DAG.getConstantFP(1.0, DL, VT), |
| DAG.getConstantFP(0.0, DL, VT)); |
| } |
| |
| if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) |
| return FTrunc; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N0.getValueType(); |
| |
| // [us]itofp(undef) = 0, because the result value is bounded. |
| if (N0.isUndef()) |
| return DAG.getConstantFP(0.0, SDLoc(N), VT); |
| |
| // fold (uint_to_fp c1) -> c1fp |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| // ...but only if the target supports immediate floating-point values |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) |
| return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); |
| |
| // If the input is a legal type, and UINT_TO_FP is not legal on this target, |
| // but SINT_TO_FP is legal on this target, try to convert. |
| if (!hasOperation(ISD::UINT_TO_FP, OpVT) && |
| hasOperation(ISD::SINT_TO_FP, OpVT)) { |
| // If the sign bit is known to be zero, we can change this to SINT_TO_FP. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); |
| } |
| |
| // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) |
| if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { |
| SDLoc DL(N); |
| return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), |
| DAG.getConstantFP(0.0, DL, VT)); |
| } |
| |
| if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) |
| return FTrunc; |
| |
| return SDValue(); |
| } |
| |
| // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x |
| static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) |
| return SDValue(); |
| |
| SDValue Src = N0.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; |
| bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| |
| // We can safely assume the conversion won't overflow the output range, |
| // because (for example) (uint8_t)18293.f is undefined behavior. |
| |
| // Since we can assume the conversion won't overflow, our decision as to |
| // whether the input will fit in the float should depend on the minimum |
| // of the input range and output range. |
| |
| // This means this is also safe for a signed input and unsigned output, since |
| // a negative input would lead to undefined behavior. |
| unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; |
| unsigned OutputSize = (int)VT.getScalarSizeInBits(); |
| unsigned ActualSize = std::min(InputSize, OutputSize); |
| const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); |
| |
| // We can only fold away the float conversion if the input range can be |
| // represented exactly in the float range. |
| if (APFloat::semanticsPrecision(sem) >= ActualSize) { |
| if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { |
| unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND |
| : ISD::ZERO_EXTEND; |
| return DAG.getNode(ExtOp, SDLoc(N), VT, Src); |
| } |
| if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); |
| return DAG.getBitcast(VT, Src); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fp_to_sint undef) -> undef |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // fold (fp_to_sint c1fp) -> c1 |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); |
| |
| return FoldIntToFPToInt(N, DAG); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fp_to_uint undef) -> undef |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // fold (fp_to_uint c1fp) -> c1 |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); |
| |
| return FoldIntToFPToInt(N, DAG); |
| } |
| |
| SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fp_round c1fp) -> c1fp |
| if (SDValue C = |
| DAG.FoldConstantArithmetic(ISD::FP_ROUND, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // fold (fp_round (fp_extend x)) -> x |
| if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) |
| return N0.getOperand(0); |
| |
| // fold (fp_round (fp_round x)) -> (fp_round x) |
| if (N0.getOpcode() == ISD::FP_ROUND) { |
| const bool NIsTrunc = N->getConstantOperandVal(1) == 1; |
| const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; |
| |
| // Skip this folding if it results in an fp_round from f80 to f16. |
| // |
| // f80 to f16 always generates an expensive (and as yet, unimplemented) |
| // libcall to __truncxfhf2 instead of selecting native f16 conversion |
| // instructions from f32 or f64. Moreover, the first (value-preserving) |
| // fp_round from f80 to either f32 or f64 may become a NOP in platforms like |
| // x86. |
| if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) |
| return SDValue(); |
| |
| // If the first fp_round isn't a value preserving truncation, it might |
| // introduce a tie in the second fp_round, that wouldn't occur in the |
| // single-step fp_round we want to fold to. |
| // In other words, double rounding isn't the same as rounding. |
| // Also, this is a value preserving truncation iff both fp_round's are. |
| if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { |
| SDLoc DL(N); |
| return DAG.getNode( |
| ISD::FP_ROUND, DL, VT, N0.getOperand(0), |
| DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL, /*isTarget=*/true)); |
| } |
| } |
| |
| // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse()) { |
| SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, |
| N0.getOperand(0), N1); |
| AddToWorklist(Tmp.getNode()); |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, |
| Tmp, N0.getOperand(1)); |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVCastOp(N, SDLoc(N))) |
| return FoldedVOp; |
| |
| // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. |
| if (N->hasOneUse() && |
| N->use_begin()->getOpcode() == ISD::FP_ROUND) |
| return SDValue(); |
| |
| // fold (fp_extend c1fp) -> c1fp |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); |
| |
| // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) |
| if (N0.getOpcode() == ISD::FP16_TO_FP && |
| TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) |
| return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); |
| |
| // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the |
| // value of X. |
| if (N0.getOpcode() == ISD::FP_ROUND |
| && N0.getConstantOperandVal(1) == 1) { |
| SDValue In = N0.getOperand(0); |
| if (In.getValueType() == VT) return In; |
| if (VT.bitsLT(In.getValueType())) |
| return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, |
| In, N0.getOperand(1)); |
| return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); |
| } |
| |
| // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, VT, N0.getValueType())) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo( |
| N0.getNode(), |
| DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad, |
| DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)), |
| ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFCEIL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fceil c1) -> fceil(c1) |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFTRUNC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ftrunc c1) -> ftrunc(c1) |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); |
| |
| // fold ftrunc (known rounded int x) -> x |
| // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is |
| // likely to be generated to extract integer from a rounded floating value. |
| switch (N0.getOpcode()) { |
| default: break; |
| case ISD::FRINT: |
| case ISD::FTRUNC: |
| case ISD::FNEARBYINT: |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| return N0; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFFLOOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ffloor c1) -> ffloor(c1) |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFNEG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| // Constant fold FNEG. |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); |
| |
| if (SDValue NegN0 = |
| TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) |
| return NegN0; |
| |
| // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 |
| // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't |
| // know it was called from a context with a nsz flag if the input fsub does |
| // not. |
| if (N0.getOpcode() == ISD::FSUB && |
| (DAG.getTarget().Options.NoSignedZerosFPMath || |
| N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { |
| return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), |
| N0.getOperand(0)); |
| } |
| |
| if (SDValue Cast = foldSignChangeInBitcast(N)) |
| return Cast; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMinMax(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| const SDNodeFlags Flags = N->getFlags(); |
| unsigned Opc = N->getOpcode(); |
| bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; |
| bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; |
| SelectionDAG::FlagInserter FlagsInserter(DAG, N); |
| |
| // Constant fold. |
| if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1})) |
| return C; |
| |
| // Canonicalize to constant on RHS. |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && |
| !DAG.isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); |
| |
| if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) { |
| const APFloat &AF = N1CFP->getValueAPF(); |
| |
| // minnum(X, nan) -> X |
| // maxnum(X, nan) -> X |
| // minimum(X, nan) -> nan |
| // maximum(X, nan) -> nan |
| if (AF.isNaN()) |
| return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); |
| |
| // In the following folds, inf can be replaced with the largest finite |
| // float, if the ninf flag is set. |
| if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { |
| // minnum(X, -inf) -> -inf |
| // maxnum(X, +inf) -> +inf |
| // minimum(X, -inf) -> -inf if nnan |
| // maximum(X, +inf) -> +inf if nnan |
| if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) |
| return N->getOperand(1); |
| |
| // minnum(X, +inf) -> X if nnan |
| // maxnum(X, -inf) -> X if nnan |
| // minimum(X, +inf) -> X |
| // maximum(X, -inf) -> X |
| if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) |
| return N->getOperand(0); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFABS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fabs c1) -> fabs(c1) |
| if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); |
| |
| // fold (fabs (fabs x)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FABS) |
| return N->getOperand(0); |
| |
| // fold (fabs (fneg x)) -> (fabs x) |
| // fold (fabs (fcopysign x, y)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); |
| |
| if (SDValue Cast = foldSignChangeInBitcast(N)) |
| return Cast; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBRCOND(SDNode *N) { |
| SDValue Chain = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| |
| // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are |
| // nondeterministic jumps). |
| if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { |
| return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, |
| N1->getOperand(0), N2); |
| } |
| |
| // If N is a constant we could fold this into a fallthrough or unconditional |
| // branch. However that doesn't happen very often in normal code, because |
| // Instcombine/SimplifyCFG should have handled the available opportunities. |
| // If we did this folding here, it would be necessary to update the |
| // MachineBasicBlock CFG, which is awkward. |
| |
| // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal |
| // on the target. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.isOperationLegalOrCustom(ISD::BR_CC, |
| N1.getOperand(0).getValueType())) { |
| return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, |
| Chain, N1.getOperand(2), |
| N1.getOperand(0), N1.getOperand(1), N2); |
| } |
| |
| if (N1.hasOneUse()) { |
| // rebuildSetCC calls visitXor which may change the Chain when there is a |
| // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. |
| HandleSDNode ChainHandle(Chain); |
| if (SDValue NewN1 = rebuildSetCC(N1)) |
| return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, |
| ChainHandle.getValue(), NewN1, N2); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::rebuildSetCC(SDValue N) { |
| if (N.getOpcode() == ISD::SRL || |
| (N.getOpcode() == ISD::TRUNCATE && |
| (N.getOperand(0).hasOneUse() && |
| N.getOperand(0).getOpcode() == ISD::SRL))) { |
| // Look pass the truncate. |
| if (N.getOpcode() == ISD::TRUNCATE) |
| N = N.getOperand(0); |
| |
| // Match this pattern so that we can generate simpler code: |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = srl i32 %b, 1 |
| // brcond i32 %c ... |
| // |
| // into |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = setcc eq %b, 0 |
| // brcond %c ... |
| // |
| // This applies only when the AND constant value has one bit set and the |
| // SRL constant is equal to the log2 of the AND constant. The back-end is |
| // smart enough to convert the result into a TEST/JMP sequence. |
| SDValue Op0 = N.getOperand(0); |
| SDValue Op1 = N.getOperand(1); |
| |
| if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { |
| SDValue AndOp1 = Op0.getOperand(1); |
| |
| if (AndOp1.getOpcode() == ISD::Constant) { |
| const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); |
| |
| if (AndConst.isPowerOf2() && |
| cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { |
| SDLoc DL(N); |
| return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), |
| Op0, DAG.getConstant(0, DL, Op0.getValueType()), |
| ISD::SETNE); |
| } |
| } |
| } |
| } |
| |
| // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) |
| // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) |
| if (N.getOpcode() == ISD::XOR) { |
| // Because we may call this on a speculatively constructed |
| // SimplifiedSetCC Node, we need to simplify this node first. |
| // Ideally this should be folded into SimplifySetCC and not |
| // here. For now, grab a handle to N so we don't lose it from |
| // replacements interal to the visit. |
| HandleSDNode XORHandle(N); |
| while (N.getOpcode() == ISD::XOR) { |
| SDValue Tmp = visitXOR(N.getNode()); |
| // No simplification done. |
| if (!Tmp.getNode()) |
| break; |
| // Returning N is form in-visit replacement that may invalidated |
| // N. Grab value from Handle. |
| if (Tmp.getNode() == N.getNode()) |
| N = XORHandle.getValue(); |
| else // Node simplified. Try simplifying again. |
| N = Tmp; |
| } |
| |
| if (N.getOpcode() != ISD::XOR) |
| return N; |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { |
| bool Equal = false; |
| // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) |
| if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && |
| Op0.getValueType() == MVT::i1) { |
| N = Op0; |
| Op0 = N->getOperand(0); |
| Op1 = N->getOperand(1); |
| Equal = true; |
| } |
| |
| EVT SetCCVT = N.getValueType(); |
| if (LegalTypes) |
| SetCCVT = getSetCCResultType(SetCCVT); |
| // Replace the uses of XOR with SETCC |
| return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, |
| Equal ? ISD::SETEQ : ISD::SETNE); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. |
| // |
| SDValue DAGCombiner::visitBR_CC(SDNode *N) { |
| CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); |
| SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); |
| |
| // If N is a constant we could fold this into a fallthrough or unconditional |
| // branch. However that doesn't happen very often in normal code, because |
| // Instcombine/SimplifyCFG should have handled the available opportunities. |
| // If we did this folding here, it would be necessary to update the |
| // MachineBasicBlock CFG, which is awkward. |
| |
| // Use SimplifySetCC to simplify SETCC's. |
| SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), |
| CondLHS, CondRHS, CC->get(), SDLoc(N), |
| false); |
| if (Simp.getNode()) AddToWorklist(Simp.getNode()); |
| |
| // fold to a simpler setcc |
| if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) |
| return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, |
| N->getOperand(0), Simp.getOperand(2), |
| Simp.getOperand(0), Simp.getOperand(1), |
| N->getOperand(4)); |
| |
| return SDValue(); |
| } |
| |
| static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, |
| bool &IsLoad, bool &IsMasked, SDValue &Ptr, |
| const TargetLowering &TLI) { |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| if (LD->isIndexed()) |
| return false; |
| EVT VT = LD->getMemoryVT(); |
| if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) |
| return false; |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| if (ST->isIndexed()) |
| return false; |
| EVT VT = ST->getMemoryVT(); |
| if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) |
| return false; |
| Ptr = ST->getBasePtr(); |
| IsLoad = false; |
| } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { |
| if (LD->isIndexed()) |
| return false; |
| EVT VT = LD->getMemoryVT(); |
| if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && |
| !TLI.isIndexedMaskedLoadLegal(Dec, VT)) |
| return false; |
| Ptr = LD->getBasePtr(); |
| IsMasked = true; |
| } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { |
| if (ST->isIndexed()) |
| return false; |
| EVT VT = ST->getMemoryVT(); |
| if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && |
| !TLI.isIndexedMaskedStoreLegal(Dec, VT)) |
| return false; |
| Ptr = ST->getBasePtr(); |
| IsLoad = false; |
| IsMasked = true; |
| } else { |
| return false; |
| } |
| return true; |
| } |
| |
| /// Try turning a load/store into a pre-indexed load/store when the base |
| /// pointer is an add or subtract and it has other uses besides the load/store. |
| /// After the transformation, the new indexed load/store has effectively folded |
| /// the add/subtract in and all of its other uses are redirected to the |
| /// new load/store. |
| bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { |
| if (Level < AfterLegalizeDAG) |
| return false; |
| |
| bool IsLoad = true; |
| bool IsMasked = false; |
| SDValue Ptr; |
| if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, |
| Ptr, TLI)) |
| return false; |
| |
| // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail |
| // out. There is no reason to make this a preinc/predec. |
| if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || |
| Ptr->hasOneUse()) |
| return false; |
| |
| // Ask the target to do addressing mode selection. |
| SDValue BasePtr; |
| SDValue Offset; |
| ISD::MemIndexedMode AM = ISD::UNINDEXED; |
| if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) |
| return false; |
| |
| // Backends without true r+i pre-indexed forms may need to pass a |
| // constant base with a variable offset so that constant coercion |
| // will work with the patterns in canonical form. |
| bool Swapped = false; |
| if (isa<ConstantSDNode>(BasePtr)) { |
| std::swap(BasePtr, Offset); |
| Swapped = true; |
| } |
| |
| // Don't create a indexed load / store with zero offset. |
| if (isNullConstant(Offset)) |
| return false; |
| |
| // Try turning it into a pre-indexed load / store except when: |
| // 1) The new base ptr is a frame index. |
| // 2) If N is a store and the new base ptr is either the same as or is a |
| // predecessor of the value being stored. |
| // 3) Another use of old base ptr is a predecessor of N. If ptr is folded |
| // that would create a cycle. |
| // 4) All uses are load / store ops that use it as old base ptr. |
| |
| // Check #1. Preinc'ing a frame index would require copying the stack pointer |
| // (plus the implicit offset) to a register to preinc anyway. |
| if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) |
| return false; |
| |
| // Check #2. |
| if (!IsLoad) { |
| SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() |
| : cast<StoreSDNode>(N)->getValue(); |
| |
| // Would require a copy. |
| if (Val == BasePtr) |
| return false; |
| |
| // Would create a cycle. |
| if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) |
| return false; |
| } |
| |
| // Caches for hasPredecessorHelper. |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| Worklist.push_back(N); |
| |
| // If the offset is a constant, there may be other adds of constants that |
| // can be folded with this one. We should do this to avoid having to keep |
| // a copy of the original base pointer. |
| SmallVector<SDNode *, 16> OtherUses; |
| if (isa<ConstantSDNode>(Offset)) |
| for (SDNode::use_iterator UI = BasePtr->use_begin(), |
| UE = BasePtr->use_end(); |
| UI != UE; ++UI) { |
| SDUse &Use = UI.getUse(); |
| // Skip the use that is Ptr and uses of other results from BasePtr's |
| // node (important for nodes that return multiple results). |
| if (Use.getUser() == Ptr.getNode() || Use != BasePtr) |
| continue; |
| |
| if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) |
| continue; |
| |
| if (Use.getUser()->getOpcode() != ISD::ADD && |
| Use.getUser()->getOpcode() != ISD::SUB) { |
| OtherUses.clear(); |
| break; |
| } |
| |
| SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); |
| if (!isa<ConstantSDNode>(Op1)) { |
| OtherUses.clear(); |
| break; |
| } |
| |
| // FIXME: In some cases, we can be smarter about this. |
| if (Op1.getValueType() != Offset.getValueType()) { |
| OtherUses.clear(); |
| break; |
| } |
| |
| OtherUses.push_back(Use.getUser()); |
| } |
| |
| if (Swapped) |
| std::swap(BasePtr, Offset); |
| |
| // Now check for #3 and #4. |
| bool RealUse = false; |
| |
| for (SDNode *Use : Ptr->uses()) { |
| if (Use == N) |
| continue; |
| if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) |
| return false; |
| |
| // If Ptr may be folded in addressing mode of other use, then it's |
| // not profitable to do this transformation. |
| if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) |
| RealUse = true; |
| } |
| |
| if (!RealUse) |
| return false; |
| |
| SDValue Result; |
| if (!IsMasked) { |
| if (IsLoad) |
| Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); |
| else |
| Result = |
| DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); |
| } else { |
| if (IsLoad) |
| Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, |
| Offset, AM); |
| else |
| Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, |
| Offset, AM); |
| } |
| ++PreIndexedNodes; |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; |
| Result.dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| if (IsLoad) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); |
| } else { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); |
| } |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| deleteAndRecombine(N); |
| |
| if (Swapped) |
| std::swap(BasePtr, Offset); |
| |
| // Replace other uses of BasePtr that can be updated to use Ptr |
| for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { |
| unsigned OffsetIdx = 1; |
| if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) |
| OffsetIdx = 0; |
| assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == |
| BasePtr.getNode() && "Expected BasePtr operand"); |
| |
| // We need to replace ptr0 in the following expression: |
| // x0 * offset0 + y0 * ptr0 = t0 |
| // knowing that |
| // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) |
| // |
| // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the |
| // indexed load/store and the expression that needs to be re-written. |
| // |
| // Therefore, we have: |
| // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 |
| |
| auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); |
| const APInt &Offset0 = CN->getAPIntValue(); |
| const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); |
| int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; |
| int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; |
| int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; |
| int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; |
| |
| unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; |
| |
| APInt CNV = Offset0; |
| if (X0 < 0) CNV = -CNV; |
| if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; |
| else CNV = CNV - Offset1; |
| |
| SDLoc DL(OtherUses[i]); |
| |
| // We can now generate the new expression. |
| SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); |
| SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); |
| |
| SDValue NewUse = DAG.getNode(Opcode, |
| DL, |
| OtherUses[i]->getValueType(0), NewOp1, NewOp2); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); |
| deleteAndRecombine(OtherUses[i]); |
| } |
| |
| // Replace the uses of Ptr with uses of the updated base value. |
| DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); |
| deleteAndRecombine(Ptr.getNode()); |
| AddToWorklist(Result.getNode()); |
| |
| return true; |
| } |
| |
| static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, |
| SDValue &BasePtr, SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (PtrUse == N || |
| (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) |
| return false; |
| |
| if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) |
| return false; |
| |
| // Don't create a indexed load / store with zero offset. |
| if (isNullConstant(Offset)) |
| return false; |
| |
| if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) |
| return false; |
| |
| SmallPtrSet<const SDNode *, 32> Visited; |
| for (SDNode *Use : BasePtr->uses()) { |
| if (Use == Ptr.getNode()) |
| continue; |
| |
| // No if there's a later user which could perform the index instead. |
| if (isa<MemSDNode>(Use)) { |
| bool IsLoad = true; |
| bool IsMasked = false; |
| SDValue OtherPtr; |
| if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, |
| IsMasked, OtherPtr, TLI)) { |
| SmallVector<const SDNode *, 2> Worklist; |
| Worklist.push_back(Use); |
| if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) |
| return false; |
| } |
| } |
| |
| // If all the uses are load / store addresses, then don't do the |
| // transformation. |
| if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { |
| for (SDNode *UseUse : Use->uses()) |
| if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, |
| bool &IsMasked, SDValue &Ptr, |
| SDValue &BasePtr, SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, |
| IsMasked, Ptr, TLI) || |
| Ptr->hasOneUse()) |
| return nullptr; |
| |
| // Try turning it into a post-indexed load / store except when |
| // 1) All uses are load / store ops that use it as base ptr (and |
| // it may be folded as addressing mmode). |
| // 2) Op must be independent of N, i.e. Op is neither a predecessor |
| // nor a successor of N. Otherwise, if Op is folded that would |
| // create a cycle. |
| for (SDNode *Op : Ptr->uses()) { |
| // Check for #1. |
| if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) |
| continue; |
| |
| // Check for #2. |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 8> Worklist; |
| // Ptr is predecessor to both N and Op. |
| Visited.insert(Ptr.getNode()); |
| Worklist.push_back(N); |
| Worklist.push_back(Op); |
| if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && |
| !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) |
| return Op; |
| } |
| return nullptr; |
| } |
| |
| /// Try to combine a load/store with a add/sub of the base pointer node into a |
| /// post-indexed load/store. The transformation folded the add/subtract into the |
| /// new indexed load/store effectively and all of its uses are redirected to the |
| /// new load/store. |
| bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { |
| if (Level < AfterLegalizeDAG) |
| return false; |
| |
| bool IsLoad = true; |
| bool IsMasked = false; |
| SDValue Ptr; |
| SDValue BasePtr; |
| SDValue Offset; |
| ISD::MemIndexedMode AM = ISD::UNINDEXED; |
| SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, |
| Offset, AM, DAG, TLI); |
| if (!Op) |
| return false; |
| |
| SDValue Result; |
| if (!IsMasked) |
| Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, |
| Offset, AM) |
| : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), |
| BasePtr, Offset, AM); |
| else |
| Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), |
| BasePtr, Offset, AM) |
| : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), |
| BasePtr, Offset, AM); |
| ++PostIndexedNodes; |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); dbgs() << "\nWith: "; |
| Result.dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| if (IsLoad) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); |
| } else { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); |
| } |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| deleteAndRecombine(N); |
| |
| // Replace the uses of Use with uses of the updated base value. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), |
| Result.getValue(IsLoad ? 1 : 0)); |
| deleteAndRecombine(Op); |
| return true; |
| } |
| |
| /// Return the base-pointer arithmetic from an indexed \p LD. |
| SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| assert(AM != ISD::UNINDEXED); |
| SDValue BP = LD->getOperand(1); |
| SDValue Inc = LD->getOperand(2); |
| |
| // Some backends use TargetConstants for load offsets, but don't expect |
| // TargetConstants in general ADD nodes. We can convert these constants into |
| // regular Constants (if the constant is not opaque). |
| assert((Inc.getOpcode() != ISD::TargetConstant || |
| !cast<ConstantSDNode>(Inc)->isOpaque()) && |
| "Cannot split out indexing using opaque target constants"); |
| if (Inc.getOpcode() == ISD::TargetConstant) { |
| ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); |
| Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), |
| ConstInc->getValueType(0)); |
| } |
| |
| unsigned Opc = |
| (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); |
| return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); |
| } |
| |
| static inline ElementCount numVectorEltsOrZero(EVT T) { |
| return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); |
| } |
| |
| bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { |
| EVT STType = Val.getValueType(); |
| EVT STMemType = ST->getMemoryVT(); |
| if (STType == STMemType) |
| return true; |
| if (isTypeLegal(STMemType)) |
| return false; // fail. |
| if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && |
| TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { |
| Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); |
| return true; |
| } |
| if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && |
| STType.isInteger() && STMemType.isInteger()) { |
| Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); |
| return true; |
| } |
| if (STType.getSizeInBits() == STMemType.getSizeInBits()) { |
| Val = DAG.getBitcast(STMemType, Val); |
| return true; |
| } |
| return false; // fail. |
| } |
| |
| bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { |
| EVT LDMemType = LD->getMemoryVT(); |
| EVT LDType = LD->getValueType(0); |
| assert(Val.getValueType() == LDMemType && |
| "Attempting to extend value of non-matching type"); |
| if (LDType == LDMemType) |
| return true; |
| if (LDMemType.isInteger() && LDType.isInteger()) { |
| switch (LD->getExtensionType()) { |
| case ISD::NON_EXTLOAD: |
| Val = DAG.getBitcast(LDType, Val); |
| return true; |
| case ISD::EXTLOAD: |
| Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); |
| return true; |
| case ISD::SEXTLOAD: |
| Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); |
| return true; |
| case ISD::ZEXTLOAD: |
| Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { |
| if (OptLevel == CodeGenOpt::None || !LD->isSimple()) |
| return SDValue(); |
| SDValue Chain = LD->getOperand(0); |
| StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); |
| // TODO: Relax this restriction for unordered atomics (see D66309) |
| if (!ST || !ST->isSimple() || ST->getAddressSpace() != LD->getAddressSpace()) |
| return SDValue(); |
| |
| EVT LDType = LD->getValueType(0); |
| EVT LDMemType = LD->getMemoryVT(); |
| EVT STMemType = ST->getMemoryVT(); |
| EVT STType = ST->getValue().getValueType(); |
| |
| // There are two cases to consider here: |
| // 1. The store is fixed width and the load is scalable. In this case we |
| // don't know at compile time if the store completely envelops the load |
| // so we abandon the optimisation. |
| // 2. The store is scalable and the load is fixed width. We could |
| // potentially support a limited number of cases here, but there has been |
| // no cost-benefit analysis to prove it's worth it. |
| bool LdStScalable = LDMemType.isScalableVector(); |
| if (LdStScalable != STMemType.isScalableVector()) |
| return SDValue(); |
| |
| // If we are dealing with scalable vectors on a big endian platform the |
| // calculation of offsets below becomes trickier, since we do not know at |
| // compile time the absolute size of the vector. Until we've done more |
| // analysis on big-endian platforms it seems better to bail out for now. |
| if (LdStScalable && DAG.getDataLayout().isBigEndian()) |
| return SDValue(); |
| |
| BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); |
| BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); |
| int64_t Offset; |
| if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) |
| return SDValue(); |
| |
| // Normalize for Endianness. After this Offset=0 will denote that the least |
| // significant bit in the loaded value maps to the least significant bit in |
| // the stored value). With Offset=n (for n > 0) the loaded value starts at the |
| // n:th least significant byte of the stored value. |
| int64_t OrigOffset = Offset; |
| if (DAG.getDataLayout().isBigEndian()) |
| Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedValue() - |
| (int64_t)LDMemType.getStoreSizeInBits().getFixedValue()) / |
| 8 - |
| Offset; |
| |
| // Check that the stored value cover all bits that are loaded. |
| bool STCoversLD; |
| |
| TypeSize LdMemSize = LDMemType.getSizeInBits(); |
| TypeSize StMemSize = STMemType.getSizeInBits(); |
| if (LdStScalable) |
| STCoversLD = (Offset == 0) && LdMemSize == StMemSize; |
| else |
| STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedValue() <= |
| StMemSize.getFixedValue()); |
| |
| auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { |
| if (LD->isIndexed()) { |
| // Cannot handle opaque target constants and we must respect the user's |
| // request not to split indexes from loads. |
| if (!canSplitIdx(LD)) |
| return SDValue(); |
| SDValue Idx = SplitIndexingFromLoad(LD); |
| SDValue Ops[] = {Val, Idx, Chain}; |
| return CombineTo(LD, Ops, 3); |
| } |
| return CombineTo(LD, Val, Chain); |
| }; |
| |
| if (!STCoversLD) |
| return SDValue(); |
| |
| // Memory as copy space (potentially masked). |
| if (Offset == 0 && LDType == STType && STMemType == LDMemType) { |
| // Simple case: Direct non-truncating forwarding |
| if (LDType.getSizeInBits() == LdMemSize) |
| return ReplaceLd(LD, ST->getValue(), Chain); |
| // Can we model the truncate and extension with an and mask? |
| if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && |
| !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { |
| // Mask to size of LDMemType |
| auto Mask = |
| DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), |
| StMemSize.getFixedValue()), |
| SDLoc(ST), STType); |
| auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); |
| return ReplaceLd(LD, Val, Chain); |
| } |
| } |
| |
| // Handle some cases for big-endian that would be Offset 0 and handled for |
| // little-endian. |
| SDValue Val = ST->getValue(); |
| if (DAG.getDataLayout().isBigEndian() && Offset > 0 && OrigOffset == 0) { |
| if (STType.isInteger() && !STType.isVector() && LDType.isInteger() && |
| !LDType.isVector() && isTypeLegal(STType) && |
| TLI.isOperationLegal(ISD::SRL, STType)) { |
| Val = DAG.getNode(ISD::SRL, SDLoc(LD), STType, Val, |
| DAG.getConstant(Offset * 8, SDLoc(LD), STType)); |
| Offset = 0; |
| } |
| } |
| |
| // TODO: Deal with nonzero offset. |
| if (LD->getBasePtr().isUndef() || Offset != 0) |
| return SDValue(); |
| // Model necessary truncations / extenstions. |
| // Truncate Value To Stored Memory Size. |
| do { |
| if (!getTruncatedStoreValue(ST, Val)) |
| continue; |
| if (!isTypeLegal(LDMemType)) |
| continue; |
| if (STMemType != LDMemType) { |
| // TODO: Support vectors? This requires extract_subvector/bitcast. |
| if (!STMemType.isVector() && !LDMemType.isVector() && |
| STMemType.isInteger() && LDMemType.isInteger()) |
| Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); |
| else |
| continue; |
| } |
| if (!extendLoadedValueToExtension(LD, Val)) |
| continue; |
| return ReplaceLd(LD, Val, Chain); |
| } while (false); |
| |
| // On failure, cleanup dead nodes we may have created. |
| if (Val->use_empty()) |
| deleteAndRecombine(Val.getNode()); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitLOAD(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| SDValue Chain = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| |
| // If load is not volatile and there are no uses of the loaded value (and |
| // the updated indexed value in case of indexed loads), change uses of the |
| // chain value into uses of the chain input (i.e. delete the dead load). |
| // TODO: Allow this for unordered atomics (see D66309) |
| if (LD->isSimple()) { |
| if (N->getValueType(1) == MVT::Other) { |
| // Unindexed loads. |
| if (!N->hasAnyUseOfValue(0)) { |
| // It's not safe to use the two value CombineTo variant here. e.g. |
| // v1, chain2 = load chain1, loc |
| // v2, chain3 = load chain2, loc |
| // v3 = add v2, c |
| // Now we replace use of chain2 with chain1. This makes the second load |
| // isomorphic to the one we are deleting, and thus makes this load live. |
| LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); |
| dbgs() << "\nWith chain: "; Chain.dump(&DAG); |
| dbgs() << "\n"); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); |
| AddUsersToWorklist(Chain.getNode()); |
| if (N->use_empty()) |
| deleteAndRecombine(N); |
| |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } else { |
| // Indexed loads. |
| assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); |
| |
| // If this load has an opaque TargetConstant offset, then we cannot split |
| // the indexing into an add/sub directly (that TargetConstant may not be |
| // valid for a different type of node, and we cannot convert an opaque |
| // target constant into a regular constant). |
| bool CanSplitIdx = canSplitIdx(LD); |
| |
| if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { |
| SDValue Undef = DAG.getUNDEF(N->getValueType(0)); |
| SDValue Index; |
| if (N->hasAnyUseOfValue(1) && CanSplitIdx) { |
| Index = SplitIndexingFromLoad(LD); |
| // Try to fold the base pointer arithmetic into subsequent loads and |
| // stores. |
| AddUsersToWorklist(N); |
| } else |
| Index = DAG.getUNDEF(N->getValueType(1)); |
| LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); |
| dbgs() << "\nWith: "; Undef.dump(&DAG); |
| dbgs() << " and 2 other values\n"); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); |
| deleteAndRecombine(N); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| // If this load is directly stored, replace the load value with the stored |
| // value. |
| if (auto V = ForwardStoreValueToDirectLoad(LD)) |
| return V; |
| |
| // Try to infer better alignment information than the load already has. |
| if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { |
| if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { |
| if (*Alignment > LD->getAlign() && |
| isAligned(*Alignment, LD->getSrcValueOffset())) { |
| SDValue NewLoad = DAG.getExtLoad( |
| LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| // NewLoad will always be N as we are only refining the alignment |
| assert(NewLoad.getNode() == N); |
| (void)NewLoad; |
| } |
| } |
| } |
| |
| if (LD->isUnindexed()) { |
| // Walk up chain skipping non-aliasing memory nodes. |
| SDValue BetterChain = FindBetterChain(LD, Chain); |
| |
| // If there is a better chain. |
| if (Chain != BetterChain) { |
| SDValue ReplLoad; |
| |
| // Replace the chain to void dependency. |
| if (LD->getExtensionType() == ISD::NON_EXTLOAD) { |
| ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), |
| BetterChain, Ptr, LD->getMemOperand()); |
| } else { |
| ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), |
| LD->getValueType(0), |
| BetterChain, Ptr, LD->getMemoryVT(), |
| LD->getMemOperand()); |
| } |
| |
| // Create token factor to keep old chain connected. |
| SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), |
| MVT::Other, Chain, ReplLoad.getValue(1)); |
| |
| // Replace uses with load result and token factor |
| return CombineTo(N, ReplLoad.getValue(0), Token); |
| } |
| } |
| |
| // Try transforming N to an indexed load. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| // Try to slice up N to more direct loads if the slices are mapped to |
| // different register banks or pairing can take place. |
| if (SliceUpLoad(N)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| namespace { |
| |
| /// Helper structure used to slice a load in smaller loads. |
| /// Basically a slice is obtained from the following sequence: |
| /// Origin = load Ty1, Base |
| /// Shift = srl Ty1 Origin, CstTy Amount |
| /// Inst = trunc Shift to Ty2 |
| /// |
| /// Then, it will be rewritten into: |
| /// Slice = load SliceTy, Base + SliceOffset |
| /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 |
| /// |
| /// SliceTy is deduced from the number of bits that are actually used to |
| /// build Inst. |
| struct LoadedSlice { |
| /// Helper structure used to compute the cost of a slice. |
| struct Cost { |
| /// Are we optimizing for code size. |
| bool ForCodeSize = false; |
| |
| /// Various cost. |
| unsigned Loads = 0; |
| unsigned Truncates = 0; |
| unsigned CrossRegisterBanksCopies = 0; |
| unsigned ZExts = 0; |
| unsigned Shift = 0; |
| |
| explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} |
| |
| /// Get the cost of one isolated slice. |
| Cost(const LoadedSlice &LS, bool ForCodeSize) |
| : ForCodeSize(ForCodeSize), Loads(1) { |
| EVT TruncType = LS.Inst->getValueType(0); |
| EVT LoadedType = LS.getLoadedType(); |
| if (TruncType != LoadedType && |
| !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) |
| ZExts = 1; |
| } |
| |
| /// Account for slicing gain in the current cost. |
| /// Slicing provide a few gains like removing a shift or a |
| /// truncate. This method allows to grow the cost of the original |
| /// load with the gain from this slice. |
| void addSliceGain(const LoadedSlice &LS) { |
| // Each slice saves a truncate. |
| const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); |
| if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), |
| LS.Inst->getValueType(0))) |
| ++Truncates; |
| // If there is a shift amount, this slice gets rid of it. |
| if (LS.Shift) |
| ++Shift; |
| // If this slice can merge a cross register bank copy, account for it. |
| if (LS.canMergeExpensiveCrossRegisterBankCopy()) |
| ++CrossRegisterBanksCopies; |
| } |
| |
| Cost &operator+=(const Cost &RHS) { |
| Loads += RHS.Loads; |
| Truncates += RHS.Truncates; |
| CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; |
| ZExts += RHS.ZExts; |
| Shift += RHS.Shift; |
| return *this; |
| } |
| |
| bool operator==(const Cost &RHS) const { |
| return Loads == RHS.Loads && Truncates == RHS.Truncates && |
| CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && |
| ZExts == RHS.ZExts && Shift == RHS.Shift; |
| } |
| |
| bool operator!=(const Cost &RHS) const { return !(*this == RHS); } |
| |
| bool operator<(const Cost &RHS) const { |
| // Assume cross register banks copies are as expensive as loads. |
| // FIXME: Do we want some more target hooks? |
| unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; |
| unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; |
| // Unless we are optimizing for code size, consider the |
| // expensive operation first. |
| if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) |
| return ExpensiveOpsLHS < ExpensiveOpsRHS; |
| return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < |
| (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); |
| } |
| |
| bool operator>(const Cost &RHS) const { return RHS < *this; } |
| |
| bool operator<=(const Cost &RHS) const { return !(RHS < *this); } |
| |
| bool operator>=(const Cost &RHS) const { return !(*this < RHS); } |
| }; |
| |
| // The last instruction that represent the slice. This should be a |
| // truncate instruction. |
| SDNode *Inst; |
| |
| // The original load instruction. |
| LoadSDNode *Origin; |
| |
| // The right shift amount in bits from the original load. |
| unsigned Shift; |
| |
| // The DAG from which Origin came from. |
| // This is used to get some contextual information about legal types, etc. |
| SelectionDAG *DAG; |
| |
| LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, |
| unsigned Shift = 0, SelectionDAG *DAG = nullptr) |
| : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} |
| |
| /// Get the bits used in a chunk of bits \p BitWidth large. |
| /// \return Result is \p BitWidth and has used bits set to 1 and |
| /// not used bits set to 0. |
| APInt getUsedBits() const { |
| // Reproduce the trunc(lshr) sequence: |
| // - Start from the truncated value. |
| // - Zero extend to the desired bit width. |
| // - Shift left. |
| assert(Origin && "No original load to compare against."); |
| unsigned BitWidth = Origin->getValueSizeInBits(0); |
| assert(Inst && "This slice is not bound to an instruction"); |
| assert(Inst->getValueSizeInBits(0) <= BitWidth && |
| "Extracted slice is bigger than the whole type!"); |
| APInt UsedBits(Inst->getValueSizeInBits(0), 0); |
| UsedBits.setAllBits(); |
| UsedBits = UsedBits.zext(BitWidth); |
| UsedBits <<= Shift; |
| return UsedBits; |
| } |
| |
| /// Get the size of the slice to be loaded in bytes. |
| unsigned getLoadedSize() const { |
| unsigned SliceSize = getUsedBits().countPopulation(); |
| assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); |
| return SliceSize / 8; |
| } |
| |
| /// Get the type that will be loaded for this slice. |
| /// Note: This may not be the final type for the slice. |
| EVT getLoadedType() const { |
| assert(DAG && "Missing context"); |
| LLVMContext &Ctxt = *DAG->getContext(); |
| return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); |
| } |
| |
| /// Get the alignment of the load used for this slice. |
| Align getAlign() const { |
| Align Alignment = Origin->getAlign(); |
| uint64_t Offset = getOffsetFromBase(); |
| if (Offset != 0) |
| Alignment = commonAlignment(Alignment, Alignment.value() + Offset); |
| return Alignment; |
| } |
| |
| /// Check if this slice can be rewritten with legal operations. |
| bool isLegal() const { |
| // An invalid slice is not legal. |
| if (!Origin || !Inst || !DAG) |
| return false; |
| |
| // Offsets are for indexed load only, we do not handle that. |
| if (!Origin->getOffset().isUndef()) |
| return false; |
| |
| const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| |
| // Check that the type is legal. |
| EVT SliceType = getLoadedType(); |
| if (!TLI.isTypeLegal(SliceType)) |
| return false; |
| |
| // Check that the load is legal for this type. |
| if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) |
| return false; |
| |
| // Check that the offset can be computed. |
| // 1. Check its type. |
| EVT PtrType = Origin->getBasePtr().getValueType(); |
| if (PtrType == MVT::Untyped || PtrType.isExtended()) |
| return false; |
| |
| // 2. Check that it fits in the immediate. |
| if (!TLI.isLegalAddImmediate(getOffsetFromBase())) |
| return false; |
| |
| // 3. Check that the computation is legal. |
| if (!TLI.isOperationLegal(ISD::ADD, PtrType)) |
| return false; |
| |
| // Check that the zext is legal if it needs one. |
| EVT TruncateType = Inst->getValueType(0); |
| if (TruncateType != SliceType && |
| !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Get the offset in bytes of this slice in the original chunk of |
| /// bits. |
| /// \pre DAG != nullptr. |
| uint64_t getOffsetFromBase() const { |
| assert(DAG && "Missing context."); |
| bool IsBigEndian = DAG->getDataLayout().isBigEndian(); |
| assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); |
| uint64_t Offset = Shift / 8; |
| unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; |
| assert(!(Origin->getValueSizeInBits(0) & 0x7) && |
| "The size of the original loaded type is not a multiple of a" |
| " byte."); |
| // If Offset is bigger than TySizeInBytes, it means we are loading all |
| // zeros. This should have been optimized before in the process. |
| assert(TySizeInBytes > Offset && |
| "Invalid shift amount for given loaded size"); |
| if (IsBigEndian) |
| Offset = TySizeInBytes - Offset - getLoadedSize(); |
| return Offset; |
| } |
| |
| /// Generate the sequence of instructions to load the slice |
| /// represented by this object and redirect the uses of this slice to |
| /// this new sequence of instructions. |
| /// \pre this->Inst && this->Origin are valid Instructions and this |
| /// object passed the legal check: LoadedSlice::isLegal returned true. |
| /// \return The last instruction of the sequence used to load the slice. |
| SDValue loadSlice() const { |
| assert(Inst && Origin && "Unable to replace a non-existing slice."); |
| const SDValue &OldBaseAddr = Origin->getBasePtr(); |
| SDValue BaseAddr = OldBaseAddr; |
| // Get the offset in that chunk of bytes w.r.t. the endianness. |
| int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); |
| assert(Offset >= 0 && "Offset too big to fit in int64_t!"); |
| if (Offset) { |
| // BaseAddr = BaseAddr + Offset. |
| EVT ArithType = BaseAddr.getValueType(); |
| SDLoc DL(Origin); |
| BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, |
| DAG->getConstant(Offset, DL, ArithType)); |
| } |
| |
| // Create the type of the loaded slice according to its size. |
| EVT SliceType = getLoadedType(); |
| |
| // Create the load for the slice. |
| SDValue LastInst = |
| DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, |
| Origin->getPointerInfo().getWithOffset(Offset), getAlign(), |
| Origin->getMemOperand()->getFlags()); |
| // If the final type is not the same as the loaded type, this means that |
| // we have to pad with zero. Create a zero extend for that. |
| EVT FinalType = Inst->getValueType(0); |
| if (SliceType != FinalType) |
| LastInst = |
| DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); |
| return LastInst; |
| } |
| |
| /// Check if this slice can be merged with an expensive cross register |
| /// bank copy. E.g., |
| /// i = load i32 |
| /// f = bitcast i32 i to float |
| bool canMergeExpensiveCrossRegisterBankCopy() const { |
| if (!Inst || !Inst->hasOneUse()) |
| return false; |
| SDNode *Use = *Inst->use_begin(); |
| if (Use->getOpcode() != ISD::BITCAST) |
| return false; |
| assert(DAG && "Missing context"); |
| const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| EVT ResVT = Use->getValueType(0); |
| const TargetRegisterClass *ResRC = |
| TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); |
| const TargetRegisterClass *ArgRC = |
| TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), |
| Use->getOperand(0)->isDivergent()); |
| if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) |
| return false; |
| |
| // At this point, we know that we perform a cross-register-bank copy. |
| // Check if it is expensive. |
| const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); |
| // Assume bitcasts are cheap, unless both register classes do not |
| // explicitly share a common sub class. |
| if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) |
| return false; |
| |
| // Check if it will be merged with the load. |
| // 1. Check the alignment / fast memory access constraint. |
| unsigned IsFast = 0; |
| if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, |
| Origin->getAddressSpace(), getAlign(), |
| Origin->getMemOperand()->getFlags(), &IsFast) || |
| !IsFast) |
| return false; |
| |
| // 2. Check that the load is a legal operation for that type. |
| if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) |
| return false; |
| |
| // 3. Check that we do not have a zext in the way. |
| if (Inst->getValueType(0) != getLoadedType()) |
| return false; |
| |
| return true; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Check that all bits set in \p UsedBits form a dense region, i.e., |
| /// \p UsedBits looks like 0..0 1..1 0..0. |
| static bool areUsedBitsDense(const APInt &UsedBits) { |
| // If all the bits are one, this is dense! |
| if (UsedBits.isAllOnes()) |
| return true; |
| |
| // Get rid of the unused bits on the right. |
| APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); |
| // Get rid of the unused bits on the left. |
| if (NarrowedUsedBits.countLeadingZeros()) |
| NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); |
| // Check that the chunk of bits is completely used. |
| return NarrowedUsedBits.isAllOnes(); |
| } |
| |
| /// Check whether or not \p First and \p Second are next to each other |
| /// in memory. This means that there is no hole between the bits loaded |
| /// by \p First and the bits loaded by \p Second. |
| static bool areSlicesNextToEachOther(const LoadedSlice &First, |
| const LoadedSlice &Second) { |
| assert(First.Origin == Second.Origin && First.Origin && |
| "Unable to match different memory origins."); |
| APInt UsedBits = First.getUsedBits(); |
| assert((UsedBits & Second.getUsedBits()) == 0 && |
| "Slices are not supposed to overlap."); |
| UsedBits |= Second.getUsedBits(); |
| return areUsedBitsDense(UsedBits); |
| } |
| |
| /// Adjust the \p GlobalLSCost according to the target |
| /// paring capabilities and the layout of the slices. |
| /// \pre \p GlobalLSCost should account for at least as many loads as |
| /// there is in the slices in \p LoadedSlices. |
| static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, |
| LoadedSlice::Cost &GlobalLSCost) { |
| unsigned NumberOfSlices = LoadedSlices.size(); |
| // If there is less than 2 elements, no pairing is possible. |
| if (NumberOfSlices < 2) |
| return; |
| |
| // Sort the slices so that elements that are likely to be next to each |
| // other in memory are next to each other in the list. |
| llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { |
| assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); |
| return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); |
| }); |
| const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); |
| // First (resp. Second) is the first (resp. Second) potentially candidate |
| // to be placed in a paired load. |
| const LoadedSlice *First = nullptr; |
| const LoadedSlice *Second = nullptr; |
| for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, |
| // Set the beginning of the pair. |
| First = Second) { |
| Second = &LoadedSlices[CurrSlice]; |
| |
| // If First is NULL, it means we start a new pair. |
| // Get to the next slice. |
| if (!First) |
| continue; |
| |
| EVT LoadedType = First->getLoadedType(); |
| |
| // If the types of the slices are different, we cannot pair them. |
| if (LoadedType != Second->getLoadedType()) |
| continue; |
| |
| // Check if the target supplies paired loads for this type. |
| Align RequiredAlignment; |
| if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { |
| // move to the next pair, this type is hopeless. |
| Second = nullptr; |
| continue; |
| } |
| // Check if we meet the alignment requirement. |
| if (First->getAlign() < RequiredAlignment) |
| continue; |
| |
| // Check that both loads are next to each other in memory. |
| if (!areSlicesNextToEachOther(*First, *Second)) |
| continue; |
| |
| assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); |
| --GlobalLSCost.Loads; |
| // Move to the next pair. |
| Second = nullptr; |
| } |
| } |
| |
| /// Check the profitability of all involved LoadedSlice. |
| /// Currently, it is considered profitable if there is exactly two |
| /// involved slices (1) which are (2) next to each other in memory, and |
| /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). |
| /// |
| /// Note: The order of the elements in \p LoadedSlices may be modified, but not |
| /// the elements themselves. |
| /// |
| /// FIXME: When the cost model will be mature enough, we can relax |
| /// constraints (1) and (2). |
| static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, |
| const APInt &UsedBits, bool ForCodeSize) { |
| unsigned NumberOfSlices = LoadedSlices.size(); |
| if (StressLoadSlicing) |
| return NumberOfSlices > 1; |
| |
| // Check (1). |
| if (NumberOfSlices != 2) |
| return false; |
| |
| // Check (2). |
| if (!areUsedBitsDense(UsedBits)) |
| return false; |
| |
| // Check (3). |
| LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); |
| // The original code has one big load. |
| OrigCost.Loads = 1; |
| for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { |
| const LoadedSlice &LS = LoadedSlices[CurrSlice]; |
| // Accumulate the cost of all the slices. |
| LoadedSlice::Cost SliceCost(LS, ForCodeSize); |
| GlobalSlicingCost += SliceCost; |
| |
| // Account as cost in the original configuration the gain obtained |
| // with the current slices. |
| OrigCost.addSliceGain(LS); |
| } |
| |
| // If the target supports paired load, adjust the cost accordingly. |
| adjustCostForPairing(LoadedSlices, GlobalSlicingCost); |
| return OrigCost > GlobalSlicingCost; |
| } |
| |
| /// If the given load, \p LI, is used only by trunc or trunc(lshr) |
| /// operations, split it in the various pieces being extracted. |
| /// |
| /// This sort of thing is introduced by SROA. |
| /// This slicing takes care not to insert overlapping loads. |
| /// \pre LI is a simple load (i.e., not an atomic or volatile load). |
| bool DAGCombiner::SliceUpLoad(SDNode *N) { |
| if (Level < AfterLegalizeDAG) |
| return false; |
| |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| if (!LD->isSimple() || !ISD::isNormalLoad(LD) || |
| !LD->getValueType(0).isInteger()) |
| return false; |
| |
| // The algorithm to split up a load of a scalable vector into individual |
| // elements currently requires knowing the length of the loaded type, |
| // so will need adjusting to work on scalable vectors. |
| if (LD->getValueType(0).isScalableVector()) |
| return false; |
| |
| // Keep track of already used bits to detect overlapping values. |
| // In that case, we will just abort the transformation. |
| APInt UsedBits(LD->getValueSizeInBits(0), 0); |
| |
| SmallVector<LoadedSlice, 4> LoadedSlices; |
| |
| // Check if this load is used as several smaller chunks of bits. |
| // Basically, look for uses in trunc or trunc(lshr) and record a new chain |
| // of computation for each trunc. |
| for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); |
| UI != UIEnd; ++UI) { |
| // Skip the uses of the chain. |
| if (UI.getUse().getResNo() != 0) |
| continue; |
| |
| SDNode *User = *UI; |
| unsigned Shift = 0; |
| |
| // Check if this is a trunc(lshr). |
| if (User->getOpcode() == ISD::SRL && User->hasOneUse() && |
| isa<ConstantSDNode>(User->getOperand(1))) { |
| Shift = User->getConstantOperandVal(1); |
| User = *User->use_begin(); |
| } |
| |
| // At this point, User is a Truncate, iff we encountered, trunc or |
| // trunc(lshr). |
| if (User->getOpcode() != ISD::TRUNCATE) |
| return false; |
| |
| // The width of the type must be a power of 2 and greater than 8-bits. |
| // Otherwise the load cannot be represented in LLVM IR. |
| // Moreover, if we shifted with a non-8-bits multiple, the slice |
| // will be across several bytes. We do not support that. |
| unsigned Width = User->getValueSizeInBits(0); |
| if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) |
| return false; |
| |
| // Build the slice for this chain of computations. |
| LoadedSlice LS(User, LD, Shift, &DAG); |
| APInt CurrentUsedBits = LS.getUsedBits(); |
| |
| // Check if this slice overlaps with another. |
| if ((CurrentUsedBits & UsedBits) != 0) |
| return false; |
| // Update the bits used globally. |
| UsedBits |= CurrentUsedBits; |
| |
| // Check if the new slice would be legal. |
| if (!LS.isLegal()) |
| return false; |
| |
| // Record the slice. |
| LoadedSlices.push_back(LS); |
| } |
| |
| // Abort slicing if it does not seem to be profitable. |
| if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) |
| return false; |
| |
| ++SlicedLoads; |
| |
| // Rewrite each chain to use an independent load. |
| // By construction, each chain can be represented by a unique load. |
| |
| // Prepare the argument for the new token factor for all the slices. |
| SmallVector<SDValue, 8> ArgChains; |
| for (const LoadedSlice &LS : LoadedSlices) { |
| SDValue SliceInst = LS.loadSlice(); |
| CombineTo(LS.Inst, SliceInst, true); |
| if (SliceInst.getOpcode() != ISD::LOAD) |
| SliceInst = SliceInst.getOperand(0); |
| assert(SliceInst->getOpcode() == ISD::LOAD && |
| "It takes more than a zext to get to the loaded slice!!"); |
| ArgChains.push_back(SliceInst.getValue(1)); |
| } |
| |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, |
| ArgChains); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); |
| AddToWorklist(Chain.getNode()); |
| return true; |
| } |
| |
| /// Check to see if V is (and load (ptr), imm), where the load is having |
| /// specific bytes cleared out. If so, return the byte size being masked out |
| /// and the shift amount. |
| static std::pair<unsigned, unsigned> |
| CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { |
| std::pair<unsigned, unsigned> Result(0, 0); |
| |
| // Check for the structure we're looking for. |
| if (V->getOpcode() != ISD::AND || |
| !isa<ConstantSDNode>(V->getOperand(1)) || |
| !ISD::isNormalLoad(V->getOperand(0).getNode())) |
| return Result; |
| |
| // Check the chain and pointer. |
| LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); |
| if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. |
| |
| // This only handles simple types. |
| if (V.getValueType() != MVT::i16 && |
| V.getValueType() != MVT::i32 && |
| V.getValueType() != MVT::i64) |
| return Result; |
| |
| // Check the constant mask. Invert it so that the bits being masked out are |
| // 0 and the bits being kept are 1. Use getSExtValue so that leading bits |
| // follow the sign bit for uniformity. |
| uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); |
| unsigned NotMaskLZ = countLeadingZeros(NotMask); |
| if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. |
| unsigned NotMaskTZ = countTrailingZeros(NotMask); |
| if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. |
| if (NotMaskLZ == 64) return Result; // All zero mask. |
| |
| // See if we have a continuous run of bits. If so, we have 0*1+0* |
| if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) |
| return Result; |
| |
| // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. |
| if (V.getValueType() != MVT::i64 && NotMaskLZ) |
| NotMaskLZ -= 64-V.getValueSizeInBits(); |
| |
| unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; |
| switch (MaskedBytes) { |
| case 1: |
| case 2: |
| case 4: break; |
| default: return Result; // All one mask, or 5-byte mask. |
| } |
| |
| // Verify that the first bit starts at a multiple of mask so that the access |
| // is aligned the same as the access width. |
| if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; |
| |
| // For narrowing to be valid, it must be the case that the load the |
| // immediately preceding memory operation before the store. |
| if (LD == Chain.getNode()) |
| ; // ok. |
| else if (Chain->getOpcode() == ISD::TokenFactor && |
| SDValue(LD, 1).hasOneUse()) { |
| // LD has only 1 chain use so they are no indirect dependencies. |
| if (!LD->isOperandOf(Chain.getNode())) |
| return Result; |
| } else |
| return Result; // Fail. |
| |
| Result.first = MaskedBytes; |
| Result.second = NotMaskTZ/8; |
| return Result; |
| } |
| |
| /// Check to see if IVal is something that provides a value as specified by |
| /// MaskInfo. If so, replace the specified store with a narrower store of |
| /// truncated IVal. |
| static SDValue |
| ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, |
| SDValue IVal, StoreSDNode *St, |
| DAGCombiner *DC) { |
| unsigned NumBytes = MaskInfo.first; |
| unsigned ByteShift = MaskInfo.second; |
| SelectionDAG &DAG = DC->getDAG(); |
| |
| // Check to see if IVal is all zeros in the part being masked in by the 'or' |
| // that uses this. If not, this is not a replacement. |
| APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), |
| ByteShift*8, (ByteShift+NumBytes)*8); |
| if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); |
| |
| // Check that it is legal on the target to do this. It is legal if the new |
| // VT we're shrinking to (i8/i16/i32) is legal or we're still before type |
| // legalization. If the source type is legal, but the store type isn't, see |
| // if we can use a truncating store. |
| MVT VT = MVT::getIntegerVT(NumBytes * 8); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| bool UseTruncStore; |
| if (DC->isTypeLegal(VT)) |
| UseTruncStore = false; |
| else if (TLI.isTypeLegal(IVal.getValueType()) && |
| TLI.isTruncStoreLegal(IVal.getValueType(), VT)) |
| UseTruncStore = true; |
| else |
| return SDValue(); |
| // Check that the target doesn't think this is a bad idea. |
| if (St->getMemOperand() && |
| !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, |
| *St->getMemOperand())) |
| return SDValue(); |
| |
| // Okay, we can do this! Replace the 'St' store with a store of IVal that is |
| // shifted by ByteShift and truncated down to NumBytes. |
| if (ByteShift) { |
| SDLoc DL(IVal); |
| IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, |
| DAG.getConstant(ByteShift*8, DL, |
| DC->getShiftAmountTy(IVal.getValueType()))); |
| } |
| |
| // Figure out the offset for the store and the alignment of the access. |
| unsigned StOffset; |
| if (DAG.getDataLayout().isLittleEndian()) |
| StOffset = ByteShift; |
| else |
| StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; |
| |
| SDValue Ptr = St->getBasePtr(); |
| if (StOffset) { |
| SDLoc DL(IVal); |
| Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); |
| } |
| |
| ++OpsNarrowed; |
| if (UseTruncStore) |
| return DAG.getTruncStore(St->getChain(), SDLoc(St), IVal, Ptr, |
| St->getPointerInfo().getWithOffset(StOffset), |
| VT, St->getOriginalAlign()); |
| |
| // Truncate down to the new size. |
| IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); |
| |
| return DAG |
| .getStore(St->getChain(), SDLoc(St), IVal, Ptr, |
| St->getPointerInfo().getWithOffset(StOffset), |
| St->getOriginalAlign()); |
| } |
| |
| /// Look for sequence of load / op / store where op is one of 'or', 'xor', and |
| /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try |
| /// narrowing the load and store if it would end up being a win for performance |
| /// or code size. |
| SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| if (!ST->isSimple()) |
| return SDValue(); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue Value = ST->getValue(); |
| SDValue Ptr = ST->getBasePtr(); |
| EVT VT = Value.getValueType(); |
| |
| if (ST->isTruncatingStore() || VT.isVector()) |
| return SDValue(); |
| |
| unsigned Opc = Value.getOpcode(); |
| |
| if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || |
| !Value.hasOneUse()) |
| return SDValue(); |
| |
| // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst |
| // is a byte mask indicating a consecutive number of bytes, check to see if |
| // Y is known to provide just those bytes. If so, we try to replace the |
| // load + replace + store sequence with a single (narrower) store, which makes |
| // the load dead. |
| if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { |
| std::pair<unsigned, unsigned> MaskedLoad; |
| MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); |
| if (MaskedLoad.first) |
| if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, |
| Value.getOperand(1), ST,this)) |
| return NewST; |
| |
| // Or is commutative, so try swapping X and Y. |
| MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); |
| if (MaskedLoad.first) |
| if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, |
| Value.getOperand(0), ST,this)) |
| return NewST; |
| } |
| |
| if (!EnableReduceLoadOpStoreWidth) |
| return SDValue(); |
| |
| if (Value.getOperand(1).getOpcode() != ISD::Constant) |
| return SDValue(); |
| |
| SDValue N0 = Value.getOperand(0); |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| Chain == SDValue(N0.getNode(), 1)) { |
| LoadSDNode *LD = cast<LoadSDNode>(N0); |
| if (LD->getBasePtr() != Ptr || |
| LD->getPointerInfo().getAddrSpace() != |
| ST->getPointerInfo().getAddrSpace()) |
| return SDValue(); |
| |
| // Find the type to narrow it the load / op / store to. |
| SDValue N1 = Value.getOperand(1); |
| unsigned BitWidth = N1.getValueSizeInBits(); |
| APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); |
| if (Opc == ISD::AND) |
| Imm ^= APInt::getAllOnes(BitWidth); |
| if (Imm == 0 || Imm.isAllOnes()) |
| return SDValue(); |
| unsigned ShAmt = Imm.countTrailingZeros(); |
| unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; |
| unsigned NewBW = NextPowerOf2(MSB - ShAmt); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); |
| // The narrowing should be profitable, the load/store operation should be |
| // legal (or custom) and the store size should be equal to the NewVT width. |
| while (NewBW < BitWidth && |
| (NewVT.getStoreSizeInBits() != NewBW || |
| !TLI.isOperationLegalOrCustom(Opc, NewVT) || |
| !TLI.isNarrowingProfitable(VT, NewVT))) { |
| NewBW = NextPowerOf2(NewBW); |
| NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); |
| } |
| if (NewBW >= BitWidth) |
| return SDValue(); |
| |
| // If the lsb changed does not start at the type bitwidth boundary, |
| // start at the previous one. |
| if (ShAmt % NewBW) |
| ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; |
| APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, |
| std::min(BitWidth, ShAmt + NewBW)); |
| if ((Imm & Mask) == Imm) { |
| APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); |
| if (Opc == ISD::AND) |
| NewImm ^= APInt::getAllOnes(NewBW); |
| uint64_t PtrOff = ShAmt / 8; |
| // For big endian targets, we need to adjust the offset to the pointer to |
| // load the correct bytes. |
| if (DAG.getDataLayout().isBigEndian()) |
| PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; |
| |
| unsigned IsFast = 0; |
| Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT, |
| LD->getAddressSpace(), NewAlign, |
| LD->getMemOperand()->getFlags(), &IsFast) || |
| !IsFast) |
| return SDValue(); |
| |
| SDValue NewPtr = |
| DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); |
| SDValue NewLD = |
| DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, |
| LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, |
| DAG.getConstant(NewImm, SDLoc(Value), |
| NewVT)); |
| SDValue NewST = |
| DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, |
| ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); |
| |
| AddToWorklist(NewPtr.getNode()); |
| AddToWorklist(NewLD.getNode()); |
| AddToWorklist(NewVal.getNode()); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); |
| ++OpsNarrowed; |
| return NewST; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// For a given floating point load / store pair, if the load value isn't used |
| /// by any other operations, then consider transforming the pair to integer |
| /// load / store operations if the target deems the transformation profitable. |
| SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| SDValue Value = ST->getValue(); |
| if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && |
| Value.hasOneUse()) { |
| LoadSDNode *LD = cast<LoadSDNode>(Value); |
| EVT VT = LD->getMemoryVT(); |
| if (!VT.isFloatingPoint() || |
| VT != ST->getMemoryVT() || |
| LD->isNonTemporal() || |
| ST->isNonTemporal() || |
| LD->getPointerInfo().getAddrSpace() != 0 || |
| ST->getPointerInfo().getAddrSpace() != 0) |
| return SDValue(); |
| |
| TypeSize VTSize = VT.getSizeInBits(); |
| |
| // We don't know the size of scalable types at compile time so we cannot |
| // create an integer of the equivalent size. |
| if (VTSize.isScalable()) |
| return SDValue(); |
| |
| unsigned FastLD = 0, FastST = 0; |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedValue()); |
| if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || |
| !TLI.isOperationLegal(ISD::STORE, IntVT) || |
| !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || |
| !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || |
| !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, |
| *LD->getMemOperand(), &FastLD) || |
| !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, |
| *ST->getMemOperand(), &FastST) || |
| !FastLD || !FastST) |
| return SDValue(); |
| |
| SDValue NewLD = |
| DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), |
| LD->getPointerInfo(), LD->getAlign()); |
| |
| SDValue NewST = |
| DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), |
| ST->getPointerInfo(), ST->getAlign()); |
| |
| AddToWorklist(NewLD.getNode()); |
| AddToWorklist(NewST.getNode()); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); |
| ++LdStFP2Int; |
| return NewST; |
| } |
| |
| return SDValue(); |
| } |
| |
| // This is a helper function for visitMUL to check the profitability |
| // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). |
| // MulNode is the original multiply, AddNode is (add x, c1), |
| // and ConstNode is c2. |
| // |
| // If the (add x, c1) has multiple uses, we could increase |
| // the number of adds if we make this transformation. |
| // It would only be worth doing this if we can remove a |
| // multiply in the process. Check for that here. |
| // To illustrate: |
| // (A + c1) * c3 |
| // (A + c2) * c3 |
| // We're checking for cases where we have common "c3 * A" expressions. |
| bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode, |
| SDValue ConstNode) { |
| APInt Val; |
| |
| // If the add only has one use, and the target thinks the folding is |
| // profitable or does not lead to worse code, this would be OK to do. |
| if (AddNode->hasOneUse() && |
| TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) |
| return true; |
| |
| // Walk all the users of the constant with which we're multiplying. |
| for (SDNode *Use : ConstNode->uses()) { |
| if (Use == MulNode) // This use is the one we're on right now. Skip it. |
| continue; |
| |
| if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. |
| SDNode *OtherOp; |
| SDNode *MulVar = AddNode.getOperand(0).getNode(); |
| |
| // OtherOp is what we're multiplying against the constant. |
| if (Use->getOperand(0) == ConstNode) |
| OtherOp = Use->getOperand(1).getNode(); |
| else |
| OtherOp = Use->getOperand(0).getNode(); |
| |
| // Check to see if multiply is with the same operand of our "add". |
| // |
| // ConstNode = CONST |
| // Use = ConstNode * A <-- visiting Use. OtherOp is A. |
| // ... |
| // AddNode = (A + c1) <-- MulVar is A. |
| // = AddNode * ConstNode <-- current visiting instruction. |
| // |
| // If we make this transformation, we will have a common |
| // multiply (ConstNode * A) that we can save. |
| if (OtherOp == MulVar) |
| return true; |
| |
| // Now check to see if a future expansion will give us a common |
| // multiply. |
| // |
| // ConstNode = CONST |
| // AddNode = (A + c1) |
| // ... = AddNode * ConstNode <-- current visiting instruction. |
| // ... |
| // OtherOp = (A + c2) |
| // Use = OtherOp * ConstNode <-- visiting Use. |
| // |
| // If we make this transformation, we will have a common |
| // multiply (CONST * A) after we also do the same transformation |
| // to the "t2" instruction. |
| if (OtherOp->getOpcode() == ISD::ADD && |
| DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && |
| OtherOp->getOperand(0).getNode() == MulVar) |
| return true; |
| } |
| } |
| |
| // Didn't find a case where this would be profitable. |
| return false; |
| } |
| |
| SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumStores) { |
| SmallVector<SDValue, 8> Chains; |
| SmallPtrSet<const SDNode *, 8> Visited; |
| SDLoc StoreDL(StoreNodes[0].MemNode); |
| |
| for (unsigned i = 0; i < NumStores; ++i) { |
| Visited.insert(StoreNodes[i].MemNode); |
| } |
| |
| // don't include nodes that are children or repeated nodes. |
| for (unsigned i = 0; i < NumStores; ++i) { |
| if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) |
| Chains.push_back(StoreNodes[i].MemNode->getChain()); |
| } |
| |
| assert(Chains.size() > 0 && "Chain should have generated a chain"); |
| return DAG.getTokenFactor(StoreDL, Chains); |
| } |
| |
| bool DAGCombiner::mergeStoresOfConstantsOrVecElts( |
| SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, |
| bool IsConstantSrc, bool UseVector, bool UseTrunc) { |
| // Make sure we have something to merge. |
| if (NumStores < 2) |
| return false; |
| |
| assert((!UseTrunc || !UseVector) && |
| "This optimization cannot emit a vector truncating store"); |
| |
| // The latest Node in the DAG. |
| SDLoc DL(StoreNodes[0].MemNode); |
| |
| TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); |
| unsigned SizeInBits = NumStores * ElementSizeBits; |
| unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; |
| |
| std::optional<MachineMemOperand::Flags> Flags; |
| AAMDNodes AAInfo; |
| for (unsigned I = 0; I != NumStores; ++I) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); |
| if (!Flags) { |
| Flags = St->getMemOperand()->getFlags(); |
| AAInfo = St->getAAInfo(); |
| continue; |
| } |
| // Skip merging if there's an inconsistent flag. |
| if (Flags != St->getMemOperand()->getFlags()) |
| return false; |
| // Concatenate AA metadata. |
| AAInfo = AAInfo.concat(St->getAAInfo()); |
| } |
| |
| EVT StoreTy; |
| if (UseVector) { |
| unsigned Elts = NumStores * NumMemElts; |
| // Get the type for the merged vector store. |
| StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); |
| } else |
| StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); |
| |
| SDValue StoredVal; |
| if (UseVector) { |
| if (IsConstantSrc) { |
| SmallVector<SDValue, 8> BuildVector; |
| for (unsigned I = 0; I != NumStores; ++I) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); |
| SDValue Val = St->getValue(); |
| // If constant is of the wrong type, convert it now. |
| if (MemVT != Val.getValueType()) { |
| Val = peekThroughBitcasts(Val); |
| // Deal with constants of wrong size. |
| if (ElementSizeBits != Val.getValueSizeInBits()) { |
| EVT IntMemVT = |
| EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); |
| if (isa<ConstantFPSDNode>(Val)) { |
| // Not clear how to truncate FP values. |
| return false; |
| } |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(Val)) |
| Val = DAG.getConstant(C->getAPIntValue() |
| .zextOrTrunc(Val.getValueSizeInBits()) |
| .zextOrTrunc(ElementSizeBits), |
| SDLoc(C), IntMemVT); |
| } |
| // Make sure correctly size type is the correct type. |
| Val = DAG.getBitcast(MemVT, Val); |
| } |
| BuildVector.push_back(Val); |
| } |
| StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS |
| : ISD::BUILD_VECTOR, |
| DL, StoreTy, BuildVector); |
| } else { |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumStores; ++i) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); |
| SDValue Val = peekThroughBitcasts(St->getValue()); |
| // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of |
| // type MemVT. If the underlying value is not the correct |
| // type, but it is an extraction of an appropriate vector we |
| // can recast Val to be of the correct type. This may require |
| // converting between EXTRACT_VECTOR_ELT and |
| // EXTRACT_SUBVECTOR. |
| if ((MemVT != Val.getValueType()) && |
| (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { |
| EVT MemVTScalarTy = MemVT.getScalarType(); |
| // We may need to add a bitcast here to get types to line up. |
| if (MemVTScalarTy != Val.getValueType().getScalarType()) { |
| Val = DAG.getBitcast(MemVT, Val); |
| } else if (MemVT.isVector() && |
| Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| Val = DAG.getNode(ISD::BUILD_VECTOR, DL, MemVT, Val); |
| } else { |
| unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR |
| : ISD::EXTRACT_VECTOR_ELT; |
| SDValue Vec = Val.getOperand(0); |
| SDValue Idx = Val.getOperand(1); |
| Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); |
| } |
| } |
| Ops.push_back(Val); |
| } |
| |
| // Build the extracted vector elements back into a vector. |
| StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS |
| : ISD::BUILD_VECTOR, |
| DL, StoreTy, Ops); |
| } |
| } else { |
| // We should always use a vector store when merging extracted vector |
| // elements, so this path implies a store of constants. |
| assert(IsConstantSrc && "Merged vector elements should use vector store"); |
| |
| APInt StoreInt(SizeInBits, 0); |
| |
| // Construct a single integer constant which is made of the smaller |
| // constant inputs. |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| for (unsigned i = 0; i < NumStores; ++i) { |
| unsigned Idx = IsLE ? (NumStores - 1 - i) : i; |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); |
| |
| SDValue Val = St->getValue(); |
| Val = peekThroughBitcasts(Val); |
| StoreInt <<= ElementSizeBits; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { |
| StoreInt |= C->getAPIntValue() |
| .zextOrTrunc(ElementSizeBits) |
| .zextOrTrunc(SizeInBits); |
| } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { |
| StoreInt |= C->getValueAPF() |
| .bitcastToAPInt() |
| .zextOrTrunc(ElementSizeBits) |
| .zextOrTrunc(SizeInBits); |
| // If fp truncation is necessary give up for now. |
| if (MemVT.getSizeInBits() != ElementSizeBits) |
| return false; |
| } else { |
| llvm_unreachable("Invalid constant element type"); |
| } |
| } |
| |
| // Create the new Load and Store operations. |
| StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); |
| } |
| |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); |
| |
| // make sure we use trunc store if it's necessary to be legal. |
| SDValue NewStore; |
| if (!UseTrunc) { |
| NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), |
| FirstInChain->getAlign(), *Flags, AAInfo); |
| } else { // Must be realized as a trunc store |
| EVT LegalizedStoredValTy = |
| TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); |
| unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); |
| ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); |
| SDValue ExtendedStoreVal = |
| DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, |
| LegalizedStoredValTy); |
| NewStore = DAG.getTruncStore( |
| NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, |
| FirstInChain->getAlign(), *Flags, AAInfo); |
| } |
| |
| // Replace all merged stores with the new store. |
| for (unsigned i = 0; i < NumStores; ++i) |
| CombineTo(StoreNodes[i].MemNode, NewStore); |
| |
| AddToWorklist(NewChain.getNode()); |
| return true; |
| } |
| |
| void DAGCombiner::getStoreMergeCandidates( |
| StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, |
| SDNode *&RootNode) { |
| // This holds the base pointer, index, and the offset in bytes from the base |
| // pointer. We must have a base and an offset. Do not handle stores to undef |
| // base pointers. |
| BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); |
| if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) |
| return; |
| |
| SDValue Val = peekThroughBitcasts(St->getValue()); |
| StoreSource StoreSrc = getStoreSource(Val); |
| assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); |
| |
| // Match on loadbaseptr if relevant. |
| EVT MemVT = St->getMemoryVT(); |
| BaseIndexOffset LBasePtr; |
| EVT LoadVT; |
| if (StoreSrc == StoreSource::Load) { |
| auto *Ld = cast<LoadSDNode>(Val); |
| LBasePtr = BaseIndexOffset::match(Ld, DAG); |
| LoadVT = Ld->getMemoryVT(); |
| // Load and store should be the same type. |
| if (MemVT != LoadVT) |
| return; |
| // Loads must only have one use. |
| if (!Ld->hasNUsesOfValue(1, 0)) |
| return; |
| // The memory operands must not be volatile/indexed/atomic. |
| // TODO: May be able to relax for unordered atomics (see D66309) |
| if (!Ld->isSimple() || Ld->isIndexed()) |
| return; |
| } |
| auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, |
| int64_t &Offset) -> bool { |
| // The memory operands must not be volatile/indexed/atomic. |
| // TODO: May be able to relax for unordered atomics (see D66309) |
| if (!Other->isSimple() || Other->isIndexed()) |
| return false; |
| // Don't mix temporal stores with non-temporal stores. |
| if (St->isNonTemporal() != Other->isNonTemporal()) |
| return false; |
| SDValue OtherBC = peekThroughBitcasts(Other->getValue()); |
| // Allow merging constants of different types as integers. |
| bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) |
| : Other->getMemoryVT() != MemVT; |
| switch (StoreSrc) { |
| case StoreSource::Load: { |
| if (NoTypeMatch) |
| return false; |
| // The Load's Base Ptr must also match. |
| auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); |
| if (!OtherLd) |
| return false; |
| BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); |
| if (LoadVT != OtherLd->getMemoryVT()) |
| return false; |
| // Loads must only have one use. |
| if (!OtherLd->hasNUsesOfValue(1, 0)) |
| return false; |
| // The memory operands must not be volatile/indexed/atomic. |
| // TODO: May be able to relax for unordered atomics (see D66309) |
| if (!OtherLd->isSimple() || OtherLd->isIndexed()) |
| return false; |
| // Don't mix temporal loads with non-temporal loads. |
| if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) |
| return false; |
| if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) |
| return false; |
| break; |
| } |
| case StoreSource::Constant: |
| if (NoTypeMatch) |
| return false; |
| if (!isIntOrFPConstant(OtherBC)) |
| return false; |
| break; |
| case StoreSource::Extract: |
| // Do not merge truncated stores here. |
| if (Other->isTruncatingStore()) |
| return false; |
| if (!MemVT.bitsEq(OtherBC.getValueType())) |
| return false; |
| if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && |
| OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return false; |
| break; |
| default: |
| llvm_unreachable("Unhandled store source for merging"); |
| } |
| Ptr = BaseIndexOffset::match(Other, DAG); |
| return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); |
| }; |
| |
| // Check if the pair of StoreNode and the RootNode already bail out many |
| // times which is over the limit in dependence check. |
| auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, |
| SDNode *RootNode) -> bool { |
| auto RootCount = StoreRootCountMap.find(StoreNode); |
| return RootCount != StoreRootCountMap.end() && |
| RootCount->second.first == RootNode && |
| RootCount->second.second > StoreMergeDependenceLimit; |
| }; |
| |
| auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { |
| // This must be a chain use. |
| if (UseIter.getOperandNo() != 0) |
| return; |
| if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { |
| BaseIndexOffset Ptr; |
| int64_t PtrDiff; |
| if (CandidateMatch(OtherStore, Ptr, PtrDiff) && |
| !OverLimitInDependenceCheck(OtherStore, RootNode)) |
| StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); |
| } |
| }; |
| |
| // We looking for a root node which is an ancestor to all mergable |
| // stores. We search up through a load, to our root and then down |
| // through all children. For instance we will find Store{1,2,3} if |
| // St is Store1, Store2. or Store3 where the root is not a load |
| // which always true for nonvolatile ops. TODO: Expand |
| // the search to find all valid candidates through multiple layers of loads. |
| // |
| // Root |
| // |-------|-------| |
| // Load Load Store3 |
| // | | |
| // Store1 Store2 |
| // |
| // FIXME: We should be able to climb and |
| // descend TokenFactors to find candidates as well. |
| |
| RootNode = St->getChain().getNode(); |
| |
| unsigned NumNodesExplored = 0; |
| const unsigned MaxSearchNodes = 1024; |
| if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { |
| RootNode = Ldn->getChain().getNode(); |
| for (auto I = RootNode->use_begin(), E = RootNode->use_end(); |
| I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { |
| if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain |
| for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) |
| TryToAddCandidate(I2); |
| } |
| // Check stores that depend on the root (e.g. Store 3 in the chart above). |
| if (I.getOperandNo() == 0 && isa<StoreSDNode>(*I)) { |
| TryToAddCandidate(I); |
| } |
| } |
| } else { |
| for (auto I = RootNode->use_begin(), E = RootNode->use_end(); |
| I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) |
| TryToAddCandidate(I); |
| } |
| } |
| |
| // We need to check that merging these stores does not cause a loop in the |
| // DAG. Any store candidate may depend on another candidate indirectly through |
| // its operands. Check in parallel by searching up from operands of candidates. |
| bool DAGCombiner::checkMergeStoreCandidatesForDependencies( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, |
| SDNode *RootNode) { |
| // FIXME: We should be able to truncate a full search of |
| // predecessors by doing a BFS and keeping tabs the originating |
| // stores from which worklist nodes come from in a similar way to |
| // TokenFactor simplfication. |
| |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 8> Worklist; |
| |
| // RootNode is a predecessor to all candidates so we need not search |
| // past it. Add RootNode (peeking through TokenFactors). Do not count |
| // these towards size check. |
| |
| Worklist.push_back(RootNode); |
| while (!Worklist.empty()) { |
| auto N = Worklist.pop_back_val(); |
| if (!Visited.insert(N).second) |
| continue; // Already present in Visited. |
| if (N->getOpcode() == ISD::TokenFactor) { |
| for (SDValue Op : N->ops()) |
| Worklist.push_back(Op.getNode()); |
| } |
| } |
| |
| // Don't count pruning nodes towards max. |
| unsigned int Max = 1024 + Visited.size(); |
| // Search Ops of store candidates. |
| for (unsigned i = 0; i < NumStores; ++i) { |
| SDNode *N = StoreNodes[i].MemNode; |
| // Of the 4 Store Operands: |
| // * Chain (Op 0) -> We have already considered these |
| // in candidate selection, but only by following the |
| // chain dependencies. We could still have a chain |
| // dependency to a load, that has a non-chain dep to |
| // another load, that depends on a store, etc. So it is |
| // possible to have dependencies that consist of a mix |
| // of chain and non-chain deps, and we need to include |
| // chain operands in the analysis here.. |
| // * Value (Op 1) -> Cycles may happen (e.g. through load chains) |
| // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, |
| // but aren't necessarily fromt the same base node, so |
| // cycles possible (e.g. via indexed store). |
| // * (Op 3) -> Represents the pre or post-indexing offset (or undef for |
| // non-indexed stores). Not constant on all targets (e.g. ARM) |
| // and so can participate in a cycle. |
| for (unsigned j = 0; j < N->getNumOperands(); ++j) |
| Worklist.push_back(N->getOperand(j).getNode()); |
| } |
| // Search through DAG. We can stop early if we find a store node. |
| for (unsigned i = 0; i < NumStores; ++i) |
| if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, |
| Max)) { |
| // If the searching bail out, record the StoreNode and RootNode in the |
| // StoreRootCountMap. If we have seen the pair many times over a limit, |
| // we won't add the StoreNode into StoreNodes set again. |
| if (Visited.size() >= Max) { |
| auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; |
| if (RootCount.first == RootNode) |
| RootCount.second++; |
| else |
| RootCount = {RootNode, 1}; |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| unsigned |
| DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, |
| int64_t ElementSizeBytes) const { |
| while (true) { |
| // Find a store past the width of the first store. |
| size_t StartIdx = 0; |
| while ((StartIdx + 1 < StoreNodes.size()) && |
| StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != |
| StoreNodes[StartIdx + 1].OffsetFromBase) |
| ++StartIdx; |
| |
| // Bail if we don't have enough candidates to merge. |
| if (StartIdx + 1 >= StoreNodes.size()) |
| return 0; |
| |
| // Trim stores that overlapped with the first store. |
| if (StartIdx) |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); |
| |
| // Scan the memory operations on the chain and find the first |
| // non-consecutive store memory address. |
| unsigned NumConsecutiveStores = 1; |
| int64_t StartAddress = StoreNodes[0].OffsetFromBase; |
| // Check that the addresses are consecutive starting from the second |
| // element in the list of stores. |
| for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { |
| int64_t CurrAddress = StoreNodes[i].OffsetFromBase; |
| if (CurrAddress - StartAddress != (ElementSizeBytes * i)) |
| break; |
| NumConsecutiveStores = i + 1; |
| } |
| if (NumConsecutiveStores > 1) |
| return NumConsecutiveStores; |
| |
| // There are no consecutive stores at the start of the list. |
| // Remove the first store and try again. |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); |
| } |
| } |
| |
| bool DAGCombiner::tryStoreMergeOfConstants( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, |
| EVT MemVT, SDNode *RootNode, bool AllowVectors) { |
| LLVMContext &Context = *DAG.getContext(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| int64_t ElementSizeBytes = MemVT.getStoreSize(); |
| unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; |
| bool MadeChange = false; |
| |
| // Store the constants into memory as one consecutive store. |
| while (NumConsecutiveStores >= 2) { |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| unsigned FirstStoreAS = FirstInChain->getAddressSpace(); |
| Align FirstStoreAlign = FirstInChain->getAlign(); |
| unsigned LastLegalType = 1; |
| unsigned LastLegalVectorType = 1; |
| bool LastIntegerTrunc = false; |
| bool NonZero = false; |
| unsigned FirstZeroAfterNonZero = NumConsecutiveStores; |
| for (unsigned i = 0; i < NumConsecutiveStores; ++i) { |
| StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); |
| SDValue StoredVal = ST->getValue(); |
| bool IsElementZero = false; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) |
| IsElementZero = C->isZero(); |
| else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) |
| IsElementZero = C->getConstantFPValue()->isNullValue(); |
| if (IsElementZero) { |
| if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) |
| FirstZeroAfterNonZero = i; |
| } |
| NonZero |= !IsElementZero; |
| |
| // Find a legal type for the constant store. |
| unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; |
| EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); |
| unsigned IsFast = 0; |
| |
| // Break early when size is too large to be legal. |
| if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) |
| break; |
| |
| if (TLI.isTypeLegal(StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, StoreTy, |
| DAG.getMachineFunction()) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstInChain->getMemOperand(), &IsFast) && |
| IsFast) { |
| LastIntegerTrunc = false; |
| LastLegalType = i + 1; |
| // Or check whether a truncstore is legal. |
| } else if (TLI.getTypeAction(Context, StoreTy) == |
| TargetLowering::TypePromoteInteger) { |
| EVT LegalizedStoredValTy = |
| TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); |
| if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, |
| DAG.getMachineFunction()) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstInChain->getMemOperand(), &IsFast) && |
| IsFast) { |
| LastIntegerTrunc = true; |
| LastLegalType = i + 1; |
| } |
| } |
| |
| // We only use vectors if the constant is known to be zero or the |
| // target allows it and the function is not marked with the |
| // noimplicitfloat attribute. |
| if ((!NonZero || |
| TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && |
| AllowVectors) { |
| // Find a legal type for the vector store. |
| unsigned Elts = (i + 1) * NumMemElts; |
| EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); |
| if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && |
| TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && |
| TLI.allowsMemoryAccess(Context, DL, Ty, |
| *FirstInChain->getMemOperand(), &IsFast) && |
| IsFast) |
| LastLegalVectorType = i + 1; |
| } |
| } |
| |
| bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; |
| unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; |
| bool UseTrunc = LastIntegerTrunc && !UseVector; |
| |
| // Check if we found a legal integer type that creates a meaningful |
| // merge. |
| if (NumElem < 2) { |
| // We know that candidate stores are in order and of correct |
| // shape. While there is no mergeable sequence from the |
| // beginning one may start later in the sequence. The only |
| // reason a merge of size N could have failed where another of |
| // the same size would not have, is if the alignment has |
| // improved or we've dropped a non-zero value. Drop as many |
| // candidates as we can here. |
| unsigned NumSkip = 1; |
| while ((NumSkip < NumConsecutiveStores) && |
| (NumSkip < FirstZeroAfterNonZero) && |
| (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) |
| NumSkip++; |
| |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); |
| NumConsecutiveStores -= NumSkip; |
| continue; |
| } |
| |
| // Check that we can merge these candidates without causing a cycle. |
| if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, |
| RootNode)) { |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| continue; |
| } |
| |
| MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, |
| /*IsConstantSrc*/ true, |
| UseVector, UseTrunc); |
| |
| // Remove merged stores for next iteration. |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| } |
| return MadeChange; |
| } |
| |
| bool DAGCombiner::tryStoreMergeOfExtracts( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, |
| EVT MemVT, SDNode *RootNode) { |
| LLVMContext &Context = *DAG.getContext(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; |
| bool MadeChange = false; |
| |
| // Loop on Consecutive Stores on success. |
| while (NumConsecutiveStores >= 2) { |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| unsigned FirstStoreAS = FirstInChain->getAddressSpace(); |
| Align FirstStoreAlign = FirstInChain->getAlign(); |
| unsigned NumStoresToMerge = 1; |
| for (unsigned i = 0; i < NumConsecutiveStores; ++i) { |
| // Find a legal type for the vector store. |
| unsigned Elts = (i + 1) * NumMemElts; |
| EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); |
| unsigned IsFast = 0; |
| |
| // Break early when size is too large to be legal. |
| if (Ty.getSizeInBits() > MaximumLegalStoreInBits) |
| break; |
| |
| if (TLI.isTypeLegal(Ty) && |
| TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && |
| TLI.allowsMemoryAccess(Context, DL, Ty, |
| *FirstInChain->getMemOperand(), &IsFast) && |
| IsFast) |
| NumStoresToMerge = i + 1; |
| } |
| |
| // Check if we found a legal integer type creating a meaningful |
| // merge. |
| if (NumStoresToMerge < 2) { |
| // We know that candidate stores are in order and of correct |
| // shape. While there is no mergeable sequence from the |
| // beginning one may start later in the sequence. The only |
| // reason a merge of size N could have failed where another of |
| // the same size would not have, is if the alignment has |
| // improved. Drop as many candidates as we can here. |
| unsigned NumSkip = 1; |
| while ((NumSkip < NumConsecutiveStores) && |
| (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) |
| NumSkip++; |
| |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); |
| NumConsecutiveStores -= NumSkip; |
| continue; |
| } |
| |
| // Check that we can merge these candidates without causing a cycle. |
| if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, |
| RootNode)) { |
| StoreNodes.erase(StoreNodes.begin(), |
| StoreNodes.begin() + NumStoresToMerge); |
| NumConsecutiveStores -= NumStoresToMerge; |
| continue; |
| } |
| |
| MadeChange |= mergeStoresOfConstantsOrVecElts( |
| StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, |
| /*UseVector*/ true, /*UseTrunc*/ false); |
| |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); |
| NumConsecutiveStores -= NumStoresToMerge; |
| } |
| return MadeChange; |
| } |
| |
| bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumConsecutiveStores, EVT MemVT, |
| SDNode *RootNode, bool AllowVectors, |
| bool IsNonTemporalStore, |
| bool IsNonTemporalLoad) { |
| LLVMContext &Context = *DAG.getContext(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| int64_t ElementSizeBytes = MemVT.getStoreSize(); |
| unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; |
| bool MadeChange = false; |
| |
| // Look for load nodes which are used by the stored values. |
| SmallVector<MemOpLink, 8> LoadNodes; |
| |
| // Find acceptable loads. Loads need to have the same chain (token factor), |
| // must not be zext, volatile, indexed, and they must be consecutive. |
| BaseIndexOffset LdBasePtr; |
| |
| for (unsigned i = 0; i < NumConsecutiveStores; ++i) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); |
| SDValue Val = peekThroughBitcasts(St->getValue()); |
| LoadSDNode *Ld = cast<LoadSDNode>(Val); |
| |
| BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); |
| // If this is not the first ptr that we check. |
| int64_t LdOffset = 0; |
| if (LdBasePtr.getBase().getNode()) { |
| // The base ptr must be the same. |
| if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) |
| break; |
| } else { |
| // Check that all other base pointers are the same as this one. |
| LdBasePtr = LdPtr; |
| } |
| |
| // We found a potential memory operand to merge. |
| LoadNodes.push_back(MemOpLink(Ld, LdOffset)); |
| } |
| |
| while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { |
| Align RequiredAlignment; |
| bool NeedRotate = false; |
| if (LoadNodes.size() == 2) { |
| // If we have load/store pair instructions and we only have two values, |
| // don't bother merging. |
| if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && |
| StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); |
| break; |
| } |
| // If the loads are reversed, see if we can rotate the halves into place. |
| int64_t Offset0 = LoadNodes[0].OffsetFromBase; |
| int64_t Offset1 = LoadNodes[1].OffsetFromBase; |
| EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); |
| if (Offset0 - Offset1 == ElementSizeBytes && |
| (hasOperation(ISD::ROTL, PairVT) || |
| hasOperation(ISD::ROTR, PairVT))) { |
| std::swap(LoadNodes[0], LoadNodes[1]); |
| NeedRotate = true; |
| } |
| } |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| unsigned FirstStoreAS = FirstInChain->getAddressSpace(); |
| Align FirstStoreAlign = FirstInChain->getAlign(); |
| LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); |
| |
| // Scan the memory operations on the chain and find the first |
| // non-consecutive load memory address. These variables hold the index in |
| // the store node array. |
| |
| unsigned LastConsecutiveLoad = 1; |
| |
| // This variable refers to the size and not index in the array. |
| unsigned LastLegalVectorType = 1; |
| unsigned LastLegalIntegerType = 1; |
| bool isDereferenceable = true; |
| bool DoIntegerTruncate = false; |
| int64_t StartAddress = LoadNodes[0].OffsetFromBase; |
| SDValue LoadChain = FirstLoad->getChain(); |
| for (unsigned i = 1; i < LoadNodes.size(); ++i) { |
| // All loads must share the same chain. |
| if (LoadNodes[i].MemNode->getChain() != LoadChain) |
| break; |
| |
| int64_t CurrAddress = LoadNodes[i].OffsetFromBase; |
| if (CurrAddress - StartAddress != (ElementSizeBytes * i)) |
| break; |
| LastConsecutiveLoad = i; |
| |
| if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) |
| isDereferenceable = false; |
| |
| // Find a legal type for the vector store. |
| unsigned Elts = (i + 1) * NumMemElts; |
| EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); |
| |
| // Break early when size is too large to be legal. |
| if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) |
| break; |
| |
| unsigned IsFastSt = 0; |
| unsigned IsFastLd = 0; |
| // Don't try vector types if we need a rotate. We may still fail the |
| // legality checks for the integer type, but we can't handle the rotate |
| // case with vectors. |
| // FIXME: We could use a shuffle in place of the rotate. |
| if (!NeedRotate && TLI.isTypeLegal(StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, StoreTy, |
| DAG.getMachineFunction()) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstInChain->getMemOperand(), &IsFastSt) && |
| IsFastSt && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstLoad->getMemOperand(), &IsFastLd) && |
| IsFastLd) { |
| LastLegalVectorType = i + 1; |
| } |
| |
| // Find a legal type for the integer store. |
| unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; |
| StoreTy = EVT::getIntegerVT(Context, SizeInBits); |
| if (TLI.isTypeLegal(StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, StoreTy, |
| DAG.getMachineFunction()) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstInChain->getMemOperand(), &IsFastSt) && |
| IsFastSt && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstLoad->getMemOperand(), &IsFastLd) && |
| IsFastLd) { |
| LastLegalIntegerType = i + 1; |
| DoIntegerTruncate = false; |
| // Or check whether a truncstore and extload is legal. |
| } else if (TLI.getTypeAction(Context, StoreTy) == |
| TargetLowering::TypePromoteInteger) { |
| EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); |
| if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, |
| DAG.getMachineFunction()) && |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && |
| TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstInChain->getMemOperand(), &IsFastSt) && |
| IsFastSt && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, |
| *FirstLoad->getMemOperand(), &IsFastLd) && |
| IsFastLd) { |
| LastLegalIntegerType = i + 1; |
| DoIntegerTruncate = true; |
| } |
| } |
| } |
| |
| // Only use vector types if the vector type is larger than the integer |
| // type. If they are the same, use integers. |
| bool UseVectorTy = |
| LastLegalVectorType > LastLegalIntegerType && AllowVectors; |
| unsigned LastLegalType = |
| std::max(LastLegalVectorType, LastLegalIntegerType); |
| |
| // We add +1 here because the LastXXX variables refer to location while |
| // the NumElem refers to array/index size. |
| unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); |
| NumElem = std::min(LastLegalType, NumElem); |
| Align FirstLoadAlign = FirstLoad->getAlign(); |
| |
| if (NumElem < 2) { |
| // We know that candidate stores are in order and of correct |
| // shape. While there is no mergeable sequence from the |
| // beginning one may start later in the sequence. The only |
| // reason a merge of size N could have failed where another of |
| // the same size would not have is if the alignment or either |
| // the load or store has improved. Drop as many candidates as we |
| // can here. |
| unsigned NumSkip = 1; |
| while ((NumSkip < LoadNodes.size()) && |
| (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && |
| (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) |
| NumSkip++; |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); |
| NumConsecutiveStores -= NumSkip; |
| continue; |
| } |
| |
| // Check that we can merge these candidates without causing a cycle. |
| if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, |
| RootNode)) { |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| continue; |
| } |
| |
| // Find if it is better to use vectors or integers to load and store |
| // to memory. |
| EVT JointMemOpVT; |
| if (UseVectorTy) { |
| // Find a legal type for the vector store. |
| unsigned Elts = NumElem * NumMemElts; |
| JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); |
| } else { |
| unsigned SizeInBits = NumElem * ElementSizeBytes * 8; |
| JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); |
| } |
| |
| SDLoc LoadDL(LoadNodes[0].MemNode); |
| SDLoc StoreDL(StoreNodes[0].MemNode); |
| |
| // The merged loads are required to have the same incoming chain, so |
| // using the first's chain is acceptable. |
| |
| SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); |
| AddToWorklist(NewStoreChain.getNode()); |
| |
| MachineMemOperand::Flags LdMMOFlags = |
| isDereferenceable ? MachineMemOperand::MODereferenceable |
| : MachineMemOperand::MONone; |
| if (IsNonTemporalLoad) |
| LdMMOFlags |= MachineMemOperand::MONonTemporal; |
| |
| MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore |
| ? MachineMemOperand::MONonTemporal |
| : MachineMemOperand::MONone; |
| |
| SDValue NewLoad, NewStore; |
| if (UseVectorTy || !DoIntegerTruncate) { |
| NewLoad = DAG.getLoad( |
| JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), |
| FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); |
| SDValue StoreOp = NewLoad; |
| if (NeedRotate) { |
| unsigned LoadWidth = ElementSizeBytes * 8 * 2; |
| assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && |
| "Unexpected type for rotate-able load pair"); |
| SDValue RotAmt = |
| DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); |
| // Target can convert to the identical ROTR if it does not have ROTL. |
| StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); |
| } |
| NewStore = DAG.getStore( |
| NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); |
| } else { // This must be the truncstore/extload case |
| EVT ExtendedTy = |
| TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); |
| NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, |
| FirstLoad->getChain(), FirstLoad->getBasePtr(), |
| FirstLoad->getPointerInfo(), JointMemOpVT, |
| FirstLoadAlign, LdMMOFlags); |
| NewStore = DAG.getTruncStore( |
| NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), JointMemOpVT, |
| FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); |
| } |
| |
| // Transfer chain users from old loads to the new load. |
| for (unsigned i = 0; i < NumElem; ++i) { |
| LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), |
| SDValue(NewLoad.getNode(), 1)); |
| } |
| |
| // Replace all stores with the new store. Recursively remove corresponding |
| // values if they are no longer used. |
| for (unsigned i = 0; i < NumElem; ++i) { |
| SDValue Val = StoreNodes[i].MemNode->getOperand(1); |
| CombineTo(StoreNodes[i].MemNode, NewStore); |
| if (Val->use_empty()) |
| recursivelyDeleteUnusedNodes(Val.getNode()); |
| } |
| |
| MadeChange = true; |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| } |
| return MadeChange; |
| } |
| |
| bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { |
| if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) |
| return false; |
| |
| // TODO: Extend this function to merge stores of scalable vectors. |
| // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> |
| // store since we know <vscale x 16 x i8> is exactly twice as large as |
| // <vscale x 8 x i8>). Until then, bail out for scalable vectors. |
| EVT MemVT = St->getMemoryVT(); |
| if (MemVT.isScalableVector()) |
| return false; |
| if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) |
| return false; |
| |
| // This function cannot currently deal with non-byte-sized memory sizes. |
| int64_t ElementSizeBytes = MemVT.getStoreSize(); |
| if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) |
| return false; |
| |
| // Do not bother looking at stored values that are not constants, loads, or |
| // extracted vector elements. |
| SDValue StoredVal = peekThroughBitcasts(St->getValue()); |
| const StoreSource StoreSrc = getStoreSource(StoredVal); |
| if (StoreSrc == StoreSource::Unknown) |
| return false; |
| |
| SmallVector<MemOpLink, 8> StoreNodes; |
| SDNode *RootNode; |
| // Find potential store merge candidates by searching through chain sub-DAG |
| getStoreMergeCandidates(St, StoreNodes, RootNode); |
| |
| // Check if there is anything to merge. |
| if (StoreNodes.size() < 2) |
| return false; |
| |
| // Sort the memory operands according to their distance from the |
| // base pointer. |
| llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { |
| return LHS.OffsetFromBase < RHS.OffsetFromBase; |
| }); |
| |
| bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( |
| Attribute::NoImplicitFloat); |
| bool IsNonTemporalStore = St->isNonTemporal(); |
| bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && |
| cast<LoadSDNode>(StoredVal)->isNonTemporal(); |
| |
| // Store Merge attempts to merge the lowest stores. This generally |
| // works out as if successful, as the remaining stores are checked |
| // after the first collection of stores is merged. However, in the |
| // case that a non-mergeable store is found first, e.g., {p[-2], |
| // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent |
| // mergeable cases. To prevent this, we prune such stores from the |
| // front of StoreNodes here. |
| bool MadeChange = false; |
| while (StoreNodes.size() > 1) { |
| unsigned NumConsecutiveStores = |
| getConsecutiveStores(StoreNodes, ElementSizeBytes); |
| // There are no more stores in the list to examine. |
| if (NumConsecutiveStores == 0) |
| return MadeChange; |
| |
| // We have at least 2 consecutive stores. Try to merge them. |
| assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); |
| switch (StoreSrc) { |
| case StoreSource::Constant: |
| MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, |
| MemVT, RootNode, AllowVectors); |
| break; |
| |
| case StoreSource::Extract: |
| MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, |
| MemVT, RootNode); |
| break; |
| |
| case StoreSource::Load: |
| MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, |
| MemVT, RootNode, AllowVectors, |
| IsNonTemporalStore, IsNonTemporalLoad); |
| break; |
| |
| default: |
| llvm_unreachable("Unhandled store source type"); |
| } |
| } |
| return MadeChange; |
| } |
| |
| SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { |
| SDLoc SL(ST); |
| SDValue ReplStore; |
| |
| // Replace the chain to avoid dependency. |
| if (ST->isTruncatingStore()) { |
| ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), |
| ST->getBasePtr(), ST->getMemoryVT(), |
| ST->getMemOperand()); |
| } else { |
| ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), |
| ST->getMemOperand()); |
| } |
| |
| // Create token to keep both nodes around. |
| SDValue Token = DAG.getNode(ISD::TokenFactor, SL, |
| MVT::Other, ST->getChain(), ReplStore); |
| |
| // Make sure the new and old chains are cleaned up. |
| AddToWorklist(Token.getNode()); |
| |
| // Don't add users to work list. |
| return CombineTo(ST, Token, false); |
| } |
| |
| SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { |
| SDValue Value = ST->getValue(); |
| if (Value.getOpcode() == ISD::TargetConstantFP) |
| return SDValue(); |
| |
| if (!ISD::isNormalStore(ST)) |
| return SDValue(); |
| |
| SDLoc DL(ST); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| |
| const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); |
| |
| // NOTE: If the original store is volatile, this transform must not increase |
| // the number of stores. For example, on x86-32 an f64 can be stored in one |
| // processor operation but an i64 (which is not legal) requires two. So the |
| // transform should not be done in this case. |
| |
| SDValue Tmp; |
| switch (CFP->getSimpleValueType(0).SimpleTy) { |
| default: |
| llvm_unreachable("Unknown FP type"); |
| case MVT::f16: // We don't do this for these yet. |
| case MVT::bf16: |
| case MVT::f80: |
| case MVT::f128: |
| case MVT::ppcf128: |
| return SDValue(); |
| case MVT::f32: |
| if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { |
| Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). |
| bitcastToAPInt().getZExtValue(), SDLoc(CFP), |
| MVT::i32); |
| return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); |
| } |
| |
| return SDValue(); |
| case MVT::f64: |
| if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && |
| ST->isSimple()) || |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { |
| Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). |
| getZExtValue(), SDLoc(CFP), MVT::i64); |
| return DAG.getStore(Chain, DL, Tmp, |
| Ptr, ST->getMemOperand()); |
| } |
| |
| if (ST->isSimple() && |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { |
| // Many FP stores are not made apparent until after legalize, e.g. for |
| // argument passing. Since this is so common, custom legalize the |
| // 64-bit integer store into two 32-bit stores. |
| uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); |
| SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| |
| SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), |
| ST->getOriginalAlign(), MMOFlags, AAInfo); |
| Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); |
| SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(4), |
| ST->getOriginalAlign(), MMOFlags, AAInfo); |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| St0, St1); |
| } |
| |
| return SDValue(); |
| } |
| } |
| |
| SDValue DAGCombiner::visitSTORE(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| SDValue Chain = ST->getChain(); |
| SDValue Value = ST->getValue(); |
| SDValue Ptr = ST->getBasePtr(); |
| |
| // If this is a store of a bit convert, store the input value if the |
| // resultant store does not need a higher alignment than the original. |
| if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && |
| ST->isUnindexed()) { |
| EVT SVT = Value.getOperand(0).getValueType(); |
| // If the store is volatile, we only want to change the store type if the |
| // resulting store is legal. Otherwise we might increase the number of |
| // memory accesses. We don't care if the original type was legal or not |
| // as we assume software couldn't rely on the number of accesses of an |
| // illegal type. |
| // TODO: May be able to relax for unordered atomics (see D66309) |
| if (((!LegalOperations && ST->isSimple()) || |
| TLI.isOperationLegal(ISD::STORE, SVT)) && |
| TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, |
| DAG, *ST->getMemOperand())) { |
| return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, |
| ST->getMemOperand()); |
| } |
| } |
| |
| // Turn 'store undef, Ptr' -> nothing. |
| if (Value.isUndef() && ST->isUnindexed()) |
| return Chain; |
| |
| // Try to infer better alignment information than the store already has. |
| if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { |
| if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { |
| if (*Alignment > ST->getAlign() && |
| isAligned(*Alignment, ST->getSrcValueOffset())) { |
| SDValue NewStore = |
| DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), |
| ST->getMemoryVT(), *Alignment, |
| ST->getMemOperand()->getFlags(), ST->getAAInfo()); |
| // NewStore will always be N as we are only refining the alignment |
| assert(NewStore.getNode() == N); |
| (void)NewStore; |
| } |
| } |
| } |
| |
| // Try transforming a pair floating point load / store ops to integer |
| // load / store ops. |
| if (SDValue NewST = TransformFPLoadStorePair(N)) |
| return NewST; |
| |
| // Try transforming several stores into STORE (BSWAP). |
| if (SDValue Store = mergeTruncStores(ST)) |
| return Store; |
| |
| if (ST->isUnindexed()) { |
| // Walk up chain skipping non-aliasing memory nodes, on this store and any |
| // adjacent stores. |
| if (findBetterNeighborChains(ST)) { |
| // replaceStoreChain uses CombineTo, which handled all of the worklist |
| // manipulation. Return the original node to not do anything else. |
| return SDValue(ST, 0); |
| } |
| Chain = ST->getChain(); |
| } |
| |
| // FIXME: is there such a thing as a truncating indexed store? |
| if (ST->isTruncatingStore() && ST->isUnindexed() && |
| Value.getValueType().isInteger() && |
| (!isa<ConstantSDNode>(Value) || |
| !cast<ConstantSDNode>(Value)->isOpaque())) { |
| // Convert a truncating store of a extension into a standard store. |
| if ((Value.getOpcode() == ISD::ZERO_EXTEND || |
| Value.getOpcode() == ISD::SIGN_EXTEND || |
| Value.getOpcode() == ISD::ANY_EXTEND) && |
| Value.getOperand(0).getValueType() == ST->getMemoryVT() && |
| TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT())) |
| return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, |
| ST->getMemOperand()); |
| |
| APInt TruncDemandedBits = |
| APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), |
| ST->getMemoryVT().getScalarSizeInBits()); |
| |
| // See if we can simplify the operation with SimplifyDemandedBits, which |
| // only works if the value has a single use. |
| AddToWorklist(Value.getNode()); |
| if (SimplifyDemandedBits(Value, TruncDemandedBits)) { |
| // Re-visit the store if anything changed and the store hasn't been merged |
| // with another node (N is deleted) SimplifyDemandedBits will add Value's |
| // node back to the worklist if necessary, but we also need to re-visit |
| // the Store node itself. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| |
| // Otherwise, see if we can simplify the input to this truncstore with |
| // knowledge that only the low bits are being used. For example: |
| // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" |
| if (SDValue Shorter = |
| TLI.SimplifyMultipleUseDemandedBits(Value, TruncDemandedBits, DAG)) |
| return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), |
| ST->getMemOperand()); |
| |
| // If we're storing a truncated constant, see if we can simplify it. |
| // TODO: Move this to targetShrinkDemandedConstant? |
| if (auto *Cst = dyn_cast<ConstantSDNode>(Value)) |
| if (!Cst->isOpaque()) { |
| const APInt &CValue = Cst->getAPIntValue(); |
| APInt NewVal = CValue & TruncDemandedBits; |
| if (NewVal != CValue) { |
| SDValue Shorter = |
| DAG.getConstant(NewVal, SDLoc(N), Value.getValueType()); |
| return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, |
| ST->getMemoryVT(), ST->getMemOperand()); |
| } |
| } |
| } |
| |
| // If this is a load followed by a store to the same location, then the store |
| // is dead/noop. |
| // TODO: Can relax for unordered atomics (see D66309) |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { |
| if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && |
| ST->isUnindexed() && ST->isSimple() && |
| Ld->getAddressSpace() == ST->getAddressSpace() && |
| // There can't be any side effects between the load and store, such as |
| // a call or store. |
| Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { |
| // The store is dead, remove it. |
| return Chain; |
| } |
| } |
| |
| // TODO: Can relax for unordered atomics (see D66309) |
| if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { |
| if (ST->isUnindexed() && ST->isSimple() && |
| ST1->isUnindexed() && ST1->isSimple()) { |
| if (OptLevel != CodeGenOpt::None && ST1->getBasePtr() == Ptr && |
| ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() && |
| ST->getAddressSpace() == ST1->getAddressSpace()) { |
| // If this is a store followed by a store with the same value to the |
| // same location, then the store is dead/noop. |
| return Chain; |
| } |
| |
| if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && |
| !ST1->getBasePtr().isUndef() && |
| // BaseIndexOffset and the code below requires knowing the size |
| // of a vector, so bail out if MemoryVT is scalable. |
| !ST->getMemoryVT().isScalableVector() && |
| !ST1->getMemoryVT().isScalableVector() && |
| ST->getAddressSpace() == ST1->getAddressSpace()) { |
| const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); |
| const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); |
| unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); |
| unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); |
| // If this is a store who's preceding store to a subset of the current |
| // location and no one other node is chained to that store we can |
| // effectively drop the store. Do not remove stores to undef as they may |
| // be used as data sinks. |
| if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { |
| CombineTo(ST1, ST1->getChain()); |
| return SDValue(); |
| } |
| } |
| } |
| } |
| |
| // If this is an FP_ROUND or TRUNC followed by a store, fold this into a |
| // truncating store. We can do this even if this is already a truncstore. |
| if ((Value.getOpcode() == ISD::FP_ROUND || |
| Value.getOpcode() == ISD::TRUNCATE) && |
| Value->hasOneUse() && ST->isUnindexed() && |
| TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), |
| ST->getMemoryVT(), LegalOperations)) { |
| return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), |
| Ptr, ST->getMemoryVT(), ST->getMemOperand()); |
| } |
| |
| // Always perform this optimization before types are legal. If the target |
| // prefers, also try this after legalization to catch stores that were created |
| // by intrinsics or other nodes. |
| if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { |
| while (true) { |
| // There can be multiple store sequences on the same chain. |
| // Keep trying to merge store sequences until we are unable to do so |
| // or until we merge the last store on the chain. |
| bool Changed = mergeConsecutiveStores(ST); |
| if (!Changed) break; |
| // Return N as merge only uses CombineTo and no worklist clean |
| // up is necessary. |
| if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) |
| return SDValue(N, 0); |
| } |
| } |
| |
| // Try transforming N to an indexed store. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| // |
| // Make sure to do this only after attempting to merge stores in order to |
| // avoid changing the types of some subset of stores due to visit order, |
| // preventing their merging. |
| if (isa<ConstantFPSDNode>(ST->getValue())) { |
| if (SDValue NewSt = replaceStoreOfFPConstant(ST)) |
| return NewSt; |
| } |
| |
| if (SDValue NewSt = splitMergedValStore(ST)) |
| return NewSt; |
| |
| return ReduceLoadOpStoreWidth(N); |
| } |
| |
| SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { |
| const auto *LifetimeEnd = cast<LifetimeSDNode>(N); |
| if (!LifetimeEnd->hasOffset()) |
| return SDValue(); |
| |
| const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), |
| LifetimeEnd->getOffset(), false); |
| |
| // We walk up the chains to find stores. |
| SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; |
| while (!Chains.empty()) { |
| SDValue Chain = Chains.pop_back_val(); |
| if (!Chain.hasOneUse()) |
| continue; |
| switch (Chain.getOpcode()) { |
| case ISD::TokenFactor: |
| for (unsigned Nops = Chain.getNumOperands(); Nops;) |
| Chains.push_back(Chain.getOperand(--Nops)); |
| break; |
| case ISD::LIFETIME_START: |
| case ISD::LIFETIME_END: |
| // We can forward past any lifetime start/end that can be proven not to |
| // alias the node. |
| if (!mayAlias(Chain.getNode(), N)) |
| Chains.push_back(Chain.getOperand(0)); |
| break; |
| case ISD::STORE: { |
| StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); |
| // TODO: Can relax for unordered atomics (see D66309) |
| if (!ST->isSimple() || ST->isIndexed()) |
| continue; |
| const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); |
| // The bounds of a scalable store are not known until runtime, so this |
| // store cannot be elided. |
| if (StoreSize.isScalable()) |
| continue; |
| const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); |
| // If we store purely within object bounds just before its lifetime ends, |
| // we can remove the store. |
| if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, |
| StoreSize.getFixedValue() * 8)) { |
| LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); |
| dbgs() << "\nwithin LIFETIME_END of : "; |
| LifetimeEndBase.dump(); dbgs() << "\n"); |
| CombineTo(ST, ST->getChain()); |
| return SDValue(N, 0); |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// For the instruction sequence of store below, F and I values |
| /// are bundled together as an i64 value before being stored into memory. |
| /// Sometimes it is more efficent to generate separate stores for F and I, |
| /// which can remove the bitwise instructions or sink them to colder places. |
| /// |
| /// (store (or (zext (bitcast F to i32) to i64), |
| /// (shl (zext I to i64), 32)), addr) --> |
| /// (store F, addr) and (store I, addr+4) |
| /// |
| /// Similarly, splitting for other merged store can also be beneficial, like: |
| /// For pair of {i32, i32}, i64 store --> two i32 stores. |
| /// For pair of {i32, i16}, i64 store --> two i32 stores. |
| /// For pair of {i16, i16}, i32 store --> two i16 stores. |
| /// For pair of {i16, i8}, i32 store --> two i16 stores. |
| /// For pair of {i8, i8}, i16 store --> two i8 stores. |
| /// |
| /// We allow each target to determine specifically which kind of splitting is |
| /// supported. |
| /// |
| /// The store patterns are commonly seen from the simple code snippet below |
| /// if only std::make_pair(...) is sroa transformed before inlined into hoo. |
| /// void goo(const std::pair<int, float> &); |
| /// hoo() { |
| /// ... |
| /// goo(std::make_pair(tmp, ftmp)); |
| /// ... |
| /// } |
| /// |
| SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { |
| if (OptLevel == CodeGenOpt::None) |
| return SDValue(); |
| |
| // Can't change the number of memory accesses for a volatile store or break |
| // atomicity for an atomic one. |
| if (!ST->isSimple()) |
| return SDValue(); |
| |
| SDValue Val = ST->getValue(); |
| SDLoc DL(ST); |
| |
| // Match OR operand. |
| if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) |
| return SDValue(); |
| |
| // Match SHL operand and get Lower and Higher parts of Val. |
| SDValue Op1 = Val.getOperand(0); |
| SDValue Op2 = Val.getOperand(1); |
| SDValue Lo, Hi; |
| if (Op1.getOpcode() != ISD::SHL) { |
| std::swap(Op1, Op2); |
| if (Op1.getOpcode() != ISD::SHL) |
| return SDValue(); |
| } |
| Lo = Op2; |
| Hi = Op1.getOperand(0); |
| if (!Op1.hasOneUse()) |
| return SDValue(); |
| |
| // Match shift amount to HalfValBitSize. |
| unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; |
| ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); |
| if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) |
| return SDValue(); |
| |
| // Lo and Hi are zero-extended from int with size less equal than 32 |
| // to i64. |
| if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || |
| !Lo.getOperand(0).getValueType().isScalarInteger() || |
| Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || |
| Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || |
| !Hi.getOperand(0).getValueType().isScalarInteger() || |
| Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) |
| return SDValue(); |
| |
| // Use the EVT of low and high parts before bitcast as the input |
| // of target query. |
| EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) |
| ? Lo.getOperand(0).getValueType() |
| : Lo.getValueType(); |
| EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) |
| ? Hi.getOperand(0).getValueType() |
| : Hi.getValueType(); |
| if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) |
| return SDValue(); |
| |
| // Start to split store. |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| |
| // Change the sizes of Lo and Hi's value types to HalfValBitSize. |
| EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); |
| Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| // Lower value store. |
| SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), |
| ST->getOriginalAlign(), MMOFlags, AAInfo); |
| Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); |
| // Higher value store. |
| SDValue St1 = DAG.getStore( |
| St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), |
| ST->getOriginalAlign(), MMOFlags, AAInfo); |
| return St1; |
| } |
| |
| // Merge an insertion into an existing shuffle: |
| // (insert_vector_elt (vector_shuffle X, Y, Mask), |
| // .(extract_vector_elt X, N), InsIndex) |
| // --> (vector_shuffle X, Y, NewMask) |
| // and variations where shuffle operands may be CONCAT_VECTORS. |
| static bool mergeEltWithShuffle(SDValue &X, SDValue &Y, ArrayRef<int> Mask, |
| SmallVectorImpl<int> &NewMask, SDValue Elt, |
| unsigned InsIndex) { |
| if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(Elt.getOperand(1))) |
| return false; |
| |
| // Vec's operand 0 is using indices from 0 to N-1 and |
| // operand 1 from N to 2N - 1, where N is the number of |
| // elements in the vectors. |
| SDValue InsertVal0 = Elt.getOperand(0); |
| int ElementOffset = -1; |
| |
| // We explore the inputs of the shuffle in order to see if we find the |
| // source of the extract_vector_elt. If so, we can use it to modify the |
| // shuffle rather than perform an insert_vector_elt. |
| SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; |
| ArgWorkList.emplace_back(Mask.size(), Y); |
| ArgWorkList.emplace_back(0, X); |
| |
| while (!ArgWorkList.empty()) { |
| int ArgOffset; |
| SDValue ArgVal; |
| std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); |
| |
| if (ArgVal == InsertVal0) { |
| ElementOffset = ArgOffset; |
| break; |
| } |
| |
| // Peek through concat_vector. |
| if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { |
| int CurrentArgOffset = |
| ArgOffset + ArgVal.getValueType().getVectorNumElements(); |
| int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); |
| for (SDValue Op : reverse(ArgVal->ops())) { |
| CurrentArgOffset -= Step; |
| ArgWorkList.emplace_back(CurrentArgOffset, Op); |
| } |
| |
| // Make sure we went through all the elements and did not screw up index |
| // computation. |
| assert(CurrentArgOffset == ArgOffset); |
| } |
| } |
| |
| // If we failed to find a match, see if we can replace an UNDEF shuffle |
| // operand. |
| if (ElementOffset == -1) { |
| if (!Y.isUndef() || InsertVal0.getValueType() != Y.getValueType()) |
| return false; |
| ElementOffset = Mask.size(); |
| Y = InsertVal0; |
| } |
| |
| NewMask.assign(Mask.begin(), Mask.end()); |
| NewMask[InsIndex] = ElementOffset + Elt.getConstantOperandVal(1); |
| assert(NewMask[InsIndex] < (int)(2 * Mask.size()) && NewMask[InsIndex] >= 0 && |
| "NewMask[InsIndex] is out of bound"); |
| return true; |
| } |
| |
| // Merge an insertion into an existing shuffle: |
| // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), |
| // InsIndex) |
| // --> (vector_shuffle X, Y) and variations where shuffle operands may be |
| // CONCAT_VECTORS. |
| SDValue DAGCombiner::mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex) { |
| assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && |
| "Expected extract_vector_elt"); |
| SDValue InsertVal = N->getOperand(1); |
| SDValue Vec = N->getOperand(0); |
| |
| auto *SVN = dyn_cast<ShuffleVectorSDNode>(Vec); |
| if (!SVN || !Vec.hasOneUse()) |
| return SDValue(); |
| |
| ArrayRef<int> Mask = SVN->getMask(); |
| SDValue X = Vec.getOperand(0); |
| SDValue Y = Vec.getOperand(1); |
| |
| SmallVector<int, 16> NewMask(Mask); |
| if (mergeEltWithShuffle(X, Y, Mask, NewMask, InsertVal, InsIndex)) { |
| SDValue LegalShuffle = TLI.buildLegalVectorShuffle( |
| Vec.getValueType(), SDLoc(N), X, Y, NewMask, DAG); |
| if (LegalShuffle) |
| return LegalShuffle; |
| } |
| |
| return SDValue(); |
| } |
| |
| // Convert a disguised subvector insertion into a shuffle: |
| // insert_vector_elt V, (bitcast X from vector type), IdxC --> |
| // bitcast(shuffle (bitcast V), (extended X), Mask) |
| // Note: We do not use an insert_subvector node because that requires a |
| // legal subvector type. |
| SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { |
| assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && |
| "Expected extract_vector_elt"); |
| SDValue InsertVal = N->getOperand(1); |
| |
| if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || |
| !InsertVal.getOperand(0).getValueType().isVector()) |
| return SDValue(); |
| |
| SDValue SubVec = InsertVal.getOperand(0); |
| SDValue DestVec = N->getOperand(0); |
| EVT SubVecVT = SubVec.getValueType(); |
| EVT VT = DestVec.getValueType(); |
| unsigned NumSrcElts = SubVecVT.getVectorNumElements(); |
| // If the source only has a single vector element, the cost of creating adding |
| // it to a vector is likely to exceed the cost of a insert_vector_elt. |
| if (NumSrcElts == 1) |
| return SDValue(); |
| unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); |
| unsigned NumMaskVals = ExtendRatio * NumSrcElts; |
| |
| // Step 1: Create a shuffle mask that implements this insert operation. The |
| // vector that we are inserting into will be operand 0 of the shuffle, so |
| // those elements are just 'i'. The inserted subvector is in the first |
| // positions of operand 1 of the shuffle. Example: |
| // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} |
| SmallVector<int, 16> Mask(NumMaskVals); |
| for (unsigned i = 0; i != NumMaskVals; ++i) { |
| if (i / NumSrcElts == InsIndex) |
| Mask[i] = (i % NumSrcElts) + NumMaskVals; |
| else |
| Mask[i] = i; |
| } |
| |
| // Bail out if the target can not handle the shuffle we want to create. |
| EVT SubVecEltVT = SubVecVT.getVectorElementType(); |
| EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); |
| if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) |
| return SDValue(); |
| |
| // Step 2: Create a wide vector from the inserted source vector by appending |
| // undefined elements. This is the same size as our destination vector. |
| SDLoc DL(N); |
| SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); |
| ConcatOps[0] = SubVec; |
| SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); |
| |
| // Step 3: Shuffle in the padded subvector. |
| SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); |
| SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); |
| AddToWorklist(PaddedSubV.getNode()); |
| AddToWorklist(DestVecBC.getNode()); |
| AddToWorklist(Shuf.getNode()); |
| return DAG.getBitcast(VT, Shuf); |
| } |
| |
| SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { |
| SDValue InVec = N->getOperand(0); |
| SDValue InVal = N->getOperand(1); |
| SDValue EltNo = N->getOperand(2); |
| SDLoc DL(N); |
| |
| EVT VT = InVec.getValueType(); |
| auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); |
| |
| // Insert into out-of-bounds element is undefined. |
| if (IndexC && VT.isFixedLengthVector() && |
| IndexC->getZExtValue() >= VT.getVectorNumElements()) |
| return DAG.getUNDEF(VT); |
| |
| // Remove redundant insertions: |
| // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x |
| if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) |
| return InVec; |
| |
| if (!IndexC) { |
| // If this is variable insert to undef vector, it might be better to splat: |
| // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > |
| if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) |
| return DAG.getSplat(VT, DL, InVal); |
| return SDValue(); |
| } |
| |
| if (VT.isScalableVector()) |
| return SDValue(); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // We must know which element is being inserted for folds below here. |
| unsigned Elt = IndexC->getZExtValue(); |
| |
| // Handle <1 x ???> vector insertion special cases. |
| if (NumElts == 1) { |
| // insert_vector_elt(x, extract_vector_elt(y, 0), 0) -> y |
| if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| InVal.getOperand(0).getValueType() == VT && |
| isNullConstant(InVal.getOperand(1))) |
| return InVal.getOperand(0); |
| } |
| |
| // Canonicalize insert_vector_elt dag nodes. |
| // Example: |
| // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) |
| // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) |
| // |
| // Do this only if the child insert_vector node has one use; also |
| // do this only if indices are both constants and Idx1 < Idx0. |
| if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() |
| && isa<ConstantSDNode>(InVec.getOperand(2))) { |
| unsigned OtherElt = InVec.getConstantOperandVal(2); |
| if (Elt < OtherElt) { |
| // Swap nodes. |
| SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, |
| InVec.getOperand(0), InVal, EltNo); |
| AddToWorklist(NewOp.getNode()); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), |
| VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); |
| } |
| } |
| |
| if (SDValue Shuf = mergeInsertEltWithShuffle(N, Elt)) |
| return Shuf; |
| |
| if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) |
| return Shuf; |
| |
| // Attempt to convert an insert_vector_elt chain into a legal build_vector. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { |
| // vXi1 vector - we don't need to recurse. |
| if (NumElts == 1) |
| return DAG.getBuildVector(VT, DL, {InVal}); |
| |
| // If we haven't already collected the element, insert into the op list. |
| EVT MaxEltVT = InVal.getValueType(); |
| auto AddBuildVectorOp = [&](SmallVectorImpl<SDValue> &Ops, SDValue Elt, |
| unsigned Idx) { |
| if (!Ops[Idx]) { |
| Ops[Idx] = Elt; |
| if (VT.isInteger()) { |
| EVT EltVT = Elt.getValueType(); |
| MaxEltVT = MaxEltVT.bitsGE(EltVT) ? MaxEltVT : EltVT; |
| } |
| } |
| }; |
| |
| // Ensure all the operands are the same value type, fill any missing |
| // operands with UNDEF and create the BUILD_VECTOR. |
| auto CanonicalizeBuildVector = [&](SmallVectorImpl<SDValue> &Ops) { |
| assert(Ops.size() == NumElts && "Unexpected vector size"); |
| for (SDValue &Op : Ops) { |
| if (Op) |
| Op = VT.isInteger() ? DAG.getAnyExtOrTrunc(Op, DL, MaxEltVT) : Op; |
| else |
| Op = DAG.getUNDEF(MaxEltVT); |
| } |
| return DAG.getBuildVector(VT, DL, Ops); |
| }; |
| |
| SmallVector<SDValue, 8> Ops(NumElts, SDValue()); |
| Ops[Elt] = InVal; |
| |
| // Recurse up a INSERT_VECTOR_ELT chain to build a BUILD_VECTOR. |
| for (SDValue CurVec = InVec; CurVec;) { |
| // UNDEF - build new BUILD_VECTOR from already inserted operands. |
| if (CurVec.isUndef()) |
| return CanonicalizeBuildVector(Ops); |
| |
| // BUILD_VECTOR - insert unused operands and build new BUILD_VECTOR. |
| if (CurVec.getOpcode() == ISD::BUILD_VECTOR && CurVec.hasOneUse()) { |
| for (unsigned I = 0; I != NumElts; ++I) |
| AddBuildVectorOp(Ops, CurVec.getOperand(I), I); |
| return CanonicalizeBuildVector(Ops); |
| } |
| |
| // SCALAR_TO_VECTOR - insert unused scalar and build new BUILD_VECTOR. |
| if (CurVec.getOpcode() == ISD::SCALAR_TO_VECTOR && CurVec.hasOneUse()) { |
| AddBuildVectorOp(Ops, CurVec.getOperand(0), 0); |
| return CanonicalizeBuildVector(Ops); |
| } |
| |
| // INSERT_VECTOR_ELT - insert operand and continue up the chain. |
| if (CurVec.getOpcode() == ISD::INSERT_VECTOR_ELT && CurVec.hasOneUse()) |
| if (auto *CurIdx = dyn_cast<ConstantSDNode>(CurVec.getOperand(2))) |
| if (CurIdx->getAPIntValue().ult(NumElts)) { |
| unsigned Idx = CurIdx->getZExtValue(); |
| AddBuildVectorOp(Ops, CurVec.getOperand(1), Idx); |
| |
| // Found entire BUILD_VECTOR. |
| if (all_of(Ops, [](SDValue Op) { return !!Op; })) |
| return CanonicalizeBuildVector(Ops); |
| |
| CurVec = CurVec->getOperand(0); |
| continue; |
| } |
| |
| // VECTOR_SHUFFLE - if all the operands match the shuffle's sources, |
| // update the shuffle mask (and second operand if we started with unary |
| // shuffle) and create a new legal shuffle. |
| if (CurVec.getOpcode() == ISD::VECTOR_SHUFFLE && CurVec.hasOneUse()) { |
| auto *SVN = cast<ShuffleVectorSDNode>(CurVec); |
| SDValue LHS = SVN->getOperand(0); |
| SDValue RHS = SVN->getOperand(1); |
| SmallVector<int, 16> Mask(SVN->getMask()); |
| bool Merged = true; |
| for (auto I : enumerate(Ops)) { |
| SDValue &Op = I.value(); |
| if (Op) { |
| SmallVector<int, 16> NewMask; |
| if (!mergeEltWithShuffle(LHS, RHS, Mask, NewMask, Op, I.index())) { |
| Merged = false; |
| break; |
| } |
| Mask = std::move(NewMask); |
| } |
| } |
| if (Merged) |
| if (SDValue NewShuffle = |
| TLI.buildLegalVectorShuffle(VT, DL, LHS, RHS, Mask, DAG)) |
| return NewShuffle; |
| } |
| |
| // Failed to find a match in the chain - bail. |
| break; |
| } |
| |
| // See if we can fill in the missing constant elements as zeros. |
| // TODO: Should we do this for any constant? |
| APInt DemandedZeroElts = APInt::getZero(NumElts); |
| for (unsigned I = 0; I != NumElts; ++I) |
| if (!Ops[I]) |
| DemandedZeroElts.setBit(I); |
| |
| if (DAG.MaskedVectorIsZero(InVec, DemandedZeroElts)) { |
| SDValue Zero = VT.isInteger() ? DAG.getConstant(0, DL, MaxEltVT) |
| : DAG.getConstantFP(0, DL, MaxEltVT); |
| for (unsigned I = 0; I != NumElts; ++I) |
| if (!Ops[I]) |
| Ops[I] = Zero; |
| |
| return CanonicalizeBuildVector(Ops); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, |
| SDValue EltNo, |
| LoadSDNode *OriginalLoad) { |
| assert(OriginalLoad->isSimple()); |
| |
| EVT ResultVT = EVE->getValueType(0); |
| EVT VecEltVT = InVecVT.getVectorElementType(); |
| |
| // If the vector element type is not a multiple of a byte then we are unable |
| // to correctly compute an address to load only the extracted element as a |
| // scalar. |
| if (!VecEltVT.isByteSized()) |
| return SDValue(); |
| |
| ISD::LoadExtType ExtTy = |
| ResultVT.bitsGT(VecEltVT) ? ISD::NON_EXTLOAD : ISD::EXTLOAD; |
| if (!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT) || |
| !TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) |
| return SDValue(); |
| |
| Align Alignment = OriginalLoad->getAlign(); |
| MachinePointerInfo MPI; |
| SDLoc DL(EVE); |
| if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { |
| int Elt = ConstEltNo->getZExtValue(); |
| unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; |
| MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); |
| Alignment = commonAlignment(Alignment, PtrOff); |
| } else { |
| // Discard the pointer info except the address space because the memory |
| // operand can't represent this new access since the offset is variable. |
| MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); |
| Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8); |
| } |
| |
| unsigned IsFast = 0; |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT, |
| OriginalLoad->getAddressSpace(), Alignment, |
| OriginalLoad->getMemOperand()->getFlags(), |
| &IsFast) || |
| !IsFast) |
| return SDValue(); |
| |
| SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(), |
| InVecVT, EltNo); |
| |
| // We are replacing a vector load with a scalar load. The new load must have |
| // identical memory op ordering to the original. |
| SDValue Load; |
| if (ResultVT.bitsGT(VecEltVT)) { |
| // If the result type of vextract is wider than the load, then issue an |
| // extending load instead. |
| ISD::LoadExtType ExtType = |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, VecEltVT) ? ISD::ZEXTLOAD |
| : ISD::EXTLOAD; |
| Load = DAG.getExtLoad(ExtType, DL, ResultVT, OriginalLoad->getChain(), |
| NewPtr, MPI, VecEltVT, Alignment, |
| OriginalLoad->getMemOperand()->getFlags(), |
| OriginalLoad->getAAInfo()); |
| DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load); |
| } else { |
| // The result type is narrower or the same width as the vector element |
| Load = DAG.getLoad(VecEltVT, DL, OriginalLoad->getChain(), NewPtr, MPI, |
| Alignment, OriginalLoad->getMemOperand()->getFlags(), |
| OriginalLoad->getAAInfo()); |
| DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load); |
| if (ResultVT.bitsLT(VecEltVT)) |
| Load = DAG.getNode(ISD::TRUNCATE, DL, ResultVT, Load); |
| else |
| Load = DAG.getBitcast(ResultVT, Load); |
| } |
| ++OpsNarrowed; |
| return Load; |
| } |
| |
| /// Transform a vector binary operation into a scalar binary operation by moving |
| /// the math/logic after an extract element of a vector. |
| static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, |
| bool LegalOperations) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Vec = ExtElt->getOperand(0); |
| SDValue Index = ExtElt->getOperand(1); |
| auto *IndexC = dyn_cast<ConstantSDNode>(Index); |
| if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || |
| Vec->getNumValues() != 1) |
| return SDValue(); |
| |
| // Targets may want to avoid this to prevent an expensive register transfer. |
| if (!TLI.shouldScalarizeBinop(Vec)) |
| return SDValue(); |
| |
| // Extracting an element of a vector constant is constant-folded, so this |
| // transform is just replacing a vector op with a scalar op while moving the |
| // extract. |
| SDValue Op0 = Vec.getOperand(0); |
| SDValue Op1 = Vec.getOperand(1); |
| APInt SplatVal; |
| if (isAnyConstantBuildVector(Op0, true) || |
| ISD::isConstantSplatVector(Op0.getNode(), SplatVal) || |
| isAnyConstantBuildVector(Op1, true) || |
| ISD::isConstantSplatVector(Op1.getNode(), SplatVal)) { |
| // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' |
| // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) |
| SDLoc DL(ExtElt); |
| EVT VT = ExtElt->getValueType(0); |
| SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); |
| SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); |
| return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Given a ISD::EXTRACT_VECTOR_ELT, which is a glorified bit sequence extract, |
| // recursively analyse all of it's users. and try to model themselves as |
| // bit sequence extractions. If all of them agree on the new, narrower element |
| // type, and all of them can be modelled as ISD::EXTRACT_VECTOR_ELT's of that |
| // new element type, do so now. |
| // This is mainly useful to recover from legalization that scalarized |
| // the vector as wide elements, but tries to rebuild it with narrower elements. |
| // |
| // Some more nodes could be modelled if that helps cover interesting patterns. |
| bool DAGCombiner::refineExtractVectorEltIntoMultipleNarrowExtractVectorElts( |
| SDNode *N) { |
| // We perform this optimization post type-legalization because |
| // the type-legalizer often scalarizes integer-promoted vectors. |
| // Performing this optimization before may cause legalizaton cycles. |
| if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) |
| return false; |
| |
| // TODO: Add support for big-endian. |
| if (DAG.getDataLayout().isBigEndian()) |
| return false; |
| |
| SDValue VecOp = N->getOperand(0); |
| EVT VecVT = VecOp.getValueType(); |
| assert(!VecVT.isScalableVector() && "Only for fixed vectors."); |
| |
| // We must start with a constant extraction index. |
| auto *IndexC = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!IndexC) |
| return false; |
| |
| assert(IndexC->getZExtValue() < VecVT.getVectorNumElements() && |
| "Original ISD::EXTRACT_VECTOR_ELT is undefinend?"); |
| |
| // TODO: deal with the case of implicit anyext of the extraction. |
| unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); |
| EVT ScalarVT = N->getValueType(0); |
| if (VecVT.getScalarType() != ScalarVT) |
| return false; |
| |
| // TODO: deal with the cases other than everything being integer-typed. |
| if (!ScalarVT.isScalarInteger()) |
| return false; |
| |
| struct Entry { |
| SDNode *Producer; |
| |
| // Which bits of VecOp does it contain? |
| unsigned BitPos; |
| int NumBits; |
| // NOTE: the actual width of \p Producer may be wider than NumBits! |
| |
| Entry(Entry &&) = default; |
| Entry(SDNode *Producer_, unsigned BitPos_, int NumBits_) |
| : Producer(Producer_), BitPos(BitPos_), NumBits(NumBits_) {} |
| |
| Entry() = delete; |
| Entry(const Entry &) = delete; |
| Entry &operator=(const Entry &) = delete; |
| Entry &operator=(Entry &&) = delete; |
| }; |
| SmallVector<Entry, 32> Worklist; |
| SmallVector<Entry, 32> Leafs; |
| |
| // We start at the "root" ISD::EXTRACT_VECTOR_ELT. |
| Worklist.emplace_back(N, /*BitPos=*/VecEltBitWidth * IndexC->getZExtValue(), |
| /*NumBits=*/VecEltBitWidth); |
| |
| while (!Worklist.empty()) { |
| Entry E = Worklist.pop_back_val(); |
| // Does the node not even use any of the VecOp bits? |
| if (!(E.NumBits > 0 && E.BitPos < VecVT.getSizeInBits() && |
| E.BitPos + E.NumBits <= VecVT.getSizeInBits())) |
| return false; // Let's allow the other combines clean this up first. |
| // Did we fail to model any of the users of the Producer? |
| bool ProducerIsLeaf = false; |
| // Look at each user of this Producer. |
| for (SDNode *User : E.Producer->uses()) { |
| switch (User->getOpcode()) { |
| // TODO: support ISD::BITCAST |
| // TODO: support ISD::ANY_EXTEND |
| // TODO: support ISD::ZERO_EXTEND |
| // TODO: support ISD::SIGN_EXTEND |
| case ISD::TRUNCATE: |
| // Truncation simply means we keep position, but extract less bits. |
| Worklist.emplace_back(User, E.BitPos, |
| /*NumBits=*/User->getValueSizeInBits(0)); |
| break; |
| // TODO: support ISD::SRA |
| // TODO: support ISD::SHL |
| case ISD::SRL: |
| // We should be shifting the Producer by a constant amount. |
| if (auto *ShAmtC = dyn_cast<ConstantSDNode>(User->getOperand(1)); |
| User->getOperand(0).getNode() == E.Producer && ShAmtC) { |
| // Logical right-shift means that we start extraction later, |
| // but stop it at the same position we did previously. |
| unsigned ShAmt = ShAmtC->getZExtValue(); |
| Worklist.emplace_back(User, E.BitPos + ShAmt, E.NumBits - ShAmt); |
| break; |
| } |
| [[fallthrough]]; |
| default: |
| // We can not model this user of the Producer. |
| // Which means the current Producer will be a ISD::EXTRACT_VECTOR_ELT. |
| ProducerIsLeaf = true; |
| // Profitability check: all users that we can not model |
| // must be ISD::BUILD_VECTOR's. |
| if (User->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| break; |
| } |
| } |
| if (ProducerIsLeaf) |
| Leafs.emplace_back(std::move(E)); |
| } |
| |
| unsigned NewVecEltBitWidth = Leafs.front().NumBits; |
| |
| // If we are still at the same element granularity, give up, |
| if (NewVecEltBitWidth == VecEltBitWidth) |
| return false; |
| |
| // The vector width must be a multiple of the new element width. |
| if (VecVT.getSizeInBits() % NewVecEltBitWidth != 0) |
| return false; |
| |
| // All leafs must agree on the new element width. |
| // All leafs must not expect any "padding" bits ontop of that width. |
| // All leafs must start extraction from multiple of that width. |
| if (!all_of(Leafs, [NewVecEltBitWidth](const Entry &E) { |
| return (unsigned)E.NumBits == NewVecEltBitWidth && |
| E.Producer->getValueSizeInBits(0) == NewVecEltBitWidth && |
| E.BitPos % NewVecEltBitWidth == 0; |
| })) |
| return false; |
| |
| EVT NewScalarVT = EVT::getIntegerVT(*DAG.getContext(), NewVecEltBitWidth); |
| EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewScalarVT, |
| VecVT.getSizeInBits() / NewVecEltBitWidth); |
| |
| if (LegalTypes && |
| !(TLI.isTypeLegal(NewScalarVT) && TLI.isTypeLegal(NewVecVT))) |
| return false; |
| |
| if (LegalOperations && |
| !(TLI.isOperationLegalOrCustom(ISD::BITCAST, NewVecVT) && |
| TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, NewVecVT))) |
| return false; |
| |
| SDValue NewVecOp = DAG.getBitcast(NewVecVT, VecOp); |
| for (const Entry &E : Leafs) { |
| SDLoc DL(E.Producer); |
| unsigned NewIndex = E.BitPos / NewVecEltBitWidth; |
| assert(NewIndex < NewVecVT.getVectorNumElements() && |
| "Creating out-of-bounds ISD::EXTRACT_VECTOR_ELT?"); |
| SDValue V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, NewScalarVT, NewVecOp, |
| DAG.getVectorIdxConstant(NewIndex, DL)); |
| CombineTo(E.Producer, V); |
| } |
| |
| return true; |
| } |
| |
| SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { |
| SDValue VecOp = N->getOperand(0); |
| SDValue Index = N->getOperand(1); |
| EVT ScalarVT = N->getValueType(0); |
| EVT VecVT = VecOp.getValueType(); |
| if (VecOp.isUndef()) |
| return DAG.getUNDEF(ScalarVT); |
| |
| // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val |
| // |
| // This only really matters if the index is non-constant since other combines |
| // on the constant elements already work. |
| SDLoc DL(N); |
| if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && |
| Index == VecOp.getOperand(2)) { |
| SDValue Elt = VecOp.getOperand(1); |
| return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; |
| } |
| |
| // (vextract (scalar_to_vector val, 0) -> val |
| if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| // Only 0'th element of SCALAR_TO_VECTOR is defined. |
| if (DAG.isKnownNeverZero(Index)) |
| return DAG.getUNDEF(ScalarVT); |
| |
| // Check if the result type doesn't match the inserted element type. A |
| // SCALAR_TO_VECTOR may truncate the inserted element and the |
| // EXTRACT_VECTOR_ELT may widen the extracted vector. |
| SDValue InOp = VecOp.getOperand(0); |
| if (InOp.getValueType() != ScalarVT) { |
| assert(InOp.getValueType().isInteger() && ScalarVT.isInteger() && |
| InOp.getValueType().bitsGT(ScalarVT)); |
| return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, InOp); |
| } |
| return InOp; |
| } |
| |
| // extract_vector_elt of out-of-bounds element -> UNDEF |
| auto *IndexC = dyn_cast<ConstantSDNode>(Index); |
| if (IndexC && VecVT.isFixedLengthVector() && |
| IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) |
| return DAG.getUNDEF(ScalarVT); |
| |
| // extract_vector_elt(freeze(x)), idx -> freeze(extract_vector_elt(x)), idx |
| if (VecOp.hasOneUse() && VecOp.getOpcode() == ISD::FREEZE) { |
| return DAG.getFreeze(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, |
| VecOp.getOperand(0), Index)); |
| } |
| |
| // extract_vector_elt (build_vector x, y), 1 -> y |
| if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || |
| VecOp.getOpcode() == ISD::SPLAT_VECTOR) && |
| TLI.isTypeLegal(VecVT) && |
| (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { |
| assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || |
| VecVT.isFixedLengthVector()) && |
| "BUILD_VECTOR used for scalable vectors"); |
| unsigned IndexVal = |
| VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; |
| SDValue Elt = VecOp.getOperand(IndexVal); |
| EVT InEltVT = Elt.getValueType(); |
| |
| // Sometimes build_vector's scalar input types do not match result type. |
| if (ScalarVT == InEltVT) |
| return Elt; |
| |
| // TODO: It may be useful to truncate if free if the build_vector implicitly |
| // converts. |
| } |
| |
| if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) |
| return BO; |
| |
| if (VecVT.isScalableVector()) |
| return SDValue(); |
| |
| // All the code from this point onwards assumes fixed width vectors, but it's |
| // possible that some of the combinations could be made to work for scalable |
| // vectors too. |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); |
| |
| // TODO: These transforms should not require the 'hasOneUse' restriction, but |
| // there are regressions on multiple targets without it. We can end up with a |
| // mess of scalar and vector code if we reduce only part of the DAG to scalar. |
| if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && |
| VecOp.hasOneUse()) { |
| // The vector index of the LSBs of the source depend on the endian-ness. |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| unsigned ExtractIndex = IndexC->getZExtValue(); |
| // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) |
| unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; |
| SDValue BCSrc = VecOp.getOperand(0); |
| if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) |
| return DAG.getAnyExtOrTrunc(BCSrc, DL, ScalarVT); |
| |
| if (LegalTypes && BCSrc.getValueType().isInteger() && |
| BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> |
| // trunc i64 X to i32 |
| SDValue X = BCSrc.getOperand(0); |
| assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && |
| "Extract element and scalar to vector can't change element type " |
| "from FP to integer."); |
| unsigned XBitWidth = X.getValueSizeInBits(); |
| BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; |
| |
| // An extract element return value type can be wider than its vector |
| // operand element type. In that case, the high bits are undefined, so |
| // it's possible that we may need to extend rather than truncate. |
| if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { |
| assert(XBitWidth % VecEltBitWidth == 0 && |
| "Scalar bitwidth must be a multiple of vector element bitwidth"); |
| return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); |
| } |
| } |
| } |
| |
| // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. |
| // We only perform this optimization before the op legalization phase because |
| // we may introduce new vector instructions which are not backed by TD |
| // patterns. For example on AVX, extracting elements from a wide vector |
| // without using extract_subvector. However, if we can find an underlying |
| // scalar value, then we can always use that. |
| if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); |
| // Find the new index to extract from. |
| int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); |
| |
| // Extracting an undef index is undef. |
| if (OrigElt == -1) |
| return DAG.getUNDEF(ScalarVT); |
| |
| // Select the right vector half to extract from. |
| SDValue SVInVec; |
| if (OrigElt < (int)NumElts) { |
| SVInVec = VecOp.getOperand(0); |
| } else { |
| SVInVec = VecOp.getOperand(1); |
| OrigElt -= NumElts; |
| } |
| |
| if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { |
| SDValue InOp = SVInVec.getOperand(OrigElt); |
| if (InOp.getValueType() != ScalarVT) { |
| assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); |
| InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); |
| } |
| |
| return InOp; |
| } |
| |
| // FIXME: We should handle recursing on other vector shuffles and |
| // scalar_to_vector here as well. |
| |
| if (!LegalOperations || |
| // FIXME: Should really be just isOperationLegalOrCustom. |
| TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || |
| TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, |
| DAG.getVectorIdxConstant(OrigElt, DL)); |
| } |
| } |
| |
| // If only EXTRACT_VECTOR_ELT nodes use the source vector we can |
| // simplify it based on the (valid) extraction indices. |
| if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { |
| return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Use->getOperand(0) == VecOp && |
| isa<ConstantSDNode>(Use->getOperand(1)); |
| })) { |
| APInt DemandedElts = APInt::getZero(NumElts); |
| for (SDNode *Use : VecOp->uses()) { |
| auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); |
| if (CstElt->getAPIntValue().ult(NumElts)) |
| DemandedElts.setBit(CstElt->getZExtValue()); |
| } |
| if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { |
| // We simplified the vector operand of this extract element. If this |
| // extract is not dead, visit it again so it is folded properly. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth); |
| if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { |
| // We simplified the vector operand of this extract element. If this |
| // extract is not dead, visit it again so it is folded properly. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| } |
| |
| if (refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(N)) |
| return SDValue(N, 0); |
| |
| // Everything under here is trying to match an extract of a loaded value. |
| // If the result of load has to be truncated, then it's not necessarily |
| // profitable. |
| bool BCNumEltsChanged = false; |
| EVT ExtVT = VecVT.getVectorElementType(); |
| EVT LVT = ExtVT; |
| if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) |
| return SDValue(); |
| |
| if (VecOp.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!VecOp.hasOneUse()) |
| return SDValue(); |
| |
| EVT BCVT = VecOp.getOperand(0).getValueType(); |
| if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) |
| return SDValue(); |
| if (NumElts != BCVT.getVectorNumElements()) |
| BCNumEltsChanged = true; |
| VecOp = VecOp.getOperand(0); |
| ExtVT = BCVT.getVectorElementType(); |
| } |
| |
| // extract (vector load $addr), i --> load $addr + i * size |
| if (!LegalOperations && !IndexC && VecOp.hasOneUse() && |
| ISD::isNormalLoad(VecOp.getNode()) && |
| !Index->hasPredecessor(VecOp.getNode())) { |
| auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); |
| if (VecLoad && VecLoad->isSimple()) |
| return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); |
| } |
| |
| // Perform only after legalization to ensure build_vector / vector_shuffle |
| // optimizations have already been done. |
| if (!LegalOperations || !IndexC) |
| return SDValue(); |
| |
| // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) |
| // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) |
| // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) |
| int Elt = IndexC->getZExtValue(); |
| LoadSDNode *LN0 = nullptr; |
| if (ISD::isNormalLoad(VecOp.getNode())) { |
| LN0 = cast<LoadSDNode>(VecOp); |
| } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| VecOp.getOperand(0).getValueType() == ExtVT && |
| ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { |
| // Don't duplicate a load with other uses. |
| if (!VecOp.hasOneUse()) |
| return SDValue(); |
| |
| LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); |
| } |
| if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { |
| // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) |
| // => |
| // (load $addr+1*size) |
| |
| // Don't duplicate a load with other uses. |
| if (!VecOp.hasOneUse()) |
| return SDValue(); |
| |
| // If the bit convert changed the number of elements, it is unsafe |
| // to examine the mask. |
| if (BCNumEltsChanged) |
| return SDValue(); |
| |
| // Select the input vector, guarding against out of range extract vector. |
| int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); |
| VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); |
| |
| if (VecOp.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!VecOp.hasOneUse()) |
| return SDValue(); |
| |
| VecOp = VecOp.getOperand(0); |
| } |
| if (ISD::isNormalLoad(VecOp.getNode())) { |
| LN0 = cast<LoadSDNode>(VecOp); |
| Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; |
| Index = DAG.getConstant(Elt, DL, Index.getValueType()); |
| } |
| } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && |
| VecVT.getVectorElementType() == ScalarVT && |
| (!LegalTypes || |
| TLI.isTypeLegal( |
| VecOp.getOperand(0).getValueType().getVectorElementType()))) { |
| // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 |
| // -> extract_vector_elt a, 0 |
| // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 |
| // -> extract_vector_elt a, 1 |
| // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 |
| // -> extract_vector_elt b, 0 |
| // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 |
| // -> extract_vector_elt b, 1 |
| SDLoc SL(N); |
| EVT ConcatVT = VecOp.getOperand(0).getValueType(); |
| unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); |
| SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, |
| Index.getValueType()); |
| |
| SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, |
| ConcatVT.getVectorElementType(), |
| ConcatOp, NewIdx); |
| return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); |
| } |
| |
| // Make sure we found a non-volatile load and the extractelement is |
| // the only use. |
| if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) |
| return SDValue(); |
| |
| // If Idx was -1 above, Elt is going to be -1, so just return undef. |
| if (Elt == -1) |
| return DAG.getUNDEF(LVT); |
| |
| return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); |
| } |
| |
| // Simplify (build_vec (ext )) to (bitcast (build_vec )) |
| SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { |
| // We perform this optimization post type-legalization because |
| // the type-legalizer often scalarizes integer-promoted vectors. |
| // Performing this optimization before may create bit-casts which |
| // will be type-legalized to complex code sequences. |
| // We perform this optimization only before the operation legalizer because we |
| // may introduce illegal operations. |
| if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) |
| return SDValue(); |
| |
| unsigned NumInScalars = N->getNumOperands(); |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // Check to see if this is a BUILD_VECTOR of a bunch of values |
| // which come from any_extend or zero_extend nodes. If so, we can create |
| // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR |
| // optimizations. We do not handle sign-extend because we can't fill the sign |
| // using shuffles. |
| EVT SourceType = MVT::Other; |
| bool AllAnyExt = true; |
| |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| SDValue In = N->getOperand(i); |
| // Ignore undef inputs. |
| if (In.isUndef()) continue; |
| |
| bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; |
| bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; |
| |
| // Abort if the element is not an extension. |
| if (!ZeroExt && !AnyExt) { |
| SourceType = MVT::Other; |
| break; |
| } |
| |
| // The input is a ZeroExt or AnyExt. Check the original type. |
| EVT InTy = In.getOperand(0).getValueType(); |
| |
| // Check that all of the widened source types are the same. |
| if (SourceType == MVT::Other) |
| // First time. |
| SourceType = InTy; |
| else if (InTy != SourceType) { |
| // Multiple income types. Abort. |
| SourceType = MVT::Other; |
| break; |
| } |
| |
| // Check if all of the extends are ANY_EXTENDs. |
| AllAnyExt &= AnyExt; |
| } |
| |
| // In order to have valid types, all of the inputs must be extended from the |
| // same source type and all of the inputs must be any or zero extend. |
| // Scalar sizes must be a power of two. |
| EVT OutScalarTy = VT.getScalarType(); |
| bool ValidTypes = SourceType != MVT::Other && |
| isPowerOf2_32(OutScalarTy.getSizeInBits()) && |
| isPowerOf2_32(SourceType.getSizeInBits()); |
| |
| // Create a new simpler BUILD_VECTOR sequence which other optimizations can |
| // turn into a single shuffle instruction. |
| if (!ValidTypes) |
| return SDValue(); |
| |
| // If we already have a splat buildvector, then don't fold it if it means |
| // introducing zeros. |
| if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) |
| return SDValue(); |
| |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); |
| assert(ElemRatio > 1 && "Invalid element size ratio"); |
| SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): |
| DAG.getConstant(0, DL, SourceType); |
| |
| unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); |
| SmallVector<SDValue, 8> Ops(NewBVElems, Filler); |
| |
| // Populate the new build_vector |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDValue Cast = N->getOperand(i); |
| assert((Cast.getOpcode() == ISD::ANY_EXTEND || |
| Cast.getOpcode() == ISD::ZERO_EXTEND || |
| Cast.isUndef()) && "Invalid cast opcode"); |
| SDValue In; |
| if (Cast.isUndef()) |
| In = DAG.getUNDEF(SourceType); |
| else |
| In = Cast->getOperand(0); |
| unsigned Index = isLE ? (i * ElemRatio) : |
| (i * ElemRatio + (ElemRatio - 1)); |
| |
| assert(Index < Ops.size() && "Invalid index"); |
| Ops[Index] = In; |
| } |
| |
| // The type of the new BUILD_VECTOR node. |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); |
| assert(VecVT.getSizeInBits() == VT.getSizeInBits() && |
| "Invalid vector size"); |
| // Check if the new vector type is legal. |
| if (!isTypeLegal(VecVT) || |
| (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && |
| TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) |
| return SDValue(); |
| |
| // Make the new BUILD_VECTOR. |
| SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); |
| |
| // The new BUILD_VECTOR node has the potential to be further optimized. |
| AddToWorklist(BV.getNode()); |
| // Bitcast to the desired type. |
| return DAG.getBitcast(VT, BV); |
| } |
| |
| // Simplify (build_vec (trunc $1) |
| // (trunc (srl $1 half-width)) |
| // (trunc (srl $1 (2 * half-width)))) |
| // to (bitcast $1) |
| SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); |
| |
| // Only for little endian |
| if (!DAG.getDataLayout().isLittleEndian()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| EVT OutScalarTy = VT.getScalarType(); |
| uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); |
| |
| // Only for power of two types to be sure that bitcast works well |
| if (!isPowerOf2_64(ScalarTypeBitsize)) |
| return SDValue(); |
| |
| unsigned NumInScalars = N->getNumOperands(); |
| |
| // Look through bitcasts |
| auto PeekThroughBitcast = [](SDValue Op) { |
| if (Op.getOpcode() == ISD::BITCAST) |
| return Op.getOperand(0); |
| return Op; |
| }; |
| |
| // The source value where all the parts are extracted. |
| SDValue Src; |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| SDValue In = PeekThroughBitcast(N->getOperand(i)); |
| // Ignore undef inputs. |
| if (In.isUndef()) continue; |
| |
| if (In.getOpcode() != ISD::TRUNCATE) |
| return SDValue(); |
| |
| In = PeekThroughBitcast(In.getOperand(0)); |
| |
| if (In.getOpcode() != ISD::SRL) { |
| // For now only build_vec without shuffling, handle shifts here in the |
| // future. |
| if (i != 0) |
| return SDValue(); |
| |
| Src = In; |
| } else { |
| // In is SRL |
| SDValue part = PeekThroughBitcast(In.getOperand(0)); |
| |
| if (!Src) { |
| Src = part; |
| } else if (Src != part) { |
| // Vector parts do not stem from the same variable |
| return SDValue(); |
| } |
| |
| SDValue ShiftAmtVal = In.getOperand(1); |
| if (!isa<ConstantSDNode>(ShiftAmtVal)) |
| return SDValue(); |
| |
| uint64_t ShiftAmt = In.getConstantOperandVal(1); |
| |
| // The extracted value is not extracted at the right position |
| if (ShiftAmt != i * ScalarTypeBitsize) |
| return SDValue(); |
| } |
| } |
| |
| // Only cast if the size is the same |
| if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| return DAG.getBitcast(VT, Src); |
| } |
| |
| SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, |
| ArrayRef<int> VectorMask, |
| SDValue VecIn1, SDValue VecIn2, |
| unsigned LeftIdx, bool DidSplitVec) { |
| SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); |
| |
| EVT VT = N->getValueType(0); |
| EVT InVT1 = VecIn1.getValueType(); |
| EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned ShuffleNumElems = NumElems; |
| |
| // If we artificially split a vector in two already, then the offsets in the |
| // operands will all be based off of VecIn1, even those in VecIn2. |
| unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); |
| |
| uint64_t VTSize = VT.getFixedSizeInBits(); |
| uint64_t InVT1Size = InVT1.getFixedSizeInBits(); |
| uint64_t InVT2Size = InVT2.getFixedSizeInBits(); |
| |
| assert(InVT2Size <= InVT1Size && |
| "Inputs must be sorted to be in non-increasing vector size order."); |
| |
| // We can't generate a shuffle node with mismatched input and output types. |
| // Try to make the types match the type of the output. |
| if (InVT1 != VT || InVT2 != VT) { |
| if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { |
| // If the output vector length is a multiple of both input lengths, |
| // we can concatenate them and pad the rest with undefs. |
| unsigned NumConcats = VTSize / InVT1Size; |
| assert(NumConcats >= 2 && "Concat needs at least two inputs!"); |
| SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); |
| ConcatOps[0] = VecIn1; |
| ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); |
| VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); |
| VecIn2 = SDValue(); |
| } else if (InVT1Size == VTSize * 2) { |
| if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) |
| return SDValue(); |
| |
| if (!VecIn2.getNode()) { |
| // If we only have one input vector, and it's twice the size of the |
| // output, split it in two. |
| VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, |
| DAG.getVectorIdxConstant(NumElems, DL)); |
| VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); |
| // Since we now have shorter input vectors, adjust the offset of the |
| // second vector's start. |
| Vec2Offset = NumElems; |
| } else { |
| assert(InVT2Size <= InVT1Size && |
| "Second input is not going to be larger than the first one."); |
| |
| // VecIn1 is wider than the output, and we have another, possibly |
| // smaller input. Pad the smaller input with undefs, shuffle at the |
| // input vector width, and extract the output. |
| // The shuffle type is different than VT, so check legality again. |
| if (LegalOperations && |
| !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) |
| return SDValue(); |
| |
| // Legalizing INSERT_SUBVECTOR is tricky - you basically have to |
| // lower it back into a BUILD_VECTOR. So if the inserted type is |
| // illegal, don't even try. |
| if (InVT1 != InVT2) { |
| if (!TLI.isTypeLegal(InVT2)) |
| return SDValue(); |
| VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, |
| DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); |
| } |
| ShuffleNumElems = NumElems * 2; |
| } |
| } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { |
| SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); |
| ConcatOps[0] = VecIn2; |
| VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); |
| } else if (InVT1Size / VTSize > 1 && InVT1Size % VTSize == 0) { |
| if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems) || |
| !TLI.isTypeLegal(InVT1) || !TLI.isTypeLegal(InVT2)) |
| return SDValue(); |
| // If dest vector has less than two elements, then use shuffle and extract |
| // from larger regs will cost even more. |
| if (VT.getVectorNumElements() <= 2 || !VecIn2.getNode()) |
| return SDValue(); |
| assert(InVT2Size <= InVT1Size && |
| "Second input is not going to be larger than the first one."); |
| |
| // VecIn1 is wider than the output, and we have another, possibly |
| // smaller input. Pad the smaller input with undefs, shuffle at the |
| // input vector width, and extract the output. |
| // The shuffle type is different than VT, so check legality again. |
| if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) |
| return SDValue(); |
| |
| if (InVT1 != InVT2) { |
| VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, |
| DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); |
| } |
| ShuffleNumElems = InVT1Size / VTSize * NumElems; |
| } else { |
| // TODO: Support cases where the length mismatch isn't exactly by a |
| // factor of 2. |
| // TODO: Move this check upwards, so that if we have bad type |
| // mismatches, we don't create any DAG nodes. |
| return SDValue(); |
| } |
| } |
| |
| // Initialize mask to undef. |
| SmallVector<int, 8> Mask(ShuffleNumElems, -1); |
| |
| // Only need to run up to the number of elements actually used, not the |
| // total number of elements in the shuffle - if we are shuffling a wider |
| // vector, the high lanes should be set to undef. |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (VectorMask[i] <= 0) |
| continue; |
| |
| unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); |
| if (VectorMask[i] == (int)LeftIdx) { |
| Mask[i] = ExtIndex; |
| } else if (VectorMask[i] == (int)LeftIdx + 1) { |
| Mask[i] = Vec2Offset + ExtIndex; |
| } |
| } |
| |
| // The type the input vectors may have changed above. |
| InVT1 = VecIn1.getValueType(); |
| |
| // If we already have a VecIn2, it should have the same type as VecIn1. |
| // If we don't, get an undef/zero vector of the appropriate type. |
| VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); |
| assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); |
| |
| SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); |
| if (ShuffleNumElems > NumElems) |
| Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); |
| |
| return Shuffle; |
| } |
| |
| static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { |
| assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); |
| |
| // First, determine where the build vector is not undef. |
| // TODO: We could extend this to handle zero elements as well as undefs. |
| int NumBVOps = BV->getNumOperands(); |
| int ZextElt = -1; |
| for (int i = 0; i != NumBVOps; ++i) { |
| SDValue Op = BV->getOperand(i); |
| if (Op.isUndef()) |
| continue; |
| if (ZextElt == -1) |
| ZextElt = i; |
| else |
| return SDValue(); |
| } |
| // Bail out if there's no non-undef element. |
| if (ZextElt == -1) |
| return SDValue(); |
| |
| // The build vector contains some number of undef elements and exactly |
| // one other element. That other element must be a zero-extended scalar |
| // extracted from a vector at a constant index to turn this into a shuffle. |
| // Also, require that the build vector does not implicitly truncate/extend |
| // its elements. |
| // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. |
| EVT VT = BV->getValueType(0); |
| SDValue Zext = BV->getOperand(ZextElt); |
| if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || |
| Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || |
| Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| // The zero-extend must be a multiple of the source size, and we must be |
| // building a vector of the same size as the source of the extract element. |
| SDValue Extract = Zext.getOperand(0); |
| unsigned DestSize = Zext.getValueSizeInBits(); |
| unsigned SrcSize = Extract.getValueSizeInBits(); |
| if (DestSize % SrcSize != 0 || |
| Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| // Create a shuffle mask that will combine the extracted element with zeros |
| // and undefs. |
| int ZextRatio = DestSize / SrcSize; |
| int NumMaskElts = NumBVOps * ZextRatio; |
| SmallVector<int, 32> ShufMask(NumMaskElts, -1); |
| for (int i = 0; i != NumMaskElts; ++i) { |
| if (i / ZextRatio == ZextElt) { |
| // The low bits of the (potentially translated) extracted element map to |
| // the source vector. The high bits map to zero. We will use a zero vector |
| // as the 2nd source operand of the shuffle, so use the 1st element of |
| // that vector (mask value is number-of-elements) for the high bits. |
| if (i % ZextRatio == 0) |
| ShufMask[i] = Extract.getConstantOperandVal(1); |
| else |
| ShufMask[i] = NumMaskElts; |
| } |
| |
| // Undef elements of the build vector remain undef because we initialize |
| // the shuffle mask with -1. |
| } |
| |
| // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> |
| // bitcast (shuffle V, ZeroVec, VectorMask) |
| SDLoc DL(BV); |
| EVT VecVT = Extract.getOperand(0).getValueType(); |
| SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), |
| ZeroVec, ShufMask, DAG); |
| if (!Shuf) |
| return SDValue(); |
| return DAG.getBitcast(VT, Shuf); |
| } |
| |
| // FIXME: promote to STLExtras. |
| template <typename R, typename T> |
| static auto getFirstIndexOf(R &&Range, const T &Val) { |
| auto I = find(Range, Val); |
| if (I == Range.end()) |
| return static_cast<decltype(std::distance(Range.begin(), I))>(-1); |
| return std::distance(Range.begin(), I); |
| } |
| |
| // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT |
| // operations. If the types of the vectors we're extracting from allow it, |
| // turn this into a vector_shuffle node. |
| SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. |
| if (!isTypeLegal(VT)) |
| return SDValue(); |
| |
| if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) |
| return V; |
| |
| // May only combine to shuffle after legalize if shuffle is legal. |
| if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) |
| return SDValue(); |
| |
| bool UsesZeroVector = false; |
| unsigned NumElems = N->getNumOperands(); |
| |
| // Record, for each element of the newly built vector, which input vector |
| // that element comes from. -1 stands for undef, 0 for the zero vector, |
| // and positive values for the input vectors. |
| // VectorMask maps each element to its vector number, and VecIn maps vector |
| // numbers to their initial SDValues. |
| |
| SmallVector<int, 8> VectorMask(NumElems, -1); |
| SmallVector<SDValue, 8> VecIn; |
| VecIn.push_back(SDValue()); |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDValue Op = N->getOperand(i); |
| |
| if (Op.isUndef()) |
| continue; |
| |
| // See if we can use a blend with a zero vector. |
| // TODO: Should we generalize this to a blend with an arbitrary constant |
| // vector? |
| if (isNullConstant(Op) || isNullFPConstant(Op)) { |
| UsesZeroVector = true; |
| VectorMask[i] = 0; |
| continue; |
| } |
| |
| // Not an undef or zero. If the input is something other than an |
| // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. |
| if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDValue(); |
| SDValue ExtractedFromVec = Op.getOperand(0); |
| |
| if (ExtractedFromVec.getValueType().isScalableVector()) |
| return SDValue(); |
| |
| const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); |
| if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) |
| return SDValue(); |
| |
| // All inputs must have the same element type as the output. |
| if (VT.getVectorElementType() != |
| ExtractedFromVec.getValueType().getVectorElementType()) |
| return SDValue(); |
| |
| // Have we seen this input vector before? |
| // The vectors are expected to be tiny (usually 1 or 2 elements), so using |
| // a map back from SDValues to numbers isn't worth it. |
| int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); |
| if (Idx == -1) { // A new source vector? |
| Idx = VecIn.size(); |
| VecIn.push_back(ExtractedFromVec); |
| } |
| |
| VectorMask[i] = Idx; |
| } |
| |
| // If we didn't find at least one input vector, bail out. |
| if (VecIn.size() < 2) |
| return SDValue(); |
| |
| // If all the Operands of BUILD_VECTOR extract from same |
| // vector, then split the vector efficiently based on the maximum |
| // vector access index and adjust the VectorMask and |
| // VecIn accordingly. |
| bool DidSplitVec = false; |
| if (VecIn.size() == 2) { |
| unsigned MaxIndex = 0; |
| unsigned NearestPow2 = 0; |
| SDValue Vec = VecIn.back(); |
| EVT InVT = Vec.getValueType(); |
| SmallVector<unsigned, 8> IndexVec(NumElems, 0); |
| |
| for (unsigned i = 0; i < NumElems; i++) { |
| if (VectorMask[i] <= 0) |
| continue; |
| unsigned Index = N->getOperand(i).getConstantOperandVal(1); |
| IndexVec[i] = Index; |
| MaxIndex = std::max(MaxIndex, Index); |
| } |
| |
| NearestPow2 = PowerOf2Ceil(MaxIndex); |
| if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && |
| NumElems * 2 < NearestPow2) { |
| unsigned SplitSize = NearestPow2 / 2; |
| EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), |
| InVT.getVectorElementType(), SplitSize); |
| if (TLI.isTypeLegal(SplitVT) && |
| SplitSize + SplitVT.getVectorNumElements() <= |
| InVT.getVectorNumElements()) { |
| SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, |
| DAG.getVectorIdxConstant(SplitSize, DL)); |
| SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, |
| DAG.getVectorIdxConstant(0, DL)); |
| VecIn.pop_back(); |
| VecIn.push_back(VecIn1); |
| VecIn.push_back(VecIn2); |
| DidSplitVec = true; |
| |
| for (unsigned i = 0; i < NumElems; i++) { |
| if (VectorMask[i] <= 0) |
| continue; |
| VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; |
| } |
| } |
| } |
| } |
| |
| // Sort input vectors by decreasing vector element count, |
| // while preserving the relative order of equally-sized vectors. |
| // Note that we keep the first "implicit zero vector as-is. |
| SmallVector<SDValue, 8> SortedVecIn(VecIn); |
| llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), |
| [](const SDValue &a, const SDValue &b) { |
| return a.getValueType().getVectorNumElements() > |
| b.getValueType().getVectorNumElements(); |
| }); |
| |
| // We now also need to rebuild the VectorMask, because it referenced element |
| // order in VecIn, and we just sorted them. |
| for (int &SourceVectorIndex : VectorMask) { |
| if (SourceVectorIndex <= 0) |
| continue; |
| unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); |
| assert(Idx > 0 && Idx < SortedVecIn.size() && |
| VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); |
| SourceVectorIndex = Idx; |
| } |
| |
| VecIn = std::move(SortedVecIn); |
| |
| // TODO: Should this fire if some of the input vectors has illegal type (like |
| // it does now), or should we let legalization run its course first? |
| |
| // Shuffle phase: |
| // Take pairs of vectors, and shuffle them so that the result has elements |
| // from these vectors in the correct places. |
| // For example, given: |
| // t10: i32 = extract_vector_elt t1, Constant:i64<0> |
| // t11: i32 = extract_vector_elt t2, Constant:i64<0> |
| // t12: i32 = extract_vector_elt t3, Constant:i64<0> |
| // t13: i32 = extract_vector_elt t1, Constant:i64<1> |
| // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 |
| // We will generate: |
| // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 |
| // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef |
| SmallVector<SDValue, 4> Shuffles; |
| for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { |
| unsigned LeftIdx = 2 * In + 1; |
| SDValue VecLeft = VecIn[LeftIdx]; |
| SDValue VecRight = |
| (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); |
| |
| if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, |
| VecRight, LeftIdx, DidSplitVec)) |
| Shuffles.push_back(Shuffle); |
| else |
| return SDValue(); |
| } |
| |
| // If we need the zero vector as an "ingredient" in the blend tree, add it |
| // to the list of shuffles. |
| if (UsesZeroVector) |
| Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) |
| : DAG.getConstantFP(0.0, DL, VT)); |
| |
| // If we only have one shuffle, we're done. |
| if (Shuffles.size() == 1) |
| return Shuffles[0]; |
| |
| // Update the vector mask to point to the post-shuffle vectors. |
| for (int &Vec : VectorMask) |
| if (Vec == 0) |
| Vec = Shuffles.size() - 1; |
| else |
| Vec = (Vec - 1) / 2; |
| |
| // More than one shuffle. Generate a binary tree of blends, e.g. if from |
| // the previous step we got the set of shuffles t10, t11, t12, t13, we will |
| // generate: |
| // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 |
| // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 |
| // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 |
| // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 |
| // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 |
| // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 |
| // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 |
| |
| // Make sure the initial size of the shuffle list is even. |
| if (Shuffles.size() % 2) |
| Shuffles.push_back(DAG.getUNDEF(VT)); |
| |
| for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { |
| if (CurSize % 2) { |
| Shuffles[CurSize] = DAG.getUNDEF(VT); |
| CurSize++; |
| } |
| for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { |
| int Left = 2 * In; |
| int Right = 2 * In + 1; |
| SmallVector<int, 8> Mask(NumElems, -1); |
| SDValue L = Shuffles[Left]; |
| ArrayRef<int> LMask; |
| bool IsLeftShuffle = L.getOpcode() == ISD::VECTOR_SHUFFLE && |
| L.use_empty() && L.getOperand(1).isUndef() && |
| L.getOperand(0).getValueType() == L.getValueType(); |
| if (IsLeftShuffle) { |
| LMask = cast<ShuffleVectorSDNode>(L.getNode())->getMask(); |
| L = L.getOperand(0); |
| } |
| SDValue R = Shuffles[Right]; |
| ArrayRef<int> RMask; |
| bool IsRightShuffle = R.getOpcode() == ISD::VECTOR_SHUFFLE && |
| R.use_empty() && R.getOperand(1).isUndef() && |
| R.getOperand(0).getValueType() == R.getValueType(); |
| if (IsRightShuffle) { |
| RMask = cast<ShuffleVectorSDNode>(R.getNode())->getMask(); |
| R = R.getOperand(0); |
| } |
| for (unsigned I = 0; I != NumElems; ++I) { |
| if (VectorMask[I] == Left) { |
| Mask[I] = I; |
| if (IsLeftShuffle) |
| Mask[I] = LMask[I]; |
| VectorMask[I] = In; |
| } else if (VectorMask[I] == Right) { |
| Mask[I] = I + NumElems; |
| if (IsRightShuffle) |
| Mask[I] = RMask[I] + NumElems; |
| VectorMask[I] = In; |
| } |
| } |
| |
| Shuffles[In] = DAG.getVectorShuffle(VT, DL, L, R, Mask); |
| } |
| } |
| return Shuffles[0]; |
| } |
| |
| // Try to turn a build vector of zero extends of extract vector elts into a |
| // a vector zero extend and possibly an extract subvector. |
| // TODO: Support sign extend? |
| // TODO: Allow undef elements? |
| SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { |
| if (LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| bool FoundZeroExtend = false; |
| SDValue Op0 = N->getOperand(0); |
| auto checkElem = [&](SDValue Op) -> int64_t { |
| unsigned Opc = Op.getOpcode(); |
| FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); |
| if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && |
| Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) |
| if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) |
| return C->getZExtValue(); |
| return -1; |
| }; |
| |
| // Make sure the first element matches |
| // (zext (extract_vector_elt X, C)) |
| // Offset must be a constant multiple of the |
| // known-minimum vector length of the result type. |
| int64_t Offset = checkElem(Op0); |
| if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) |
| return SDValue(); |
| |
| unsigned NumElems = N->getNumOperands(); |
| SDValue In = Op0.getOperand(0).getOperand(0); |
| EVT InSVT = In.getValueType().getScalarType(); |
| EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); |
| |
| // Don't create an illegal input type after type legalization. |
| if (LegalTypes && !TLI.isTypeLegal(InVT)) |
| return SDValue(); |
| |
| // Ensure all the elements come from the same vector and are adjacent. |
| for (unsigned i = 1; i != NumElems; ++i) { |
| if ((Offset + i) != checkElem(N->getOperand(i))) |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, |
| Op0.getOperand(0).getOperand(1)); |
| return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, |
| VT, In); |
| } |
| |
| // If this is a very simple BUILD_VECTOR with first element being a ZERO_EXTEND, |
| // and all other elements being constant zero's, granularize the BUILD_VECTOR's |
| // element width, absorbing the ZERO_EXTEND, turning it into a constant zero op. |
| // This patten can appear during legalization. |
| // |
| // NOTE: This can be generalized to allow more than a single |
| // non-constant-zero op, UNDEF's, and to be KnownBits-based, |
| SDValue DAGCombiner::convertBuildVecZextToBuildVecWithZeros(SDNode *N) { |
| // Don't run this after legalization. Targets may have other preferences. |
| if (Level >= AfterLegalizeDAG) |
| return SDValue(); |
| |
| // FIXME: support big-endian. |
| if (DAG.getDataLayout().isBigEndian()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N->getOperand(0).getValueType(); |
| assert(!VT.isScalableVector() && "Encountered scalable BUILD_VECTOR?"); |
| |
| EVT OpIntVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); |
| |
| if (!TLI.isTypeLegal(OpIntVT) || |
| (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::BITCAST, OpIntVT))) |
| return SDValue(); |
| |
| unsigned EltBitwidth = VT.getScalarSizeInBits(); |
| // NOTE: the actual width of operands may be wider than that! |
| |
| // Analyze all operands of this BUILD_VECTOR. What is the largest number of |
| // active bits they all have? We'll want to truncate them all to that width. |
| unsigned ActiveBits = 0; |
| APInt KnownZeroOps(VT.getVectorNumElements(), 0); |
| for (auto I : enumerate(N->ops())) { |
| SDValue Op = I.value(); |
| // FIXME: support UNDEF elements? |
| if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) { |
| unsigned OpActiveBits = |
| Cst->getAPIntValue().trunc(EltBitwidth).getActiveBits(); |
| if (OpActiveBits == 0) { |
| KnownZeroOps.setBit(I.index()); |
| continue; |
| } |
| // Profitability check: don't allow non-zero constant operands. |
| return SDValue(); |
| } |
| // Profitability check: there must only be a single non-zero operand, |
| // and it must be the first operand of the BUILD_VECTOR. |
| if (I.index() != 0) |
| return SDValue(); |
| // The operand must be a zero-extension itself. |
| // FIXME: this could be generalized to known leading zeros check. |
| if (Op.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| unsigned CurrActiveBits = |
| Op.getOperand(0).getValueSizeInBits().getFixedValue(); |
| assert(!ActiveBits && "Already encountered non-constant-zero operand?"); |
| ActiveBits = CurrActiveBits; |
| // We want to at least halve the element size. |
| if (2 * ActiveBits > EltBitwidth) |
| return SDValue(); |
| } |
| |
| // This BUILD_VECTOR must have at least one non-constant-zero operand. |
| if (ActiveBits == 0) |
| return SDValue(); |
| |
| // We have EltBitwidth bits, the *minimal* chunk size is ActiveBits, |
| // into how many chunks can we split our element width? |
| EVT NewScalarIntVT, NewIntVT; |
| std::optional<unsigned> Factor; |
| // We can split the element into at least two chunks, but not into more |
| // than |_ EltBitwidth / ActiveBits _| chunks. Find a largest split factor |
| // for which the element width is a multiple of it, |
| // and the resulting types/operations on that chunk width are legal. |
| assert(2 * ActiveBits <= EltBitwidth && |
| "We know that half or less bits of the element are active."); |
| for (unsigned Scale = EltBitwidth / ActiveBits; Scale >= 2; --Scale) { |
| if (EltBitwidth % Scale != 0) |
| continue; |
| unsigned ChunkBitwidth = EltBitwidth / Scale; |
| assert(ChunkBitwidth >= ActiveBits && "As per starting point."); |
| NewScalarIntVT = EVT::getIntegerVT(*DAG.getContext(), ChunkBitwidth); |
| NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewScalarIntVT, |
| Scale * N->getNumOperands()); |
| if (!TLI.isTypeLegal(NewScalarIntVT) || !TLI.isTypeLegal(NewIntVT) || |
| (LegalOperations && |
| !(TLI.isOperationLegalOrCustom(ISD::TRUNCATE, NewScalarIntVT) && |
| TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, NewIntVT)))) |
| continue; |
| Factor = Scale; |
| break; |
| } |
| if (!Factor) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue ZeroOp = DAG.getConstant(0, DL, NewScalarIntVT); |
| |
| // Recreate the BUILD_VECTOR, with elements now being Factor times smaller. |
| SmallVector<SDValue, 16> NewOps; |
| NewOps.reserve(NewIntVT.getVectorNumElements()); |
| for (auto I : enumerate(N->ops())) { |
| SDValue Op = I.value(); |
| assert(!Op.isUndef() && "FIXME: after allowing UNDEF's, handle them here."); |
| unsigned SrcOpIdx = I.index(); |
| if (KnownZeroOps[SrcOpIdx]) { |
| NewOps.append(*Factor, ZeroOp); |
| continue; |
| } |
| Op = DAG.getBitcast(OpIntVT, Op); |
| Op = DAG.getNode(ISD::TRUNCATE, DL, NewScalarIntVT, Op); |
| NewOps.emplace_back(Op); |
| NewOps.append(*Factor - 1, ZeroOp); |
| } |
| assert(NewOps.size() == NewIntVT.getVectorNumElements()); |
| SDValue NewBV = DAG.getBuildVector(NewIntVT, DL, NewOps); |
| NewBV = DAG.getBitcast(VT, NewBV); |
| return NewBV; |
| } |
| |
| SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| |
| // A vector built entirely of undefs is undef. |
| if (ISD::allOperandsUndef(N)) |
| return DAG.getUNDEF(VT); |
| |
| // If this is a splat of a bitcast from another vector, change to a |
| // concat_vector. |
| // For example: |
| // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> |
| // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) |
| // |
| // If X is a build_vector itself, the concat can become a larger build_vector. |
| // TODO: Maybe this is useful for non-splat too? |
| if (!LegalOperations) { |
| if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { |
| Splat = peekThroughBitcasts(Splat); |
| EVT SrcVT = Splat.getValueType(); |
| if (SrcVT.isVector()) { |
| unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); |
| EVT NewVT = EVT::getVectorVT(*DAG.getContext(), |
| SrcVT.getVectorElementType(), NumElts); |
| if (!LegalTypes || TLI.isTypeLegal(NewVT)) { |
| SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), |
| NewVT, Ops); |
| return DAG.getBitcast(VT, Concat); |
| } |
| } |
| } |
| } |
| |
| // Check if we can express BUILD VECTOR via subvector extract. |
| if (!LegalTypes && (N->getNumOperands() > 1)) { |
| SDValue Op0 = N->getOperand(0); |
| auto checkElem = [&](SDValue Op) -> uint64_t { |
| if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && |
| (Op0.getOperand(0) == Op.getOperand(0))) |
| if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return CNode->getZExtValue(); |
| return -1; |
| }; |
| |
| int Offset = checkElem(Op0); |
| for (unsigned i = 0; i < N->getNumOperands(); ++i) { |
| if (Offset + i != checkElem(N->getOperand(i))) { |
| Offset = -1; |
| break; |
| } |
| } |
| |
| if ((Offset == 0) && |
| (Op0.getOperand(0).getValueType() == N->getValueType(0))) |
| return Op0.getOperand(0); |
| if ((Offset != -1) && |
| ((Offset % N->getValueType(0).getVectorNumElements()) == |
| 0)) // IDX must be multiple of output size. |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), |
| Op0.getOperand(0), Op0.getOperand(1)); |
| } |
| |
| if (SDValue V = convertBuildVecZextToZext(N)) |
| return V; |
| |
| if (SDValue V = convertBuildVecZextToBuildVecWithZeros(N)) |
| return V; |
| |
| if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) |
| return V; |
| |
| if (SDValue V = reduceBuildVecTruncToBitCast(N)) |
| return V; |
| |
| if (SDValue V = reduceBuildVecToShuffle(N)) |
| return V; |
| |
| // A splat of a single element is a SPLAT_VECTOR if supported on the target. |
| // Do this late as some of the above may replace the splat. |
| if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) |
| if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { |
| assert(!V.isUndef() && "Splat of undef should have been handled earlier"); |
| return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT OpVT = N->getOperand(0).getValueType(); |
| |
| // If the operands are legal vectors, leave them alone. |
| if (TLI.isTypeLegal(OpVT)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SmallVector<SDValue, 8> Ops; |
| |
| EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); |
| SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); |
| |
| // Keep track of what we encounter. |
| bool AnyInteger = false; |
| bool AnyFP = false; |
| for (const SDValue &Op : N->ops()) { |
| if (ISD::BITCAST == Op.getOpcode() && |
| !Op.getOperand(0).getValueType().isVector()) |
| Ops.push_back(Op.getOperand(0)); |
| else if (ISD::UNDEF == Op.getOpcode()) |
| Ops.push_back(ScalarUndef); |
| else |
| return SDValue(); |
| |
| // Note whether we encounter an integer or floating point scalar. |
| // If it's neither, bail out, it could be something weird like x86mmx. |
| EVT LastOpVT = Ops.back().getValueType(); |
| if (LastOpVT.isFloatingPoint()) |
| AnyFP = true; |
| else if (LastOpVT.isInteger()) |
| AnyInteger = true; |
| else |
| return SDValue(); |
| } |
| |
| // If any of the operands is a floating point scalar bitcast to a vector, |
| // use floating point types throughout, and bitcast everything. |
| // Replace UNDEFs by another scalar UNDEF node, of the final desired type. |
| if (AnyFP) { |
| SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); |
| ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); |
| if (AnyInteger) { |
| for (SDValue &Op : Ops) { |
| if (Op.getValueType() == SVT) |
| continue; |
| if (Op.isUndef()) |
| Op = ScalarUndef; |
| else |
| Op = DAG.getBitcast(SVT, Op); |
| } |
| } |
| } |
| |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, |
| VT.getSizeInBits() / SVT.getSizeInBits()); |
| return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); |
| } |
| |
| // Attempt to merge nested concat_vectors/undefs. |
| // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) |
| // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) |
| static SDValue combineConcatVectorOfConcatVectors(SDNode *N, |
| SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| |
| // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. |
| EVT SubVT; |
| SDValue FirstConcat; |
| for (const SDValue &Op : N->ops()) { |
| if (Op.isUndef()) |
| continue; |
| if (Op.getOpcode() != ISD::CONCAT_VECTORS) |
| return SDValue(); |
| if (!FirstConcat) { |
| SubVT = Op.getOperand(0).getValueType(); |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) |
| return SDValue(); |
| FirstConcat = Op; |
| continue; |
| } |
| if (SubVT != Op.getOperand(0).getValueType()) |
| return SDValue(); |
| } |
| assert(FirstConcat && "Concat of all-undefs found"); |
| |
| SmallVector<SDValue> ConcatOps; |
| for (const SDValue &Op : N->ops()) { |
| if (Op.isUndef()) { |
| ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); |
| continue; |
| } |
| ConcatOps.append(Op->op_begin(), Op->op_end()); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); |
| } |
| |
| // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR |
| // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at |
| // most two distinct vectors the same size as the result, attempt to turn this |
| // into a legal shuffle. |
| static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N->getOperand(0).getValueType(); |
| |
| // We currently can't generate an appropriate shuffle for a scalable vector. |
| if (VT.isScalableVector()) |
| return SDValue(); |
| |
| int NumElts = VT.getVectorNumElements(); |
| int NumOpElts = OpVT.getVectorNumElements(); |
| |
| SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); |
| SmallVector<int, 8> Mask; |
| |
| for (SDValue Op : N->ops()) { |
| Op = peekThroughBitcasts(Op); |
| |
| // UNDEF nodes convert to UNDEF shuffle mask values. |
| if (Op.isUndef()) { |
| Mask.append((unsigned)NumOpElts, -1); |
| continue; |
| } |
| |
| if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return SDValue(); |
| |
| // What vector are we extracting the subvector from and at what index? |
| SDValue ExtVec = Op.getOperand(0); |
| int ExtIdx = Op.getConstantOperandVal(1); |
| |
| // We want the EVT of the original extraction to correctly scale the |
| // extraction index. |
| EVT ExtVT = ExtVec.getValueType(); |
| ExtVec = peekThroughBitcasts(ExtVec); |
| |
| // UNDEF nodes convert to UNDEF shuffle mask values. |
| if (ExtVec.isUndef()) { |
| Mask.append((unsigned)NumOpElts, -1); |
| continue; |
| } |
| |
| // Ensure that we are extracting a subvector from a vector the same |
| // size as the result. |
| if (ExtVT.getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| // Scale the subvector index to account for any bitcast. |
| int NumExtElts = ExtVT.getVectorNumElements(); |
| if (0 == (NumExtElts % NumElts)) |
| ExtIdx /= (NumExtElts / NumElts); |
| else if (0 == (NumElts % NumExtElts)) |
| ExtIdx *= (NumElts / NumExtElts); |
| else |
| return SDValue(); |
| |
| // At most we can reference 2 inputs in the final shuffle. |
| if (SV0.isUndef() || SV0 == ExtVec) { |
| SV0 = ExtVec; |
| for (int i = 0; i != NumOpElts; ++i) |
| Mask.push_back(i + ExtIdx); |
| } else if (SV1.isUndef() || SV1 == ExtVec) { |
| SV1 = ExtVec; |
| for (int i = 0; i != NumOpElts; ++i) |
| Mask.push_back(i + ExtIdx + NumElts); |
| } else { |
| return SDValue(); |
| } |
| } |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), |
| DAG.getBitcast(VT, SV1), Mask, DAG); |
| } |
| |
| static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { |
| unsigned CastOpcode = N->getOperand(0).getOpcode(); |
| switch (CastOpcode) { |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| // TODO: Allow more opcodes? |
| // case ISD::BITCAST: |
| // case ISD::TRUNCATE: |
| // case ISD::ZERO_EXTEND: |
| // case ISD::SIGN_EXTEND: |
| // case ISD::FP_EXTEND: |
| break; |
| default: |
| return SDValue(); |
| } |
| |
| EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); |
| if (!SrcVT.isVector()) |
| return SDValue(); |
| |
| // All operands of the concat must be the same kind of cast from the same |
| // source type. |
| SmallVector<SDValue, 4> SrcOps; |
| for (SDValue Op : N->ops()) { |
| if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || |
| Op.getOperand(0).getValueType() != SrcVT) |
| return SDValue(); |
| SrcOps.push_back(Op.getOperand(0)); |
| } |
| |
| // The wider cast must be supported by the target. This is unusual because |
| // the operation support type parameter depends on the opcode. In addition, |
| // check the other type in the cast to make sure this is really legal. |
| EVT VT = N->getValueType(0); |
| EVT SrcEltVT = SrcVT.getVectorElementType(); |
| ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); |
| EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| switch (CastOpcode) { |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || |
| !TLI.isTypeLegal(VT)) |
| return SDValue(); |
| break; |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || |
| !TLI.isTypeLegal(ConcatSrcVT)) |
| return SDValue(); |
| break; |
| default: |
| llvm_unreachable("Unexpected cast opcode"); |
| } |
| |
| // concat (cast X), (cast Y)... -> cast (concat X, Y...) |
| SDLoc DL(N); |
| SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); |
| return DAG.getNode(CastOpcode, DL, VT, NewConcat); |
| } |
| |
| // See if this is a simple CONCAT_VECTORS with no UNDEF operands, and if one of |
| // the operands is a SHUFFLE_VECTOR, and all other operands are also operands |
| // to that SHUFFLE_VECTOR, create wider SHUFFLE_VECTOR. |
| static SDValue combineConcatVectorOfShuffleAndItsOperands( |
| SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, |
| bool LegalOperations) { |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N->getOperand(0).getValueType(); |
| if (VT.isScalableVector()) |
| return SDValue(); |
| |
| // For now, only allow simple 2-operand concatenations. |
| if (N->getNumOperands() != 2) |
| return SDValue(); |
| |
| // Don't create illegal types/shuffles when not allowed to. |
| if ((LegalTypes && !TLI.isTypeLegal(VT)) || |
| (LegalOperations && |
| !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) |
| return SDValue(); |
| |
| // Analyze all of the operands of the CONCAT_VECTORS. Out of all of them, |
| // we want to find one that is: (1) a SHUFFLE_VECTOR (2) only used by us, |
| // and (3) all operands of CONCAT_VECTORS must be either that SHUFFLE_VECTOR, |
| // or one of the operands of that SHUFFLE_VECTOR (but not UNDEF!). |
| // (4) and for now, the SHUFFLE_VECTOR must be unary. |
| ShuffleVectorSDNode *SVN = nullptr; |
| for (SDValue Op : N->ops()) { |
| if (auto *CurSVN = dyn_cast<ShuffleVectorSDNode>(Op); |
| CurSVN && CurSVN->getOperand(1).isUndef() && N->isOnlyUserOf(CurSVN) && |
| all_of(N->ops(), [CurSVN](SDValue Op) { |
| // FIXME: can we allow UNDEF operands? |
| return !Op.isUndef() && |
| (Op.getNode() == CurSVN || is_contained(CurSVN->ops(), Op)); |
| })) { |
| SVN = CurSVN; |
| break; |
| } |
| } |
| if (!SVN) |
| return SDValue(); |
| |
| // We are going to pad the shuffle operands, so any indice, that was picking |
| // from the second operand, must be adjusted. |
| SmallVector<int, 16> AdjustedMask; |
| AdjustedMask.reserve(SVN->getMask().size()); |
| assert(SVN->getOperand(1).isUndef() && "Expected unary shuffle!"); |
| append_range(AdjustedMask, SVN->getMask()); |
| |
| // Identity masks for the operands of the (padded) shuffle. |
| SmallVector<int, 32> IdentityMask(2 * OpVT.getVectorNumElements()); |
| MutableArrayRef<int> FirstShufOpIdentityMask = |
| MutableArrayRef<int>(IdentityMask) |
| .take_front(OpVT.getVectorNumElements()); |
| MutableArrayRef<int> SecondShufOpIdentityMask = |
| MutableArrayRef<int>(IdentityMask).take_back(OpVT.getVectorNumElements()); |
| std::iota(FirstShufOpIdentityMask.begin(), FirstShufOpIdentityMask.end(), 0); |
| std::iota(SecondShufOpIdentityMask.begin(), SecondShufOpIdentityMask.end(), |
| VT.getVectorNumElements()); |
| |
| // New combined shuffle mask. |
| SmallVector<int, 32> Mask; |
| Mask.reserve(VT.getVectorNumElements()); |
| for (SDValue Op : N->ops()) { |
| assert(!Op.isUndef() && "Not expecting to concatenate UNDEF."); |
| if (Op.getNode() == SVN) { |
| append_range(Mask, AdjustedMask); |
| continue; |
| } |
| if (Op == SVN->getOperand(0)) { |
| append_range(Mask, FirstShufOpIdentityMask); |
| continue; |
| } |
| if (Op == SVN->getOperand(1)) { |
| append_range(Mask, SecondShufOpIdentityMask); |
| continue; |
| } |
| llvm_unreachable("Unexpected operand!"); |
| } |
| |
| // Don't create illegal shuffle masks. |
| if (!TLI.isShuffleMaskLegal(Mask, VT)) |
| return SDValue(); |
| |
| // Pad the shuffle operands with UNDEF. |
| SDLoc dl(N); |
| std::array<SDValue, 2> ShufOps; |
| for (auto I : zip(SVN->ops(), ShufOps)) { |
| SDValue ShufOp = std::get<0>(I); |
| SDValue &NewShufOp = std::get<1>(I); |
| if (ShufOp.isUndef()) |
| NewShufOp = DAG.getUNDEF(VT); |
| else { |
| SmallVector<SDValue, 2> ShufOpParts(N->getNumOperands(), |
| DAG.getUNDEF(OpVT)); |
| ShufOpParts[0] = ShufOp; |
| NewShufOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, ShufOpParts); |
| } |
| } |
| // Finally, create the new wide shuffle. |
| return DAG.getVectorShuffle(VT, dl, ShufOps[0], ShufOps[1], Mask); |
| } |
| |
| SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { |
| // If we only have one input vector, we don't need to do any concatenation. |
| if (N->getNumOperands() == 1) |
| return N->getOperand(0); |
| |
| // Check if all of the operands are undefs. |
| EVT VT = N->getValueType(0); |
| if (ISD::allOperandsUndef(N)) |
| return DAG.getUNDEF(VT); |
| |
| // Optimize concat_vectors where all but the first of the vectors are undef. |
| if (all_of(drop_begin(N->ops()), |
| [](const SDValue &Op) { return Op.isUndef(); })) { |
| SDValue In = N->getOperand(0); |
| assert(In.getValueType().isVector() && "Must concat vectors"); |
| |
| // If the input is a concat_vectors, just make a larger concat by padding |
| // with smaller undefs. |
| if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { |
| unsigned NumOps = N->getNumOperands() * In.getNumOperands(); |
| SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); |
| Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); |
| } |
| |
| SDValue Scalar = peekThroughOneUseBitcasts(In); |
| |
| // concat_vectors(scalar_to_vector(scalar), undef) -> |
| // scalar_to_vector(scalar) |
| if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| Scalar.hasOneUse()) { |
| EVT SVT = Scalar.getValueType().getVectorElementType(); |
| if (SVT == Scalar.getOperand(0).getValueType()) |
| Scalar = Scalar.getOperand(0); |
| } |
| |
| // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) |
| if (!Scalar.getValueType().isVector()) { |
| // If the bitcast type isn't legal, it might be a trunc of a legal type; |
| // look through the trunc so we can still do the transform: |
| // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) |
| if (Scalar->getOpcode() == ISD::TRUNCATE && |
| !TLI.isTypeLegal(Scalar.getValueType()) && |
| TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) |
| Scalar = Scalar->getOperand(0); |
| |
| EVT SclTy = Scalar.getValueType(); |
| |
| if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) |
| return SDValue(); |
| |
| // Bail out if the vector size is not a multiple of the scalar size. |
| if (VT.getSizeInBits() % SclTy.getSizeInBits()) |
| return SDValue(); |
| |
| unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); |
| if (VNTNumElms < 2) |
| return SDValue(); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); |
| if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) |
| return SDValue(); |
| |
| SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); |
| return DAG.getBitcast(VT, Res); |
| } |
| } |
| |
| // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. |
| // We have already tested above for an UNDEF only concatenation. |
| // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) |
| // -> (BUILD_VECTOR A, B, ..., C, D, ...) |
| auto IsBuildVectorOrUndef = [](const SDValue &Op) { |
| return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); |
| }; |
| if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { |
| SmallVector<SDValue, 8> Opnds; |
| EVT SVT = VT.getScalarType(); |
| |
| EVT MinVT = SVT; |
| if (!SVT.isFloatingPoint()) { |
| // If BUILD_VECTOR are from built from integer, they may have different |
| // operand types. Get the smallest type and truncate all operands to it. |
| bool FoundMinVT = false; |
| for (const SDValue &Op : N->ops()) |
| if (ISD::BUILD_VECTOR == Op.getOpcode()) { |
| EVT OpSVT = Op.getOperand(0).getValueType(); |
| MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; |
| FoundMinVT = true; |
| } |
| assert(FoundMinVT && "Concat vector type mismatch"); |
| } |
| |
| for (const SDValue &Op : N->ops()) { |
| EVT OpVT = Op.getValueType(); |
| unsigned NumElts = OpVT.getVectorNumElements(); |
| |
| if (ISD::UNDEF == Op.getOpcode()) |
| Opnds.append(NumElts, DAG.getUNDEF(MinVT)); |
| |
| if (ISD::BUILD_VECTOR == Op.getOpcode()) { |
| if (SVT.isFloatingPoint()) { |
| assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); |
| Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); |
| } else { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Opnds.push_back( |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); |
| } |
| } |
| } |
| |
| assert(VT.getVectorNumElements() == Opnds.size() && |
| "Concat vector type mismatch"); |
| return DAG.getBuildVector(VT, SDLoc(N), Opnds); |
| } |
| |
| // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. |
| // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). |
| if (SDValue V = combineConcatVectorOfScalars(N, DAG)) |
| return V; |
| |
| if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { |
| // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. |
| if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) |
| return V; |
| |
| // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. |
| if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) |
| return V; |
| } |
| |
| if (SDValue V = combineConcatVectorOfCasts(N, DAG)) |
| return V; |
| |
| if (SDValue V = combineConcatVectorOfShuffleAndItsOperands( |
| N, DAG, TLI, LegalTypes, LegalOperations)) |
| return V; |
| |
| // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR |
| // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR |
| // operands and look for a CONCAT operations that place the incoming vectors |
| // at the exact same location. |
| // |
| // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. |
| SDValue SingleSource = SDValue(); |
| unsigned PartNumElem = |
| N->getOperand(0).getValueType().getVectorMinNumElements(); |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDValue Op = N->getOperand(i); |
| |
| if (Op.isUndef()) |
| continue; |
| |
| // Check if this is the identity extract: |
| if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return SDValue(); |
| |
| // Find the single incoming vector for the extract_subvector. |
| if (SingleSource.getNode()) { |
| if (Op.getOperand(0) != SingleSource) |
| return SDValue(); |
| } else { |
| SingleSource = Op.getOperand(0); |
| |
| // Check the source type is the same as the type of the result. |
| // If not, this concat may extend the vector, so we can not |
| // optimize it away. |
| if (SingleSource.getValueType() != N->getValueType(0)) |
| return SDValue(); |
| } |
| |
| // Check that we are reading from the identity index. |
| unsigned IdentityIndex = i * PartNumElem; |
| if (Op.getConstantOperandAPInt(1) != IdentityIndex) |
| return SDValue(); |
| } |
| |
| if (SingleSource.getNode()) |
| return SingleSource; |
| |
| return SDValue(); |
| } |
| |
| // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find |
| // if the subvector can be sourced for free. |
| static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { |
| if (V.getOpcode() == ISD::INSERT_SUBVECTOR && |
| V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { |
| return V.getOperand(1); |
| } |
| auto *IndexC = dyn_cast<ConstantSDNode>(Index); |
| if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && |
| V.getOperand(0).getValueType() == SubVT && |
| (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { |
| uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); |
| return V.getOperand(SubIdx); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, |
| SelectionDAG &DAG, |
| bool LegalOperations) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue BinOp = Extract->getOperand(0); |
| unsigned BinOpcode = BinOp.getOpcode(); |
| if (!TLI.isBinOp(BinOpcode) || BinOp->getNumValues() != 1) |
| return SDValue(); |
| |
| EVT VecVT = BinOp.getValueType(); |
| SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); |
| if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) |
| return SDValue(); |
| |
| SDValue Index = Extract->getOperand(1); |
| EVT SubVT = Extract->getValueType(0); |
| if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) |
| return SDValue(); |
| |
| SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); |
| SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); |
| |
| // TODO: We could handle the case where only 1 operand is being inserted by |
| // creating an extract of the other operand, but that requires checking |
| // number of uses and/or costs. |
| if (!Sub0 || !Sub1) |
| return SDValue(); |
| |
| // We are inserting both operands of the wide binop only to extract back |
| // to the narrow vector size. Eliminate all of the insert/extract: |
| // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y |
| return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, |
| BinOp->getFlags()); |
| } |
| |
| /// If we are extracting a subvector produced by a wide binary operator try |
| /// to use a narrow binary operator and/or avoid concatenation and extraction. |
| static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, |
| bool LegalOperations) { |
| // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share |
| // some of these bailouts with other transforms. |
| |
| if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) |
| return V; |
| |
| // The extract index must be a constant, so we can map it to a concat operand. |
| auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); |
| if (!ExtractIndexC) |
| return SDValue(); |
| |
| // We are looking for an optionally bitcasted wide vector binary operator |
| // feeding an extract subvector. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); |
| unsigned BOpcode = BinOp.getOpcode(); |
| if (!TLI.isBinOp(BOpcode) || BinOp->getNumValues() != 1) |
| return SDValue(); |
| |
| // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be |
| // reduced to the unary fneg when it is visited, and we probably want to deal |
| // with fneg in a target-specific way. |
| if (BOpcode == ISD::FSUB) { |
| auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); |
| if (C && C->getValueAPF().isNegZero()) |
| return SDValue(); |
| } |
| |
| // The binop must be a vector type, so we can extract some fraction of it. |
| EVT WideBVT = BinOp.getValueType(); |
| // The optimisations below currently assume we are dealing with fixed length |
| // vectors. It is possible to add support for scalable vectors, but at the |
| // moment we've done no analysis to prove whether they are profitable or not. |
| if (!WideBVT.isFixedLengthVector()) |
| return SDValue(); |
| |
| EVT VT = Extract->getValueType(0); |
| unsigned ExtractIndex = ExtractIndexC->getZExtValue(); |
| assert(ExtractIndex % VT.getVectorNumElements() == 0 && |
| "Extract index is not a multiple of the vector length."); |
| |
| // Bail out if this is not a proper multiple width extraction. |
| unsigned WideWidth = WideBVT.getSizeInBits(); |
| unsigned NarrowWidth = VT.getSizeInBits(); |
| if (WideWidth % NarrowWidth != 0) |
| return SDValue(); |
| |
| // Bail out if we are extracting a fraction of a single operation. This can |
| // occur because we potentially looked through a bitcast of the binop. |
| unsigned NarrowingRatio = WideWidth / NarrowWidth; |
| unsigned WideNumElts = WideBVT.getVectorNumElements(); |
| if (WideNumElts % NarrowingRatio != 0) |
| return SDValue(); |
| |
| // Bail out if the target does not support a narrower version of the binop. |
| EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), |
| WideNumElts / NarrowingRatio); |
| if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) |
| return SDValue(); |
| |
| // If extraction is cheap, we don't need to look at the binop operands |
| // for concat ops. The narrow binop alone makes this transform profitable. |
| // We can't just reuse the original extract index operand because we may have |
| // bitcasted. |
| unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); |
| unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); |
| if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && |
| BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { |
| // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) |
| SDLoc DL(Extract); |
| SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); |
| SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, |
| BinOp.getOperand(0), NewExtIndex); |
| SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, |
| BinOp.getOperand(1), NewExtIndex); |
| SDValue NarrowBinOp = |
| DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, BinOp->getFlags()); |
| return DAG.getBitcast(VT, NarrowBinOp); |
| } |
| |
| // Only handle the case where we are doubling and then halving. A larger ratio |
| // may require more than two narrow binops to replace the wide binop. |
| if (NarrowingRatio != 2) |
| return SDValue(); |
| |
| // TODO: The motivating case for this transform is an x86 AVX1 target. That |
| // target has temptingly almost legal versions of bitwise logic ops in 256-bit |
| // flavors, but no other 256-bit integer support. This could be extended to |
| // handle any binop, but that may require fixing/adding other folds to avoid |
| // codegen regressions. |
| if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) |
| return SDValue(); |
| |
| // We need at least one concatenation operation of a binop operand to make |
| // this transform worthwhile. The concat must double the input vector sizes. |
| auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { |
| if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) |
| return V.getOperand(ConcatOpNum); |
| return SDValue(); |
| }; |
| SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); |
| SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); |
| |
| if (SubVecL || SubVecR) { |
| // If a binop operand was not the result of a concat, we must extract a |
| // half-sized operand for our new narrow binop: |
| // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN |
| // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) |
| // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN |
| SDLoc DL(Extract); |
| SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); |
| SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) |
| : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, |
| BinOp.getOperand(0), IndexC); |
| |
| SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) |
| : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, |
| BinOp.getOperand(1), IndexC); |
| |
| SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); |
| return DAG.getBitcast(VT, NarrowBinOp); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If we are extracting a subvector from a wide vector load, convert to a |
| /// narrow load to eliminate the extraction: |
| /// (extract_subvector (load wide vector)) --> (load narrow vector) |
| static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { |
| // TODO: Add support for big-endian. The offset calculation must be adjusted. |
| if (DAG.getDataLayout().isBigEndian()) |
| return SDValue(); |
| |
| auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); |
| if (!Ld || Ld->getExtensionType() || !Ld->isSimple()) |
| return SDValue(); |
| |
| // Allow targets to opt-out. |
| EVT VT = Extract->getValueType(0); |
| |
| // We can only create byte sized loads. |
| if (!VT.isByteSized()) |
| return SDValue(); |
| |
| unsigned Index = Extract->getConstantOperandVal(1); |
| unsigned NumElts = VT.getVectorMinNumElements(); |
| |
| // The definition of EXTRACT_SUBVECTOR states that the index must be a |
| // multiple of the minimum number of elements in the result type. |
| assert(Index % NumElts == 0 && "The extract subvector index is not a " |
| "multiple of the result's element count"); |
| |
| // It's fine to use TypeSize here as we know the offset will not be negative. |
| TypeSize Offset = VT.getStoreSize() * (Index / NumElts); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) |
| return SDValue(); |
| |
| // The narrow load will be offset from the base address of the old load if |
| // we are extracting from something besides index 0 (little-endian). |
| SDLoc DL(Extract); |
| |
| // TODO: Use "BaseIndexOffset" to make this more effective. |
| SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); |
| |
| uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *MMO; |
| if (Offset.isScalable()) { |
| MachinePointerInfo MPI = |
| MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); |
| MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); |
| } else |
| MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedValue(), |
| StoreSize); |
| |
| SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); |
| DAG.makeEquivalentMemoryOrdering(Ld, NewLd); |
| return NewLd; |
| } |
| |
| /// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), |
| /// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?), |
| /// EXTRACT_SUBVECTOR(Op?, ?), |
| /// Mask')) |
| /// iff it is legal and profitable to do so. Notably, the trimmed mask |
| /// (containing only the elements that are extracted) |
| /// must reference at most two subvectors. |
| static SDValue foldExtractSubvectorFromShuffleVector(SDNode *N, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool LegalOperations) { |
| assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| "Must only be called on EXTRACT_SUBVECTOR's"); |
| |
| SDValue N0 = N->getOperand(0); |
| |
| // Only deal with non-scalable vectors. |
| EVT NarrowVT = N->getValueType(0); |
| EVT WideVT = N0.getValueType(); |
| if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector()) |
| return SDValue(); |
| |
| // The operand must be a shufflevector. |
| auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(N0); |
| if (!WideShuffleVector) |
| return SDValue(); |
| |
| // The old shuffleneeds to go away. |
| if (!WideShuffleVector->hasOneUse()) |
| return SDValue(); |
| |
| // And the narrow shufflevector that we'll form must be legal. |
| if (LegalOperations && |
| !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, NarrowVT)) |
| return SDValue(); |
| |
| uint64_t FirstExtractedEltIdx = N->getConstantOperandVal(1); |
| int NumEltsExtracted = NarrowVT.getVectorNumElements(); |
| assert((FirstExtractedEltIdx % NumEltsExtracted) == 0 && |
| "Extract index is not a multiple of the output vector length."); |
| |
| int WideNumElts = WideVT.getVectorNumElements(); |
| |
| SmallVector<int, 16> NewMask; |
| NewMask.reserve(NumEltsExtracted); |
| SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2> |
| DemandedSubvectors; |
| |
| // Try to decode the wide mask into narrow mask from at most two subvectors. |
| for (int M : WideShuffleVector->getMask().slice(FirstExtractedEltIdx, |
| NumEltsExtracted)) { |
| assert((M >= -1) && (M < (2 * WideNumElts)) && |
| "Out-of-bounds shuffle mask?"); |
| |
| if (M < 0) { |
| // Does not depend on operands, does not require adjustment. |
| NewMask.emplace_back(M); |
| continue; |
| } |
| |
| // From which operand of the shuffle does this shuffle mask element pick? |
| int WideShufOpIdx = M / WideNumElts; |
| // Which element of that operand is picked? |
| int OpEltIdx = M % WideNumElts; |
| |
| assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M && |
| "Shuffle mask vector decomposition failure."); |
| |
| // And which NumEltsExtracted-sized subvector of that operand is that? |
| int OpSubvecIdx = OpEltIdx / NumEltsExtracted; |
| // And which element within that subvector of that operand is that? |
| int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted; |
| |
| assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx && |
| "Shuffle mask subvector decomposition failure."); |
| |
| assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted + |
| WideShufOpIdx * WideNumElts) == M && |
| "Shuffle mask full decomposition failure."); |
| |
| SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx); |
| |
| if (Op.isUndef()) { |
| // Picking from an undef operand. Let's adjust mask instead. |
| NewMask.emplace_back(-1); |
| continue; |
| } |
| |
| // Profitability check: only deal with extractions from the first subvector. |
| if (OpSubvecIdx != 0) |
| return SDValue(); |
| |
| const std::pair<SDValue, int> DemandedSubvector = |
| std::make_pair(Op, OpSubvecIdx); |
| |
| if (DemandedSubvectors.insert(DemandedSubvector)) { |
| if (DemandedSubvectors.size() > 2) |
| return SDValue(); // We can't handle more than two subvectors. |
| // How many elements into the WideVT does this subvector start? |
| int Index = NumEltsExtracted * OpSubvecIdx; |
| // Bail out if the extraction isn't going to be cheap. |
| if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index)) |
| return SDValue(); |
| } |
| |
| // Ok, but from which operand of the new shuffle will this element pick? |
| int NewOpIdx = |
| getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector); |
| assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index."); |
| |
| int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted; |
| NewMask.emplace_back(AdjM); |
| } |
| assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask."); |
| assert(DemandedSubvectors.size() <= 2 && |
| "Should have ended up demanding at most two subvectors."); |
| |
| // Did we discover that the shuffle does not actually depend on operands? |
| if (DemandedSubvectors.empty()) |
| return DAG.getUNDEF(NarrowVT); |
| |
| // We still perform the exact same EXTRACT_SUBVECTOR, just on different |
| // operand[s]/index[es], so there is no point in checking for it's legality. |
| |
| // Do not turn a legal shuffle into an illegal one. |
| if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) && |
| !TLI.isShuffleMaskLegal(NewMask, NarrowVT)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| SmallVector<SDValue, 2> NewOps; |
| for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/> |
| &DemandedSubvector : DemandedSubvectors) { |
| // How many elements into the WideVT does this subvector start? |
| int Index = NumEltsExtracted * DemandedSubvector.second; |
| SDValue IndexC = DAG.getVectorIdxConstant(Index, DL); |
| NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT, |
| DemandedSubvector.first, IndexC)); |
| } |
| assert((NewOps.size() == 1 || NewOps.size() == 2) && |
| "Should end up with either one or two ops"); |
| |
| // If we ended up with only one operand, pad with an undef. |
| if (NewOps.size() == 1) |
| NewOps.emplace_back(DAG.getUNDEF(NarrowVT)); |
| |
| return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask); |
| } |
| |
| SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { |
| EVT NVT = N->getValueType(0); |
| SDValue V = N->getOperand(0); |
| uint64_t ExtIdx = N->getConstantOperandVal(1); |
| |
| // Extract from UNDEF is UNDEF. |
| if (V.isUndef()) |
| return DAG.getUNDEF(NVT); |
| |
| if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) |
| if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) |
| return NarrowLoad; |
| |
| // Combine an extract of an extract into a single extract_subvector. |
| // ext (ext X, C), 0 --> ext X, C |
| if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { |
| if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), |
| V.getConstantOperandVal(1)) && |
| TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), |
| V.getOperand(1)); |
| } |
| } |
| |
| // ty1 extract_vector(ty2 splat(V))) -> ty1 splat(V) |
| if (V.getOpcode() == ISD::SPLAT_VECTOR) |
| if (DAG.isConstantValueOfAnyType(V.getOperand(0)) || V.hasOneUse()) |
| if (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, NVT)) |
| return DAG.getSplatVector(NVT, SDLoc(N), V.getOperand(0)); |
| |
| // Try to move vector bitcast after extract_subv by scaling extraction index: |
| // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') |
| if (V.getOpcode() == ISD::BITCAST && |
| V.getOperand(0).getValueType().isVector() && |
| (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { |
| SDValue SrcOp = V.getOperand(0); |
| EVT SrcVT = SrcOp.getValueType(); |
| unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); |
| unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); |
| if ((SrcNumElts % DestNumElts) == 0) { |
| unsigned SrcDestRatio = SrcNumElts / DestNumElts; |
| ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; |
| EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), |
| NewExtEC); |
| if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { |
| SDLoc DL(N); |
| SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); |
| SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, |
| V.getOperand(0), NewIndex); |
| return DAG.getBitcast(NVT, NewExtract); |
| } |
| } |
| if ((DestNumElts % SrcNumElts) == 0) { |
| unsigned DestSrcRatio = DestNumElts / SrcNumElts; |
| if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { |
| ElementCount NewExtEC = |
| NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); |
| EVT ScalarVT = SrcVT.getScalarType(); |
| if ((ExtIdx % DestSrcRatio) == 0) { |
| SDLoc DL(N); |
| unsigned IndexValScaled = ExtIdx / DestSrcRatio; |
| EVT NewExtVT = |
| EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); |
| if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { |
| SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); |
| SDValue NewExtract = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, |
| V.getOperand(0), NewIndex); |
| return DAG.getBitcast(NVT, NewExtract); |
| } |
| if (NewExtEC.isScalar() && |
| TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { |
| SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); |
| SDValue NewExtract = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, |
| V.getOperand(0), NewIndex); |
| return DAG.getBitcast(NVT, NewExtract); |
| } |
| } |
| } |
| } |
| } |
| |
| if (V.getOpcode() == ISD::CONCAT_VECTORS) { |
| unsigned ExtNumElts = NVT.getVectorMinNumElements(); |
| EVT ConcatSrcVT = V.getOperand(0).getValueType(); |
| assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && |
| "Concat and extract subvector do not change element type"); |
| assert((ExtIdx % ExtNumElts) == 0 && |
| "Extract index is not a multiple of the input vector length."); |
| |
| unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); |
| unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; |
| |
| // If the concatenated source types match this extract, it's a direct |
| // simplification: |
| // extract_subvec (concat V1, V2, ...), i --> Vi |
| if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount()) |
| return V.getOperand(ConcatOpIdx); |
| |
| // If the concatenated source vectors are a multiple length of this extract, |
| // then extract a fraction of one of those source vectors directly from a |
| // concat operand. Example: |
| // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> |
| // v2i8 extract_subvec v8i8 Y, 6 |
| if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() && |
| ConcatSrcNumElts % ExtNumElts == 0) { |
| SDLoc DL(N); |
| unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; |
| assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && |
| "Trying to extract from >1 concat operand?"); |
| assert(NewExtIdx % ExtNumElts == 0 && |
| "Extract index is not a multiple of the input vector length."); |
| SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, |
| V.getOperand(ConcatOpIdx), NewIndexC); |
| } |
| } |
| |
| if (SDValue V = |
| foldExtractSubvectorFromShuffleVector(N, DAG, TLI, LegalOperations)) |
| return V; |
| |
| V = peekThroughBitcasts(V); |
| |
| // If the input is a build vector. Try to make a smaller build vector. |
| if (V.getOpcode() == ISD::BUILD_VECTOR) { |
| EVT InVT = V.getValueType(); |
| unsigned ExtractSize = NVT.getSizeInBits(); |
| unsigned EltSize = InVT.getScalarSizeInBits(); |
| // Only do this if we won't split any elements. |
| if (ExtractSize % EltSize == 0) { |
| unsigned NumElems = ExtractSize / EltSize; |
| EVT EltVT = InVT.getVectorElementType(); |
| EVT ExtractVT = |
| NumElems == 1 ? EltVT |
| : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); |
| if ((Level < AfterLegalizeDAG || |
| (NumElems == 1 || |
| TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && |
| (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { |
| unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; |
| |
| if (NumElems == 1) { |
| SDValue Src = V->getOperand(IdxVal); |
| if (EltVT != Src.getValueType()) |
| Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); |
| return DAG.getBitcast(NVT, Src); |
| } |
| |
| // Extract the pieces from the original build_vector. |
| SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), |
| V->ops().slice(IdxVal, NumElems)); |
| return DAG.getBitcast(NVT, BuildVec); |
| } |
| } |
| } |
| |
| if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { |
| // Handle only simple case where vector being inserted and vector |
| // being extracted are of same size. |
| EVT SmallVT = V.getOperand(1).getValueType(); |
| if (!NVT.bitsEq(SmallVT)) |
| return SDValue(); |
| |
| // Combine: |
| // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) |
| // Into: |
| // indices are equal or bit offsets are equal => V1 |
| // otherwise => (extract_subvec V1, ExtIdx) |
| uint64_t InsIdx = V.getConstantOperandVal(2); |
| if (InsIdx * SmallVT.getScalarSizeInBits() == |
| ExtIdx * NVT.getScalarSizeInBits()) { |
| if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT)) |
| return SDValue(); |
| |
| return DAG.getBitcast(NVT, V.getOperand(1)); |
| } |
| return DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, |
| DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), |
| N->getOperand(1)); |
| } |
| |
| if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) |
| return NarrowBOp; |
| |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles |
| /// followed by concatenation. Narrow vector ops may have better performance |
| /// than wide ops, and this can unlock further narrowing of other vector ops. |
| /// Targets can invert this transform later if it is not profitable. |
| static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, |
| SelectionDAG &DAG) { |
| SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); |
| if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || |
| N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || |
| !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) |
| return SDValue(); |
| |
| // Split the wide shuffle mask into halves. Any mask element that is accessing |
| // operand 1 is offset down to account for narrowing of the vectors. |
| ArrayRef<int> Mask = Shuf->getMask(); |
| EVT VT = Shuf->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned HalfNumElts = NumElts / 2; |
| SmallVector<int, 16> Mask0(HalfNumElts, -1); |
| SmallVector<int, 16> Mask1(HalfNumElts, -1); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (Mask[i] == -1) |
| continue; |
| // If we reference the upper (undef) subvector then the element is undef. |
| if ((Mask[i] % NumElts) >= HalfNumElts) |
| continue; |
| int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; |
| if (i < HalfNumElts) |
| Mask0[i] = M; |
| else |
| Mask1[i - HalfNumElts] = M; |
| } |
| |
| // Ask the target if this is a valid transform. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), |
| HalfNumElts); |
| if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || |
| !TLI.isShuffleMaskLegal(Mask1, HalfVT)) |
| return SDValue(); |
| |
| // shuffle (concat X, undef), (concat Y, undef), Mask --> |
| // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) |
| SDValue X = N0.getOperand(0), Y = N1.getOperand(0); |
| SDLoc DL(Shuf); |
| SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); |
| SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); |
| } |
| |
| // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, |
| // or turn a shuffle of a single concat into simpler shuffle then concat. |
| static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| ArrayRef<int> Mask = SVN->getMask(); |
| |
| SmallVector<SDValue, 4> Ops; |
| EVT ConcatVT = N0.getOperand(0).getValueType(); |
| unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); |
| unsigned NumConcats = NumElts / NumElemsPerConcat; |
| |
| auto IsUndefMaskElt = [](int i) { return i == -1; }; |
| |
| // Special case: shuffle(concat(A,B)) can be more efficiently represented |
| // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high |
| // half vector elements. |
| if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && |
| llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), |
| IsUndefMaskElt)) { |
| N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), |
| N0.getOperand(1), |
| Mask.slice(0, NumElemsPerConcat)); |
| N1 = DAG.getUNDEF(ConcatVT); |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); |
| } |
| |
| // Look at every vector that's inserted. We're looking for exact |
| // subvector-sized copies from a concatenated vector |
| for (unsigned I = 0; I != NumConcats; ++I) { |
| unsigned Begin = I * NumElemsPerConcat; |
| ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); |
| |
| // Make sure we're dealing with a copy. |
| if (llvm::all_of(SubMask, IsUndefMaskElt)) { |
| Ops.push_back(DAG.getUNDEF(ConcatVT)); |
| continue; |
| } |
| |
| int OpIdx = -1; |
| for (int i = 0; i != (int)NumElemsPerConcat; ++i) { |
| if (IsUndefMaskElt(SubMask[i])) |
| continue; |
| if ((SubMask[i] % (int)NumElemsPerConcat) != i) |
| return SDValue(); |
| int EltOpIdx = SubMask[i] / NumElemsPerConcat; |
| if (0 <= OpIdx && EltOpIdx != OpIdx) |
| return SDValue(); |
| OpIdx = EltOpIdx; |
| } |
| assert(0 <= OpIdx && "Unknown concat_vectors op"); |
| |
| if (OpIdx < (int)N0.getNumOperands()) |
| Ops.push_back(N0.getOperand(OpIdx)); |
| else |
| Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); |
| } |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); |
| } |
| |
| // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - |
| // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. |
| // |
| // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always |
| // a simplification in some sense, but it isn't appropriate in general: some |
| // BUILD_VECTORs are substantially cheaper than others. The general case |
| // of a BUILD_VECTOR requires inserting each element individually (or |
| // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of |
| // all constants is a single constant pool load. A BUILD_VECTOR where each |
| // element is identical is a splat. A BUILD_VECTOR where most of the operands |
| // are undef lowers to a small number of element insertions. |
| // |
| // To deal with this, we currently use a bunch of mostly arbitrary heuristics. |
| // We don't fold shuffles where one side is a non-zero constant, and we don't |
| // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate |
| // non-constant operands. This seems to work out reasonably well in practice. |
| static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| EVT VT = SVN->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDValue N0 = SVN->getOperand(0); |
| SDValue N1 = SVN->getOperand(1); |
| |
| if (!N0->hasOneUse()) |
| return SDValue(); |
| |
| // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as |
| // discussed above. |
| if (!N1.isUndef()) { |
| if (!N1->hasOneUse()) |
| return SDValue(); |
| |
| bool N0AnyConst = isAnyConstantBuildVector(N0); |
| bool N1AnyConst = isAnyConstantBuildVector(N1); |
| if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) |
| return SDValue(); |
| if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) |
| return SDValue(); |
| } |
| |
| // If both inputs are splats of the same value then we can safely merge this |
| // to a single BUILD_VECTOR with undef elements based on the shuffle mask. |
| bool IsSplat = false; |
| auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); |
| auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); |
| if (BV0 && BV1) |
| if (SDValue Splat0 = BV0->getSplatValue()) |
| IsSplat = (Splat0 == BV1->getSplatValue()); |
| |
| SmallVector<SDValue, 8> Ops; |
| SmallSet<SDValue, 16> DuplicateOps; |
| for (int M : SVN->getMask()) { |
| SDValue Op = DAG.getUNDEF(VT.getScalarType()); |
| if (M >= 0) { |
| int Idx = M < (int)NumElts ? M : M - NumElts; |
| SDValue &S = (M < (int)NumElts ? N0 : N1); |
| if (S.getOpcode() == ISD::BUILD_VECTOR) { |
| Op = S.getOperand(Idx); |
| } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| SDValue Op0 = S.getOperand(0); |
| Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); |
| } else { |
| // Operand can't be combined - bail out. |
| return SDValue(); |
| } |
| } |
| |
| // Don't duplicate a non-constant BUILD_VECTOR operand unless we're |
| // generating a splat; semantically, this is fine, but it's likely to |
| // generate low-quality code if the target can't reconstruct an appropriate |
| // shuffle. |
| if (!Op.isUndef() && !isIntOrFPConstant(Op)) |
| if (!IsSplat && !DuplicateOps.insert(Op).second) |
| return SDValue(); |
| |
| Ops.push_back(Op); |
| } |
| |
| // BUILD_VECTOR requires all inputs to be of the same type, find the |
| // maximum type and extend them all. |
| EVT SVT = VT.getScalarType(); |
| if (SVT.isInteger()) |
| for (SDValue &Op : Ops) |
| SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); |
| if (SVT != VT.getScalarType()) |
| for (SDValue &Op : Ops) |
| Op = Op.isUndef() ? DAG.getUNDEF(SVT) |
| : (TLI.isZExtFree(Op.getValueType(), SVT) |
| ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) |
| : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT)); |
| return DAG.getBuildVector(VT, SDLoc(SVN), Ops); |
| } |
| |
| // Match shuffles that can be converted to *_vector_extend_in_reg. |
| // This is often generated during legalization. |
| // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)), |
| // and returns the EVT to which the extension should be performed. |
| // NOTE: this assumes that the src is the first operand of the shuffle. |
| static std::optional<EVT> canCombineShuffleToExtendVectorInreg( |
| unsigned Opcode, EVT VT, std::function<bool(unsigned)> Match, |
| SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, |
| bool LegalOperations) { |
| bool IsBigEndian = DAG.getDataLayout().isBigEndian(); |
| |
| // TODO Add support for big-endian when we have a test case. |
| if (!VT.isInteger() || IsBigEndian) |
| return std::nullopt; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| |
| // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for |
| // power-of-2 extensions as they are the most likely. |
| // FIXME: should try Scale == NumElts case too, |
| for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { |
| // The vector width must be a multiple of Scale. |
| if (NumElts % Scale != 0) |
| continue; |
| |
| EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); |
| EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); |
| |
| if ((LegalTypes && !TLI.isTypeLegal(OutVT)) || |
| (LegalOperations && !TLI.isOperationLegalOrCustom(Opcode, OutVT))) |
| continue; |
| |
| if (Match(Scale)) |
| return OutVT; |
| } |
| |
| return std::nullopt; |
| } |
| |
| // Match shuffles that can be converted to any_vector_extend_in_reg. |
| // This is often generated during legalization. |
| // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) |
| static SDValue combineShuffleToAnyExtendVectorInreg(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool LegalOperations) { |
| EVT VT = SVN->getValueType(0); |
| bool IsBigEndian = DAG.getDataLayout().isBigEndian(); |
| |
| // TODO Add support for big-endian when we have a test case. |
| if (!VT.isInteger() || IsBigEndian) |
| return SDValue(); |
| |
| // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) |
| auto isAnyExtend = [NumElts = VT.getVectorNumElements(), |
| Mask = SVN->getMask()](unsigned Scale) { |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) |
| continue; |
| return false; |
| } |
| return true; |
| }; |
| |
| unsigned Opcode = ISD::ANY_EXTEND_VECTOR_INREG; |
| SDValue N0 = SVN->getOperand(0); |
| // Never create an illegal type. Only create unsupported operations if we |
| // are pre-legalization. |
| std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg( |
| Opcode, VT, isAnyExtend, DAG, TLI, /*LegalTypes=*/true, LegalOperations); |
| if (!OutVT) |
| return SDValue(); |
| return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, N0)); |
| } |
| |
| // Match shuffles that can be converted to zero_extend_vector_inreg. |
| // This is often generated during legalization. |
| // e.g. v4i32 <0,z,1,u> -> (v2i64 zero_extend_vector_inreg(v4i32 src)) |
| static SDValue combineShuffleToZeroExtendVectorInReg(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool LegalOperations) { |
| bool LegalTypes = true; |
| EVT VT = SVN->getValueType(0); |
| assert(!VT.isScalableVector() && "Encountered scalable shuffle?"); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| |
| // TODO: add support for big-endian when we have a test case. |
| bool IsBigEndian = DAG.getDataLayout().isBigEndian(); |
| if (!VT.isInteger() || IsBigEndian) |
| return SDValue(); |
| |
| SmallVector<int, 16> Mask(SVN->getMask().begin(), SVN->getMask().end()); |
| auto ForEachDecomposedIndice = [NumElts, &Mask](auto Fn) { |
| for (int &Indice : Mask) { |
| if (Indice < 0) |
| continue; |
| int OpIdx = (unsigned)Indice < NumElts ? 0 : 1; |
| int OpEltIdx = (unsigned)Indice < NumElts ? Indice : Indice - NumElts; |
| Fn(Indice, OpIdx, OpEltIdx); |
| } |
| }; |
| |
| // Which elements of which operand does this shuffle demand? |
| std::array<APInt, 2> OpsDemandedElts; |
| for (APInt &OpDemandedElts : OpsDemandedElts) |
| OpDemandedElts = APInt::getZero(NumElts); |
| ForEachDecomposedIndice( |
| [&OpsDemandedElts](int &Indice, int OpIdx, int OpEltIdx) { |
| OpsDemandedElts[OpIdx].setBit(OpEltIdx); |
| }); |
| |
| // Element-wise(!), which of these demanded elements are know to be zero? |
| std::array<APInt, 2> OpsKnownZeroElts; |
| for (auto I : zip(SVN->ops(), OpsDemandedElts, OpsKnownZeroElts)) |
| std::get<2>(I) = |
| DAG.computeVectorKnownZeroElements(std::get<0>(I), std::get<1>(I)); |
| |
| // Manifest zeroable element knowledge in the shuffle mask. |
| // NOTE: we don't have 'zeroable' sentinel value in generic DAG, |
| // this is a local invention, but it won't leak into DAG. |
| // FIXME: should we not manifest them, but just check when matching? |
| bool HadZeroableElts = false; |
| ForEachDecomposedIndice([&OpsKnownZeroElts, &HadZeroableElts]( |
| int &Indice, int OpIdx, int OpEltIdx) { |
| if (OpsKnownZeroElts[OpIdx][OpEltIdx]) { |
| Indice = -2; // Zeroable element. |
| HadZeroableElts = true; |
| } |
| }); |
| |
| // Don't proceed unless we've refined at least one zeroable mask indice. |
| // If we didn't, then we are still trying to match the same shuffle mask |
| // we previously tried to match as ISD::ANY_EXTEND_VECTOR_INREG, |
| // and evidently failed. Proceeding will lead to endless combine loops. |
| if (!HadZeroableElts) |
| return SDValue(); |
| |
| // The shuffle may be more fine-grained than we want. Widen elements first. |
| // FIXME: should we do this before manifesting zeroable shuffle mask indices? |
| SmallVector<int, 16> ScaledMask; |
| getShuffleMaskWithWidestElts(Mask, ScaledMask); |
| assert(Mask.size() >= ScaledMask.size() && |
| Mask.size() % ScaledMask.size() == 0 && "Unexpected mask widening."); |
| int Prescale = Mask.size() / ScaledMask.size(); |
| |
| NumElts = ScaledMask.size(); |
| EltSizeInBits *= Prescale; |
| |
| EVT PrescaledVT = EVT::getVectorVT( |
| *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits), |
| NumElts); |
| |
| if (LegalTypes && !TLI.isTypeLegal(PrescaledVT) && TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // For example, |
| // shuffle<0,z,1,-1> == (v2i64 zero_extend_vector_inreg(v4i32)) |
| // But not shuffle<z,z,1,-1> and not shuffle<0,z,z,-1> ! (for same types) |
| auto isZeroExtend = [NumElts, &ScaledMask](unsigned Scale) { |
| assert(Scale >= 2 && Scale <= NumElts && NumElts % Scale == 0 && |
| "Unexpected mask scaling factor."); |
| ArrayRef<int> Mask = ScaledMask; |
| for (unsigned SrcElt = 0, NumSrcElts = NumElts / Scale; |
| SrcElt != NumSrcElts; ++SrcElt) { |
| // Analyze the shuffle mask in Scale-sized chunks. |
| ArrayRef<int> MaskChunk = Mask.take_front(Scale); |
| assert(MaskChunk.size() == Scale && "Unexpected mask size."); |
| Mask = Mask.drop_front(MaskChunk.size()); |
| // The first indice in this chunk must be SrcElt, but not zero! |
| // FIXME: undef should be fine, but that results in more-defined result. |
| if (int FirstIndice = MaskChunk[0]; (unsigned)FirstIndice != SrcElt) |
| return false; |
| // The rest of the indices in this chunk must be zeros. |
| // FIXME: undef should be fine, but that results in more-defined result. |
| if (!all_of(MaskChunk.drop_front(1), |
| [](int Indice) { return Indice == -2; })) |
| return false; |
| } |
| assert(Mask.empty() && "Did not process the whole mask?"); |
| return true; |
| }; |
| |
| unsigned Opcode = ISD::ZERO_EXTEND_VECTOR_INREG; |
| for (bool Commuted : {false, true}) { |
| SDValue Op = SVN->getOperand(!Commuted ? 0 : 1); |
| if (Commuted) |
| ShuffleVectorSDNode::commuteMask(ScaledMask); |
| std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg( |
| Opcode, PrescaledVT, isZeroExtend, DAG, TLI, LegalTypes, |
| LegalOperations); |
| if (OutVT) |
| return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, |
| DAG.getBitcast(PrescaledVT, Op))); |
| } |
| return SDValue(); |
| } |
| |
| // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of |
| // each source element of a large type into the lowest elements of a smaller |
| // destination type. This is often generated during legalization. |
| // If the source node itself was a '*_extend_vector_inreg' node then we should |
| // then be able to remove it. |
| static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG) { |
| EVT VT = SVN->getValueType(0); |
| bool IsBigEndian = DAG.getDataLayout().isBigEndian(); |
| |
| // TODO Add support for big-endian when we have a test case. |
| if (!VT.isInteger() || IsBigEndian) |
| return SDValue(); |
| |
| SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); |
| |
| unsigned Opcode = N0.getOpcode(); |
| if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && |
| Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && |
| Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| ArrayRef<int> Mask = SVN->getMask(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); |
| unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); |
| |
| if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) |
| return SDValue(); |
| unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; |
| |
| // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> |
| // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> |
| // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> |
| auto isTruncate = [&Mask, &NumElts](unsigned Scale) { |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) |
| continue; |
| return false; |
| } |
| return true; |
| }; |
| |
| // At the moment we just handle the case where we've truncated back to the |
| // same size as before the extension. |
| // TODO: handle more extension/truncation cases as cases arise. |
| if (EltSizeInBits != ExtSrcSizeInBits) |
| return SDValue(); |
| |
| // We can remove *extend_vector_inreg only if the truncation happens at |
| // the same scale as the extension. |
| if (isTruncate(ExtScale)) |
| return DAG.getBitcast(VT, N00); |
| |
| return SDValue(); |
| } |
| |
| // Combine shuffles of splat-shuffles of the form: |
| // shuffle (shuffle V, undef, splat-mask), undef, M |
| // If splat-mask contains undef elements, we need to be careful about |
| // introducing undef's in the folded mask which are not the result of composing |
| // the masks of the shuffles. |
| static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, |
| SelectionDAG &DAG) { |
| EVT VT = Shuf->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| if (!Shuf->getOperand(1).isUndef()) |
| return SDValue(); |
| |
| // See if this unary non-splat shuffle actually *is* a splat shuffle, |
| // in disguise, with all demanded elements being identical. |
| // FIXME: this can be done per-operand. |
| if (!Shuf->isSplat()) { |
| APInt DemandedElts(NumElts, 0); |
| for (int Idx : Shuf->getMask()) { |
| if (Idx < 0) |
| continue; // Ignore sentinel indices. |
| assert((unsigned)Idx < NumElts && "Out-of-bounds shuffle indice?"); |
| DemandedElts.setBit(Idx); |
| } |
| assert(DemandedElts.countPopulation() > 1 && "Is a splat shuffle already?"); |
| APInt UndefElts; |
| if (DAG.isSplatValue(Shuf->getOperand(0), DemandedElts, UndefElts)) { |
| // Even if all demanded elements are splat, some of them could be undef. |
| // Which lowest demanded element is *not* known-undef? |
| std::optional<unsigned> MinNonUndefIdx; |
| for (int Idx : Shuf->getMask()) { |
| if (Idx < 0 || UndefElts[Idx]) |
| continue; // Ignore sentinel indices, and undef elements. |
| MinNonUndefIdx = std::min<unsigned>(Idx, MinNonUndefIdx.value_or(~0U)); |
| } |
| if (!MinNonUndefIdx) |
| return DAG.getUNDEF(VT); // All undef - result is undef. |
| assert(*MinNonUndefIdx < NumElts && "Expected valid element index."); |
| SmallVector<int, 8> SplatMask(Shuf->getMask().begin(), |
| Shuf->getMask().end()); |
| for (int &Idx : SplatMask) { |
| if (Idx < 0) |
| continue; // Passthrough sentinel indices. |
| // Otherwise, just pick the lowest demanded non-undef element. |
| // Or sentinel undef, if we know we'd pick a known-undef element. |
| Idx = UndefElts[Idx] ? -1 : *MinNonUndefIdx; |
| } |
| assert(SplatMask != Shuf->getMask() && "Expected mask to change!"); |
| return DAG.getVectorShuffle(VT, SDLoc(Shuf), Shuf->getOperand(0), |
| Shuf->getOperand(1), SplatMask); |
| } |
| } |
| |
| // If the inner operand is a known splat with no undefs, just return that directly. |
| // TODO: Create DemandedElts mask from Shuf's mask. |
| // TODO: Allow undef elements and merge with the shuffle code below. |
| if (DAG.isSplatValue(Shuf->getOperand(0), /*AllowUndefs*/ false)) |
| return Shuf->getOperand(0); |
| |
| auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); |
| if (!Splat || !Splat->isSplat()) |
| return SDValue(); |
| |
| ArrayRef<int> ShufMask = Shuf->getMask(); |
| ArrayRef<int> SplatMask = Splat->getMask(); |
| assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); |
| |
| // Prefer simplifying to the splat-shuffle, if possible. This is legal if |
| // every undef mask element in the splat-shuffle has a corresponding undef |
| // element in the user-shuffle's mask or if the composition of mask elements |
| // would result in undef. |
| // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): |
| // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] |
| // In this case it is not legal to simplify to the splat-shuffle because we |
| // may be exposing the users of the shuffle an undef element at index 1 |
| // which was not there before the combine. |
| // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] |
| // In this case the composition of masks yields SplatMask, so it's ok to |
| // simplify to the splat-shuffle. |
| // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] |
| // In this case the composed mask includes all undef elements of SplatMask |
| // and in addition sets element zero to undef. It is safe to simplify to |
| // the splat-shuffle. |
| auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, |
| ArrayRef<int> SplatMask) { |
| for (unsigned i = 0, e = UserMask.size(); i != e; ++i) |
| if (UserMask[i] != -1 && SplatMask[i] == -1 && |
| SplatMask[UserMask[i]] != -1) |
| return false; |
| return true; |
| }; |
| if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) |
| return Shuf->getOperand(0); |
| |
| // Create a new shuffle with a mask that is composed of the two shuffles' |
| // masks. |
| SmallVector<int, 32> NewMask; |
| for (int Idx : ShufMask) |
| NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); |
| |
| return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), |
| Splat->getOperand(0), Splat->getOperand(1), |
| NewMask); |
| } |
| |
| // Combine shuffles of bitcasts into a shuffle of the bitcast type, providing |
| // the mask can be treated as a larger type. |
| static SDValue combineShuffleOfBitcast(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool LegalOperations) { |
| SDValue Op0 = SVN->getOperand(0); |
| SDValue Op1 = SVN->getOperand(1); |
| EVT VT = SVN->getValueType(0); |
| if (Op0.getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| EVT InVT = Op0.getOperand(0).getValueType(); |
| if (!InVT.isVector() || |
| (!Op1.isUndef() && (Op1.getOpcode() != ISD::BITCAST || |
| Op1.getOperand(0).getValueType() != InVT))) |
| return SDValue(); |
| if (isAnyConstantBuildVector(Op0.getOperand(0)) && |
| (Op1.isUndef() || isAnyConstantBuildVector(Op1.getOperand(0)))) |
| return SDValue(); |
| |
| int VTLanes = VT.getVectorNumElements(); |
| int InLanes = InVT.getVectorNumElements(); |
| if (VTLanes <= InLanes || VTLanes % InLanes != 0 || |
| (LegalOperations && |
| !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, InVT))) |
| return SDValue(); |
| int Factor = VTLanes / InLanes; |
| |
| // Check that each group of lanes in the mask are either undef or make a valid |
| // mask for the wider lane type. |
| ArrayRef<int> Mask = SVN->getMask(); |
| SmallVector<int> NewMask; |
| if (!widenShuffleMaskElts(Factor, Mask, NewMask)) |
| return SDValue(); |
| |
| if (!TLI.isShuffleMaskLegal(NewMask, InVT)) |
| return SDValue(); |
| |
| // Create the new shuffle with the new mask and bitcast it back to the |
| // original type. |
| SDLoc DL(SVN); |
| Op0 = Op0.getOperand(0); |
| Op1 = Op1.isUndef() ? DAG.getUNDEF(InVT) : Op1.getOperand(0); |
| SDValue NewShuf = DAG.getVectorShuffle(InVT, DL, Op0, Op1, NewMask); |
| return DAG.getBitcast(VT, NewShuf); |
| } |
| |
| /// Combine shuffle of shuffle of the form: |
| /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X |
| static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, |
| SelectionDAG &DAG) { |
| if (!OuterShuf->getOperand(1).isUndef()) |
| return SDValue(); |
| auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); |
| if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) |
| return SDValue(); |
| |
| ArrayRef<int> OuterMask = OuterShuf->getMask(); |
| ArrayRef<int> InnerMask = InnerShuf->getMask(); |
| unsigned NumElts = OuterMask.size(); |
| assert(NumElts == InnerMask.size() && "Mask length mismatch"); |
| SmallVector<int, 32> CombinedMask(NumElts, -1); |
| int SplatIndex = -1; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // Undef lanes remain undef. |
| int OuterMaskElt = OuterMask[i]; |
| if (OuterMaskElt == -1) |
| continue; |
| |
| // Peek through the shuffle masks to get the underlying source element. |
| int InnerMaskElt = InnerMask[OuterMaskElt]; |
| if (InnerMaskElt == -1) |
| continue; |
| |
| // Initialize the splatted element. |
| if (SplatIndex == -1) |
| SplatIndex = InnerMaskElt; |
| |
| // Non-matching index - this is not a splat. |
| if (SplatIndex != InnerMaskElt) |
| return SDValue(); |
| |
| CombinedMask[i] = InnerMaskElt; |
| } |
| assert((all_of(CombinedMask, [](int M) { return M == -1; }) || |
| getSplatIndex(CombinedMask) != -1) && |
| "Expected a splat mask"); |
| |
| // TODO: The transform may be a win even if the mask is not legal. |
| EVT VT = OuterShuf->getValueType(0); |
| assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); |
| if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) |
| return SDValue(); |
| |
| return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), |
| InnerShuf->getOperand(1), CombinedMask); |
| } |
| |
| /// If the shuffle mask is taking exactly one element from the first vector |
| /// operand and passing through all other elements from the second vector |
| /// operand, return the index of the mask element that is choosing an element |
| /// from the first operand. Otherwise, return -1. |
| static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { |
| int MaskSize = Mask.size(); |
| int EltFromOp0 = -1; |
| // TODO: This does not match if there are undef elements in the shuffle mask. |
| // Should we ignore undefs in the shuffle mask instead? The trade-off is |
| // removing an instruction (a shuffle), but losing the knowledge that some |
| // vector lanes are not needed. |
| for (int i = 0; i != MaskSize; ++i) { |
| if (Mask[i] >= 0 && Mask[i] < MaskSize) { |
| // We're looking for a shuffle of exactly one element from operand 0. |
| if (EltFromOp0 != -1) |
| return -1; |
| EltFromOp0 = i; |
| } else if (Mask[i] != i + MaskSize) { |
| // Nothing from operand 1 can change lanes. |
| return -1; |
| } |
| } |
| return EltFromOp0; |
| } |
| |
| /// If a shuffle inserts exactly one element from a source vector operand into |
| /// another vector operand and we can access the specified element as a scalar, |
| /// then we can eliminate the shuffle. |
| static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, |
| SelectionDAG &DAG) { |
| // First, check if we are taking one element of a vector and shuffling that |
| // element into another vector. |
| ArrayRef<int> Mask = Shuf->getMask(); |
| SmallVector<int, 16> CommutedMask(Mask); |
| SDValue Op0 = Shuf->getOperand(0); |
| SDValue Op1 = Shuf->getOperand(1); |
| int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); |
| if (ShufOp0Index == -1) { |
| // Commute mask and check again. |
| ShuffleVectorSDNode::commuteMask(CommutedMask); |
| ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); |
| if (ShufOp0Index == -1) |
| return SDValue(); |
| // Commute operands to match the commuted shuffle mask. |
| std::swap(Op0, Op1); |
| Mask = CommutedMask; |
| } |
| |
| // The shuffle inserts exactly one element from operand 0 into operand 1. |
| // Now see if we can access that element as a scalar via a real insert element |
| // instruction. |
| // TODO: We can try harder to locate the element as a scalar. Examples: it |
| // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. |
| assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && |
| "Shuffle mask value must be from operand 0"); |
| if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) |
| return SDValue(); |
| |
| auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); |
| if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) |
| return SDValue(); |
| |
| // There's an existing insertelement with constant insertion index, so we |
| // don't need to check the legality/profitability of a replacement operation |
| // that differs at most in the constant value. The target should be able to |
| // lower any of those in a similar way. If not, legalization will expand this |
| // to a scalar-to-vector plus shuffle. |
| // |
| // Note that the shuffle may move the scalar from the position that the insert |
| // element used. Therefore, our new insert element occurs at the shuffle's |
| // mask index value, not the insert's index value. |
| // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' |
| SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), |
| Op1, Op0.getOperand(1), NewInsIndex); |
| } |
| |
| /// If we have a unary shuffle of a shuffle, see if it can be folded away |
| /// completely. This has the potential to lose undef knowledge because the first |
| /// shuffle may not have an undef mask element where the second one does. So |
| /// only call this after doing simplifications based on demanded elements. |
| static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { |
| // shuf (shuf0 X, Y, Mask0), undef, Mask |
| auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); |
| if (!Shuf0 || !Shuf->getOperand(1).isUndef()) |
| return SDValue(); |
| |
| ArrayRef<int> Mask = Shuf->getMask(); |
| ArrayRef<int> Mask0 = Shuf0->getMask(); |
| for (int i = 0, e = (int)Mask.size(); i != e; ++i) { |
| // Ignore undef elements. |
| if (Mask[i] == -1) |
| continue; |
| assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); |
| |
| // Is the element of the shuffle operand chosen by this shuffle the same as |
| // the element chosen by the shuffle operand itself? |
| if (Mask0[Mask[i]] != Mask0[i]) |
| return SDValue(); |
| } |
| // Every element of this shuffle is identical to the result of the previous |
| // shuffle, so we can replace this value. |
| return Shuf->getOperand(0); |
| } |
| |
| SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); |
| |
| // Canonicalize shuffle undef, undef -> undef |
| if (N0.isUndef() && N1.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| |
| // Canonicalize shuffle v, v -> v, undef |
| if (N0 == N1) |
| return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), |
| createUnaryMask(SVN->getMask(), NumElts)); |
| |
| // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. |
| if (N0.isUndef()) |
| return DAG.getCommutedVectorShuffle(*SVN); |
| |
| // Remove references to rhs if it is undef |
| if (N1.isUndef()) { |
| bool Changed = false; |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Idx = SVN->getMaskElt(i); |
| if (Idx >= (int)NumElts) { |
| Idx = -1; |
| Changed = true; |
| } |
| NewMask.push_back(Idx); |
| } |
| if (Changed) |
| return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); |
| } |
| |
| if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) |
| return InsElt; |
| |
| // A shuffle of a single vector that is a splatted value can always be folded. |
| if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) |
| return V; |
| |
| if (SDValue V = formSplatFromShuffles(SVN, DAG)) |
| return V; |
| |
| // If it is a splat, check if the argument vector is another splat or a |
| // build_vector. |
| if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { |
| int SplatIndex = SVN->getSplatIndex(); |
| if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && |
| TLI.isBinOp(N0.getOpcode()) && N0->getNumValues() == 1) { |
| // splat (vector_bo L, R), Index --> |
| // splat (scalar_bo (extelt L, Index), (extelt R, Index)) |
| SDValue L = N0.getOperand(0), R = N0.getOperand(1); |
| SDLoc DL(N); |
| EVT EltVT = VT.getScalarType(); |
| SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); |
| SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); |
| SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); |
| SDValue NewBO = |
| DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, N0->getFlags()); |
| SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); |
| SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); |
| return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); |
| } |
| |
| // splat(scalar_to_vector(x), 0) -> build_vector(x,...,x) |
| // splat(insert_vector_elt(v, x, c), c) -> build_vector(x,...,x) |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) && |
| N0.hasOneUse()) { |
| if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && SplatIndex == 0) |
| return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(0)); |
| |
| if (N0.getOpcode() == ISD::INSERT_VECTOR_ELT) |
| if (auto *Idx = dyn_cast<ConstantSDNode>(N0.getOperand(2))) |
| if (Idx->getAPIntValue() == SplatIndex) |
| return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(1)); |
| |
| // Look through a bitcast if LE and splatting lane 0, through to a |
| // scalar_to_vector or a build_vector. |
| if (N0.getOpcode() == ISD::BITCAST && N0.getOperand(0).hasOneUse() && |
| SplatIndex == 0 && DAG.getDataLayout().isLittleEndian() && |
| (N0.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR || |
| N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR)) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (VT.getScalarSizeInBits() <= N00VT.getScalarSizeInBits() && |
| VT.isInteger() && N00VT.isInteger()) { |
| EVT InVT = |
| TLI.getTypeToTransformTo(*DAG.getContext(), VT.getScalarType()); |
| SDValue Op = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), |
| SDLoc(N), InVT); |
| return DAG.getSplatBuildVector(VT, SDLoc(N), Op); |
| } |
| } |
| } |
| |
| // If this is a bit convert that changes the element type of the vector but |
| // not the number of vector elements, look through it. Be careful not to |
| // look though conversions that change things like v4f32 to v2f64. |
| SDNode *V = N0.getNode(); |
| if (V->getOpcode() == ISD::BITCAST) { |
| SDValue ConvInput = V->getOperand(0); |
| if (ConvInput.getValueType().isVector() && |
| ConvInput.getValueType().getVectorNumElements() == NumElts) |
| V = ConvInput.getNode(); |
| } |
| |
| if (V->getOpcode() == ISD::BUILD_VECTOR) { |
| assert(V->getNumOperands() == NumElts && |
| "BUILD_VECTOR has wrong number of operands"); |
| SDValue Base; |
| bool AllSame = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!V->getOperand(i).isUndef()) { |
| Base = V->getOperand(i); |
| break; |
| } |
| } |
| // Splat of <u, u, u, u>, return <u, u, u, u> |
| if (!Base.getNode()) |
| return N0; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (V->getOperand(i) != Base) { |
| AllSame = false; |
| break; |
| } |
| } |
| // Splat of <x, x, x, x>, return <x, x, x, x> |
| if (AllSame) |
| return N0; |
| |
| // Canonicalize any other splat as a build_vector. |
| SDValue Splatted = V->getOperand(SplatIndex); |
| SmallVector<SDValue, 8> Ops(NumElts, Splatted); |
| SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); |
| |
| // We may have jumped through bitcasts, so the type of the |
| // BUILD_VECTOR may not match the type of the shuffle. |
| if (V->getValueType(0) != VT) |
| NewBV = DAG.getBitcast(VT, NewBV); |
| return NewBV; |
| } |
| } |
| |
| // Simplify source operands based on shuffle mask. |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // This is intentionally placed after demanded elements simplification because |
| // it could eliminate knowledge of undef elements created by this shuffle. |
| if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) |
| return ShufOp; |
| |
| // Match shuffles that can be converted to any_vector_extend_in_reg. |
| if (SDValue V = |
| combineShuffleToAnyExtendVectorInreg(SVN, DAG, TLI, LegalOperations)) |
| return V; |
| |
| // Combine "truncate_vector_in_reg" style shuffles. |
| if (SDValue V = combineTruncationShuffle(SVN, DAG)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && |
| Level < AfterLegalizeVectorOps && |
| (N1.isUndef() || |
| (N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { |
| if (SDValue V = partitionShuffleOfConcats(N, DAG)) |
| return V; |
| } |
| |
| // A shuffle of a concat of the same narrow vector can be reduced to use |
| // only low-half elements of a concat with undef: |
| // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && |
| N0.getNumOperands() == 2 && |
| N0.getOperand(0) == N0.getOperand(1)) { |
| int HalfNumElts = (int)NumElts / 2; |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Idx = SVN->getMaskElt(i); |
| if (Idx >= HalfNumElts) { |
| assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); |
| Idx -= HalfNumElts; |
| } |
| NewMask.push_back(Idx); |
| } |
| if (TLI.isShuffleMaskLegal(NewMask, VT)) { |
| SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); |
| SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, |
| N0.getOperand(0), UndefVec); |
| return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); |
| } |
| } |
| |
| // See if we can replace a shuffle with an insert_subvector. |
| // e.g. v2i32 into v8i32: |
| // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). |
| // --> insert_subvector(lhs,rhs1,4). |
| if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && |
| TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { |
| auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { |
| // Ensure RHS subvectors are legal. |
| assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); |
| EVT SubVT = RHS.getOperand(0).getValueType(); |
| int NumSubVecs = RHS.getNumOperands(); |
| int NumSubElts = SubVT.getVectorNumElements(); |
| assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); |
| if (!TLI.isTypeLegal(SubVT)) |
| return SDValue(); |
| |
| // Don't bother if we have an unary shuffle (matches undef + LHS elts). |
| if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) |
| return SDValue(); |
| |
| // Search [NumSubElts] spans for RHS sequence. |
| // TODO: Can we avoid nested loops to increase performance? |
| SmallVector<int> InsertionMask(NumElts); |
| for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { |
| for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { |
| // Reset mask to identity. |
| std::iota(InsertionMask.begin(), InsertionMask.end(), 0); |
| |
| // Add subvector insertion. |
| std::iota(InsertionMask.begin() + SubIdx, |
| InsertionMask.begin() + SubIdx + NumSubElts, |
| NumElts + (SubVec * NumSubElts)); |
| |
| // See if the shuffle mask matches the reference insertion mask. |
| bool MatchingShuffle = true; |
| for (int i = 0; i != (int)NumElts; ++i) { |
| int ExpectIdx = InsertionMask[i]; |
| int ActualIdx = Mask[i]; |
| if (0 <= ActualIdx && ExpectIdx != ActualIdx) { |
| MatchingShuffle = false; |
| break; |
| } |
| } |
| |
| if (MatchingShuffle) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, |
| RHS.getOperand(SubVec), |
| DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); |
| } |
| } |
| return SDValue(); |
| }; |
| ArrayRef<int> Mask = SVN->getMask(); |
| if (N1.getOpcode() == ISD::CONCAT_VECTORS) |
| if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) |
| return InsertN1; |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS) { |
| SmallVector<int> CommuteMask(Mask); |
| ShuffleVectorSDNode::commuteMask(CommuteMask); |
| if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) |
| return InsertN0; |
| } |
| } |
| |
| // If we're not performing a select/blend shuffle, see if we can convert the |
| // shuffle into a AND node, with all the out-of-lane elements are known zero. |
| if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { |
| bool IsInLaneMask = true; |
| ArrayRef<int> Mask = SVN->getMask(); |
| SmallVector<int, 16> ClearMask(NumElts, -1); |
| APInt DemandedLHS = APInt::getNullValue(NumElts); |
| APInt DemandedRHS = APInt::getNullValue(NumElts); |
| for (int I = 0; I != (int)NumElts; ++I) { |
| int M = Mask[I]; |
| if (M < 0) |
| continue; |
| ClearMask[I] = M == I ? I : (I + NumElts); |
| IsInLaneMask &= (M == I) || (M == (int)(I + NumElts)); |
| if (M != I) { |
| APInt &Demanded = M < (int)NumElts ? DemandedLHS : DemandedRHS; |
| Demanded.setBit(M % NumElts); |
| } |
| } |
| // TODO: Should we try to mask with N1 as well? |
| if (!IsInLaneMask && |
| (!DemandedLHS.isNullValue() || !DemandedRHS.isNullValue()) && |
| (DemandedLHS.isNullValue() || |
| DAG.MaskedVectorIsZero(N0, DemandedLHS)) && |
| (DemandedRHS.isNullValue() || |
| DAG.MaskedVectorIsZero(N1, DemandedRHS))) { |
| SDLoc DL(N); |
| EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| EVT IntSVT = VT.getVectorElementType().changeTypeToInteger(); |
| // Transform the type to a legal type so that the buildvector constant |
| // elements are not illegal. Make sure that the result is larger than the |
| // original type, incase the value is split into two (eg i64->i32). |
| if (!TLI.isTypeLegal(IntSVT) && LegalTypes) |
| IntSVT = TLI.getTypeToTransformTo(*DAG.getContext(), IntSVT); |
| if (IntSVT.getSizeInBits() >= IntVT.getScalarSizeInBits()) { |
| SDValue ZeroElt = DAG.getConstant(0, DL, IntSVT); |
| SDValue AllOnesElt = DAG.getAllOnesConstant(DL, IntSVT); |
| SmallVector<SDValue, 16> AndMask(NumElts, DAG.getUNDEF(IntSVT)); |
| for (int I = 0; I != (int)NumElts; ++I) |
| if (0 <= Mask[I]) |
| AndMask[I] = Mask[I] == I ? AllOnesElt : ZeroElt; |
| |
| // See if a clear mask is legal instead of going via |
| // XformToShuffleWithZero which loses UNDEF mask elements. |
| if (TLI.isVectorClearMaskLegal(ClearMask, IntVT)) |
| return DAG.getBitcast( |
| VT, DAG.getVectorShuffle(IntVT, DL, DAG.getBitcast(IntVT, N0), |
| DAG.getConstant(0, DL, IntVT), ClearMask)); |
| |
| if (TLI.isOperationLegalOrCustom(ISD::AND, IntVT)) |
| return DAG.getBitcast( |
| VT, DAG.getNode(ISD::AND, DL, IntVT, DAG.getBitcast(IntVT, N0), |
| DAG.getBuildVector(IntVT, DL, AndMask))); |
| } |
| } |
| } |
| |
| // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - |
| // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. |
| if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) |
| if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) |
| return Res; |
| |
| // If this shuffle only has a single input that is a bitcasted shuffle, |
| // attempt to merge the 2 shuffles and suitably bitcast the inputs/output |
| // back to their original types. |
| if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && |
| N1.isUndef() && Level < AfterLegalizeVectorOps && |
| TLI.isTypeLegal(VT)) { |
| |
| SDValue BC0 = peekThroughOneUseBitcasts(N0); |
| if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { |
| EVT SVT = VT.getScalarType(); |
| EVT InnerVT = BC0->getValueType(0); |
| EVT InnerSVT = InnerVT.getScalarType(); |
| |
| // Determine which shuffle works with the smaller scalar type. |
| EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; |
| EVT ScaleSVT = ScaleVT.getScalarType(); |
| |
| if (TLI.isTypeLegal(ScaleVT) && |
| 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && |
| 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { |
| int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); |
| int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); |
| |
| // Scale the shuffle masks to the smaller scalar type. |
| ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); |
| SmallVector<int, 8> InnerMask; |
| SmallVector<int, 8> OuterMask; |
| narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); |
| narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); |
| |
| // Merge the shuffle masks. |
| SmallVector<int, 8> NewMask; |
| for (int M : OuterMask) |
| NewMask.push_back(M < 0 ? -1 : InnerMask[M]); |
| |
| // Test for shuffle mask legality over both commutations. |
| SDValue SV0 = BC0->getOperand(0); |
| SDValue SV1 = BC0->getOperand(1); |
| bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); |
| if (!LegalMask) { |
| std::swap(SV0, SV1); |
| ShuffleVectorSDNode::commuteMask(NewMask); |
| LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); |
| } |
| |
| if (LegalMask) { |
| SV0 = DAG.getBitcast(ScaleVT, SV0); |
| SV1 = DAG.getBitcast(ScaleVT, SV1); |
| return DAG.getBitcast( |
| VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); |
| } |
| } |
| } |
| } |
| |
| // Match shuffles of bitcasts, so long as the mask can be treated as the |
| // larger type. |
| if (SDValue V = combineShuffleOfBitcast(SVN, DAG, TLI, LegalOperations)) |
| return V; |
| |
| // Compute the combined shuffle mask for a shuffle with SV0 as the first |
| // operand, and SV1 as the second operand. |
| // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false |
| // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true |
| auto MergeInnerShuffle = |
| [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, |
| ShuffleVectorSDNode *OtherSVN, SDValue N1, |
| const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, |
| SmallVectorImpl<int> &Mask) -> bool { |
| // Don't try to fold splats; they're likely to simplify somehow, or they |
| // might be free. |
| if (OtherSVN->isSplat()) |
| return false; |
| |
| SV0 = SV1 = SDValue(); |
| Mask.clear(); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Idx = SVN->getMaskElt(i); |
| if (Idx < 0) { |
| // Propagate Undef. |
| Mask.push_back(Idx); |
| continue; |
| } |
| |
| if (Commute) |
| Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); |
| |
| SDValue CurrentVec; |
| if (Idx < (int)NumElts) { |
| // This shuffle index refers to the inner shuffle N0. Lookup the inner |
| // shuffle mask to identify which vector is actually referenced. |
| Idx = OtherSVN->getMaskElt(Idx); |
| if (Idx < 0) { |
| // Propagate Undef. |
| Mask.push_back(Idx); |
| continue; |
| } |
| CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) |
| : OtherSVN->getOperand(1); |
| } else { |
| // This shuffle index references an element within N1. |
| CurrentVec = N1; |
| } |
| |
| // Simple case where 'CurrentVec' is UNDEF. |
| if (CurrentVec.isUndef()) { |
| Mask.push_back(-1); |
| continue; |
| } |
| |
| // Canonicalize the shuffle index. We don't know yet if CurrentVec |
| // will be the first or second operand of the combined shuffle. |
| Idx = Idx % NumElts; |
| if (!SV0.getNode() || SV0 == CurrentVec) { |
| // Ok. CurrentVec is the left hand side. |
| // Update the mask accordingly. |
| SV0 = CurrentVec; |
| Mask.push_back(Idx); |
| continue; |
| } |
| if (!SV1.getNode() || SV1 == CurrentVec) { |
| // Ok. CurrentVec is the right hand side. |
| // Update the mask accordingly. |
| SV1 = CurrentVec; |
| Mask.push_back(Idx + NumElts); |
| continue; |
| } |
| |
| // Last chance - see if the vector is another shuffle and if it |
| // uses one of the existing candidate shuffle ops. |
| if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { |
| int InnerIdx = CurrentSVN->getMaskElt(Idx); |
| if (InnerIdx < 0) { |
| Mask.push_back(-1); |
| continue; |
| } |
| SDValue InnerVec = (InnerIdx < (int)NumElts) |
| ? CurrentSVN->getOperand(0) |
| : CurrentSVN->getOperand(1); |
| if (InnerVec.isUndef()) { |
| Mask.push_back(-1); |
| continue; |
| } |
| InnerIdx %= NumElts; |
| if (InnerVec == SV0) { |
| Mask.push_back(InnerIdx); |
| continue; |
| } |
| if (InnerVec == SV1) { |
| Mask.push_back(InnerIdx + NumElts); |
| continue; |
| } |
| } |
| |
| // Bail out if we cannot convert the shuffle pair into a single shuffle. |
| return false; |
| } |
| |
| if (llvm::all_of(Mask, [](int M) { return M < 0; })) |
| return true; |
| |
| // Avoid introducing shuffles with illegal mask. |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) |
| if (TLI.isShuffleMaskLegal(Mask, VT)) |
| return true; |
| |
| std::swap(SV0, SV1); |
| ShuffleVectorSDNode::commuteMask(Mask); |
| return TLI.isShuffleMaskLegal(Mask, VT); |
| }; |
| |
| if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { |
| // Canonicalize shuffles according to rules: |
| // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) |
| // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) |
| // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) |
| if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && |
| N0.getOpcode() != ISD::VECTOR_SHUFFLE) { |
| // The incoming shuffle must be of the same type as the result of the |
| // current shuffle. |
| assert(N1->getOperand(0).getValueType() == VT && |
| "Shuffle types don't match"); |
| |
| SDValue SV0 = N1->getOperand(0); |
| SDValue SV1 = N1->getOperand(1); |
| bool HasSameOp0 = N0 == SV0; |
| bool IsSV1Undef = SV1.isUndef(); |
| if (HasSameOp0 || IsSV1Undef || N0 == SV1) |
| // Commute the operands of this shuffle so merging below will trigger. |
| return DAG.getCommutedVectorShuffle(*SVN); |
| } |
| |
| // Canonicalize splat shuffles to the RHS to improve merging below. |
| // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) |
| if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && |
| N1.getOpcode() == ISD::VECTOR_SHUFFLE && |
| cast<ShuffleVectorSDNode>(N0)->isSplat() && |
| !cast<ShuffleVectorSDNode>(N1)->isSplat()) { |
| return DAG.getCommutedVectorShuffle(*SVN); |
| } |
| |
| // Try to fold according to rules: |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) |
| // Don't try to fold shuffles with illegal type. |
| // Only fold if this shuffle is the only user of the other shuffle. |
| // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. |
| for (int i = 0; i != 2; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && |
| N->isOnlyUserOf(N->getOperand(i).getNode())) { |
| // The incoming shuffle must be of the same type as the result of the |
| // current shuffle. |
| auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); |
| assert(OtherSV->getOperand(0).getValueType() == VT && |
| "Shuffle types don't match"); |
| |
| SDValue SV0, SV1; |
| SmallVector<int, 4> Mask; |
| if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, |
| SV0, SV1, Mask)) { |
| // Check if all indices in Mask are Undef. In case, propagate Undef. |
| if (llvm::all_of(Mask, [](int M) { return M < 0; })) |
| return DAG.getUNDEF(VT); |
| |
| return DAG.getVectorShuffle(VT, SDLoc(N), |
| SV0 ? SV0 : DAG.getUNDEF(VT), |
| SV1 ? SV1 : DAG.getUNDEF(VT), Mask); |
| } |
| } |
| } |
| |
| // Merge shuffles through binops if we are able to merge it with at least |
| // one other shuffles. |
| // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) |
| // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) |
| unsigned SrcOpcode = N0.getOpcode(); |
| if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && |
| (N1.isUndef() || |
| (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { |
| // Get binop source ops, or just pass on the undef. |
| SDValue Op00 = N0.getOperand(0); |
| SDValue Op01 = N0.getOperand(1); |
| SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); |
| SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); |
| // TODO: We might be able to relax the VT check but we don't currently |
| // have any isBinOp() that has different result/ops VTs so play safe until |
| // we have test coverage. |
| if (Op00.getValueType() == VT && Op10.getValueType() == VT && |
| Op01.getValueType() == VT && Op11.getValueType() == VT && |
| (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || |
| Op10.getOpcode() == ISD::VECTOR_SHUFFLE || |
| Op01.getOpcode() == ISD::VECTOR_SHUFFLE || |
| Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { |
| auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, |
| SmallVectorImpl<int> &Mask, bool LeftOp, |
| bool Commute) { |
| SDValue InnerN = Commute ? N1 : N0; |
| SDValue Op0 = LeftOp ? Op00 : Op01; |
| SDValue Op1 = LeftOp ? Op10 : Op11; |
| if (Commute) |
| std::swap(Op0, Op1); |
| // Only accept the merged shuffle if we don't introduce undef elements, |
| // or the inner shuffle already contained undef elements. |
| auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); |
| return SVN0 && InnerN->isOnlyUserOf(SVN0) && |
| MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, |
| Mask) && |
| (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || |
| llvm::none_of(Mask, [](int M) { return M < 0; })); |
| }; |
| |
| // Ensure we don't increase the number of shuffles - we must merge a |
| // shuffle from at least one of the LHS and RHS ops. |
| bool MergedLeft = false; |
| SDValue LeftSV0, LeftSV1; |
| SmallVector<int, 4> LeftMask; |
| if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || |
| CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { |
| MergedLeft = true; |
| } else { |
| LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); |
| LeftSV0 = Op00, LeftSV1 = Op10; |
| } |
| |
| bool MergedRight = false; |
| SDValue RightSV0, RightSV1; |
| SmallVector<int, 4> RightMask; |
| if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || |
| CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { |
| MergedRight = true; |
| } else { |
| RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); |
| RightSV0 = Op01, RightSV1 = Op11; |
| } |
| |
| if (MergedLeft || MergedRight) { |
| SDLoc DL(N); |
| SDValue LHS = DAG.getVectorShuffle( |
| VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), |
| LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); |
| SDValue RHS = DAG.getVectorShuffle( |
| VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), |
| RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); |
| return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); |
| } |
| } |
| } |
| } |
| |
| if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) |
| return V; |
| |
| // Match shuffles that can be converted to ISD::ZERO_EXTEND_VECTOR_INREG. |
| // Perform this really late, because it could eliminate knowledge |
| // of undef elements created by this shuffle. |
| if (Level < AfterLegalizeTypes) |
| if (SDValue V = combineShuffleToZeroExtendVectorInReg(SVN, DAG, TLI, |
| LegalOperations)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| if (!VT.isFixedLengthVector()) |
| return SDValue(); |
| |
| // Try to convert a scalar binop with an extracted vector element to a vector |
| // binop. This is intended to reduce potentially expensive register moves. |
| // TODO: Check if both operands are extracted. |
| // TODO: Generalize this, so it can be called from visitINSERT_VECTOR_ELT(). |
| SDValue Scalar = N->getOperand(0); |
| unsigned Opcode = Scalar.getOpcode(); |
| EVT VecEltVT = VT.getScalarType(); |
| if (Scalar.hasOneUse() && Scalar->getNumValues() == 1 && |
| TLI.isBinOp(Opcode) && Scalar.getValueType() == VecEltVT && |
| Scalar.getOperand(0).getValueType() == VecEltVT && |
| Scalar.getOperand(1).getValueType() == VecEltVT && |
| DAG.isSafeToSpeculativelyExecute(Opcode) && hasOperation(Opcode, VT)) { |
| // Match an extract element and get a shuffle mask equivalent. |
| SmallVector<int, 8> ShufMask(VT.getVectorNumElements(), -1); |
| |
| for (int i : {0, 1}) { |
| // s2v (bo (extelt V, Idx), C) --> shuffle (bo V, C'), {Idx, -1, -1...} |
| // s2v (bo C, (extelt V, Idx)) --> shuffle (bo C', V), {Idx, -1, -1...} |
| SDValue EE = Scalar.getOperand(i); |
| auto *C = dyn_cast<ConstantSDNode>(Scalar.getOperand(i ? 0 : 1)); |
| if (C && EE.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| EE.getOperand(0).getValueType() == VT && |
| isa<ConstantSDNode>(EE.getOperand(1))) { |
| // Mask = {ExtractIndex, undef, undef....} |
| ShufMask[0] = EE.getConstantOperandVal(1); |
| // Make sure the shuffle is legal if we are crossing lanes. |
| if (TLI.isShuffleMaskLegal(ShufMask, VT)) { |
| SDLoc DL(N); |
| SDValue V[] = {EE.getOperand(0), |
| DAG.getConstant(C->getAPIntValue(), DL, VT)}; |
| SDValue VecBO = DAG.getNode(Opcode, DL, VT, V[i], V[1 - i]); |
| return DAG.getVectorShuffle(VT, DL, VecBO, DAG.getUNDEF(VT), |
| ShufMask); |
| } |
| } |
| } |
| } |
| |
| // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern |
| // with a VECTOR_SHUFFLE and possible truncate. |
| if (Opcode != ISD::EXTRACT_VECTOR_ELT || |
| !Scalar.getOperand(0).getValueType().isFixedLengthVector()) |
| return SDValue(); |
| |
| // If we have an implicit truncate, truncate here if it is legal. |
| if (VecEltVT != Scalar.getValueType() && |
| Scalar.getValueType().isScalarInteger() && isTypeLegal(VecEltVT)) { |
| SDValue Val = DAG.getNode(ISD::TRUNCATE, SDLoc(Scalar), VecEltVT, Scalar); |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); |
| } |
| |
| auto *ExtIndexC = dyn_cast<ConstantSDNode>(Scalar.getOperand(1)); |
| if (!ExtIndexC) |
| return SDValue(); |
| |
| SDValue SrcVec = Scalar.getOperand(0); |
| EVT SrcVT = SrcVec.getValueType(); |
| unsigned SrcNumElts = SrcVT.getVectorNumElements(); |
| unsigned VTNumElts = VT.getVectorNumElements(); |
| if (VecEltVT == SrcVT.getScalarType() && VTNumElts <= SrcNumElts) { |
| // Create a shuffle equivalent for scalar-to-vector: {ExtIndex, -1, -1, ...} |
| SmallVector<int, 8> Mask(SrcNumElts, -1); |
| Mask[0] = ExtIndexC->getZExtValue(); |
| SDValue LegalShuffle = TLI.buildLegalVectorShuffle( |
| SrcVT, SDLoc(N), SrcVec, DAG.getUNDEF(SrcVT), Mask, DAG); |
| if (!LegalShuffle) |
| return SDValue(); |
| |
| // If the initial vector is the same size, the shuffle is the result. |
| if (VT == SrcVT) |
| return LegalShuffle; |
| |
| // If not, shorten the shuffled vector. |
| if (VTNumElts != SrcNumElts) { |
| SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); |
| EVT SubVT = EVT::getVectorVT(*DAG.getContext(), |
| SrcVT.getVectorElementType(), VTNumElts); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, LegalShuffle, |
| ZeroIdx); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| uint64_t InsIdx = N->getConstantOperandVal(2); |
| |
| // If inserting an UNDEF, just return the original vector. |
| if (N1.isUndef()) |
| return N0; |
| |
| // If this is an insert of an extracted vector into an undef vector, we can |
| // just use the input to the extract. |
| if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) |
| return N1.getOperand(0); |
| |
| // Simplify scalar inserts into an undef vector: |
| // insert_subvector undef, (splat X), N2 -> splat X |
| if (N0.isUndef() && N1.getOpcode() == ISD::SPLAT_VECTOR) |
| return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, N1.getOperand(0)); |
| |
| // If we are inserting a bitcast value into an undef, with the same |
| // number of elements, just use the bitcast input of the extract. |
| // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> |
| // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) |
| if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && |
| N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| N1.getOperand(0).getOperand(1) == N2 && |
| N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == |
| VT.getVectorElementCount() && |
| N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == |
| VT.getSizeInBits()) { |
| return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); |
| } |
| |
| // If both N1 and N2 are bitcast values on which insert_subvector |
| // would makes sense, pull the bitcast through. |
| // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> |
| // BITCAST (INSERT_SUBVECTOR N0 N1 N2) |
| if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { |
| SDValue CN0 = N0.getOperand(0); |
| SDValue CN1 = N1.getOperand(0); |
| EVT CN0VT = CN0.getValueType(); |
| EVT CN1VT = CN1.getValueType(); |
| if (CN0VT.isVector() && CN1VT.isVector() && |
| CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && |
| CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { |
| SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), |
| CN0.getValueType(), CN0, CN1, N2); |
| return DAG.getBitcast(VT, NewINSERT); |
| } |
| } |
| |
| // Combine INSERT_SUBVECTORs where we are inserting to the same index. |
| // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) |
| // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) |
| if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && |
| N0.getOperand(1).getValueType() == N1.getValueType() && |
| N0.getOperand(2) == N2) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), |
| N1, N2); |
| |
| // Eliminate an intermediate insert into an undef vector: |
| // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> |
| // insert_subvector undef, X, N2 |
| if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && |
| N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, |
| N1.getOperand(1), N2); |
| |
| // Push subvector bitcasts to the output, adjusting the index as we go. |
| // insert_subvector(bitcast(v), bitcast(s), c1) |
| // -> bitcast(insert_subvector(v, s, c2)) |
| if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && |
| N1.getOpcode() == ISD::BITCAST) { |
| SDValue N0Src = peekThroughBitcasts(N0); |
| SDValue N1Src = peekThroughBitcasts(N1); |
| EVT N0SrcSVT = N0Src.getValueType().getScalarType(); |
| EVT N1SrcSVT = N1Src.getValueType().getScalarType(); |
| if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && |
| N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { |
| EVT NewVT; |
| SDLoc DL(N); |
| SDValue NewIdx; |
| LLVMContext &Ctx = *DAG.getContext(); |
| ElementCount NumElts = VT.getVectorElementCount(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { |
| unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); |
| NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); |
| NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); |
| } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { |
| unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; |
| if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { |
| NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, |
| NumElts.divideCoefficientBy(Scale)); |
| NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); |
| } |
| } |
| if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { |
| SDValue Res = DAG.getBitcast(NewVT, N0Src); |
| Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); |
| return DAG.getBitcast(VT, Res); |
| } |
| } |
| } |
| |
| // Canonicalize insert_subvector dag nodes. |
| // Example: |
| // (insert_subvector (insert_subvector A, Idx0), Idx1) |
| // -> (insert_subvector (insert_subvector A, Idx1), Idx0) |
| if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && |
| N1.getValueType() == N0.getOperand(1).getValueType()) { |
| unsigned OtherIdx = N0.getConstantOperandVal(2); |
| if (InsIdx < OtherIdx) { |
| // Swap nodes. |
| SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, |
| N0.getOperand(0), N1, N2); |
| AddToWorklist(NewOp.getNode()); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), |
| VT, NewOp, N0.getOperand(1), N0.getOperand(2)); |
| } |
| } |
| |
| // If the input vector is a concatenation, and the insert replaces |
| // one of the pieces, we can optimize into a single concat_vectors. |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && |
| N0.getOperand(0).getValueType() == N1.getValueType() && |
| N0.getOperand(0).getValueType().isScalableVector() == |
| N1.getValueType().isScalableVector()) { |
| unsigned Factor = N1.getValueType().getVectorMinNumElements(); |
| SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); |
| Ops[InsIdx / Factor] = N1; |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); |
| } |
| |
| // Simplify source operands based on insertion. |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| |
| // fold (fp_to_fp16 (fp16_to_fp op)) -> op |
| if (N0->getOpcode() == ISD::FP16_TO_FP) |
| return N0->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| |
| // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) |
| if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { |
| ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); |
| if (AndConst && AndConst->getAPIntValue() == 0xffff) { |
| return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), |
| N0.getOperand(0)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_BF16(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| |
| // fold (fp_to_bf16 (bf16_to_fp op)) -> op |
| if (N0->getOpcode() == ISD::BF16_TO_FP) |
| return N0->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N0.getValueType(); |
| unsigned Opcode = N->getOpcode(); |
| |
| // VECREDUCE over 1-element vector is just an extract. |
| if (VT.getVectorElementCount().isScalar()) { |
| SDLoc dl(N); |
| SDValue Res = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, |
| DAG.getVectorIdxConstant(0, dl)); |
| if (Res.getValueType() != N->getValueType(0)) |
| Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); |
| return Res; |
| } |
| |
| // On an boolean vector an and/or reduction is the same as a umin/umax |
| // reduction. Convert them if the latter is legal while the former isn't. |
| if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { |
| unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND |
| ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; |
| if (!TLI.isOperationLegalOrCustom(Opcode, VT) && |
| TLI.isOperationLegalOrCustom(NewOpcode, VT) && |
| DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) |
| return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); |
| } |
| |
| // vecreduce_or(insert_subvector(zero or undef, val)) -> vecreduce_or(val) |
| // vecreduce_and(insert_subvector(ones or undef, val)) -> vecreduce_and(val) |
| if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && |
| TLI.isTypeLegal(N0.getOperand(1).getValueType())) { |
| SDValue Vec = N0.getOperand(0); |
| SDValue Subvec = N0.getOperand(1); |
| if ((Opcode == ISD::VECREDUCE_OR && |
| (N0.getOperand(0).isUndef() || isNullOrNullSplat(Vec))) || |
| (Opcode == ISD::VECREDUCE_AND && |
| (N0.getOperand(0).isUndef() || isAllOnesOrAllOnesSplat(Vec)))) |
| return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), Subvec); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitVPOp(SDNode *N) { |
| |
| if (N->getOpcode() == ISD::VP_GATHER) |
| if (SDValue SD = visitVPGATHER(N)) |
| return SD; |
| |
| if (N->getOpcode() == ISD::VP_SCATTER) |
| if (SDValue SD = visitVPSCATTER(N)) |
| return SD; |
| |
| // VP operations in which all vector elements are disabled - either by |
| // determining that the mask is all false or that the EVL is 0 - can be |
| // eliminated. |
| bool AreAllEltsDisabled = false; |
| if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode())) |
| AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx)); |
| if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode())) |
| AreAllEltsDisabled |= |
| ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode()); |
| |
| // This is the only generic VP combine we support for now. |
| if (!AreAllEltsDisabled) |
| return SDValue(); |
| |
| // Binary operations can be replaced by UNDEF. |
| if (ISD::isVPBinaryOp(N->getOpcode())) |
| return DAG.getUNDEF(N->getValueType(0)); |
| |
| // VP Memory operations can be replaced by either the chain (stores) or the |
| // chain + undef (loads). |
| if (const auto *MemSD = dyn_cast<MemSDNode>(N)) { |
| if (MemSD->writeMem()) |
| return MemSD->getChain(); |
| return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain()); |
| } |
| |
| // Reduction operations return the start operand when no elements are active. |
| if (ISD::isVPReduction(N->getOpcode())) |
| return N->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle |
| /// with the destination vector and a zero vector. |
| /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> |
| /// vector_shuffle V, Zero, <0, 4, 2, 4> |
| SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { |
| assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); |
| |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = peekThroughBitcasts(N->getOperand(1)); |
| SDLoc DL(N); |
| |
| // Make sure we're not running after operation legalization where it |
| // may have custom lowered the vector shuffles. |
| if (LegalOperations) |
| return SDValue(); |
| |
| if (RHS.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| EVT RVT = RHS.getValueType(); |
| unsigned NumElts = RHS.getNumOperands(); |
| |
| // Attempt to create a valid clear mask, splitting the mask into |
| // sub elements and checking to see if each is |
| // all zeros or all ones - suitable for shuffle masking. |
| auto BuildClearMask = [&](int Split) { |
| int NumSubElts = NumElts * Split; |
| int NumSubBits = RVT.getScalarSizeInBits() / Split; |
| |
| SmallVector<int, 8> Indices; |
| for (int i = 0; i != NumSubElts; ++i) { |
| int EltIdx = i / Split; |
| int SubIdx = i % Split; |
| SDValue Elt = RHS.getOperand(EltIdx); |
| // X & undef --> 0 (not undef). So this lane must be converted to choose |
| // from the zero constant vector (same as if the element had all 0-bits). |
| if (Elt.isUndef()) { |
| Indices.push_back(i + NumSubElts); |
| continue; |
| } |
| |
| APInt Bits; |
| if (isa<ConstantSDNode>(Elt)) |
| Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); |
| else if (isa<ConstantFPSDNode>(Elt)) |
| Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); |
| else |
| return SDValue(); |
| |
| // Extract the sub element from the constant bit mask. |
| if (DAG.getDataLayout().isBigEndian()) |
| Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); |
| else |
| Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); |
| |
| if (Bits.isAllOnes()) |
| Indices.push_back(i); |
| else if (Bits == 0) |
| Indices.push_back(i + NumSubElts); |
| else |
| return SDValue(); |
| } |
| |
| // Let's see if the target supports this vector_shuffle. |
| EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); |
| EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); |
| if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) |
| return SDValue(); |
| |
| SDValue Zero = DAG.getConstant(0, DL, ClearVT); |
| return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, |
| DAG.getBitcast(ClearVT, LHS), |
| Zero, Indices)); |
| }; |
| |
| // Determine maximum split level (byte level masking). |
| int MaxSplit = 1; |
| if (RVT.getScalarSizeInBits() % 8 == 0) |
| MaxSplit = RVT.getScalarSizeInBits() / 8; |
| |
| for (int Split = 1; Split <= MaxSplit; ++Split) |
| if (RVT.getScalarSizeInBits() % Split == 0) |
| if (SDValue S = BuildClearMask(Split)) |
| return S; |
| |
| return SDValue(); |
| } |
| |
| /// If a vector binop is performed on splat values, it may be profitable to |
| /// extract, scalarize, and insert/splat. |
| static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, |
| const SDLoc &DL) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| unsigned Opcode = N->getOpcode(); |
| EVT VT = N->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // TODO: Remove/replace the extract cost check? If the elements are available |
| // as scalars, then there may be no extract cost. Should we ask if |
| // inserting a scalar back into a vector is cheap instead? |
| int Index0, Index1; |
| SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); |
| SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); |
| // Extract element from splat_vector should be free. |
| // TODO: use DAG.isSplatValue instead? |
| bool IsBothSplatVector = N0.getOpcode() == ISD::SPLAT_VECTOR && |
| N1.getOpcode() == ISD::SPLAT_VECTOR; |
| if (!Src0 || !Src1 || Index0 != Index1 || |
| Src0.getValueType().getVectorElementType() != EltVT || |
| Src1.getValueType().getVectorElementType() != EltVT || |
| !(IsBothSplatVector || TLI.isExtractVecEltCheap(VT, Index0)) || |
| !TLI.isOperationLegalOrCustom(Opcode, EltVT)) |
| return SDValue(); |
| |
| SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); |
| SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); |
| SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); |
| SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); |
| |
| // If all lanes but 1 are undefined, no need to splat the scalar result. |
| // TODO: Keep track of undefs and use that info in the general case. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && |
| count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && |
| count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { |
| // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> |
| // build_vec ..undef, (bo X, Y), undef... |
| SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); |
| Ops[Index0] = ScalarBO; |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index |
| return DAG.getSplat(VT, DL, ScalarBO); |
| } |
| |
| /// Visit a vector cast operation, like FP_EXTEND. |
| SDValue DAGCombiner::SimplifyVCastOp(SDNode *N, const SDLoc &DL) { |
| EVT VT = N->getValueType(0); |
| assert(VT.isVector() && "SimplifyVCastOp only works on vectors!"); |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned Opcode = N->getOpcode(); |
| |
| SDValue N0 = N->getOperand(0); |
| EVT SrcVT = N0->getValueType(0); |
| EVT SrcEltVT = SrcVT.getVectorElementType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // TODO: promote operation might be also good here? |
| int Index0; |
| SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); |
| if (Src0 && |
| (N0.getOpcode() == ISD::SPLAT_VECTOR || |
| TLI.isExtractVecEltCheap(VT, Index0)) && |
| TLI.isOperationLegalOrCustom(Opcode, EltVT) && |
| TLI.preferScalarizeSplat(Opcode)) { |
| SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); |
| SDValue Elt = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcEltVT, Src0, IndexC); |
| SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, Elt, N->getFlags()); |
| if (VT.isScalableVector()) |
| return DAG.getSplatVector(VT, DL, ScalarBO); |
| SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Visit a binary vector operation, like ADD. |
| SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) { |
| EVT VT = N->getValueType(0); |
| assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| unsigned Opcode = N->getOpcode(); |
| SDNodeFlags Flags = N->getFlags(); |
| |
| // Move unary shuffles with identical masks after a vector binop: |
| // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) |
| // --> shuffle (VBinOp A, B), Undef, Mask |
| // This does not require type legality checks because we are creating the |
| // same types of operations that are in the original sequence. We do have to |
| // restrict ops like integer div that have immediate UB (eg, div-by-zero) |
| // though. This code is adapted from the identical transform in instcombine. |
| if (DAG.isSafeToSpeculativelyExecute(Opcode)) { |
| auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); |
| auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); |
| if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && |
| LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && |
| (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { |
| SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), |
| RHS.getOperand(0), Flags); |
| SDValue UndefV = LHS.getOperand(1); |
| return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); |
| } |
| |
| // Try to sink a splat shuffle after a binop with a uniform constant. |
| // This is limited to cases where neither the shuffle nor the constant have |
| // undefined elements because that could be poison-unsafe or inhibit |
| // demanded elements analysis. It is further limited to not change a splat |
| // of an inserted scalar because that may be optimized better by |
| // load-folding or other target-specific behaviors. |
| if (isConstOrConstSplat(RHS) && Shuf0 && all_equal(Shuf0->getMask()) && |
| Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && |
| Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { |
| // binop (splat X), (splat C) --> splat (binop X, C) |
| SDValue X = Shuf0->getOperand(0); |
| SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); |
| return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), |
| Shuf0->getMask()); |
| } |
| if (isConstOrConstSplat(LHS) && Shuf1 && all_equal(Shuf1->getMask()) && |
| Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && |
| Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { |
| // binop (splat C), (splat X) --> splat (binop C, X) |
| SDValue X = Shuf1->getOperand(0); |
| SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); |
| return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), |
| Shuf1->getMask()); |
| } |
| } |
| |
| // The following pattern is likely to emerge with vector reduction ops. Moving |
| // the binary operation ahead of insertion may allow using a narrower vector |
| // instruction that has better performance than the wide version of the op: |
| // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z |
| if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && |
| RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && |
| LHS.getOperand(2) == RHS.getOperand(2) && |
| (LHS.hasOneUse() || RHS.hasOneUse())) { |
| SDValue X = LHS.getOperand(1); |
| SDValue Y = RHS.getOperand(1); |
| SDValue Z = LHS.getOperand(2); |
| EVT NarrowVT = X.getValueType(); |
| if (NarrowVT == Y.getValueType() && |
| TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, |
| LegalOperations)) { |
| // (binop undef, undef) may not return undef, so compute that result. |
| SDValue VecC = |
| DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); |
| SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); |
| } |
| } |
| |
| // Make sure all but the first op are undef or constant. |
| auto ConcatWithConstantOrUndef = [](SDValue Concat) { |
| return Concat.getOpcode() == ISD::CONCAT_VECTORS && |
| all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { |
| return Op.isUndef() || |
| ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); |
| }); |
| }; |
| |
| // The following pattern is likely to emerge with vector reduction ops. Moving |
| // the binary operation ahead of the concat may allow using a narrower vector |
| // instruction that has better performance than the wide version of the op: |
| // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> |
| // concat (VBinOp X, Y), VecC |
| if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && |
| (LHS.hasOneUse() || RHS.hasOneUse())) { |
| EVT NarrowVT = LHS.getOperand(0).getValueType(); |
| if (NarrowVT == RHS.getOperand(0).getValueType() && |
| TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { |
| unsigned NumOperands = LHS.getNumOperands(); |
| SmallVector<SDValue, 4> ConcatOps; |
| for (unsigned i = 0; i != NumOperands; ++i) { |
| // This constant fold for operands 1 and up. |
| ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), |
| RHS.getOperand(i))); |
| } |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); |
| } |
| } |
| |
| if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2) { |
| assert(N0.getOpcode() == ISD::SETCC && |
| "First argument must be a SetCC node!"); |
| |
| SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| |
| // If we got a simplified select_cc node back from SimplifySelectCC, then |
| // break it down into a new SETCC node, and a new SELECT node, and then return |
| // the SELECT node, since we were called with a SELECT node. |
| if (SCC.getNode()) { |
| // Check to see if we got a select_cc back (to turn into setcc/select). |
| // Otherwise, just return whatever node we got back, like fabs. |
| if (SCC.getOpcode() == ISD::SELECT_CC) { |
| const SDNodeFlags Flags = N0->getFlags(); |
| SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), |
| N0.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), |
| SCC.getOperand(4), Flags); |
| AddToWorklist(SETCC.getNode()); |
| SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, |
| SCC.getOperand(2), SCC.getOperand(3)); |
| SelectNode->setFlags(Flags); |
| return SelectNode; |
| } |
| |
| return SCC; |
| } |
| return SDValue(); |
| } |
| |
| /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values |
| /// being selected between, see if we can simplify the select. Callers of this |
| /// should assume that TheSelect is deleted if this returns true. As such, they |
| /// should return the appropriate thing (e.g. the node) back to the top-level of |
| /// the DAG combiner loop to avoid it being looked at. |
| bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, |
| SDValue RHS) { |
| // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) |
| // The select + setcc is redundant, because fsqrt returns NaN for X < 0. |
| if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { |
| if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { |
| // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) |
| SDValue Sqrt = RHS; |
| ISD::CondCode CC; |
| SDValue CmpLHS; |
| const ConstantFPSDNode *Zero = nullptr; |
| |
| if (TheSelect->getOpcode() == ISD::SELECT_CC) { |
| CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); |
| CmpLHS = TheSelect->getOperand(0); |
| Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); |
| } else { |
| // SELECT or VSELECT |
| SDValue Cmp = TheSelect->getOperand(0); |
| if (Cmp.getOpcode() == ISD::SETCC) { |
| CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); |
| CmpLHS = Cmp.getOperand(0); |
| Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); |
| } |
| } |
| if (Zero && Zero->isZero() && |
| Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || |
| CC == ISD::SETULT || CC == ISD::SETLT)) { |
| // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) |
| CombineTo(TheSelect, Sqrt); |
| return true; |
| } |
| } |
| } |
| // Cannot simplify select with vector condition |
| if (TheSelect->getOperand(0).getValueType().isVector()) return false; |
| |
| // If this is a select from two identical things, try to pull the operation |
| // through the select. |
| if (LHS.getOpcode() != RHS.getOpcode() || |
| !LHS.hasOneUse() || !RHS.hasOneUse()) |
| return false; |
| |
| // If this is a load and the token chain is identical, replace the select |
| // of two loads with a load through a select of the address to load from. |
| // This triggers in things like "select bool X, 10.0, 123.0" after the FP |
| // constants have been dropped into the constant pool. |
| if (LHS.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LLD = cast<LoadSDNode>(LHS); |
| LoadSDNode *RLD = cast<LoadSDNode>(RHS); |
| |
| // Token chains must be identical. |
| if (LHS.getOperand(0) != RHS.getOperand(0) || |
| // Do not let this transformation reduce the number of volatile loads. |
| // Be conservative for atomics for the moment |
| // TODO: This does appear to be legal for unordered atomics (see D66309) |
| !LLD->isSimple() || !RLD->isSimple() || |
| // FIXME: If either is a pre/post inc/dec load, |
| // we'd need to split out the address adjustment. |
| LLD->isIndexed() || RLD->isIndexed() || |
| // If this is an EXTLOAD, the VT's must match. |
| LLD->getMemoryVT() != RLD->getMemoryVT() || |
| // If this is an EXTLOAD, the kind of extension must match. |
| (LLD->getExtensionType() != RLD->getExtensionType() && |
| // The only exception is if one of the extensions is anyext. |
| LLD->getExtensionType() != ISD::EXTLOAD && |
| RLD->getExtensionType() != ISD::EXTLOAD) || |
| // FIXME: this discards src value information. This is |
| // over-conservative. It would be beneficial to be able to remember |
| // both potential memory locations. Since we are discarding |
| // src value info, don't do the transformation if the memory |
| // locations are not in the default address space. |
| LLD->getPointerInfo().getAddrSpace() != 0 || |
| RLD->getPointerInfo().getAddrSpace() != 0 || |
| // We can't produce a CMOV of a TargetFrameIndex since we won't |
| // generate the address generation required. |
| LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || |
| RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || |
| !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), |
| LLD->getBasePtr().getValueType())) |
| return false; |
| |
| // The loads must not depend on one another. |
| if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) |
| return false; |
| |
| // Check that the select condition doesn't reach either load. If so, |
| // folding this will induce a cycle into the DAG. If not, this is safe to |
| // xform, so create a select of the addresses. |
| |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| |
| // Always fail if LLD and RLD are not independent. TheSelect is a |
| // predecessor to all Nodes in question so we need not search past it. |
| |
| Visited.insert(TheSelect); |
| Worklist.push_back(LLD); |
| Worklist.push_back(RLD); |
| |
| if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || |
| SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) |
| return false; |
| |
| SDValue Addr; |
| if (TheSelect->getOpcode() == ISD::SELECT) { |
| // We cannot do this optimization if any pair of {RLD, LLD} is a |
| // predecessor to {RLD, LLD, CondNode}. As we've already compared the |
| // Loads, we only need to check if CondNode is a successor to one of the |
| // loads. We can further avoid this if there's no use of their chain |
| // value. |
| SDNode *CondNode = TheSelect->getOperand(0).getNode(); |
| Worklist.push_back(CondNode); |
| |
| if ((LLD->hasAnyUseOfValue(1) && |
| SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || |
| (RLD->hasAnyUseOfValue(1) && |
| SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) |
| return false; |
| |
| Addr = DAG.getSelect(SDLoc(TheSelect), |
| LLD->getBasePtr().getValueType(), |
| TheSelect->getOperand(0), LLD->getBasePtr(), |
| RLD->getBasePtr()); |
| } else { // Otherwise SELECT_CC |
| // We cannot do this optimization if any pair of {RLD, LLD} is a |
| // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared |
| // the Loads, we only need to check if CondLHS/CondRHS is a successor to |
| // one of the loads. We can further avoid this if there's no use of their |
| // chain value. |
| |
| SDNode *CondLHS = TheSelect->getOperand(0).getNode(); |
| SDNode *CondRHS = TheSelect->getOperand(1).getNode(); |
| Worklist.push_back(CondLHS); |
| Worklist.push_back(CondRHS); |
| |
| if ((LLD->hasAnyUseOfValue(1) && |
| SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || |
| (RLD->hasAnyUseOfValue(1) && |
| SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) |
| return false; |
| |
| Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), |
| LLD->getBasePtr().getValueType(), |
| TheSelect->getOperand(0), |
| TheSelect->getOperand(1), |
| LLD->getBasePtr(), RLD->getBasePtr(), |
| TheSelect->getOperand(4)); |
| } |
| |
| SDValue Load; |
| // It is safe to replace the two loads if they have different alignments, |
| // but the new load must be the minimum (most restrictive) alignment of the |
| // inputs. |
| Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); |
| MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); |
| if (!RLD->isInvariant()) |
| MMOFlags &= ~MachineMemOperand::MOInvariant; |
| if (!RLD->isDereferenceable()) |
| MMOFlags &= ~MachineMemOperand::MODereferenceable; |
| if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { |
| // FIXME: Discards pointer and AA info. |
| Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), |
| LLD->getChain(), Addr, MachinePointerInfo(), Alignment, |
| MMOFlags); |
| } else { |
| // FIXME: Discards pointer and AA info. |
| Load = DAG.getExtLoad( |
| LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() |
| : LLD->getExtensionType(), |
| SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, |
| MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); |
| } |
| |
| // Users of the select now use the result of the load. |
| CombineTo(TheSelect, Load); |
| |
| // Users of the old loads now use the new load's chain. We know the |
| // old-load value is dead now. |
| CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); |
| CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and |
| /// bitwise 'and'. |
| SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, |
| SDValue N1, SDValue N2, SDValue N3, |
| ISD::CondCode CC) { |
| // If this is a select where the false operand is zero and the compare is a |
| // check of the sign bit, see if we can perform the "gzip trick": |
| // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A |
| // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A |
| EVT XType = N0.getValueType(); |
| EVT AType = N2.getValueType(); |
| if (!isNullConstant(N3) || !XType.bitsGE(AType)) |
| return SDValue(); |
| |
| // If the comparison is testing for a positive value, we have to invert |
| // the sign bit mask, so only do that transform if the target has a bitwise |
| // 'and not' instruction (the invert is free). |
| if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { |
| // (X > -1) ? A : 0 |
| // (X > 0) ? X : 0 <-- This is canonical signed max. |
| if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) |
| return SDValue(); |
| } else if (CC == ISD::SETLT) { |
| // (X < 0) ? A : 0 |
| // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. |
| if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) |
| return SDValue(); |
| } else { |
| return SDValue(); |
| } |
| |
| // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit |
| // constant. |
| EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); |
| auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { |
| unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; |
| if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { |
| SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); |
| AddToWorklist(Shift.getNode()); |
| |
| if (XType.bitsGT(AType)) { |
| Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); |
| AddToWorklist(Shift.getNode()); |
| } |
| |
| if (CC == ISD::SETGT) |
| Shift = DAG.getNOT(DL, Shift, AType); |
| |
| return DAG.getNode(ISD::AND, DL, AType, Shift, N2); |
| } |
| } |
| |
| unsigned ShCt = XType.getSizeInBits() - 1; |
| if (TLI.shouldAvoidTransformToShift(XType, ShCt)) |
| return SDValue(); |
| |
| SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); |
| SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); |
| AddToWorklist(Shift.getNode()); |
| |
| if (XType.bitsGT(AType)) { |
| Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); |
| AddToWorklist(Shift.getNode()); |
| } |
| |
| if (CC == ISD::SETGT) |
| Shift = DAG.getNOT(DL, Shift, AType); |
| |
| return DAG.getNode(ISD::AND, DL, AType, Shift, N2); |
| } |
| |
| // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. |
| SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| unsigned BinOpc = N1.getOpcode(); |
| if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc)) |
| return SDValue(); |
| |
| // The use checks are intentionally on SDNode because we may be dealing |
| // with opcodes that produce more than one SDValue. |
| // TODO: Do we really need to check N0 (the condition operand of the select)? |
| // But removing that clause could cause an infinite loop... |
| if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) |
| return SDValue(); |
| |
| // Binops may include opcodes that return multiple values, so all values |
| // must be created/propagated from the newly created binops below. |
| SDVTList OpVTs = N1->getVTList(); |
| |
| // Fold select(cond, binop(x, y), binop(z, y)) |
| // --> binop(select(cond, x, z), y) |
| if (N1.getOperand(1) == N2.getOperand(1)) { |
| SDValue NewSel = |
| DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0)); |
| SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); |
| NewBinOp->setFlags(N1->getFlags()); |
| NewBinOp->intersectFlagsWith(N2->getFlags()); |
| return NewBinOp; |
| } |
| |
| // Fold select(cond, binop(x, y), binop(x, z)) |
| // --> binop(x, select(cond, y, z)) |
| // Second op VT might be different (e.g. shift amount type) |
| if (N1.getOperand(0) == N2.getOperand(0) && |
| VT == N1.getOperand(1).getValueType() && |
| VT == N2.getOperand(1).getValueType()) { |
| SDValue NewSel = |
| DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1)); |
| SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); |
| NewBinOp->setFlags(N1->getFlags()); |
| NewBinOp->intersectFlagsWith(N2->getFlags()); |
| return NewBinOp; |
| } |
| |
| // TODO: Handle isCommutativeBinOp patterns as well? |
| return SDValue(); |
| } |
| |
| // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. |
| SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| bool IsFabs = N->getOpcode() == ISD::FABS; |
| bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); |
| |
| if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Int = N0.getOperand(0); |
| EVT IntVT = Int.getValueType(); |
| |
| // The operand to cast should be integer. |
| if (!IntVT.isInteger() || IntVT.isVector()) |
| return SDValue(); |
| |
| // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) |
| // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) |
| APInt SignMask; |
| if (N0.getValueType().isVector()) { |
| // For vector, create a sign mask (0x80...) or its inverse (for fabs, |
| // 0x7f...) per element and splat it. |
| SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); |
| if (IsFabs) |
| SignMask = ~SignMask; |
| SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); |
| } else { |
| // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) |
| SignMask = APInt::getSignMask(IntVT.getSizeInBits()); |
| if (IsFabs) |
| SignMask = ~SignMask; |
| } |
| SDLoc DL(N0); |
| Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, |
| DAG.getConstant(SignMask, DL, IntVT)); |
| AddToWorklist(Int.getNode()); |
| return DAG.getBitcast(VT, Int); |
| } |
| |
| /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" |
| /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 |
| /// in it. This may be a win when the constant is not otherwise available |
| /// because it replaces two constant pool loads with one. |
| SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( |
| const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, |
| ISD::CondCode CC) { |
| if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) |
| return SDValue(); |
| |
| // If we are before legalize types, we want the other legalization to happen |
| // first (for example, to avoid messing with soft float). |
| auto *TV = dyn_cast<ConstantFPSDNode>(N2); |
| auto *FV = dyn_cast<ConstantFPSDNode>(N3); |
| EVT VT = N2.getValueType(); |
| if (!TV || !FV || !TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // If a constant can be materialized without loads, this does not make sense. |
| if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || |
| TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || |
| TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) |
| return SDValue(); |
| |
| // If both constants have multiple uses, then we won't need to do an extra |
| // load. The values are likely around in registers for other users. |
| if (!TV->hasOneUse() && !FV->hasOneUse()) |
| return SDValue(); |
| |
| Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), |
| const_cast<ConstantFP*>(TV->getConstantFPValue()) }; |
| Type *FPTy = Elts[0]->getType(); |
| const DataLayout &TD = DAG.getDataLayout(); |
| |
| // Create a ConstantArray of the two constants. |
| Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); |
| SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), |
| TD.getPrefTypeAlign(FPTy)); |
| Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); |
| |
| // Get offsets to the 0 and 1 elements of the array, so we can select between |
| // them. |
| SDValue Zero = DAG.getIntPtrConstant(0, DL); |
| unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); |
| SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); |
| SDValue Cond = |
| DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); |
| AddToWorklist(Cond.getNode()); |
| SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); |
| AddToWorklist(CstOffset.getNode()); |
| CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); |
| AddToWorklist(CPIdx.getNode()); |
| return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool( |
| DAG.getMachineFunction()), Alignment); |
| } |
| |
| /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 |
| /// where 'cond' is the comparison specified by CC. |
| SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC, |
| bool NotExtCompare) { |
| // (x ? y : y) -> y. |
| if (N2 == N3) return N2; |
| |
| EVT CmpOpVT = N0.getValueType(); |
| EVT CmpResVT = getSetCCResultType(CmpOpVT); |
| EVT VT = N2.getValueType(); |
| auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); |
| auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); |
| |
| // Determine if the condition we're dealing with is constant. |
| if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { |
| AddToWorklist(SCC.getNode()); |
| if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { |
| // fold select_cc true, x, y -> x |
| // fold select_cc false, x, y -> y |
| return !(SCCC->isZero()) ? N2 : N3; |
| } |
| } |
| |
| if (SDValue V = |
| convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) |
| return V; |
| |
| if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) |
| return V; |
| |
| // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A) |
| // where y is has a single bit set. |
| // A plaintext description would be, we can turn the SELECT_CC into an AND |
| // when the condition can be materialized as an all-ones register. Any |
| // single bit-test can be materialized as an all-ones register with |
| // shift-left and shift-right-arith. |
| if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && |
| N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { |
| SDValue AndLHS = N0->getOperand(0); |
| auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { |
| // Shift the tested bit over the sign bit. |
| const APInt &AndMask = ConstAndRHS->getAPIntValue(); |
| unsigned ShCt = AndMask.getBitWidth() - 1; |
| if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { |
| SDValue ShlAmt = |
| DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), |
| getShiftAmountTy(AndLHS.getValueType())); |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); |
| |
| // Now arithmetic right shift it all the way over, so the result is |
| // either all-ones, or zero. |
| SDValue ShrAmt = |
| DAG.getConstant(ShCt, SDLoc(Shl), |
| getShiftAmountTy(Shl.getValueType())); |
| SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); |
| |
| return DAG.getNode(ISD::AND, DL, VT, Shr, N3); |
| } |
| } |
| } |
| |
| // fold select C, 16, 0 -> shl C, 4 |
| bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); |
| bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); |
| |
| if ((Fold || Swap) && |
| TLI.getBooleanContents(CmpOpVT) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { |
| |
| if (Swap) { |
| CC = ISD::getSetCCInverse(CC, CmpOpVT); |
| std::swap(N2C, N3C); |
| } |
| |
| // If the caller doesn't want us to simplify this into a zext of a compare, |
| // don't do it. |
| if (NotExtCompare && N2C->isOne()) |
| return SDValue(); |
| |
| SDValue Temp, SCC; |
| // zext (setcc n0, n1) |
| if (LegalTypes) { |
| SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); |
| if (VT.bitsLT(SCC.getValueType())) |
| Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); |
| else |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); |
| } else { |
| SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); |
| } |
| |
| AddToWorklist(SCC.getNode()); |
| AddToWorklist(Temp.getNode()); |
| |
| if (N2C->isOne()) |
| return Temp; |
| |
| unsigned ShCt = N2C->getAPIntValue().logBase2(); |
| if (TLI.shouldAvoidTransformToShift(VT, ShCt)) |
| return SDValue(); |
| |
| // shl setcc result by log2 n2c |
| return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, |
| DAG.getConstant(ShCt, SDLoc(Temp), |
| getShiftAmountTy(Temp.getValueType()))); |
| } |
| |
| // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) |
| // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) |
| // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) |
| // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) |
| // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) |
| // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) |
| // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) |
| // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) |
| if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| SDValue ValueOnZero = N2; |
| SDValue Count = N3; |
| // If the condition is NE instead of E, swap the operands. |
| if (CC == ISD::SETNE) |
| std::swap(ValueOnZero, Count); |
| // Check if the value on zero is a constant equal to the bits in the type. |
| if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { |
| if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { |
| // If the other operand is cttz/cttz_zero_undef of N0, and cttz is |
| // legal, combine to just cttz. |
| if ((Count.getOpcode() == ISD::CTTZ || |
| Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && |
| N0 == Count.getOperand(0) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) |
| return DAG.getNode(ISD::CTTZ, DL, VT, N0); |
| // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is |
| // legal, combine to just ctlz. |
| if ((Count.getOpcode() == ISD::CTLZ || |
| Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && |
| N0 == Count.getOperand(0) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) |
| return DAG.getNode(ISD::CTLZ, DL, VT, N0); |
| } |
| } |
| } |
| |
| // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C |
| // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C |
| if (!NotExtCompare && N1C && N2C && N3C && |
| N2C->getAPIntValue() == ~N3C->getAPIntValue() && |
| ((N1C->isAllOnes() && CC == ISD::SETGT) || |
| (N1C->isZero() && CC == ISD::SETLT)) && |
| !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) { |
| SDValue ASR = DAG.getNode( |
| ISD::SRA, DL, CmpOpVT, N0, |
| DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT)); |
| return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT), |
| DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT)); |
| } |
| |
| if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG)) |
| return S; |
| if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG)) |
| return S; |
| |
| return SDValue(); |
| } |
| |
| /// This is a stub for TargetLowering::SimplifySetCC. |
| SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, const SDLoc &DL, |
| bool foldBooleans) { |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, Level, false, this); |
| return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); |
| } |
| |
| /// Given an ISD::SDIV node expressing a divide by constant, return |
| /// a DAG expression to select that will generate the same value by multiplying |
| /// by a magic number. |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| SDValue DAGCombiner::BuildSDIV(SDNode *N) { |
| // when optimising for minimum size, we don't want to expand a div to a mul |
| // and a shift. |
| if (DAG.getMachineFunction().getFunction().hasMinSize()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a |
| /// DAG expression that will generate the same value by right shifting. |
| SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { |
| ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| // Avoid division by zero. |
| if (C->isZero()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Given an ISD::UDIV node expressing a divide by constant, return a DAG |
| /// expression that will generate the same value by multiplying by a magic |
| /// number. |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| SDValue DAGCombiner::BuildUDIV(SDNode *N) { |
| // when optimising for minimum size, we don't want to expand a div to a mul |
| // and a shift. |
| if (DAG.getMachineFunction().getFunction().hasMinSize()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Given an ISD::SREM node expressing a remainder by constant power of 2, |
| /// return a DAG expression that will generate the same value. |
| SDValue DAGCombiner::BuildSREMPow2(SDNode *N) { |
| ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| // Avoid division by zero. |
| if (C->isZero()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| if (SDValue S = TLI.BuildSREMPow2(N, C->getAPIntValue(), DAG, Built)) { |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Determines the LogBase2 value for a non-null input value using the |
| /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). |
| SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { |
| EVT VT = V.getValueType(); |
| SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); |
| SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); |
| SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); |
| return LogBase2; |
| } |
| |
| /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) |
| /// For the reciprocal, we need to find the zero of the function: |
| /// F(X) = 1/X - A [which has a zero at X = 1/A] |
| /// => |
| /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form |
| /// does not require additional intermediate precision] |
| /// For the last iteration, put numerator N into it to gain more precision: |
| /// Result = N X_i + X_i (N - N A X_i) |
| SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, |
| SDNodeFlags Flags) { |
| if (LegalDAG) |
| return SDValue(); |
| |
| // TODO: Handle extended types? |
| EVT VT = Op.getValueType(); |
| if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && |
| VT.getScalarType() != MVT::f64) |
| return SDValue(); |
| |
| // If estimates are explicitly disabled for this function, we're done. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); |
| if (Enabled == TLI.ReciprocalEstimate::Disabled) |
| return SDValue(); |
| |
| // Estimates may be explicitly enabled for this type with a custom number of |
| // refinement steps. |
| int Iterations = TLI.getDivRefinementSteps(VT, MF); |
| if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { |
| AddToWorklist(Est.getNode()); |
| |
| SDLoc DL(Op); |
| if (Iterations) { |
| SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); |
| |
| // Newton iterations: Est = Est + Est (N - Arg * Est) |
| // If this is the last iteration, also multiply by the numerator. |
| for (int i = 0; i < Iterations; ++i) { |
| SDValue MulEst = Est; |
| |
| if (i == Iterations - 1) { |
| MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); |
| AddToWorklist(MulEst.getNode()); |
| } |
| |
| SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| NewEst = DAG.getNode(ISD::FSUB, DL, VT, |
| (i == Iterations - 1 ? N : FPOne), NewEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); |
| AddToWorklist(Est.getNode()); |
| } |
| } else { |
| // If no iterations are available, multiply with N. |
| Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); |
| AddToWorklist(Est.getNode()); |
| } |
| |
| return Est; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) |
| /// For the reciprocal sqrt, we need to find the zero of the function: |
| /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] |
| /// => |
| /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) |
| /// As a result, we precompute A/2 prior to the iteration loop. |
| SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, |
| unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal) { |
| EVT VT = Arg.getValueType(); |
| SDLoc DL(Arg); |
| SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); |
| |
| // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that |
| // this entire sequence requires only one FP constant. |
| SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); |
| HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); |
| |
| // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) |
| for (unsigned i = 0; i < Iterations; ++i) { |
| SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); |
| NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); |
| NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); |
| Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); |
| } |
| |
| // If non-reciprocal square root is requested, multiply the result by Arg. |
| if (!Reciprocal) |
| Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); |
| |
| return Est; |
| } |
| |
| /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) |
| /// For the reciprocal sqrt, we need to find the zero of the function: |
| /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] |
| /// => |
| /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) |
| SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, |
| unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal) { |
| EVT VT = Arg.getValueType(); |
| SDLoc DL(Arg); |
| SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); |
| SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); |
| |
| // This routine must enter the loop below to work correctly |
| // when (Reciprocal == false). |
| assert(Iterations > 0); |
| |
| // Newton iterations for reciprocal square root: |
| // E = (E * -0.5) * ((A * E) * E + -3.0) |
| for (unsigned i = 0; i < Iterations; ++i) { |
| SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); |
| SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); |
| SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); |
| |
| // When calculating a square root at the last iteration build: |
| // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) |
| // (notice a common subexpression) |
| SDValue LHS; |
| if (Reciprocal || (i + 1) < Iterations) { |
| // RSQRT: LHS = (E * -0.5) |
| LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); |
| } else { |
| // SQRT: LHS = (A * E) * -0.5 |
| LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); |
| } |
| |
| Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); |
| } |
| |
| return Est; |
| } |
| |
| /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case |
| /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if |
| /// Op can be zero. |
| SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, |
| bool Reciprocal) { |
| if (LegalDAG) |
| return SDValue(); |
| |
| // TODO: Handle extended types? |
| EVT VT = Op.getValueType(); |
| if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && |
| VT.getScalarType() != MVT::f64) |
| return SDValue(); |
| |
| // If estimates are explicitly disabled for this function, we're done. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); |
| if (Enabled == TLI.ReciprocalEstimate::Disabled) |
| return SDValue(); |
| |
| // Estimates may be explicitly enabled for this type with a custom number of |
| // refinement steps. |
| int Iterations = TLI.getSqrtRefinementSteps(VT, MF); |
| |
| bool UseOneConstNR = false; |
| if (SDValue Est = |
| TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, |
| Reciprocal)) { |
| AddToWorklist(Est.getNode()); |
| |
| if (Iterations) |
| Est = UseOneConstNR |
| ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) |
| : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); |
| if (!Reciprocal) { |
| SDLoc DL(Op); |
| // Try the target specific test first. |
| SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); |
| |
| // The estimate is now completely wrong if the input was exactly 0.0 or |
| // possibly a denormal. Force the answer to 0.0 or value provided by |
| // target for those cases. |
| Est = DAG.getNode( |
| Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, |
| Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); |
| } |
| return Est; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { |
| return buildSqrtEstimateImpl(Op, Flags, true); |
| } |
| |
| SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { |
| return buildSqrtEstimateImpl(Op, Flags, false); |
| } |
| |
| /// Return true if there is any possibility that the two addresses overlap. |
| bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const { |
| |
| struct MemUseCharacteristics { |
| bool IsVolatile; |
| bool IsAtomic; |
| SDValue BasePtr; |
| int64_t Offset; |
| std::optional<int64_t> NumBytes; |
| MachineMemOperand *MMO; |
| }; |
| |
| auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { |
| if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { |
| int64_t Offset = 0; |
| if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) |
| Offset = (LSN->getAddressingMode() == ISD::PRE_INC) |
| ? C->getSExtValue() |
| : (LSN->getAddressingMode() == ISD::PRE_DEC) |
| ? -1 * C->getSExtValue() |
| : 0; |
| uint64_t Size = |
| MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); |
| return {LSN->isVolatile(), |
| LSN->isAtomic(), |
| LSN->getBasePtr(), |
| Offset /*base offset*/, |
| std::optional<int64_t>(Size), |
| LSN->getMemOperand()}; |
| } |
| if (const auto *LN = cast<LifetimeSDNode>(N)) |
| return {false /*isVolatile*/, |
| /*isAtomic*/ false, |
| LN->getOperand(1), |
| (LN->hasOffset()) ? LN->getOffset() : 0, |
| (LN->hasOffset()) ? std::optional<int64_t>(LN->getSize()) |
| : std::optional<int64_t>(), |
| (MachineMemOperand *)nullptr}; |
| // Default. |
| return {false /*isvolatile*/, |
| /*isAtomic*/ false, SDValue(), |
| (int64_t)0 /*offset*/, std::optional<int64_t>() /*size*/, |
| (MachineMemOperand *)nullptr}; |
| }; |
| |
| MemUseCharacteristics MUC0 = getCharacteristics(Op0), |
| MUC1 = getCharacteristics(Op1); |
| |
| // If they are to the same address, then they must be aliases. |
| if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && |
| MUC0.Offset == MUC1.Offset) |
| return true; |
| |
| // If they are both volatile then they cannot be reordered. |
| if (MUC0.IsVolatile && MUC1.IsVolatile) |
| return true; |
| |
| // Be conservative about atomics for the moment |
| // TODO: This is way overconservative for unordered atomics (see D66309) |
| if (MUC0.IsAtomic && MUC1.IsAtomic) |
| return true; |
| |
| if (MUC0.MMO && MUC1.MMO) { |
| if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || |
| (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) |
| return false; |
| } |
| |
| // Try to prove that there is aliasing, or that there is no aliasing. Either |
| // way, we can return now. If nothing can be proved, proceed with more tests. |
| bool IsAlias; |
| if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, |
| DAG, IsAlias)) |
| return IsAlias; |
| |
| // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if |
| // either are not known. |
| if (!MUC0.MMO || !MUC1.MMO) |
| return true; |
| |
| // If one operation reads from invariant memory, and the other may store, they |
| // cannot alias. These should really be checking the equivalent of mayWrite, |
| // but it only matters for memory nodes other than load /store. |
| if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || |
| (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) |
| return false; |
| |
| // If we know required SrcValue1 and SrcValue2 have relatively large |
| // alignment compared to the size and offset of the access, we may be able |
| // to prove they do not alias. This check is conservative for now to catch |
| // cases created by splitting vector types, it only works when the offsets are |
| // multiples of the size of the data. |
| int64_t SrcValOffset0 = MUC0.MMO->getOffset(); |
| int64_t SrcValOffset1 = MUC1.MMO->getOffset(); |
| Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); |
| Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); |
| auto &Size0 = MUC0.NumBytes; |
| auto &Size1 = MUC1.NumBytes; |
| if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && |
| Size0.has_value() && Size1.has_value() && *Size0 == *Size1 && |
| OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && |
| SrcValOffset1 % *Size1 == 0) { |
| int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); |
| int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); |
| |
| // There is no overlap between these relatively aligned accesses of |
| // similar size. Return no alias. |
| if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) |
| return false; |
| } |
| |
| bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 |
| ? CombinerGlobalAA |
| : DAG.getSubtarget().useAA(); |
| #ifndef NDEBUG |
| if (CombinerAAOnlyFunc.getNumOccurrences() && |
| CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) |
| UseAA = false; |
| #endif |
| |
| if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0 && |
| Size1) { |
| // Use alias analysis information. |
| int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); |
| int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; |
| int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; |
| if (AA->isNoAlias( |
| MemoryLocation(MUC0.MMO->getValue(), Overlap0, |
| UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), |
| MemoryLocation(MUC1.MMO->getValue(), Overlap1, |
| UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) |
| return false; |
| } |
| |
| // Otherwise we have to assume they alias. |
| return true; |
| } |
| |
| /// Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, |
| SmallVectorImpl<SDValue> &Aliases) { |
| SmallVector<SDValue, 8> Chains; // List of chains to visit. |
| SmallPtrSet<SDNode *, 16> Visited; // Visited node set. |
| |
| // Get alias information for node. |
| // TODO: relax aliasing for unordered atomics (see D66309) |
| const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); |
| |
| // Starting off. |
| Chains.push_back(OriginalChain); |
| unsigned Depth = 0; |
| |
| // Attempt to improve chain by a single step |
| auto ImproveChain = [&](SDValue &C) -> bool { |
| switch (C.getOpcode()) { |
| case ISD::EntryToken: |
| // No need to mark EntryToken. |
| C = SDValue(); |
| return true; |
| case ISD::LOAD: |
| case ISD::STORE: { |
| // Get alias information for C. |
| // TODO: Relax aliasing for unordered atomics (see D66309) |
| bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && |
| cast<LSBaseSDNode>(C.getNode())->isSimple(); |
| if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) { |
| // Look further up the chain. |
| C = C.getOperand(0); |
| return true; |
| } |
| // Alias, so stop here. |
| return false; |
| } |
| |
| case ISD::CopyFromReg: |
| // Always forward past past CopyFromReg. |
| C = C.getOperand(0); |
| return true; |
| |
| case ISD::LIFETIME_START: |
| case ISD::LIFETIME_END: { |
| // We can forward past any lifetime start/end that can be proven not to |
| // alias the memory access. |
| if (!mayAlias(N, C.getNode())) { |
| // Look further up the chain. |
| C = C.getOperand(0); |
| return true; |
| } |
| return false; |
| } |
| default: |
| return false; |
| } |
| }; |
| |
| // Look at each chain and determine if it is an alias. If so, add it to the |
| // aliases list. If not, then continue up the chain looking for the next |
| // candidate. |
| while (!Chains.empty()) { |
| SDValue Chain = Chains.pop_back_val(); |
| |
| // Don't bother if we've seen Chain before. |
| if (!Visited.insert(Chain.getNode()).second) |
| continue; |
| |
| // For TokenFactor nodes, look at each operand and only continue up the |
| // chain until we reach the depth limit. |
| // |
| // FIXME: The depth check could be made to return the last non-aliasing |
| // chain we found before we hit a tokenfactor rather than the original |
| // chain. |
| if (Depth > TLI.getGatherAllAliasesMaxDepth()) { |
| Aliases.clear(); |
| Aliases.push_back(OriginalChain); |
| return; |
| } |
| |
| if (Chain.getOpcode() == ISD::TokenFactor) { |
| // We have to check each of the operands of the token factor for "small" |
| // token factors, so we queue them up. Adding the operands to the queue |
| // (stack) in reverse order maintains the original order and increases the |
| // likelihood that getNode will find a matching token factor (CSE.) |
| if (Chain.getNumOperands() > 16) { |
| Aliases.push_back(Chain); |
| continue; |
| } |
| for (unsigned n = Chain.getNumOperands(); n;) |
| Chains.push_back(Chain.getOperand(--n)); |
| ++Depth; |
| continue; |
| } |
| // Everything else |
| if (ImproveChain(Chain)) { |
| // Updated Chain Found, Consider new chain if one exists. |
| if (Chain.getNode()) |
| Chains.push_back(Chain); |
| ++Depth; |
| continue; |
| } |
| // No Improved Chain Possible, treat as Alias. |
| Aliases.push_back(Chain); |
| } |
| } |
| |
| /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain |
| /// (aliasing node.) |
| SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { |
| if (OptLevel == CodeGenOpt::None) |
| return OldChain; |
| |
| // Ops for replacing token factor. |
| SmallVector<SDValue, 8> Aliases; |
| |
| // Accumulate all the aliases to this node. |
| GatherAllAliases(N, OldChain, Aliases); |
| |
| // If no operands then chain to entry token. |
| if (Aliases.size() == 0) |
| return DAG.getEntryNode(); |
| |
| // If a single operand then chain to it. We don't need to revisit it. |
| if (Aliases.size() == 1) |
| return Aliases[0]; |
| |
| // Construct a custom tailored token factor. |
| return DAG.getTokenFactor(SDLoc(N), Aliases); |
| } |
| |
| // This function tries to collect a bunch of potentially interesting |
| // nodes to improve the chains of, all at once. This might seem |
| // redundant, as this function gets called when visiting every store |
| // node, so why not let the work be done on each store as it's visited? |
| // |
| // I believe this is mainly important because mergeConsecutiveStores |
| // is unable to deal with merging stores of different sizes, so unless |
| // we improve the chains of all the potential candidates up-front |
| // before running mergeConsecutiveStores, it might only see some of |
| // the nodes that will eventually be candidates, and then not be able |
| // to go from a partially-merged state to the desired final |
| // fully-merged state. |
| |
| bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { |
| SmallVector<StoreSDNode *, 8> ChainedStores; |
| StoreSDNode *STChain = St; |
| // Intervals records which offsets from BaseIndex have been covered. In |
| // the common case, every store writes to the immediately previous address |
| // space and thus merged with the previous interval at insertion time. |
| |
| using IMap = llvm::IntervalMap<int64_t, std::monostate, 8, |
| IntervalMapHalfOpenInfo<int64_t>>; |
| IMap::Allocator A; |
| IMap Intervals(A); |
| |
| // This holds the base pointer, index, and the offset in bytes from the base |
| // pointer. |
| const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); |
| |
| // We must have a base and an offset. |
| if (!BasePtr.getBase().getNode()) |
| return false; |
| |
| // Do not handle stores to undef base pointers. |
| if (BasePtr.getBase().isUndef()) |
| return false; |
| |
| // Do not handle stores to opaque types |
| if (St->getMemoryVT().isZeroSized()) |
| return false; |
| |
| // BaseIndexOffset assumes that offsets are fixed-size, which |
| // is not valid for scalable vectors where the offsets are |
| // scaled by `vscale`, so bail out early. |
| if (St->getMemoryVT().isScalableVector()) |
| return false; |
| |
| // Add ST's interval. |
| Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, |
| std::monostate{}); |
| |
| while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { |
| if (Chain->getMemoryVT().isScalableVector()) |
| return false; |
| |
| // If the chain has more than one use, then we can't reorder the mem ops. |
| if (!SDValue(Chain, 0)->hasOneUse()) |
| break; |
| // TODO: Relax for unordered atomics (see D66309) |
| if (!Chain->isSimple() || Chain->isIndexed()) |
| break; |
| |
| // Find the base pointer and offset for this memory node. |
| const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); |
| // Check that the base pointer is the same as the original one. |
| int64_t Offset; |
| if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) |
| break; |
| int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; |
| // Make sure we don't overlap with other intervals by checking the ones to |
| // the left or right before inserting. |
| auto I = Intervals.find(Offset); |
| // If there's a next interval, we should end before it. |
| if (I != Intervals.end() && I.start() < (Offset + Length)) |
| break; |
| // If there's a previous interval, we should start after it. |
| if (I != Intervals.begin() && (--I).stop() <= Offset) |
| break; |
| Intervals.insert(Offset, Offset + Length, std::monostate{}); |
| |
| ChainedStores.push_back(Chain); |
| STChain = Chain; |
| } |
| |
| // If we didn't find a chained store, exit. |
| if (ChainedStores.size() == 0) |
| return false; |
| |
| // Improve all chained stores (St and ChainedStores members) starting from |
| // where the store chain ended and return single TokenFactor. |
| SDValue NewChain = STChain->getChain(); |
| SmallVector<SDValue, 8> TFOps; |
| for (unsigned I = ChainedStores.size(); I;) { |
| StoreSDNode *S = ChainedStores[--I]; |
| SDValue BetterChain = FindBetterChain(S, NewChain); |
| S = cast<StoreSDNode>(DAG.UpdateNodeOperands( |
| S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); |
| TFOps.push_back(SDValue(S, 0)); |
| ChainedStores[I] = S; |
| } |
| |
| // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. |
| SDValue BetterChain = FindBetterChain(St, NewChain); |
| SDValue NewST; |
| if (St->isTruncatingStore()) |
| NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), |
| St->getBasePtr(), St->getMemoryVT(), |
| St->getMemOperand()); |
| else |
| NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), |
| St->getBasePtr(), St->getMemOperand()); |
| |
| TFOps.push_back(NewST); |
| |
| // If we improved every element of TFOps, then we've lost the dependence on |
| // NewChain to successors of St and we need to add it back to TFOps. Do so at |
| // the beginning to keep relative order consistent with FindBetterChains. |
| auto hasImprovedChain = [&](SDValue ST) -> bool { |
| return ST->getOperand(0) != NewChain; |
| }; |
| bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); |
| if (AddNewChain) |
| TFOps.insert(TFOps.begin(), NewChain); |
| |
| SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); |
| CombineTo(St, TF); |
| |
| // Add TF and its operands to the worklist. |
| AddToWorklist(TF.getNode()); |
| for (const SDValue &Op : TF->ops()) |
| AddToWorklist(Op.getNode()); |
| AddToWorklist(STChain); |
| return true; |
| } |
| |
| bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { |
| if (OptLevel == CodeGenOpt::None) |
| return false; |
| |
| const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); |
| |
| // We must have a base and an offset. |
| if (!BasePtr.getBase().getNode()) |
| return false; |
| |
| // Do not handle stores to undef base pointers. |
| if (BasePtr.getBase().isUndef()) |
| return false; |
| |
| // Directly improve a chain of disjoint stores starting at St. |
| if (parallelizeChainedStores(St)) |
| return true; |
| |
| // Improve St's Chain.. |
| SDValue BetterChain = FindBetterChain(St, St->getChain()); |
| if (St->getChain() != BetterChain) { |
| replaceStoreChain(St, BetterChain); |
| return true; |
| } |
| return false; |
| } |
| |
| /// This is the entry point for the file. |
| void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, |
| CodeGenOpt::Level OptLevel) { |
| /// This is the main entry point to this class. |
| DAGCombiner(*this, AA, OptLevel).Run(Level); |
| } |