blob: 1ad08e19feae8c3373ad8c59bbf7d3752e9db2f1 [file] [log] [blame]
//===- lib/Codegen/MachineRegisterInfo.cpp --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
static cl::opt<bool> EnableSubRegLiveness("enable-subreg-liveness", cl::Hidden,
cl::init(true), cl::desc("Enable subregister liveness tracking."));
// Pin the vtable to this file.
void MachineRegisterInfo::Delegate::anchor() {}
MachineRegisterInfo::MachineRegisterInfo(MachineFunction *MF)
: MF(MF), TracksSubRegLiveness(MF->getSubtarget().enableSubRegLiveness() &&
EnableSubRegLiveness) {
unsigned NumRegs = getTargetRegisterInfo()->getNumRegs();
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
UsedPhysRegMask.resize(NumRegs);
PhysRegUseDefLists.reset(new MachineOperand*[NumRegs]());
TheDelegates.clear();
}
/// setRegClass - Set the register class of the specified virtual register.
///
void
MachineRegisterInfo::setRegClass(Register Reg, const TargetRegisterClass *RC) {
assert(RC && RC->isAllocatable() && "Invalid RC for virtual register");
VRegInfo[Reg].first = RC;
}
void MachineRegisterInfo::setRegBank(Register Reg,
const RegisterBank &RegBank) {
VRegInfo[Reg].first = &RegBank;
}
static const TargetRegisterClass *
constrainRegClass(MachineRegisterInfo &MRI, Register Reg,
const TargetRegisterClass *OldRC,
const TargetRegisterClass *RC, unsigned MinNumRegs) {
if (OldRC == RC)
return RC;
const TargetRegisterClass *NewRC =
MRI.getTargetRegisterInfo()->getCommonSubClass(OldRC, RC);
if (!NewRC || NewRC == OldRC)
return NewRC;
if (NewRC->getNumRegs() < MinNumRegs)
return nullptr;
MRI.setRegClass(Reg, NewRC);
return NewRC;
}
const TargetRegisterClass *MachineRegisterInfo::constrainRegClass(
Register Reg, const TargetRegisterClass *RC, unsigned MinNumRegs) {
if (Reg.isPhysical())
return nullptr;
return ::constrainRegClass(*this, Reg, getRegClass(Reg), RC, MinNumRegs);
}
bool
MachineRegisterInfo::constrainRegAttrs(Register Reg,
Register ConstrainingReg,
unsigned MinNumRegs) {
const LLT RegTy = getType(Reg);
const LLT ConstrainingRegTy = getType(ConstrainingReg);
if (RegTy.isValid() && ConstrainingRegTy.isValid() &&
RegTy != ConstrainingRegTy)
return false;
const auto ConstrainingRegCB = getRegClassOrRegBank(ConstrainingReg);
if (!ConstrainingRegCB.isNull()) {
const auto RegCB = getRegClassOrRegBank(Reg);
if (RegCB.isNull())
setRegClassOrRegBank(Reg, ConstrainingRegCB);
else if (RegCB.is<const TargetRegisterClass *>() !=
ConstrainingRegCB.is<const TargetRegisterClass *>())
return false;
else if (RegCB.is<const TargetRegisterClass *>()) {
if (!::constrainRegClass(
*this, Reg, RegCB.get<const TargetRegisterClass *>(),
ConstrainingRegCB.get<const TargetRegisterClass *>(), MinNumRegs))
return false;
} else if (RegCB != ConstrainingRegCB)
return false;
}
if (ConstrainingRegTy.isValid())
setType(Reg, ConstrainingRegTy);
return true;
}
bool
MachineRegisterInfo::recomputeRegClass(Register Reg) {
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
const TargetRegisterClass *OldRC = getRegClass(Reg);
const TargetRegisterClass *NewRC =
getTargetRegisterInfo()->getLargestLegalSuperClass(OldRC, *MF);
// Stop early if there is no room to grow.
if (NewRC == OldRC)
return false;
// Accumulate constraints from all uses.
for (MachineOperand &MO : reg_nodbg_operands(Reg)) {
// Apply the effect of the given operand to NewRC.
MachineInstr *MI = MO.getParent();
unsigned OpNo = &MO - &MI->getOperand(0);
NewRC = MI->getRegClassConstraintEffect(OpNo, NewRC, TII,
getTargetRegisterInfo());
if (!NewRC || NewRC == OldRC)
return false;
}
setRegClass(Reg, NewRC);
return true;
}
Register MachineRegisterInfo::createIncompleteVirtualRegister(StringRef Name) {
Register Reg = Register::index2VirtReg(getNumVirtRegs());
VRegInfo.grow(Reg);
RegAllocHints.grow(Reg);
insertVRegByName(Name, Reg);
return Reg;
}
/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
Register
MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass,
StringRef Name) {
assert(RegClass && "Cannot create register without RegClass!");
assert(RegClass->isAllocatable() &&
"Virtual register RegClass must be allocatable.");
// New virtual register number.
Register Reg = createIncompleteVirtualRegister(Name);
VRegInfo[Reg].first = RegClass;
noteNewVirtualRegister(Reg);
return Reg;
}
Register MachineRegisterInfo::cloneVirtualRegister(Register VReg,
StringRef Name) {
Register Reg = createIncompleteVirtualRegister(Name);
VRegInfo[Reg].first = VRegInfo[VReg].first;
setType(Reg, getType(VReg));
noteCloneVirtualRegister(Reg, VReg);
return Reg;
}
void MachineRegisterInfo::setType(Register VReg, LLT Ty) {
VRegToType.grow(VReg);
VRegToType[VReg] = Ty;
}
Register
MachineRegisterInfo::createGenericVirtualRegister(LLT Ty, StringRef Name) {
// New virtual register number.
Register Reg = createIncompleteVirtualRegister(Name);
// FIXME: Should we use a dummy register class?
VRegInfo[Reg].first = static_cast<RegisterBank *>(nullptr);
setType(Reg, Ty);
noteNewVirtualRegister(Reg);
return Reg;
}
void MachineRegisterInfo::clearVirtRegTypes() { VRegToType.clear(); }
/// clearVirtRegs - Remove all virtual registers (after physreg assignment).
void MachineRegisterInfo::clearVirtRegs() {
#ifndef NDEBUG
for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) {
Register Reg = Register::index2VirtReg(i);
if (!VRegInfo[Reg].second)
continue;
verifyUseList(Reg);
errs() << "Remaining virtual register "
<< printReg(Reg, getTargetRegisterInfo()) << "...\n";
for (MachineInstr &MI : reg_instructions(Reg))
errs() << "...in instruction: " << MI << "\n";
std::abort();
}
#endif
VRegInfo.clear();
for (auto &I : LiveIns)
I.second = 0;
}
void MachineRegisterInfo::verifyUseList(Register Reg) const {
#ifndef NDEBUG
bool Valid = true;
for (MachineOperand &M : reg_operands(Reg)) {
MachineOperand *MO = &M;
MachineInstr *MI = MO->getParent();
if (!MI) {
errs() << printReg(Reg, getTargetRegisterInfo())
<< " use list MachineOperand " << MO
<< " has no parent instruction.\n";
Valid = false;
continue;
}
MachineOperand *MO0 = &MI->getOperand(0);
unsigned NumOps = MI->getNumOperands();
if (!(MO >= MO0 && MO < MO0+NumOps)) {
errs() << printReg(Reg, getTargetRegisterInfo())
<< " use list MachineOperand " << MO
<< " doesn't belong to parent MI: " << *MI;
Valid = false;
}
if (!MO->isReg()) {
errs() << printReg(Reg, getTargetRegisterInfo())
<< " MachineOperand " << MO << ": " << *MO
<< " is not a register\n";
Valid = false;
}
if (MO->getReg() != Reg) {
errs() << printReg(Reg, getTargetRegisterInfo())
<< " use-list MachineOperand " << MO << ": "
<< *MO << " is the wrong register\n";
Valid = false;
}
}
assert(Valid && "Invalid use list");
#endif
}
void MachineRegisterInfo::verifyUseLists() const {
#ifndef NDEBUG
for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
verifyUseList(Register::index2VirtReg(i));
for (unsigned i = 1, e = getTargetRegisterInfo()->getNumRegs(); i != e; ++i)
verifyUseList(i);
#endif
}
/// Add MO to the linked list of operands for its register.
void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) {
assert(!MO->isOnRegUseList() && "Already on list");
MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
MachineOperand *const Head = HeadRef;
// Head points to the first list element.
// Next is NULL on the last list element.
// Prev pointers are circular, so Head->Prev == Last.
// Head is NULL for an empty list.
if (!Head) {
MO->Contents.Reg.Prev = MO;
MO->Contents.Reg.Next = nullptr;
HeadRef = MO;
return;
}
assert(MO->getReg() == Head->getReg() && "Different regs on the same list!");
// Insert MO between Last and Head in the circular Prev chain.
MachineOperand *Last = Head->Contents.Reg.Prev;
assert(Last && "Inconsistent use list");
assert(MO->getReg() == Last->getReg() && "Different regs on the same list!");
Head->Contents.Reg.Prev = MO;
MO->Contents.Reg.Prev = Last;
// Def operands always precede uses. This allows def_iterator to stop early.
// Insert def operands at the front, and use operands at the back.
if (MO->isDef()) {
// Insert def at the front.
MO->Contents.Reg.Next = Head;
HeadRef = MO;
} else {
// Insert use at the end.
MO->Contents.Reg.Next = nullptr;
Last->Contents.Reg.Next = MO;
}
}
/// Remove MO from its use-def list.
void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) {
assert(MO->isOnRegUseList() && "Operand not on use list");
MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
MachineOperand *const Head = HeadRef;
assert(Head && "List already empty");
// Unlink this from the doubly linked list of operands.
MachineOperand *Next = MO->Contents.Reg.Next;
MachineOperand *Prev = MO->Contents.Reg.Prev;
// Prev links are circular, next link is NULL instead of looping back to Head.
if (MO == Head)
HeadRef = Next;
else
Prev->Contents.Reg.Next = Next;
(Next ? Next : Head)->Contents.Reg.Prev = Prev;
MO->Contents.Reg.Prev = nullptr;
MO->Contents.Reg.Next = nullptr;
}
/// Move NumOps operands from Src to Dst, updating use-def lists as needed.
///
/// The Dst range is assumed to be uninitialized memory. (Or it may contain
/// operands that won't be destroyed, which is OK because the MO destructor is
/// trivial anyway).
///
/// The Src and Dst ranges may overlap.
void MachineRegisterInfo::moveOperands(MachineOperand *Dst,
MachineOperand *Src,
unsigned NumOps) {
assert(Src != Dst && NumOps && "Noop moveOperands");
// Copy backwards if Dst is within the Src range.
int Stride = 1;
if (Dst >= Src && Dst < Src + NumOps) {
Stride = -1;
Dst += NumOps - 1;
Src += NumOps - 1;
}
// Copy one operand at a time.
do {
new (Dst) MachineOperand(*Src);
// Dst takes Src's place in the use-def chain.
if (Src->isReg()) {
MachineOperand *&Head = getRegUseDefListHead(Src->getReg());
MachineOperand *Prev = Src->Contents.Reg.Prev;
MachineOperand *Next = Src->Contents.Reg.Next;
assert(Head && "List empty, but operand is chained");
assert(Prev && "Operand was not on use-def list");
// Prev links are circular, next link is NULL instead of looping back to
// Head.
if (Src == Head)
Head = Dst;
else
Prev->Contents.Reg.Next = Dst;
// Update Prev pointer. This also works when Src was pointing to itself
// in a 1-element list. In that case Head == Dst.
(Next ? Next : Head)->Contents.Reg.Prev = Dst;
}
Dst += Stride;
Src += Stride;
} while (--NumOps);
}
/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
/// If ToReg is a physical register we apply the sub register to obtain the
/// final/proper physical register.
void MachineRegisterInfo::replaceRegWith(Register FromReg, Register ToReg) {
assert(FromReg != ToReg && "Cannot replace a reg with itself");
const TargetRegisterInfo *TRI = getTargetRegisterInfo();
// TODO: This could be more efficient by bulk changing the operands.
for (MachineOperand &O : llvm::make_early_inc_range(reg_operands(FromReg))) {
if (ToReg.isPhysical()) {
O.substPhysReg(ToReg, *TRI);
} else {
O.setReg(ToReg);
}
}
}
/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found. This assumes that the code is in SSA
/// form, so there should only be one definition.
MachineInstr *MachineRegisterInfo::getVRegDef(Register Reg) const {
// Since we are in SSA form, we can use the first definition.
def_instr_iterator I = def_instr_begin(Reg);
assert((I.atEnd() || std::next(I) == def_instr_end()) &&
"getVRegDef assumes a single definition or no definition");
return !I.atEnd() ? &*I : nullptr;
}
/// getUniqueVRegDef - Return the unique machine instr that defines the
/// specified virtual register or null if none is found. If there are
/// multiple definitions or no definition, return null.
MachineInstr *MachineRegisterInfo::getUniqueVRegDef(Register Reg) const {
if (def_empty(Reg)) return nullptr;
def_instr_iterator I = def_instr_begin(Reg);
if (std::next(I) != def_instr_end())
return nullptr;
return &*I;
}
bool MachineRegisterInfo::hasOneNonDBGUse(Register RegNo) const {
return hasSingleElement(use_nodbg_operands(RegNo));
}
bool MachineRegisterInfo::hasOneNonDBGUser(Register RegNo) const {
return hasSingleElement(use_nodbg_instructions(RegNo));
}
bool MachineRegisterInfo::hasAtMostUserInstrs(Register Reg,
unsigned MaxUsers) const {
return hasNItemsOrLess(use_instr_nodbg_begin(Reg), use_instr_nodbg_end(),
MaxUsers);
}
/// clearKillFlags - Iterate over all the uses of the given register and
/// clear the kill flag from the MachineOperand. This function is used by
/// optimization passes which extend register lifetimes and need only
/// preserve conservative kill flag information.
void MachineRegisterInfo::clearKillFlags(Register Reg) const {
for (MachineOperand &MO : use_operands(Reg))
MO.setIsKill(false);
}
bool MachineRegisterInfo::isLiveIn(Register Reg) const {
for (const std::pair<MCRegister, Register> &LI : liveins())
if ((Register)LI.first == Reg || LI.second == Reg)
return true;
return false;
}
/// getLiveInPhysReg - If VReg is a live-in virtual register, return the
/// corresponding live-in physical register.
MCRegister MachineRegisterInfo::getLiveInPhysReg(Register VReg) const {
for (const std::pair<MCRegister, Register> &LI : liveins())
if (LI.second == VReg)
return LI.first;
return MCRegister();
}
/// getLiveInVirtReg - If PReg is a live-in physical register, return the
/// corresponding live-in physical register.
Register MachineRegisterInfo::getLiveInVirtReg(MCRegister PReg) const {
for (const std::pair<MCRegister, Register> &LI : liveins())
if (LI.first == PReg)
return LI.second;
return Register();
}
/// EmitLiveInCopies - Emit copies to initialize livein virtual registers
/// into the given entry block.
void
MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
const TargetRegisterInfo &TRI,
const TargetInstrInfo &TII) {
// Emit the copies into the top of the block.
for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
if (LiveIns[i].second) {
if (use_nodbg_empty(LiveIns[i].second)) {
// The livein has no non-dbg uses. Drop it.
//
// It would be preferable to have isel avoid creating live-in
// records for unused arguments in the first place, but it's
// complicated by the debug info code for arguments.
LiveIns.erase(LiveIns.begin() + i);
--i; --e;
} else {
// Emit a copy.
BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
TII.get(TargetOpcode::COPY), LiveIns[i].second)
.addReg(LiveIns[i].first);
// Add the register to the entry block live-in set.
EntryMBB->addLiveIn(LiveIns[i].first);
}
} else {
// Add the register to the entry block live-in set.
EntryMBB->addLiveIn(LiveIns[i].first);
}
}
LaneBitmask MachineRegisterInfo::getMaxLaneMaskForVReg(Register Reg) const {
// Lane masks are only defined for vregs.
assert(Reg.isVirtual());
const TargetRegisterClass &TRC = *getRegClass(Reg);
return TRC.getLaneMask();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineRegisterInfo::dumpUses(Register Reg) const {
for (MachineInstr &I : use_instructions(Reg))
I.dump();
}
#endif
void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
ReservedRegs = getTargetRegisterInfo()->getReservedRegs(MF);
assert(ReservedRegs.size() == getTargetRegisterInfo()->getNumRegs() &&
"Invalid ReservedRegs vector from target");
}
bool MachineRegisterInfo::isConstantPhysReg(MCRegister PhysReg) const {
assert(Register::isPhysicalRegister(PhysReg));
const TargetRegisterInfo *TRI = getTargetRegisterInfo();
if (TRI->isConstantPhysReg(PhysReg))
return true;
// Check if any overlapping register is modified, or allocatable so it may be
// used later.
for (MCRegAliasIterator AI(PhysReg, TRI, true);
AI.isValid(); ++AI)
if (!def_empty(*AI) || isAllocatable(*AI))
return false;
return true;
}
/// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
/// specified register as undefined which causes the DBG_VALUE to be
/// deleted during LiveDebugVariables analysis.
void MachineRegisterInfo::markUsesInDebugValueAsUndef(Register Reg) const {
// Mark any DBG_VALUE* that uses Reg as undef (but don't delete it.)
// We use make_early_inc_range because setReg invalidates the iterator.
for (MachineInstr &UseMI : llvm::make_early_inc_range(use_instructions(Reg))) {
if (UseMI.isDebugValue() && UseMI.hasDebugOperandForReg(Reg))
UseMI.setDebugValueUndef();
}
}
static const Function *getCalledFunction(const MachineInstr &MI) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isGlobal())
continue;
const Function *Func = dyn_cast<Function>(MO.getGlobal());
if (Func != nullptr)
return Func;
}
return nullptr;
}
static bool isNoReturnDef(const MachineOperand &MO) {
// Anything which is not a noreturn function is a real def.
const MachineInstr &MI = *MO.getParent();
if (!MI.isCall())
return false;
const MachineBasicBlock &MBB = *MI.getParent();
if (!MBB.succ_empty())
return false;
const MachineFunction &MF = *MBB.getParent();
// We need to keep correct unwind information even if the function will
// not return, since the runtime may need it.
if (MF.getFunction().hasFnAttribute(Attribute::UWTable))
return false;
const Function *Called = getCalledFunction(MI);
return !(Called == nullptr || !Called->hasFnAttribute(Attribute::NoReturn) ||
!Called->hasFnAttribute(Attribute::NoUnwind));
}
bool MachineRegisterInfo::isPhysRegModified(MCRegister PhysReg,
bool SkipNoReturnDef) const {
if (UsedPhysRegMask.test(PhysReg))
return true;
const TargetRegisterInfo *TRI = getTargetRegisterInfo();
for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) {
for (const MachineOperand &MO : make_range(def_begin(*AI), def_end())) {
if (!SkipNoReturnDef && isNoReturnDef(MO))
continue;
return true;
}
}
return false;
}
bool MachineRegisterInfo::isPhysRegUsed(MCRegister PhysReg,
bool SkipRegMaskTest) const {
if (!SkipRegMaskTest && UsedPhysRegMask.test(PhysReg))
return true;
const TargetRegisterInfo *TRI = getTargetRegisterInfo();
for (MCRegAliasIterator AliasReg(PhysReg, TRI, true); AliasReg.isValid();
++AliasReg) {
if (!reg_nodbg_empty(*AliasReg))
return true;
}
return false;
}
void MachineRegisterInfo::disableCalleeSavedRegister(MCRegister Reg) {
const TargetRegisterInfo *TRI = getTargetRegisterInfo();
assert(Reg && (Reg < TRI->getNumRegs()) &&
"Trying to disable an invalid register");
if (!IsUpdatedCSRsInitialized) {
const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF);
for (const MCPhysReg *I = CSR; *I; ++I)
UpdatedCSRs.push_back(*I);
// Zero value represents the end of the register list
// (no more registers should be pushed).
UpdatedCSRs.push_back(0);
IsUpdatedCSRsInitialized = true;
}
// Remove the register (and its aliases from the list).
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
llvm::erase_value(UpdatedCSRs, *AI);
}
const MCPhysReg *MachineRegisterInfo::getCalleeSavedRegs() const {
if (IsUpdatedCSRsInitialized)
return UpdatedCSRs.data();
return getTargetRegisterInfo()->getCalleeSavedRegs(MF);
}
void MachineRegisterInfo::setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs) {
if (IsUpdatedCSRsInitialized)
UpdatedCSRs.clear();
append_range(UpdatedCSRs, CSRs);
// Zero value represents the end of the register list
// (no more registers should be pushed).
UpdatedCSRs.push_back(0);
IsUpdatedCSRsInitialized = true;
}
bool MachineRegisterInfo::isReservedRegUnit(unsigned Unit) const {
const TargetRegisterInfo *TRI = getTargetRegisterInfo();
for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
bool IsRootReserved = true;
for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
Super.isValid(); ++Super) {
MCRegister Reg = *Super;
if (!isReserved(Reg)) {
IsRootReserved = false;
break;
}
}
if (IsRootReserved)
return true;
}
return false;
}
bool MachineRegisterInfo::isArgumentRegister(const MachineFunction &MF,
MCRegister Reg) const {
return getTargetRegisterInfo()->isArgumentRegister(MF, Reg);
}
bool MachineRegisterInfo::isFixedRegister(const MachineFunction &MF,
MCRegister Reg) const {
return getTargetRegisterInfo()->isFixedRegister(MF, Reg);
}
bool MachineRegisterInfo::isGeneralPurposeRegister(const MachineFunction &MF,
MCRegister Reg) const {
return getTargetRegisterInfo()->isGeneralPurposeRegister(MF, Reg);
}