| //===- RDFGraph.cpp -------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Target-independent, SSA-based data flow graph for register data flow (RDF). |
| // |
| #include "llvm/CodeGen/RDFGraph.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominanceFrontier.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RDFRegisters.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace rdf; |
| |
| // Printing functions. Have them here first, so that the rest of the code |
| // can use them. |
| namespace llvm { |
| namespace rdf { |
| |
| raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { |
| if (!P.Mask.all()) |
| OS << ':' << PrintLaneMask(P.Mask); |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { |
| auto &TRI = P.G.getTRI(); |
| if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) |
| OS << TRI.getName(P.Obj.Reg); |
| else |
| OS << '#' << P.Obj.Reg; |
| OS << PrintLaneMaskOpt(P.Obj.Mask); |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { |
| auto NA = P.G.addr<NodeBase*>(P.Obj); |
| uint16_t Attrs = NA.Addr->getAttrs(); |
| uint16_t Kind = NodeAttrs::kind(Attrs); |
| uint16_t Flags = NodeAttrs::flags(Attrs); |
| switch (NodeAttrs::type(Attrs)) { |
| case NodeAttrs::Code: |
| switch (Kind) { |
| case NodeAttrs::Func: OS << 'f'; break; |
| case NodeAttrs::Block: OS << 'b'; break; |
| case NodeAttrs::Stmt: OS << 's'; break; |
| case NodeAttrs::Phi: OS << 'p'; break; |
| default: OS << "c?"; break; |
| } |
| break; |
| case NodeAttrs::Ref: |
| if (Flags & NodeAttrs::Undef) |
| OS << '/'; |
| if (Flags & NodeAttrs::Dead) |
| OS << '\\'; |
| if (Flags & NodeAttrs::Preserving) |
| OS << '+'; |
| if (Flags & NodeAttrs::Clobbering) |
| OS << '~'; |
| switch (Kind) { |
| case NodeAttrs::Use: OS << 'u'; break; |
| case NodeAttrs::Def: OS << 'd'; break; |
| case NodeAttrs::Block: OS << 'b'; break; |
| default: OS << "r?"; break; |
| } |
| break; |
| default: |
| OS << '?'; |
| break; |
| } |
| OS << P.Obj; |
| if (Flags & NodeAttrs::Shadow) |
| OS << '"'; |
| return OS; |
| } |
| |
| static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, |
| const DataFlowGraph &G) { |
| OS << Print(RA.Id, G) << '<' |
| << Print(RA.Addr->getRegRef(G), G) << '>'; |
| if (RA.Addr->getFlags() & NodeAttrs::Fixed) |
| OS << '!'; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { |
| printRefHeader(OS, P.Obj, P.G); |
| OS << '('; |
| if (NodeId N = P.Obj.Addr->getReachingDef()) |
| OS << Print(N, P.G); |
| OS << ','; |
| if (NodeId N = P.Obj.Addr->getReachedDef()) |
| OS << Print(N, P.G); |
| OS << ','; |
| if (NodeId N = P.Obj.Addr->getReachedUse()) |
| OS << Print(N, P.G); |
| OS << "):"; |
| if (NodeId N = P.Obj.Addr->getSibling()) |
| OS << Print(N, P.G); |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { |
| printRefHeader(OS, P.Obj, P.G); |
| OS << '('; |
| if (NodeId N = P.Obj.Addr->getReachingDef()) |
| OS << Print(N, P.G); |
| OS << "):"; |
| if (NodeId N = P.Obj.Addr->getSibling()) |
| OS << Print(N, P.G); |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, |
| const Print<NodeAddr<PhiUseNode*>> &P) { |
| printRefHeader(OS, P.Obj, P.G); |
| OS << '('; |
| if (NodeId N = P.Obj.Addr->getReachingDef()) |
| OS << Print(N, P.G); |
| OS << ','; |
| if (NodeId N = P.Obj.Addr->getPredecessor()) |
| OS << Print(N, P.G); |
| OS << "):"; |
| if (NodeId N = P.Obj.Addr->getSibling()) |
| OS << Print(N, P.G); |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { |
| switch (P.Obj.Addr->getKind()) { |
| case NodeAttrs::Def: |
| OS << PrintNode<DefNode*>(P.Obj, P.G); |
| break; |
| case NodeAttrs::Use: |
| if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) |
| OS << PrintNode<PhiUseNode*>(P.Obj, P.G); |
| else |
| OS << PrintNode<UseNode*>(P.Obj, P.G); |
| break; |
| } |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { |
| unsigned N = P.Obj.size(); |
| for (auto I : P.Obj) { |
| OS << Print(I.Id, P.G); |
| if (--N) |
| OS << ' '; |
| } |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { |
| unsigned N = P.Obj.size(); |
| for (auto I : P.Obj) { |
| OS << Print(I, P.G); |
| if (--N) |
| OS << ' '; |
| } |
| return OS; |
| } |
| |
| namespace { |
| |
| template <typename T> |
| struct PrintListV { |
| PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} |
| |
| using Type = T; |
| const NodeList &List; |
| const DataFlowGraph &G; |
| }; |
| |
| template <typename T> |
| raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { |
| unsigned N = P.List.size(); |
| for (NodeAddr<T> A : P.List) { |
| OS << PrintNode<T>(A, P.G); |
| if (--N) |
| OS << ", "; |
| } |
| return OS; |
| } |
| |
| } // end anonymous namespace |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { |
| OS << Print(P.Obj.Id, P.G) << ": phi [" |
| << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; |
| return OS; |
| } |
| |
| raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) { |
| const MachineInstr &MI = *P.Obj.Addr->getCode(); |
| unsigned Opc = MI.getOpcode(); |
| OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); |
| // Print the target for calls and branches (for readability). |
| if (MI.isCall() || MI.isBranch()) { |
| MachineInstr::const_mop_iterator T = |
| llvm::find_if(MI.operands(), |
| [] (const MachineOperand &Op) -> bool { |
| return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); |
| }); |
| if (T != MI.operands_end()) { |
| OS << ' '; |
| if (T->isMBB()) |
| OS << printMBBReference(*T->getMBB()); |
| else if (T->isGlobal()) |
| OS << T->getGlobal()->getName(); |
| else if (T->isSymbol()) |
| OS << T->getSymbolName(); |
| } |
| } |
| OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, |
| const Print<NodeAddr<InstrNode*>> &P) { |
| switch (P.Obj.Addr->getKind()) { |
| case NodeAttrs::Phi: |
| OS << PrintNode<PhiNode*>(P.Obj, P.G); |
| break; |
| case NodeAttrs::Stmt: |
| OS << PrintNode<StmtNode*>(P.Obj, P.G); |
| break; |
| default: |
| OS << "instr? " << Print(P.Obj.Id, P.G); |
| break; |
| } |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, |
| const Print<NodeAddr<BlockNode*>> &P) { |
| MachineBasicBlock *BB = P.Obj.Addr->getCode(); |
| unsigned NP = BB->pred_size(); |
| std::vector<int> Ns; |
| auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { |
| unsigned N = Ns.size(); |
| for (int I : Ns) { |
| OS << "%bb." << I; |
| if (--N) |
| OS << ", "; |
| } |
| }; |
| |
| OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) |
| << " --- preds(" << NP << "): "; |
| for (MachineBasicBlock *B : BB->predecessors()) |
| Ns.push_back(B->getNumber()); |
| PrintBBs(Ns); |
| |
| unsigned NS = BB->succ_size(); |
| OS << " succs(" << NS << "): "; |
| Ns.clear(); |
| for (MachineBasicBlock *B : BB->successors()) |
| Ns.push_back(B->getNumber()); |
| PrintBBs(Ns); |
| OS << '\n'; |
| |
| for (auto I : P.Obj.Addr->members(P.G)) |
| OS << PrintNode<InstrNode*>(I, P.G) << '\n'; |
| return OS; |
| } |
| |
| raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) { |
| OS << "DFG dump:[\n" << Print(P.Obj.Id, P.G) << ": Function: " |
| << P.Obj.Addr->getCode()->getName() << '\n'; |
| for (auto I : P.Obj.Addr->members(P.G)) |
| OS << PrintNode<BlockNode*>(I, P.G) << '\n'; |
| OS << "]\n"; |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { |
| OS << '{'; |
| for (auto I : P.Obj) |
| OS << ' ' << Print(I, P.G); |
| OS << " }"; |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { |
| P.Obj.print(OS); |
| return OS; |
| } |
| |
| raw_ostream &operator<< (raw_ostream &OS, |
| const Print<DataFlowGraph::DefStack> &P) { |
| for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { |
| OS << Print(I->Id, P.G) |
| << '<' << Print(I->Addr->getRegRef(P.G), P.G) << '>'; |
| I.down(); |
| if (I != E) |
| OS << ' '; |
| } |
| return OS; |
| } |
| |
| } // end namespace rdf |
| } // end namespace llvm |
| |
| // Node allocation functions. |
| // |
| // Node allocator is like a slab memory allocator: it allocates blocks of |
| // memory in sizes that are multiples of the size of a node. Each block has |
| // the same size. Nodes are allocated from the currently active block, and |
| // when it becomes full, a new one is created. |
| // There is a mapping scheme between node id and its location in a block, |
| // and within that block is described in the header file. |
| // |
| void NodeAllocator::startNewBlock() { |
| void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); |
| char *P = static_cast<char*>(T); |
| Blocks.push_back(P); |
| // Check if the block index is still within the allowed range, i.e. less |
| // than 2^N, where N is the number of bits in NodeId for the block index. |
| // BitsPerIndex is the number of bits per node index. |
| assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && |
| "Out of bits for block index"); |
| ActiveEnd = P; |
| } |
| |
| bool NodeAllocator::needNewBlock() { |
| if (Blocks.empty()) |
| return true; |
| |
| char *ActiveBegin = Blocks.back(); |
| uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; |
| return Index >= NodesPerBlock; |
| } |
| |
| NodeAddr<NodeBase*> NodeAllocator::New() { |
| if (needNewBlock()) |
| startNewBlock(); |
| |
| uint32_t ActiveB = Blocks.size()-1; |
| uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; |
| NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), |
| makeId(ActiveB, Index) }; |
| ActiveEnd += NodeMemSize; |
| return NA; |
| } |
| |
| NodeId NodeAllocator::id(const NodeBase *P) const { |
| uintptr_t A = reinterpret_cast<uintptr_t>(P); |
| for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { |
| uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); |
| if (A < B || A >= B + NodesPerBlock*NodeMemSize) |
| continue; |
| uint32_t Idx = (A-B)/NodeMemSize; |
| return makeId(i, Idx); |
| } |
| llvm_unreachable("Invalid node address"); |
| } |
| |
| void NodeAllocator::clear() { |
| MemPool.Reset(); |
| Blocks.clear(); |
| ActiveEnd = nullptr; |
| } |
| |
| // Insert node NA after "this" in the circular chain. |
| void NodeBase::append(NodeAddr<NodeBase*> NA) { |
| NodeId Nx = Next; |
| // If NA is already "next", do nothing. |
| if (Next != NA.Id) { |
| Next = NA.Id; |
| NA.Addr->Next = Nx; |
| } |
| } |
| |
| // Fundamental node manipulator functions. |
| |
| // Obtain the register reference from a reference node. |
| RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { |
| assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
| if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) |
| return G.unpack(Ref.PR); |
| assert(Ref.Op != nullptr); |
| return G.makeRegRef(*Ref.Op); |
| } |
| |
| // Set the register reference in the reference node directly (for references |
| // in phi nodes). |
| void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { |
| assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
| assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); |
| Ref.PR = G.pack(RR); |
| } |
| |
| // Set the register reference in the reference node based on a machine |
| // operand (for references in statement nodes). |
| void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { |
| assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
| assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); |
| (void)G; |
| Ref.Op = Op; |
| } |
| |
| // Get the owner of a given reference node. |
| NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { |
| NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); |
| |
| while (NA.Addr != this) { |
| if (NA.Addr->getType() == NodeAttrs::Code) |
| return NA; |
| NA = G.addr<NodeBase*>(NA.Addr->getNext()); |
| } |
| llvm_unreachable("No owner in circular list"); |
| } |
| |
| // Connect the def node to the reaching def node. |
| void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { |
| Ref.RD = DA.Id; |
| Ref.Sib = DA.Addr->getReachedDef(); |
| DA.Addr->setReachedDef(Self); |
| } |
| |
| // Connect the use node to the reaching def node. |
| void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { |
| Ref.RD = DA.Id; |
| Ref.Sib = DA.Addr->getReachedUse(); |
| DA.Addr->setReachedUse(Self); |
| } |
| |
| // Get the first member of the code node. |
| NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { |
| if (Code.FirstM == 0) |
| return NodeAddr<NodeBase*>(); |
| return G.addr<NodeBase*>(Code.FirstM); |
| } |
| |
| // Get the last member of the code node. |
| NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { |
| if (Code.LastM == 0) |
| return NodeAddr<NodeBase*>(); |
| return G.addr<NodeBase*>(Code.LastM); |
| } |
| |
| // Add node NA at the end of the member list of the given code node. |
| void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { |
| NodeAddr<NodeBase*> ML = getLastMember(G); |
| if (ML.Id != 0) { |
| ML.Addr->append(NA); |
| } else { |
| Code.FirstM = NA.Id; |
| NodeId Self = G.id(this); |
| NA.Addr->setNext(Self); |
| } |
| Code.LastM = NA.Id; |
| } |
| |
| // Add node NA after member node MA in the given code node. |
| void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, |
| const DataFlowGraph &G) { |
| MA.Addr->append(NA); |
| if (Code.LastM == MA.Id) |
| Code.LastM = NA.Id; |
| } |
| |
| // Remove member node NA from the given code node. |
| void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { |
| NodeAddr<NodeBase*> MA = getFirstMember(G); |
| assert(MA.Id != 0); |
| |
| // Special handling if the member to remove is the first member. |
| if (MA.Id == NA.Id) { |
| if (Code.LastM == MA.Id) { |
| // If it is the only member, set both first and last to 0. |
| Code.FirstM = Code.LastM = 0; |
| } else { |
| // Otherwise, advance the first member. |
| Code.FirstM = MA.Addr->getNext(); |
| } |
| return; |
| } |
| |
| while (MA.Addr != this) { |
| NodeId MX = MA.Addr->getNext(); |
| if (MX == NA.Id) { |
| MA.Addr->setNext(NA.Addr->getNext()); |
| // If the member to remove happens to be the last one, update the |
| // LastM indicator. |
| if (Code.LastM == NA.Id) |
| Code.LastM = MA.Id; |
| return; |
| } |
| MA = G.addr<NodeBase*>(MX); |
| } |
| llvm_unreachable("No such member"); |
| } |
| |
| // Return the list of all members of the code node. |
| NodeList CodeNode::members(const DataFlowGraph &G) const { |
| static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; |
| return members_if(True, G); |
| } |
| |
| // Return the owner of the given instr node. |
| NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { |
| NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); |
| |
| while (NA.Addr != this) { |
| assert(NA.Addr->getType() == NodeAttrs::Code); |
| if (NA.Addr->getKind() == NodeAttrs::Block) |
| return NA; |
| NA = G.addr<NodeBase*>(NA.Addr->getNext()); |
| } |
| llvm_unreachable("No owner in circular list"); |
| } |
| |
| // Add the phi node PA to the given block node. |
| void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { |
| NodeAddr<NodeBase*> M = getFirstMember(G); |
| if (M.Id == 0) { |
| addMember(PA, G); |
| return; |
| } |
| |
| assert(M.Addr->getType() == NodeAttrs::Code); |
| if (M.Addr->getKind() == NodeAttrs::Stmt) { |
| // If the first member of the block is a statement, insert the phi as |
| // the first member. |
| Code.FirstM = PA.Id; |
| PA.Addr->setNext(M.Id); |
| } else { |
| // If the first member is a phi, find the last phi, and append PA to it. |
| assert(M.Addr->getKind() == NodeAttrs::Phi); |
| NodeAddr<NodeBase*> MN = M; |
| do { |
| M = MN; |
| MN = G.addr<NodeBase*>(M.Addr->getNext()); |
| assert(MN.Addr->getType() == NodeAttrs::Code); |
| } while (MN.Addr->getKind() == NodeAttrs::Phi); |
| |
| // M is the last phi. |
| addMemberAfter(M, PA, G); |
| } |
| } |
| |
| // Find the block node corresponding to the machine basic block BB in the |
| // given func node. |
| NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, |
| const DataFlowGraph &G) const { |
| auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { |
| return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; |
| }; |
| NodeList Ms = members_if(EqBB, G); |
| if (!Ms.empty()) |
| return Ms[0]; |
| return NodeAddr<BlockNode*>(); |
| } |
| |
| // Get the block node for the entry block in the given function. |
| NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { |
| MachineBasicBlock *EntryB = &getCode()->front(); |
| return findBlock(EntryB, G); |
| } |
| |
| // Target operand information. |
| // |
| |
| // For a given instruction, check if there are any bits of RR that can remain |
| // unchanged across this def. |
| bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) |
| const { |
| return TII.isPredicated(In); |
| } |
| |
| // Check if the definition of RR produces an unspecified value. |
| bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) |
| const { |
| const MachineOperand &Op = In.getOperand(OpNum); |
| if (Op.isRegMask()) |
| return true; |
| assert(Op.isReg()); |
| if (In.isCall()) |
| if (Op.isDef() && Op.isDead()) |
| return true; |
| return false; |
| } |
| |
| // Check if the given instruction specifically requires |
| bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) |
| const { |
| if (In.isCall() || In.isReturn() || In.isInlineAsm()) |
| return true; |
| // Check for a tail call. |
| if (In.isBranch()) |
| for (const MachineOperand &O : In.operands()) |
| if (O.isGlobal() || O.isSymbol()) |
| return true; |
| |
| const MCInstrDesc &D = In.getDesc(); |
| if (D.implicit_defs().empty() && D.implicit_uses().empty()) |
| return false; |
| const MachineOperand &Op = In.getOperand(OpNum); |
| // If there is a sub-register, treat the operand as non-fixed. Currently, |
| // fixed registers are those that are listed in the descriptor as implicit |
| // uses or defs, and those lists do not allow sub-registers. |
| if (Op.getSubReg() != 0) |
| return false; |
| Register Reg = Op.getReg(); |
| ArrayRef<MCPhysReg> ImpOps = |
| Op.isDef() ? D.implicit_defs() : D.implicit_uses(); |
| return is_contained(ImpOps, Reg); |
| } |
| |
| // |
| // The data flow graph construction. |
| // |
| |
| DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
| const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, |
| const MachineDominanceFrontier &mdf) |
| : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii), |
| TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), |
| LiveIns(PRI) { |
| } |
| |
| DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
| const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, |
| const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) |
| : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), |
| LiveIns(PRI) { |
| } |
| |
| // The implementation of the definition stack. |
| // Each register reference has its own definition stack. In particular, |
| // for a register references "Reg" and "Reg:subreg" will each have their |
| // own definition stacks. |
| |
| // Construct a stack iterator. |
| DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, |
| bool Top) : DS(S) { |
| if (!Top) { |
| // Initialize to bottom. |
| Pos = 0; |
| return; |
| } |
| // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). |
| Pos = DS.Stack.size(); |
| while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) |
| Pos--; |
| } |
| |
| // Return the size of the stack, including block delimiters. |
| unsigned DataFlowGraph::DefStack::size() const { |
| unsigned S = 0; |
| for (auto I = top(), E = bottom(); I != E; I.down()) |
| S++; |
| return S; |
| } |
| |
| // Remove the top entry from the stack. Remove all intervening delimiters |
| // so that after this, the stack is either empty, or the top of the stack |
| // is a non-delimiter. |
| void DataFlowGraph::DefStack::pop() { |
| assert(!empty()); |
| unsigned P = nextDown(Stack.size()); |
| Stack.resize(P); |
| } |
| |
| // Push a delimiter for block node N on the stack. |
| void DataFlowGraph::DefStack::start_block(NodeId N) { |
| assert(N != 0); |
| Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); |
| } |
| |
| // Remove all nodes from the top of the stack, until the delimited for |
| // block node N is encountered. Remove the delimiter as well. In effect, |
| // this will remove from the stack all definitions from block N. |
| void DataFlowGraph::DefStack::clear_block(NodeId N) { |
| assert(N != 0); |
| unsigned P = Stack.size(); |
| while (P > 0) { |
| bool Found = isDelimiter(Stack[P-1], N); |
| P--; |
| if (Found) |
| break; |
| } |
| // This will also remove the delimiter, if found. |
| Stack.resize(P); |
| } |
| |
| // Move the stack iterator up by one. |
| unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { |
| // Get the next valid position after P (skipping all delimiters). |
| // The input position P does not have to point to a non-delimiter. |
| unsigned SS = Stack.size(); |
| bool IsDelim; |
| assert(P < SS); |
| do { |
| P++; |
| IsDelim = isDelimiter(Stack[P-1]); |
| } while (P < SS && IsDelim); |
| assert(!IsDelim); |
| return P; |
| } |
| |
| // Move the stack iterator down by one. |
| unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { |
| // Get the preceding valid position before P (skipping all delimiters). |
| // The input position P does not have to point to a non-delimiter. |
| assert(P > 0 && P <= Stack.size()); |
| bool IsDelim = isDelimiter(Stack[P-1]); |
| do { |
| if (--P == 0) |
| break; |
| IsDelim = isDelimiter(Stack[P-1]); |
| } while (P > 0 && IsDelim); |
| assert(!IsDelim); |
| return P; |
| } |
| |
| // Register information. |
| |
| RegisterSet DataFlowGraph::getLandingPadLiveIns() const { |
| RegisterSet LR; |
| const Function &F = MF.getFunction(); |
| const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() |
| : nullptr; |
| const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); |
| if (RegisterId R = TLI.getExceptionPointerRegister(PF)) |
| LR.insert(RegisterRef(R)); |
| if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { |
| if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) |
| LR.insert(RegisterRef(R)); |
| } |
| return LR; |
| } |
| |
| // Node management functions. |
| |
| // Get the pointer to the node with the id N. |
| NodeBase *DataFlowGraph::ptr(NodeId N) const { |
| if (N == 0) |
| return nullptr; |
| return Memory.ptr(N); |
| } |
| |
| // Get the id of the node at the address P. |
| NodeId DataFlowGraph::id(const NodeBase *P) const { |
| if (P == nullptr) |
| return 0; |
| return Memory.id(P); |
| } |
| |
| // Allocate a new node and set the attributes to Attrs. |
| NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { |
| NodeAddr<NodeBase*> P = Memory.New(); |
| P.Addr->init(); |
| P.Addr->setAttrs(Attrs); |
| return P; |
| } |
| |
| // Make a copy of the given node B, except for the data-flow links, which |
| // are set to 0. |
| NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { |
| NodeAddr<NodeBase*> NA = newNode(0); |
| memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); |
| // Ref nodes need to have the data-flow links reset. |
| if (NA.Addr->getType() == NodeAttrs::Ref) { |
| NodeAddr<RefNode*> RA = NA; |
| RA.Addr->setReachingDef(0); |
| RA.Addr->setSibling(0); |
| if (NA.Addr->getKind() == NodeAttrs::Def) { |
| NodeAddr<DefNode*> DA = NA; |
| DA.Addr->setReachedDef(0); |
| DA.Addr->setReachedUse(0); |
| } |
| } |
| return NA; |
| } |
| |
| // Allocation routines for specific node types/kinds. |
| |
| NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, |
| MachineOperand &Op, uint16_t Flags) { |
| NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); |
| UA.Addr->setRegRef(&Op, *this); |
| return UA; |
| } |
| |
| NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, |
| RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { |
| NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); |
| assert(Flags & NodeAttrs::PhiRef); |
| PUA.Addr->setRegRef(RR, *this); |
| PUA.Addr->setPredecessor(PredB.Id); |
| return PUA; |
| } |
| |
| NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, |
| MachineOperand &Op, uint16_t Flags) { |
| NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); |
| DA.Addr->setRegRef(&Op, *this); |
| return DA; |
| } |
| |
| NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, |
| RegisterRef RR, uint16_t Flags) { |
| NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); |
| assert(Flags & NodeAttrs::PhiRef); |
| DA.Addr->setRegRef(RR, *this); |
| return DA; |
| } |
| |
| NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { |
| NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); |
| Owner.Addr->addPhi(PA, *this); |
| return PA; |
| } |
| |
| NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, |
| MachineInstr *MI) { |
| NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); |
| SA.Addr->setCode(MI); |
| Owner.Addr->addMember(SA, *this); |
| return SA; |
| } |
| |
| NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, |
| MachineBasicBlock *BB) { |
| NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); |
| BA.Addr->setCode(BB); |
| Owner.Addr->addMember(BA, *this); |
| return BA; |
| } |
| |
| NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { |
| NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); |
| FA.Addr->setCode(MF); |
| return FA; |
| } |
| |
| // Build the data flow graph. |
| void DataFlowGraph::build(unsigned Options) { |
| reset(); |
| Func = newFunc(&MF); |
| |
| if (MF.empty()) |
| return; |
| |
| for (MachineBasicBlock &B : MF) { |
| NodeAddr<BlockNode*> BA = newBlock(Func, &B); |
| BlockNodes.insert(std::make_pair(&B, BA)); |
| for (MachineInstr &I : B) { |
| if (I.isDebugInstr()) |
| continue; |
| buildStmt(BA, I); |
| } |
| } |
| |
| NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); |
| NodeList Blocks = Func.Addr->members(*this); |
| |
| // Collect information about block references. |
| RegisterSet AllRefs; |
| for (NodeAddr<BlockNode*> BA : Blocks) |
| for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) |
| for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) |
| AllRefs.insert(RA.Addr->getRegRef(*this)); |
| |
| // Collect function live-ins and entry block live-ins. |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MachineBasicBlock &EntryB = *EA.Addr->getCode(); |
| assert(EntryB.pred_empty() && "Function entry block has predecessors"); |
| for (std::pair<unsigned,unsigned> P : MRI.liveins()) |
| LiveIns.insert(RegisterRef(P.first)); |
| if (MRI.tracksLiveness()) { |
| for (auto I : EntryB.liveins()) |
| LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); |
| } |
| |
| // Add function-entry phi nodes for the live-in registers. |
| //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { |
| for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { |
| RegisterRef RR = *I; |
| NodeAddr<PhiNode*> PA = newPhi(EA); |
| uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
| NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); |
| PA.Addr->addMember(DA, *this); |
| } |
| |
| // Add phis for landing pads. |
| // Landing pads, unlike usual backs blocks, are not entered through |
| // branches in the program, or fall-throughs from other blocks. They |
| // are entered from the exception handling runtime and target's ABI |
| // may define certain registers as defined on entry to such a block. |
| RegisterSet EHRegs = getLandingPadLiveIns(); |
| if (!EHRegs.empty()) { |
| for (NodeAddr<BlockNode*> BA : Blocks) { |
| const MachineBasicBlock &B = *BA.Addr->getCode(); |
| if (!B.isEHPad()) |
| continue; |
| |
| // Prepare a list of NodeIds of the block's predecessors. |
| NodeList Preds; |
| for (MachineBasicBlock *PB : B.predecessors()) |
| Preds.push_back(findBlock(PB)); |
| |
| // Build phi nodes for each live-in. |
| for (RegisterRef RR : EHRegs) { |
| NodeAddr<PhiNode*> PA = newPhi(BA); |
| uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
| // Add def: |
| NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); |
| PA.Addr->addMember(DA, *this); |
| // Add uses (no reaching defs for phi uses): |
| for (NodeAddr<BlockNode*> PBA : Preds) { |
| NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); |
| PA.Addr->addMember(PUA, *this); |
| } |
| } |
| } |
| } |
| |
| // Build a map "PhiM" which will contain, for each block, the set |
| // of references that will require phi definitions in that block. |
| BlockRefsMap PhiM; |
| for (NodeAddr<BlockNode*> BA : Blocks) |
| recordDefsForDF(PhiM, BA); |
| for (NodeAddr<BlockNode*> BA : Blocks) |
| buildPhis(PhiM, AllRefs, BA); |
| |
| // Link all the refs. This will recursively traverse the dominator tree. |
| DefStackMap DM; |
| linkBlockRefs(DM, EA); |
| |
| // Finally, remove all unused phi nodes. |
| if (!(Options & BuildOptions::KeepDeadPhis)) |
| removeUnusedPhis(); |
| } |
| |
| RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { |
| assert(PhysicalRegisterInfo::isRegMaskId(Reg) || |
| Register::isPhysicalRegister(Reg)); |
| assert(Reg != 0); |
| if (Sub != 0) |
| Reg = TRI.getSubReg(Reg, Sub); |
| return RegisterRef(Reg); |
| } |
| |
| RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { |
| assert(Op.isReg() || Op.isRegMask()); |
| if (Op.isReg()) |
| return makeRegRef(Op.getReg(), Op.getSubReg()); |
| return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); |
| } |
| |
| // For each stack in the map DefM, push the delimiter for block B on it. |
| void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { |
| // Push block delimiters. |
| for (auto &P : DefM) |
| P.second.start_block(B); |
| } |
| |
| // Remove all definitions coming from block B from each stack in DefM. |
| void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { |
| // Pop all defs from this block from the definition stack. Defs that were |
| // added to the map during the traversal of instructions will not have a |
| // delimiter, but for those, the whole stack will be emptied. |
| for (auto &P : DefM) |
| P.second.clear_block(B); |
| |
| // Finally, remove empty stacks from the map. |
| for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { |
| NextI = std::next(I); |
| // This preserves the validity of iterators other than I. |
| if (I->second.empty()) |
| DefM.erase(I); |
| } |
| } |
| |
| // Push all definitions from the instruction node IA to an appropriate |
| // stack in DefM. |
| void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { |
| pushClobbers(IA, DefM); |
| pushDefs(IA, DefM); |
| } |
| |
| // Push all definitions from the instruction node IA to an appropriate |
| // stack in DefM. |
| void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { |
| NodeSet Visited; |
| std::set<RegisterId> Defined; |
| |
| // The important objectives of this function are: |
| // - to be able to handle instructions both while the graph is being |
| // constructed, and after the graph has been constructed, and |
| // - maintain proper ordering of definitions on the stack for each |
| // register reference: |
| // - if there are two or more related defs in IA (i.e. coming from |
| // the same machine operand), then only push one def on the stack, |
| // - if there are multiple unrelated defs of non-overlapping |
| // subregisters of S, then the stack for S will have both (in an |
| // unspecified order), but the order does not matter from the data- |
| // -flow perspective. |
| |
| for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { |
| if (Visited.count(DA.Id)) |
| continue; |
| if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) |
| continue; |
| |
| NodeList Rel = getRelatedRefs(IA, DA); |
| NodeAddr<DefNode*> PDA = Rel.front(); |
| RegisterRef RR = PDA.Addr->getRegRef(*this); |
| |
| // Push the definition on the stack for the register and all aliases. |
| // The def stack traversal in linkNodeUp will check the exact aliasing. |
| DefM[RR.Reg].push(DA); |
| Defined.insert(RR.Reg); |
| for (RegisterId A : PRI.getAliasSet(RR.Reg)) { |
| // Check that we don't push the same def twice. |
| assert(A != RR.Reg); |
| if (!Defined.count(A)) |
| DefM[A].push(DA); |
| } |
| // Mark all the related defs as visited. |
| for (NodeAddr<NodeBase*> T : Rel) |
| Visited.insert(T.Id); |
| } |
| } |
| |
| // Push all definitions from the instruction node IA to an appropriate |
| // stack in DefM. |
| void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { |
| NodeSet Visited; |
| #ifndef NDEBUG |
| std::set<RegisterId> Defined; |
| #endif |
| |
| // The important objectives of this function are: |
| // - to be able to handle instructions both while the graph is being |
| // constructed, and after the graph has been constructed, and |
| // - maintain proper ordering of definitions on the stack for each |
| // register reference: |
| // - if there are two or more related defs in IA (i.e. coming from |
| // the same machine operand), then only push one def on the stack, |
| // - if there are multiple unrelated defs of non-overlapping |
| // subregisters of S, then the stack for S will have both (in an |
| // unspecified order), but the order does not matter from the data- |
| // -flow perspective. |
| |
| for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { |
| if (Visited.count(DA.Id)) |
| continue; |
| if (DA.Addr->getFlags() & NodeAttrs::Clobbering) |
| continue; |
| |
| NodeList Rel = getRelatedRefs(IA, DA); |
| NodeAddr<DefNode*> PDA = Rel.front(); |
| RegisterRef RR = PDA.Addr->getRegRef(*this); |
| #ifndef NDEBUG |
| // Assert if the register is defined in two or more unrelated defs. |
| // This could happen if there are two or more def operands defining it. |
| if (!Defined.insert(RR.Reg).second) { |
| MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); |
| dbgs() << "Multiple definitions of register: " |
| << Print(RR, *this) << " in\n " << *MI << "in " |
| << printMBBReference(*MI->getParent()) << '\n'; |
| llvm_unreachable(nullptr); |
| } |
| #endif |
| // Push the definition on the stack for the register and all aliases. |
| // The def stack traversal in linkNodeUp will check the exact aliasing. |
| DefM[RR.Reg].push(DA); |
| for (RegisterId A : PRI.getAliasSet(RR.Reg)) { |
| // Check that we don't push the same def twice. |
| assert(A != RR.Reg); |
| DefM[A].push(DA); |
| } |
| // Mark all the related defs as visited. |
| for (NodeAddr<NodeBase*> T : Rel) |
| Visited.insert(T.Id); |
| } |
| } |
| |
| // Return the list of all reference nodes related to RA, including RA itself. |
| // See "getNextRelated" for the meaning of a "related reference". |
| NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, |
| NodeAddr<RefNode*> RA) const { |
| assert(IA.Id != 0 && RA.Id != 0); |
| |
| NodeList Refs; |
| NodeId Start = RA.Id; |
| do { |
| Refs.push_back(RA); |
| RA = getNextRelated(IA, RA); |
| } while (RA.Id != 0 && RA.Id != Start); |
| return Refs; |
| } |
| |
| // Clear all information in the graph. |
| void DataFlowGraph::reset() { |
| Memory.clear(); |
| BlockNodes.clear(); |
| Func = NodeAddr<FuncNode*>(); |
| } |
| |
| // Return the next reference node in the instruction node IA that is related |
| // to RA. Conceptually, two reference nodes are related if they refer to the |
| // same instance of a register access, but differ in flags or other minor |
| // characteristics. Specific examples of related nodes are shadow reference |
| // nodes. |
| // Return the equivalent of nullptr if there are no more related references. |
| NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, |
| NodeAddr<RefNode*> RA) const { |
| assert(IA.Id != 0 && RA.Id != 0); |
| |
| auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { |
| if (TA.Addr->getKind() != RA.Addr->getKind()) |
| return false; |
| if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) |
| return false; |
| return true; |
| }; |
| auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { |
| return Related(TA) && |
| &RA.Addr->getOp() == &TA.Addr->getOp(); |
| }; |
| auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { |
| if (!Related(TA)) |
| return false; |
| if (TA.Addr->getKind() != NodeAttrs::Use) |
| return true; |
| // For phi uses, compare predecessor blocks. |
| const NodeAddr<const PhiUseNode*> TUA = TA; |
| const NodeAddr<const PhiUseNode*> RUA = RA; |
| return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); |
| }; |
| |
| RegisterRef RR = RA.Addr->getRegRef(*this); |
| if (IA.Addr->getKind() == NodeAttrs::Stmt) |
| return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); |
| return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); |
| } |
| |
| // Find the next node related to RA in IA that satisfies condition P. |
| // If such a node was found, return a pair where the second element is the |
| // located node. If such a node does not exist, return a pair where the |
| // first element is the element after which such a node should be inserted, |
| // and the second element is a null-address. |
| template <typename Predicate> |
| std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> |
| DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, |
| Predicate P) const { |
| assert(IA.Id != 0 && RA.Id != 0); |
| |
| NodeAddr<RefNode*> NA; |
| NodeId Start = RA.Id; |
| while (true) { |
| NA = getNextRelated(IA, RA); |
| if (NA.Id == 0 || NA.Id == Start) |
| break; |
| if (P(NA)) |
| break; |
| RA = NA; |
| } |
| |
| if (NA.Id != 0 && NA.Id != Start) |
| return std::make_pair(RA, NA); |
| return std::make_pair(RA, NodeAddr<RefNode*>()); |
| } |
| |
| // Get the next shadow node in IA corresponding to RA, and optionally create |
| // such a node if it does not exist. |
| NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, |
| NodeAddr<RefNode*> RA, bool Create) { |
| assert(IA.Id != 0 && RA.Id != 0); |
| |
| uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; |
| auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { |
| return TA.Addr->getFlags() == Flags; |
| }; |
| auto Loc = locateNextRef(IA, RA, IsShadow); |
| if (Loc.second.Id != 0 || !Create) |
| return Loc.second; |
| |
| // Create a copy of RA and mark is as shadow. |
| NodeAddr<RefNode*> NA = cloneNode(RA); |
| NA.Addr->setFlags(Flags | NodeAttrs::Shadow); |
| IA.Addr->addMemberAfter(Loc.first, NA, *this); |
| return NA; |
| } |
| |
| // Get the next shadow node in IA corresponding to RA. Return null-address |
| // if such a node does not exist. |
| NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, |
| NodeAddr<RefNode*> RA) const { |
| assert(IA.Id != 0 && RA.Id != 0); |
| uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; |
| auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { |
| return TA.Addr->getFlags() == Flags; |
| }; |
| return locateNextRef(IA, RA, IsShadow).second; |
| } |
| |
| // Create a new statement node in the block node BA that corresponds to |
| // the machine instruction MI. |
| void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { |
| NodeAddr<StmtNode*> SA = newStmt(BA, &In); |
| |
| auto isCall = [] (const MachineInstr &In) -> bool { |
| if (In.isCall()) |
| return true; |
| // Is tail call? |
| if (In.isBranch()) { |
| for (const MachineOperand &Op : In.operands()) |
| if (Op.isGlobal() || Op.isSymbol()) |
| return true; |
| // Assume indirect branches are calls. This is for the purpose of |
| // keeping implicit operands, and so it won't hurt on intra-function |
| // indirect branches. |
| if (In.isIndirectBranch()) |
| return true; |
| } |
| return false; |
| }; |
| |
| auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { |
| // This instruction defines DR. Check if there is a use operand that |
| // would make DR live on entry to the instruction. |
| for (const MachineOperand &Op : In.operands()) { |
| if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) |
| continue; |
| RegisterRef UR = makeRegRef(Op); |
| if (PRI.alias(DR, UR)) |
| return false; |
| } |
| return true; |
| }; |
| |
| bool IsCall = isCall(In); |
| unsigned NumOps = In.getNumOperands(); |
| |
| // Avoid duplicate implicit defs. This will not detect cases of implicit |
| // defs that define registers that overlap, but it is not clear how to |
| // interpret that in the absence of explicit defs. Overlapping explicit |
| // defs are likely illegal already. |
| BitVector DoneDefs(TRI.getNumRegs()); |
| // Process explicit defs first. |
| for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
| MachineOperand &Op = In.getOperand(OpN); |
| if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
| continue; |
| Register R = Op.getReg(); |
| if (!R || !R.isPhysical()) |
| continue; |
| uint16_t Flags = NodeAttrs::None; |
| if (TOI.isPreserving(In, OpN)) { |
| Flags |= NodeAttrs::Preserving; |
| // If the def is preserving, check if it is also undefined. |
| if (isDefUndef(In, makeRegRef(Op))) |
| Flags |= NodeAttrs::Undef; |
| } |
| if (TOI.isClobbering(In, OpN)) |
| Flags |= NodeAttrs::Clobbering; |
| if (TOI.isFixedReg(In, OpN)) |
| Flags |= NodeAttrs::Fixed; |
| if (IsCall && Op.isDead()) |
| Flags |= NodeAttrs::Dead; |
| NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); |
| SA.Addr->addMember(DA, *this); |
| assert(!DoneDefs.test(R)); |
| DoneDefs.set(R); |
| } |
| |
| // Process reg-masks (as clobbers). |
| BitVector DoneClobbers(TRI.getNumRegs()); |
| for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
| MachineOperand &Op = In.getOperand(OpN); |
| if (!Op.isRegMask()) |
| continue; |
| uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | |
| NodeAttrs::Dead; |
| NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); |
| SA.Addr->addMember(DA, *this); |
| // Record all clobbered registers in DoneDefs. |
| const uint32_t *RM = Op.getRegMask(); |
| for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) |
| if (!(RM[i/32] & (1u << (i%32)))) |
| DoneClobbers.set(i); |
| } |
| |
| // Process implicit defs, skipping those that have already been added |
| // as explicit. |
| for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
| MachineOperand &Op = In.getOperand(OpN); |
| if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) |
| continue; |
| Register R = Op.getReg(); |
| if (!R || !R.isPhysical() || DoneDefs.test(R)) |
| continue; |
| RegisterRef RR = makeRegRef(Op); |
| uint16_t Flags = NodeAttrs::None; |
| if (TOI.isPreserving(In, OpN)) { |
| Flags |= NodeAttrs::Preserving; |
| // If the def is preserving, check if it is also undefined. |
| if (isDefUndef(In, RR)) |
| Flags |= NodeAttrs::Undef; |
| } |
| if (TOI.isClobbering(In, OpN)) |
| Flags |= NodeAttrs::Clobbering; |
| if (TOI.isFixedReg(In, OpN)) |
| Flags |= NodeAttrs::Fixed; |
| if (IsCall && Op.isDead()) { |
| if (DoneClobbers.test(R)) |
| continue; |
| Flags |= NodeAttrs::Dead; |
| } |
| NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); |
| SA.Addr->addMember(DA, *this); |
| DoneDefs.set(R); |
| } |
| |
| for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
| MachineOperand &Op = In.getOperand(OpN); |
| if (!Op.isReg() || !Op.isUse()) |
| continue; |
| Register R = Op.getReg(); |
| if (!R || !R.isPhysical()) |
| continue; |
| uint16_t Flags = NodeAttrs::None; |
| if (Op.isUndef()) |
| Flags |= NodeAttrs::Undef; |
| if (TOI.isFixedReg(In, OpN)) |
| Flags |= NodeAttrs::Fixed; |
| NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); |
| SA.Addr->addMember(UA, *this); |
| } |
| } |
| |
| // Scan all defs in the block node BA and record in PhiM the locations of |
| // phi nodes corresponding to these defs. |
| void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, |
| NodeAddr<BlockNode*> BA) { |
| // Check all defs from block BA and record them in each block in BA's |
| // iterated dominance frontier. This information will later be used to |
| // create phi nodes. |
| MachineBasicBlock *BB = BA.Addr->getCode(); |
| assert(BB); |
| auto DFLoc = MDF.find(BB); |
| if (DFLoc == MDF.end() || DFLoc->second.empty()) |
| return; |
| |
| // Traverse all instructions in the block and collect the set of all |
| // defined references. For each reference there will be a phi created |
| // in the block's iterated dominance frontier. |
| // This is done to make sure that each defined reference gets only one |
| // phi node, even if it is defined multiple times. |
| RegisterSet Defs; |
| for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) |
| for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) |
| Defs.insert(RA.Addr->getRegRef(*this)); |
| |
| // Calculate the iterated dominance frontier of BB. |
| const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; |
| SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); |
| for (unsigned i = 0; i < IDF.size(); ++i) { |
| auto F = MDF.find(IDF[i]); |
| if (F != MDF.end()) |
| IDF.insert(F->second.begin(), F->second.end()); |
| } |
| |
| // Finally, add the set of defs to each block in the iterated dominance |
| // frontier. |
| for (auto *DB : IDF) { |
| NodeAddr<BlockNode*> DBA = findBlock(DB); |
| PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); |
| } |
| } |
| |
| // Given the locations of phi nodes in the map PhiM, create the phi nodes |
| // that are located in the block node BA. |
| void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, |
| NodeAddr<BlockNode*> BA) { |
| // Check if this blocks has any DF defs, i.e. if there are any defs |
| // that this block is in the iterated dominance frontier of. |
| auto HasDF = PhiM.find(BA.Id); |
| if (HasDF == PhiM.end() || HasDF->second.empty()) |
| return; |
| |
| // First, remove all R in Refs in such that there exists T in Refs |
| // such that T covers R. In other words, only leave those refs that |
| // are not covered by another ref (i.e. maximal with respect to covering). |
| |
| auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { |
| for (RegisterRef I : RRs) |
| if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) |
| RR = I; |
| return RR; |
| }; |
| |
| RegisterSet MaxDF; |
| for (RegisterRef I : HasDF->second) |
| MaxDF.insert(MaxCoverIn(I, HasDF->second)); |
| |
| std::vector<RegisterRef> MaxRefs; |
| for (RegisterRef I : MaxDF) |
| MaxRefs.push_back(MaxCoverIn(I, AllRefs)); |
| |
| // Now, for each R in MaxRefs, get the alias closure of R. If the closure |
| // only has R in it, create a phi a def for R. Otherwise, create a phi, |
| // and add a def for each S in the closure. |
| |
| // Sort the refs so that the phis will be created in a deterministic order. |
| llvm::sort(MaxRefs); |
| // Remove duplicates. |
| auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); |
| MaxRefs.erase(NewEnd, MaxRefs.end()); |
| |
| auto Aliased = [this,&MaxRefs](RegisterRef RR, |
| std::vector<unsigned> &Closure) -> bool { |
| for (unsigned I : Closure) |
| if (PRI.alias(RR, MaxRefs[I])) |
| return true; |
| return false; |
| }; |
| |
| // Prepare a list of NodeIds of the block's predecessors. |
| NodeList Preds; |
| const MachineBasicBlock *MBB = BA.Addr->getCode(); |
| for (MachineBasicBlock *PB : MBB->predecessors()) |
| Preds.push_back(findBlock(PB)); |
| |
| while (!MaxRefs.empty()) { |
| // Put the first element in the closure, and then add all subsequent |
| // elements from MaxRefs to it, if they alias at least one element |
| // already in the closure. |
| // ClosureIdx: vector of indices in MaxRefs of members of the closure. |
| std::vector<unsigned> ClosureIdx = { 0 }; |
| for (unsigned i = 1; i != MaxRefs.size(); ++i) |
| if (Aliased(MaxRefs[i], ClosureIdx)) |
| ClosureIdx.push_back(i); |
| |
| // Build a phi for the closure. |
| unsigned CS = ClosureIdx.size(); |
| NodeAddr<PhiNode*> PA = newPhi(BA); |
| |
| // Add defs. |
| for (unsigned X = 0; X != CS; ++X) { |
| RegisterRef RR = MaxRefs[ClosureIdx[X]]; |
| uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
| NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); |
| PA.Addr->addMember(DA, *this); |
| } |
| // Add phi uses. |
| for (NodeAddr<BlockNode*> PBA : Preds) { |
| for (unsigned X = 0; X != CS; ++X) { |
| RegisterRef RR = MaxRefs[ClosureIdx[X]]; |
| NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); |
| PA.Addr->addMember(PUA, *this); |
| } |
| } |
| |
| // Erase from MaxRefs all elements in the closure. |
| auto Begin = MaxRefs.begin(); |
| for (unsigned Idx : llvm::reverse(ClosureIdx)) |
| MaxRefs.erase(Begin + Idx); |
| } |
| } |
| |
| // Remove any unneeded phi nodes that were created during the build process. |
| void DataFlowGraph::removeUnusedPhis() { |
| // This will remove unused phis, i.e. phis where each def does not reach |
| // any uses or other defs. This will not detect or remove circular phi |
| // chains that are otherwise dead. Unused/dead phis are created during |
| // the build process and this function is intended to remove these cases |
| // that are easily determinable to be unnecessary. |
| |
| SetVector<NodeId> PhiQ; |
| for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { |
| for (auto P : BA.Addr->members_if(IsPhi, *this)) |
| PhiQ.insert(P.Id); |
| } |
| |
| static auto HasUsedDef = [](NodeList &Ms) -> bool { |
| for (NodeAddr<NodeBase*> M : Ms) { |
| if (M.Addr->getKind() != NodeAttrs::Def) |
| continue; |
| NodeAddr<DefNode*> DA = M; |
| if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) |
| return true; |
| } |
| return false; |
| }; |
| |
| // Any phi, if it is removed, may affect other phis (make them dead). |
| // For each removed phi, collect the potentially affected phis and add |
| // them back to the queue. |
| while (!PhiQ.empty()) { |
| auto PA = addr<PhiNode*>(PhiQ[0]); |
| PhiQ.remove(PA.Id); |
| NodeList Refs = PA.Addr->members(*this); |
| if (HasUsedDef(Refs)) |
| continue; |
| for (NodeAddr<RefNode*> RA : Refs) { |
| if (NodeId RD = RA.Addr->getReachingDef()) { |
| auto RDA = addr<DefNode*>(RD); |
| NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); |
| if (IsPhi(OA)) |
| PhiQ.insert(OA.Id); |
| } |
| if (RA.Addr->isDef()) |
| unlinkDef(RA, true); |
| else |
| unlinkUse(RA, true); |
| } |
| NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); |
| BA.Addr->removeMember(PA, *this); |
| } |
| } |
| |
| // For a given reference node TA in an instruction node IA, connect the |
| // reaching def of TA to the appropriate def node. Create any shadow nodes |
| // as appropriate. |
| template <typename T> |
| void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, |
| DefStack &DS) { |
| if (DS.empty()) |
| return; |
| RegisterRef RR = TA.Addr->getRegRef(*this); |
| NodeAddr<T> TAP; |
| |
| // References from the def stack that have been examined so far. |
| RegisterAggr Defs(PRI); |
| |
| for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { |
| RegisterRef QR = I->Addr->getRegRef(*this); |
| |
| // Skip all defs that are aliased to any of the defs that we have already |
| // seen. If this completes a cover of RR, stop the stack traversal. |
| bool Alias = Defs.hasAliasOf(QR); |
| bool Cover = Defs.insert(QR).hasCoverOf(RR); |
| if (Alias) { |
| if (Cover) |
| break; |
| continue; |
| } |
| |
| // The reaching def. |
| NodeAddr<DefNode*> RDA = *I; |
| |
| // Pick the reached node. |
| if (TAP.Id == 0) { |
| TAP = TA; |
| } else { |
| // Mark the existing ref as "shadow" and create a new shadow. |
| TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); |
| TAP = getNextShadow(IA, TAP, true); |
| } |
| |
| // Create the link. |
| TAP.Addr->linkToDef(TAP.Id, RDA); |
| |
| if (Cover) |
| break; |
| } |
| } |
| |
| // Create data-flow links for all reference nodes in the statement node SA. |
| template <typename Predicate> |
| void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, |
| Predicate P) { |
| #ifndef NDEBUG |
| RegisterSet Defs; |
| #endif |
| |
| // Link all nodes (upwards in the data-flow) with their reaching defs. |
| for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { |
| uint16_t Kind = RA.Addr->getKind(); |
| assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); |
| RegisterRef RR = RA.Addr->getRegRef(*this); |
| #ifndef NDEBUG |
| // Do not expect multiple defs of the same reference. |
| assert(Kind != NodeAttrs::Def || !Defs.count(RR)); |
| Defs.insert(RR); |
| #endif |
| |
| auto F = DefM.find(RR.Reg); |
| if (F == DefM.end()) |
| continue; |
| DefStack &DS = F->second; |
| if (Kind == NodeAttrs::Use) |
| linkRefUp<UseNode*>(SA, RA, DS); |
| else if (Kind == NodeAttrs::Def) |
| linkRefUp<DefNode*>(SA, RA, DS); |
| else |
| llvm_unreachable("Unexpected node in instruction"); |
| } |
| } |
| |
| // Create data-flow links for all instructions in the block node BA. This |
| // will include updating any phi nodes in BA. |
| void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { |
| // Push block delimiters. |
| markBlock(BA.Id, DefM); |
| |
| auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { |
| return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); |
| }; |
| auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { |
| return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); |
| }; |
| |
| assert(BA.Addr && "block node address is needed to create a data-flow link"); |
| // For each non-phi instruction in the block, link all the defs and uses |
| // to their reaching defs. For any member of the block (including phis), |
| // push the defs on the corresponding stacks. |
| for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { |
| // Ignore phi nodes here. They will be linked part by part from the |
| // predecessors. |
| if (IA.Addr->getKind() == NodeAttrs::Stmt) { |
| linkStmtRefs(DefM, IA, IsUse); |
| linkStmtRefs(DefM, IA, IsClobber); |
| } |
| |
| // Push the definitions on the stack. |
| pushClobbers(IA, DefM); |
| |
| if (IA.Addr->getKind() == NodeAttrs::Stmt) |
| linkStmtRefs(DefM, IA, IsNoClobber); |
| |
| pushDefs(IA, DefM); |
| } |
| |
| // Recursively process all children in the dominator tree. |
| MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); |
| for (auto *I : *N) { |
| MachineBasicBlock *SB = I->getBlock(); |
| NodeAddr<BlockNode*> SBA = findBlock(SB); |
| linkBlockRefs(DefM, SBA); |
| } |
| |
| // Link the phi uses from the successor blocks. |
| auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { |
| if (NA.Addr->getKind() != NodeAttrs::Use) |
| return false; |
| assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); |
| NodeAddr<PhiUseNode*> PUA = NA; |
| return PUA.Addr->getPredecessor() == BA.Id; |
| }; |
| |
| RegisterSet EHLiveIns = getLandingPadLiveIns(); |
| MachineBasicBlock *MBB = BA.Addr->getCode(); |
| |
| for (MachineBasicBlock *SB : MBB->successors()) { |
| bool IsEHPad = SB->isEHPad(); |
| NodeAddr<BlockNode*> SBA = findBlock(SB); |
| for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { |
| // Do not link phi uses for landing pad live-ins. |
| if (IsEHPad) { |
| // Find what register this phi is for. |
| NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); |
| assert(RA.Id != 0); |
| if (EHLiveIns.count(RA.Addr->getRegRef(*this))) |
| continue; |
| } |
| // Go over each phi use associated with MBB, and link it. |
| for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { |
| NodeAddr<PhiUseNode*> PUA = U; |
| RegisterRef RR = PUA.Addr->getRegRef(*this); |
| linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); |
| } |
| } |
| } |
| |
| // Pop all defs from this block from the definition stacks. |
| releaseBlock(BA.Id, DefM); |
| } |
| |
| // Remove the use node UA from any data-flow and structural links. |
| void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { |
| NodeId RD = UA.Addr->getReachingDef(); |
| NodeId Sib = UA.Addr->getSibling(); |
| |
| if (RD == 0) { |
| assert(Sib == 0); |
| return; |
| } |
| |
| auto RDA = addr<DefNode*>(RD); |
| auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); |
| if (TA.Id == UA.Id) { |
| RDA.Addr->setReachedUse(Sib); |
| return; |
| } |
| |
| while (TA.Id != 0) { |
| NodeId S = TA.Addr->getSibling(); |
| if (S == UA.Id) { |
| TA.Addr->setSibling(UA.Addr->getSibling()); |
| return; |
| } |
| TA = addr<UseNode*>(S); |
| } |
| } |
| |
| // Remove the def node DA from any data-flow and structural links. |
| void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { |
| // |
| // RD |
| // | reached |
| // | def |
| // : |
| // . |
| // +----+ |
| // ... -- | DA | -- ... -- 0 : sibling chain of DA |
| // +----+ |
| // | | reached |
| // | : def |
| // | . |
| // | ... : Siblings (defs) |
| // | |
| // : reached |
| // . use |
| // ... : sibling chain of reached uses |
| |
| NodeId RD = DA.Addr->getReachingDef(); |
| |
| // Visit all siblings of the reached def and reset their reaching defs. |
| // Also, defs reached by DA are now "promoted" to being reached by RD, |
| // so all of them will need to be spliced into the sibling chain where |
| // DA belongs. |
| auto getAllNodes = [this] (NodeId N) -> NodeList { |
| NodeList Res; |
| while (N) { |
| auto RA = addr<RefNode*>(N); |
| // Keep the nodes in the exact sibling order. |
| Res.push_back(RA); |
| N = RA.Addr->getSibling(); |
| } |
| return Res; |
| }; |
| NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); |
| NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); |
| |
| if (RD == 0) { |
| for (NodeAddr<RefNode*> I : ReachedDefs) |
| I.Addr->setSibling(0); |
| for (NodeAddr<RefNode*> I : ReachedUses) |
| I.Addr->setSibling(0); |
| } |
| for (NodeAddr<DefNode*> I : ReachedDefs) |
| I.Addr->setReachingDef(RD); |
| for (NodeAddr<UseNode*> I : ReachedUses) |
| I.Addr->setReachingDef(RD); |
| |
| NodeId Sib = DA.Addr->getSibling(); |
| if (RD == 0) { |
| assert(Sib == 0); |
| return; |
| } |
| |
| // Update the reaching def node and remove DA from the sibling list. |
| auto RDA = addr<DefNode*>(RD); |
| auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); |
| if (TA.Id == DA.Id) { |
| // If DA is the first reached def, just update the RD's reached def |
| // to the DA's sibling. |
| RDA.Addr->setReachedDef(Sib); |
| } else { |
| // Otherwise, traverse the sibling list of the reached defs and remove |
| // DA from it. |
| while (TA.Id != 0) { |
| NodeId S = TA.Addr->getSibling(); |
| if (S == DA.Id) { |
| TA.Addr->setSibling(Sib); |
| break; |
| } |
| TA = addr<DefNode*>(S); |
| } |
| } |
| |
| // Splice the DA's reached defs into the RDA's reached def chain. |
| if (!ReachedDefs.empty()) { |
| auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); |
| Last.Addr->setSibling(RDA.Addr->getReachedDef()); |
| RDA.Addr->setReachedDef(ReachedDefs.front().Id); |
| } |
| // Splice the DA's reached uses into the RDA's reached use chain. |
| if (!ReachedUses.empty()) { |
| auto Last = NodeAddr<UseNode*>(ReachedUses.back()); |
| Last.Addr->setSibling(RDA.Addr->getReachedUse()); |
| RDA.Addr->setReachedUse(ReachedUses.front().Id); |
| } |
| } |