| //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass eliminates machine instruction PHI nodes by inserting copy |
| // instructions. This destroys SSA information, but is the desired input for |
| // some register allocators. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PHIEliminationUtils.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "phi-node-elimination" |
| |
| static cl::opt<bool> |
| DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), |
| cl::Hidden, cl::desc("Disable critical edge splitting " |
| "during PHI elimination")); |
| |
| static cl::opt<bool> |
| SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), |
| cl::Hidden, cl::desc("Split all critical edges during " |
| "PHI elimination")); |
| |
| static cl::opt<bool> NoPhiElimLiveOutEarlyExit( |
| "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, |
| cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); |
| |
| namespace { |
| |
| class PHIElimination : public MachineFunctionPass { |
| MachineRegisterInfo *MRI; // Machine register information |
| LiveVariables *LV; |
| LiveIntervals *LIS; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| PHIElimination() : MachineFunctionPass(ID) { |
| initializePHIEliminationPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| private: |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions |
| /// in predecessor basic blocks. |
| bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); |
| |
| void LowerPHINode(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator LastPHIIt); |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in |
| /// here. In particular, we want to map the number of uses of a virtual |
| /// register which is used in a PHI node. We map that to the BB the |
| /// vreg is coming from. This is used later to determine when the vreg |
| /// is killed in the BB. |
| void analyzePHINodes(const MachineFunction& MF); |
| |
| /// Split critical edges where necessary for good coalescer performance. |
| bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineLoopInfo *MLI, |
| std::vector<SparseBitVector<>> *LiveInSets); |
| |
| // These functions are temporary abstractions around LiveVariables and |
| // LiveIntervals, so they can go away when LiveVariables does. |
| bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); |
| bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); |
| |
| using BBVRegPair = std::pair<unsigned, Register>; |
| using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; |
| |
| // Count the number of non-undef PHI uses of each register in each BB. |
| VRegPHIUse VRegPHIUseCount; |
| |
| // Defs of PHI sources which are implicit_def. |
| SmallPtrSet<MachineInstr*, 4> ImpDefs; |
| |
| // Map reusable lowered PHI node -> incoming join register. |
| using LoweredPHIMap = |
| DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; |
| LoweredPHIMap LoweredPHIs; |
| }; |
| |
| } // end anonymous namespace |
| |
| STATISTIC(NumLowered, "Number of phis lowered"); |
| STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); |
| STATISTIC(NumReused, "Number of reused lowered phis"); |
| |
| char PHIElimination::ID = 0; |
| |
| char& llvm::PHIEliminationID = PHIElimination::ID; |
| |
| INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, |
| "Eliminate PHI nodes for register allocation", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(LiveVariables) |
| INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, |
| "Eliminate PHI nodes for register allocation", false, false) |
| |
| void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addUsedIfAvailable<LiveVariables>(); |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { |
| MRI = &MF.getRegInfo(); |
| LV = getAnalysisIfAvailable<LiveVariables>(); |
| LIS = getAnalysisIfAvailable<LiveIntervals>(); |
| |
| bool Changed = false; |
| |
| // Split critical edges to help the coalescer. |
| if (!DisableEdgeSplitting && (LV || LIS)) { |
| // A set of live-in regs for each MBB which is used to update LV |
| // efficiently also with large functions. |
| std::vector<SparseBitVector<>> LiveInSets; |
| if (LV) { |
| LiveInSets.resize(MF.size()); |
| for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { |
| // Set the bit for this register for each MBB where it is |
| // live-through or live-in (killed). |
| Register VirtReg = Register::index2VirtReg(Index); |
| MachineInstr *DefMI = MRI->getVRegDef(VirtReg); |
| if (!DefMI) |
| continue; |
| LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); |
| SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); |
| SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); |
| while (AliveBlockItr != EndItr) { |
| unsigned BlockNum = *(AliveBlockItr++); |
| LiveInSets[BlockNum].set(Index); |
| } |
| // The register is live into an MBB in which it is killed but not |
| // defined. See comment for VarInfo in LiveVariables.h. |
| MachineBasicBlock *DefMBB = DefMI->getParent(); |
| if (VI.Kills.size() > 1 || |
| (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) |
| for (auto *MI : VI.Kills) |
| LiveInSets[MI->getParent()->getNumber()].set(Index); |
| } |
| } |
| |
| MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); |
| for (auto &MBB : MF) |
| Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); |
| } |
| |
| // This pass takes the function out of SSA form. |
| MRI->leaveSSA(); |
| |
| // Populate VRegPHIUseCount |
| analyzePHINodes(MF); |
| |
| // Eliminate PHI instructions by inserting copies into predecessor blocks. |
| for (auto &MBB : MF) |
| Changed |= EliminatePHINodes(MF, MBB); |
| |
| // Remove dead IMPLICIT_DEF instructions. |
| for (MachineInstr *DefMI : ImpDefs) { |
| Register DefReg = DefMI->getOperand(0).getReg(); |
| if (MRI->use_nodbg_empty(DefReg)) { |
| if (LIS) |
| LIS->RemoveMachineInstrFromMaps(*DefMI); |
| DefMI->eraseFromParent(); |
| } |
| } |
| |
| // Clean up the lowered PHI instructions. |
| for (auto &I : LoweredPHIs) { |
| if (LIS) |
| LIS->RemoveMachineInstrFromMaps(*I.first); |
| MF.deleteMachineInstr(I.first); |
| } |
| |
| // TODO: we should use the incremental DomTree updater here. |
| if (Changed) |
| if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>()) |
| MDT->getBase().recalculate(MF); |
| |
| LoweredPHIs.clear(); |
| ImpDefs.clear(); |
| VRegPHIUseCount.clear(); |
| |
| MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); |
| |
| return Changed; |
| } |
| |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
| /// predecessor basic blocks. |
| bool PHIElimination::EliminatePHINodes(MachineFunction &MF, |
| MachineBasicBlock &MBB) { |
| if (MBB.empty() || !MBB.front().isPHI()) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| // Get an iterator to the last PHI node. |
| MachineBasicBlock::iterator LastPHIIt = |
| std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); |
| |
| while (MBB.front().isPHI()) |
| LowerPHINode(MBB, LastPHIIt); |
| |
| return true; |
| } |
| |
| /// Return true if all defs of VirtReg are implicit-defs. |
| /// This includes registers with no defs. |
| static bool isImplicitlyDefined(unsigned VirtReg, |
| const MachineRegisterInfo &MRI) { |
| for (MachineInstr &DI : MRI.def_instructions(VirtReg)) |
| if (!DI.isImplicitDef()) |
| return false; |
| return true; |
| } |
| |
| /// Return true if all sources of the phi node are implicit_def's, or undef's. |
| static bool allPhiOperandsUndefined(const MachineInstr &MPhi, |
| const MachineRegisterInfo &MRI) { |
| for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { |
| const MachineOperand &MO = MPhi.getOperand(I); |
| if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) |
| return false; |
| } |
| return true; |
| } |
| /// LowerPHINode - Lower the PHI node at the top of the specified block. |
| void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator LastPHIIt) { |
| ++NumLowered; |
| |
| MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); |
| |
| // Unlink the PHI node from the basic block, but don't delete the PHI yet. |
| MachineInstr *MPhi = MBB.remove(&*MBB.begin()); |
| |
| unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; |
| Register DestReg = MPhi->getOperand(0).getReg(); |
| assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); |
| bool isDead = MPhi->getOperand(0).isDead(); |
| |
| // Create a new register for the incoming PHI arguments. |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned IncomingReg = 0; |
| bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? |
| |
| // Insert a register to register copy at the top of the current block (but |
| // after any remaining phi nodes) which copies the new incoming register |
| // into the phi node destination. |
| MachineInstr *PHICopy = nullptr; |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| if (allPhiOperandsUndefined(*MPhi, *MRI)) |
| // If all sources of a PHI node are implicit_def or undef uses, just emit an |
| // implicit_def instead of a copy. |
| PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), |
| TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); |
| else { |
| // Can we reuse an earlier PHI node? This only happens for critical edges, |
| // typically those created by tail duplication. |
| unsigned &entry = LoweredPHIs[MPhi]; |
| if (entry) { |
| // An identical PHI node was already lowered. Reuse the incoming register. |
| IncomingReg = entry; |
| reusedIncoming = true; |
| ++NumReused; |
| LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " |
| << *MPhi); |
| } else { |
| const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); |
| entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); |
| } |
| // Give the target possiblity to handle special cases fallthrough otherwise |
| PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), |
| IncomingReg, DestReg); |
| } |
| |
| if (MPhi->peekDebugInstrNum()) { |
| // If referred to by debug-info, store where this PHI was. |
| MachineFunction *MF = MBB.getParent(); |
| unsigned ID = MPhi->peekDebugInstrNum(); |
| auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); |
| auto Res = MF->DebugPHIPositions.insert({ID, P}); |
| assert(Res.second); |
| (void)Res; |
| } |
| |
| // Update live variable information if there is any. |
| if (LV) { |
| if (IncomingReg) { |
| LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); |
| |
| // Increment use count of the newly created virtual register. |
| LV->setPHIJoin(IncomingReg); |
| |
| MachineInstr *OldKill = nullptr; |
| bool IsPHICopyAfterOldKill = false; |
| |
| if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { |
| // Calculate whether the PHICopy is after the OldKill. |
| // In general, the PHICopy is inserted as the first non-phi instruction |
| // by default, so it's before the OldKill. But some Target hooks for |
| // createPHIDestinationCopy() may modify the default insert position of |
| // PHICopy. |
| for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); |
| I != E; ++I) { |
| if (I == PHICopy) |
| break; |
| |
| if (I == OldKill) { |
| IsPHICopyAfterOldKill = true; |
| break; |
| } |
| } |
| } |
| |
| // When we are reusing the incoming register and it has been marked killed |
| // by OldKill, if the PHICopy is after the OldKill, we should remove the |
| // killed flag from OldKill. |
| if (IsPHICopyAfterOldKill) { |
| LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); |
| LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); |
| LLVM_DEBUG(MBB.dump()); |
| } |
| |
| // Add information to LiveVariables to know that the first used incoming |
| // value or the resued incoming value whose PHICopy is after the OldKIll |
| // is killed. Note that because the value is defined in several places |
| // (once each for each incoming block), the "def" block and instruction |
| // fields for the VarInfo is not filled in. |
| if (!OldKill || IsPHICopyAfterOldKill) |
| LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); |
| } |
| |
| // Since we are going to be deleting the PHI node, if it is the last use of |
| // any registers, or if the value itself is dead, we need to move this |
| // information over to the new copy we just inserted. |
| LV->removeVirtualRegistersKilled(*MPhi); |
| |
| // If the result is dead, update LV. |
| if (isDead) { |
| LV->addVirtualRegisterDead(DestReg, *PHICopy); |
| LV->removeVirtualRegisterDead(DestReg, *MPhi); |
| } |
| } |
| |
| // Update LiveIntervals for the new copy or implicit def. |
| if (LIS) { |
| SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); |
| |
| SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); |
| if (IncomingReg) { |
| // Add the region from the beginning of MBB to the copy instruction to |
| // IncomingReg's live interval. |
| LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); |
| VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); |
| if (!IncomingVNI) |
| IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, |
| LIS->getVNInfoAllocator()); |
| IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, |
| DestCopyIndex.getRegSlot(), |
| IncomingVNI)); |
| } |
| |
| LiveInterval &DestLI = LIS->getInterval(DestReg); |
| assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals."); |
| if (DestLI.endIndex().isDead()) { |
| // A dead PHI's live range begins and ends at the start of the MBB, but |
| // the lowered copy, which will still be dead, needs to begin and end at |
| // the copy instruction. |
| VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); |
| assert(OrigDestVNI && "PHI destination should be live at block entry."); |
| DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); |
| DestLI.createDeadDef(DestCopyIndex.getRegSlot(), |
| LIS->getVNInfoAllocator()); |
| DestLI.removeValNo(OrigDestVNI); |
| } else { |
| // Otherwise, remove the region from the beginning of MBB to the copy |
| // instruction from DestReg's live interval. |
| DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); |
| VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); |
| assert(DestVNI && "PHI destination should be live at its definition."); |
| DestVNI->def = DestCopyIndex.getRegSlot(); |
| } |
| } |
| |
| // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { |
| if (!MPhi->getOperand(i).isUndef()) { |
| --VRegPHIUseCount[BBVRegPair( |
| MPhi->getOperand(i + 1).getMBB()->getNumber(), |
| MPhi->getOperand(i).getReg())]; |
| } |
| } |
| |
| // Now loop over all of the incoming arguments, changing them to copy into the |
| // IncomingReg register in the corresponding predecessor basic block. |
| SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; |
| for (int i = NumSrcs - 1; i >= 0; --i) { |
| Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); |
| unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); |
| bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || |
| isImplicitlyDefined(SrcReg, *MRI); |
| assert(SrcReg.isVirtual() && |
| "Machine PHI Operands must all be virtual registers!"); |
| |
| // Get the MachineBasicBlock equivalent of the BasicBlock that is the source |
| // path the PHI. |
| MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); |
| |
| // Check to make sure we haven't already emitted the copy for this block. |
| // This can happen because PHI nodes may have multiple entries for the same |
| // basic block. |
| if (!MBBsInsertedInto.insert(&opBlock).second) |
| continue; // If the copy has already been emitted, we're done. |
| |
| MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); |
| if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { |
| assert(SrcRegDef->getOperand(0).isReg() && |
| SrcRegDef->getOperand(0).isDef() && |
| "Expected operand 0 to be a reg def!"); |
| // Now that the PHI's use has been removed (as the instruction was |
| // removed) there should be no other uses of the SrcReg. |
| assert(MRI->use_empty(SrcReg) && |
| "Expected a single use from UnspillableTerminator"); |
| SrcRegDef->getOperand(0).setReg(IncomingReg); |
| |
| // Update LiveVariables. |
| if (LV) { |
| LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); |
| LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); |
| IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); |
| SrcVI.AliveBlocks.clear(); |
| } |
| |
| continue; |
| } |
| |
| // Find a safe location to insert the copy, this may be the first terminator |
| // in the block (or end()). |
| MachineBasicBlock::iterator InsertPos = |
| findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); |
| |
| // Insert the copy. |
| MachineInstr *NewSrcInstr = nullptr; |
| if (!reusedIncoming && IncomingReg) { |
| if (SrcUndef) { |
| // The source register is undefined, so there is no need for a real |
| // COPY, but we still need to ensure joint dominance by defs. |
| // Insert an IMPLICIT_DEF instruction. |
| NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), |
| TII->get(TargetOpcode::IMPLICIT_DEF), |
| IncomingReg); |
| |
| // Clean up the old implicit-def, if there even was one. |
| if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) |
| if (DefMI->isImplicitDef()) |
| ImpDefs.insert(DefMI); |
| } else { |
| // Delete the debug location, since the copy is inserted into a |
| // different basic block. |
| NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, |
| SrcReg, SrcSubReg, IncomingReg); |
| } |
| } |
| |
| // We only need to update the LiveVariables kill of SrcReg if this was the |
| // last PHI use of SrcReg to be lowered on this CFG edge and it is not live |
| // out of the predecessor. We can also ignore undef sources. |
| if (LV && !SrcUndef && |
| !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && |
| !LV->isLiveOut(SrcReg, opBlock)) { |
| // We want to be able to insert a kill of the register if this PHI (aka, |
| // the copy we just inserted) is the last use of the source value. Live |
| // variable analysis conservatively handles this by saying that the value |
| // is live until the end of the block the PHI entry lives in. If the value |
| // really is dead at the PHI copy, there will be no successor blocks which |
| // have the value live-in. |
| |
| // Okay, if we now know that the value is not live out of the block, we |
| // can add a kill marker in this block saying that it kills the incoming |
| // value! |
| |
| // In our final twist, we have to decide which instruction kills the |
| // register. In most cases this is the copy, however, terminator |
| // instructions at the end of the block may also use the value. In this |
| // case, we should mark the last such terminator as being the killing |
| // block, not the copy. |
| MachineBasicBlock::iterator KillInst = opBlock.end(); |
| for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); |
| ++Term) { |
| if (Term->readsRegister(SrcReg)) |
| KillInst = Term; |
| } |
| |
| if (KillInst == opBlock.end()) { |
| // No terminator uses the register. |
| |
| if (reusedIncoming || !IncomingReg) { |
| // We may have to rewind a bit if we didn't insert a copy this time. |
| KillInst = InsertPos; |
| while (KillInst != opBlock.begin()) { |
| --KillInst; |
| if (KillInst->isDebugInstr()) |
| continue; |
| if (KillInst->readsRegister(SrcReg)) |
| break; |
| } |
| } else { |
| // We just inserted this copy. |
| KillInst = NewSrcInstr; |
| } |
| } |
| assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); |
| |
| // Finally, mark it killed. |
| LV->addVirtualRegisterKilled(SrcReg, *KillInst); |
| |
| // This vreg no longer lives all of the way through opBlock. |
| unsigned opBlockNum = opBlock.getNumber(); |
| LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); |
| } |
| |
| if (LIS) { |
| if (NewSrcInstr) { |
| LIS->InsertMachineInstrInMaps(*NewSrcInstr); |
| LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); |
| } |
| |
| if (!SrcUndef && |
| !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { |
| LiveInterval &SrcLI = LIS->getInterval(SrcReg); |
| |
| bool isLiveOut = false; |
| for (MachineBasicBlock *Succ : opBlock.successors()) { |
| SlotIndex startIdx = LIS->getMBBStartIdx(Succ); |
| VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); |
| |
| // Definitions by other PHIs are not truly live-in for our purposes. |
| if (VNI && VNI->def != startIdx) { |
| isLiveOut = true; |
| break; |
| } |
| } |
| |
| if (!isLiveOut) { |
| MachineBasicBlock::iterator KillInst = opBlock.end(); |
| for (MachineBasicBlock::iterator Term = InsertPos; |
| Term != opBlock.end(); ++Term) { |
| if (Term->readsRegister(SrcReg)) |
| KillInst = Term; |
| } |
| |
| if (KillInst == opBlock.end()) { |
| // No terminator uses the register. |
| |
| if (reusedIncoming || !IncomingReg) { |
| // We may have to rewind a bit if we didn't just insert a copy. |
| KillInst = InsertPos; |
| while (KillInst != opBlock.begin()) { |
| --KillInst; |
| if (KillInst->isDebugInstr()) |
| continue; |
| if (KillInst->readsRegister(SrcReg)) |
| break; |
| } |
| } else { |
| // We just inserted this copy. |
| KillInst = std::prev(InsertPos); |
| } |
| } |
| assert(KillInst->readsRegister(SrcReg) && |
| "Cannot find kill instruction"); |
| |
| SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); |
| SrcLI.removeSegment(LastUseIndex.getRegSlot(), |
| LIS->getMBBEndIdx(&opBlock)); |
| } |
| } |
| } |
| } |
| |
| // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. |
| if (reusedIncoming || !IncomingReg) { |
| if (LIS) |
| LIS->RemoveMachineInstrFromMaps(*MPhi); |
| MF.deleteMachineInstr(MPhi); |
| } |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the number of uses of a virtual register which is |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is |
| /// used later to determine when the vreg is killed in the BB. |
| void PHIElimination::analyzePHINodes(const MachineFunction& MF) { |
| for (const auto &MBB : MF) { |
| for (const auto &BBI : MBB) { |
| if (!BBI.isPHI()) |
| break; |
| for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { |
| if (!BBI.getOperand(i).isUndef()) { |
| ++VRegPHIUseCount[BBVRegPair( |
| BBI.getOperand(i + 1).getMBB()->getNumber(), |
| BBI.getOperand(i).getReg())]; |
| } |
| } |
| } |
| } |
| } |
| |
| bool PHIElimination::SplitPHIEdges(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| MachineLoopInfo *MLI, |
| std::vector<SparseBitVector<>> *LiveInSets) { |
| if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; |
| bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); |
| |
| bool Changed = false; |
| for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); |
| BBI != BBE && BBI->isPHI(); ++BBI) { |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
| Register Reg = BBI->getOperand(i).getReg(); |
| MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); |
| // Is there a critical edge from PreMBB to MBB? |
| if (PreMBB->succ_size() == 1) |
| continue; |
| |
| // Avoid splitting backedges of loops. It would introduce small |
| // out-of-line blocks into the loop which is very bad for code placement. |
| if (PreMBB == &MBB && !SplitAllCriticalEdges) |
| continue; |
| const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; |
| if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) |
| continue; |
| |
| // LV doesn't consider a phi use live-out, so isLiveOut only returns true |
| // when the source register is live-out for some other reason than a phi |
| // use. That means the copy we will insert in PreMBB won't be a kill, and |
| // there is a risk it may not be coalesced away. |
| // |
| // If the copy would be a kill, there is no need to split the edge. |
| bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); |
| if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) |
| continue; |
| if (ShouldSplit) { |
| LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " |
| << printMBBReference(*PreMBB) << " -> " |
| << printMBBReference(MBB) << ": " << *BBI); |
| } |
| |
| // If Reg is not live-in to MBB, it means it must be live-in to some |
| // other PreMBB successor, and we can avoid the interference by splitting |
| // the edge. |
| // |
| // If Reg *is* live-in to MBB, the interference is inevitable and a copy |
| // is likely to be left after coalescing. If we are looking at a loop |
| // exiting edge, split it so we won't insert code in the loop, otherwise |
| // don't bother. |
| ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); |
| |
| // Check for a loop exiting edge. |
| if (!ShouldSplit && CurLoop != PreLoop) { |
| LLVM_DEBUG({ |
| dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; |
| if (PreLoop) |
| dbgs() << "PreLoop: " << *PreLoop; |
| if (CurLoop) |
| dbgs() << "CurLoop: " << *CurLoop; |
| }); |
| // This edge could be entering a loop, exiting a loop, or it could be |
| // both: Jumping directly form one loop to the header of a sibling |
| // loop. |
| // Split unless this edge is entering CurLoop from an outer loop. |
| ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); |
| } |
| if (!ShouldSplit && !SplitAllCriticalEdges) |
| continue; |
| if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { |
| LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); |
| continue; |
| } |
| Changed = true; |
| ++NumCriticalEdgesSplit; |
| } |
| } |
| return Changed; |
| } |
| |
| bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { |
| assert((LV || LIS) && |
| "isLiveIn() requires either LiveVariables or LiveIntervals"); |
| if (LIS) |
| return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); |
| else |
| return LV->isLiveIn(Reg, *MBB); |
| } |
| |
| bool PHIElimination::isLiveOutPastPHIs(Register Reg, |
| const MachineBasicBlock *MBB) { |
| assert((LV || LIS) && |
| "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); |
| // LiveVariables considers uses in PHIs to be in the predecessor basic block, |
| // so that a register used only in a PHI is not live out of the block. In |
| // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than |
| // in the predecessor basic block, so that a register used only in a PHI is live |
| // out of the block. |
| if (LIS) { |
| const LiveInterval &LI = LIS->getInterval(Reg); |
| for (const MachineBasicBlock *SI : MBB->successors()) |
| if (LI.liveAt(LIS->getMBBStartIdx(SI))) |
| return true; |
| return false; |
| } else { |
| return LV->isLiveOut(Reg, *MBB); |
| } |
| } |