| //===- MachineFunction.cpp ------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Collect native machine code information for a function. This allows |
| // target-specific information about the generated code to be stored with each |
| // function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/WasmEHFuncInfo.h" |
| #include "llvm/CodeGen/WinEHFuncInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/SectionKind.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/DOTGraphTraits.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "LiveDebugValues/LiveDebugValues.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "codegen" |
| |
| static cl::opt<unsigned> AlignAllFunctions( |
| "align-all-functions", |
| cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " |
| "means align on 16B boundaries)."), |
| cl::init(0), cl::Hidden); |
| |
| static const char *getPropertyName(MachineFunctionProperties::Property Prop) { |
| using P = MachineFunctionProperties::Property; |
| |
| // clang-format off |
| switch(Prop) { |
| case P::FailedISel: return "FailedISel"; |
| case P::IsSSA: return "IsSSA"; |
| case P::Legalized: return "Legalized"; |
| case P::NoPHIs: return "NoPHIs"; |
| case P::NoVRegs: return "NoVRegs"; |
| case P::RegBankSelected: return "RegBankSelected"; |
| case P::Selected: return "Selected"; |
| case P::TracksLiveness: return "TracksLiveness"; |
| case P::TiedOpsRewritten: return "TiedOpsRewritten"; |
| case P::FailsVerification: return "FailsVerification"; |
| case P::TracksDebugUserValues: return "TracksDebugUserValues"; |
| } |
| // clang-format on |
| llvm_unreachable("Invalid machine function property"); |
| } |
| |
| void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { |
| if (!F.hasFnAttribute(Attribute::SafeStack)) |
| return; |
| |
| auto *Existing = |
| dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); |
| |
| if (!Existing || Existing->getNumOperands() != 2) |
| return; |
| |
| auto *MetadataName = "unsafe-stack-size"; |
| if (auto &N = Existing->getOperand(0)) { |
| if (cast<MDString>(N.get())->getString() == MetadataName) { |
| if (auto &Op = Existing->getOperand(1)) { |
| auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); |
| FrameInfo.setUnsafeStackSize(Val); |
| } |
| } |
| } |
| } |
| |
| // Pin the vtable to this file. |
| void MachineFunction::Delegate::anchor() {} |
| |
| void MachineFunctionProperties::print(raw_ostream &OS) const { |
| const char *Separator = ""; |
| for (BitVector::size_type I = 0; I < Properties.size(); ++I) { |
| if (!Properties[I]) |
| continue; |
| OS << Separator << getPropertyName(static_cast<Property>(I)); |
| Separator = ", "; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineFunction implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Out-of-line virtual method. |
| MachineFunctionInfo::~MachineFunctionInfo() = default; |
| |
| void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { |
| MBB->getParent()->deleteMachineBasicBlock(MBB); |
| } |
| |
| static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, |
| const Function &F) { |
| if (auto MA = F.getFnStackAlign()) |
| return *MA; |
| return STI->getFrameLowering()->getStackAlign(); |
| } |
| |
| MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, |
| const TargetSubtargetInfo &STI, |
| unsigned FunctionNum, MachineModuleInfo &mmi) |
| : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { |
| FunctionNumber = FunctionNum; |
| init(); |
| } |
| |
| void MachineFunction::handleInsertion(MachineInstr &MI) { |
| if (TheDelegate) |
| TheDelegate->MF_HandleInsertion(MI); |
| } |
| |
| void MachineFunction::handleRemoval(MachineInstr &MI) { |
| if (TheDelegate) |
| TheDelegate->MF_HandleRemoval(MI); |
| } |
| |
| void MachineFunction::init() { |
| // Assume the function starts in SSA form with correct liveness. |
| Properties.set(MachineFunctionProperties::Property::IsSSA); |
| Properties.set(MachineFunctionProperties::Property::TracksLiveness); |
| if (STI->getRegisterInfo()) |
| RegInfo = new (Allocator) MachineRegisterInfo(this); |
| else |
| RegInfo = nullptr; |
| |
| MFInfo = nullptr; |
| |
| // We can realign the stack if the target supports it and the user hasn't |
| // explicitly asked us not to. |
| bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && |
| !F.hasFnAttribute("no-realign-stack"); |
| FrameInfo = new (Allocator) MachineFrameInfo( |
| getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, |
| /*ForcedRealign=*/CanRealignSP && |
| F.hasFnAttribute(Attribute::StackAlignment)); |
| |
| setUnsafeStackSize(F, *FrameInfo); |
| |
| if (F.hasFnAttribute(Attribute::StackAlignment)) |
| FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); |
| |
| ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); |
| Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); |
| |
| // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. |
| // FIXME: Use Function::hasOptSize(). |
| if (!F.hasFnAttribute(Attribute::OptimizeForSize)) |
| Alignment = std::max(Alignment, |
| STI->getTargetLowering()->getPrefFunctionAlignment()); |
| |
| if (AlignAllFunctions) |
| Alignment = Align(1ULL << AlignAllFunctions); |
| |
| JumpTableInfo = nullptr; |
| |
| if (isFuncletEHPersonality(classifyEHPersonality( |
| F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { |
| WinEHInfo = new (Allocator) WinEHFuncInfo(); |
| } |
| |
| if (isScopedEHPersonality(classifyEHPersonality( |
| F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { |
| WasmEHInfo = new (Allocator) WasmEHFuncInfo(); |
| } |
| |
| assert(Target.isCompatibleDataLayout(getDataLayout()) && |
| "Can't create a MachineFunction using a Module with a " |
| "Target-incompatible DataLayout attached\n"); |
| |
| PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); |
| } |
| |
| void MachineFunction::initTargetMachineFunctionInfo( |
| const TargetSubtargetInfo &STI) { |
| assert(!MFInfo && "MachineFunctionInfo already set"); |
| MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); |
| } |
| |
| MachineFunction::~MachineFunction() { |
| clear(); |
| } |
| |
| void MachineFunction::clear() { |
| Properties.reset(); |
| // Don't call destructors on MachineInstr and MachineOperand. All of their |
| // memory comes from the BumpPtrAllocator which is about to be purged. |
| // |
| // Do call MachineBasicBlock destructors, it contains std::vectors. |
| for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) |
| I->Insts.clearAndLeakNodesUnsafely(); |
| MBBNumbering.clear(); |
| |
| InstructionRecycler.clear(Allocator); |
| OperandRecycler.clear(Allocator); |
| BasicBlockRecycler.clear(Allocator); |
| CodeViewAnnotations.clear(); |
| VariableDbgInfos.clear(); |
| if (RegInfo) { |
| RegInfo->~MachineRegisterInfo(); |
| Allocator.Deallocate(RegInfo); |
| } |
| if (MFInfo) { |
| MFInfo->~MachineFunctionInfo(); |
| Allocator.Deallocate(MFInfo); |
| } |
| |
| FrameInfo->~MachineFrameInfo(); |
| Allocator.Deallocate(FrameInfo); |
| |
| ConstantPool->~MachineConstantPool(); |
| Allocator.Deallocate(ConstantPool); |
| |
| if (JumpTableInfo) { |
| JumpTableInfo->~MachineJumpTableInfo(); |
| Allocator.Deallocate(JumpTableInfo); |
| } |
| |
| if (WinEHInfo) { |
| WinEHInfo->~WinEHFuncInfo(); |
| Allocator.Deallocate(WinEHInfo); |
| } |
| |
| if (WasmEHInfo) { |
| WasmEHInfo->~WasmEHFuncInfo(); |
| Allocator.Deallocate(WasmEHInfo); |
| } |
| } |
| |
| const DataLayout &MachineFunction::getDataLayout() const { |
| return F.getParent()->getDataLayout(); |
| } |
| |
| /// Get the JumpTableInfo for this function. |
| /// If it does not already exist, allocate one. |
| MachineJumpTableInfo *MachineFunction:: |
| getOrCreateJumpTableInfo(unsigned EntryKind) { |
| if (JumpTableInfo) return JumpTableInfo; |
| |
| JumpTableInfo = new (Allocator) |
| MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); |
| return JumpTableInfo; |
| } |
| |
| DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { |
| return F.getDenormalMode(FPType); |
| } |
| |
| /// Should we be emitting segmented stack stuff for the function |
| bool MachineFunction::shouldSplitStack() const { |
| return getFunction().hasFnAttribute("split-stack"); |
| } |
| |
| [[nodiscard]] unsigned |
| MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { |
| FrameInstructions.push_back(Inst); |
| return FrameInstructions.size() - 1; |
| } |
| |
| /// This discards all of the MachineBasicBlock numbers and recomputes them. |
| /// This guarantees that the MBB numbers are sequential, dense, and match the |
| /// ordering of the blocks within the function. If a specific MachineBasicBlock |
| /// is specified, only that block and those after it are renumbered. |
| void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { |
| if (empty()) { MBBNumbering.clear(); return; } |
| MachineFunction::iterator MBBI, E = end(); |
| if (MBB == nullptr) |
| MBBI = begin(); |
| else |
| MBBI = MBB->getIterator(); |
| |
| // Figure out the block number this should have. |
| unsigned BlockNo = 0; |
| if (MBBI != begin()) |
| BlockNo = std::prev(MBBI)->getNumber() + 1; |
| |
| for (; MBBI != E; ++MBBI, ++BlockNo) { |
| if (MBBI->getNumber() != (int)BlockNo) { |
| // Remove use of the old number. |
| if (MBBI->getNumber() != -1) { |
| assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && |
| "MBB number mismatch!"); |
| MBBNumbering[MBBI->getNumber()] = nullptr; |
| } |
| |
| // If BlockNo is already taken, set that block's number to -1. |
| if (MBBNumbering[BlockNo]) |
| MBBNumbering[BlockNo]->setNumber(-1); |
| |
| MBBNumbering[BlockNo] = &*MBBI; |
| MBBI->setNumber(BlockNo); |
| } |
| } |
| |
| // Okay, all the blocks are renumbered. If we have compactified the block |
| // numbering, shrink MBBNumbering now. |
| assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); |
| MBBNumbering.resize(BlockNo); |
| } |
| |
| /// This method iterates over the basic blocks and assigns their IsBeginSection |
| /// and IsEndSection fields. This must be called after MBB layout is finalized |
| /// and the SectionID's are assigned to MBBs. |
| void MachineFunction::assignBeginEndSections() { |
| front().setIsBeginSection(); |
| auto CurrentSectionID = front().getSectionID(); |
| for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { |
| if (MBBI->getSectionID() == CurrentSectionID) |
| continue; |
| MBBI->setIsBeginSection(); |
| std::prev(MBBI)->setIsEndSection(); |
| CurrentSectionID = MBBI->getSectionID(); |
| } |
| back().setIsEndSection(); |
| } |
| |
| /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. |
| MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, |
| DebugLoc DL, |
| bool NoImplicit) { |
| return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) |
| MachineInstr(*this, MCID, std::move(DL), NoImplicit); |
| } |
| |
| /// Create a new MachineInstr which is a copy of the 'Orig' instruction, |
| /// identical in all ways except the instruction has no parent, prev, or next. |
| MachineInstr * |
| MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { |
| return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) |
| MachineInstr(*this, *Orig); |
| } |
| |
| MachineInstr &MachineFunction::cloneMachineInstrBundle( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, |
| const MachineInstr &Orig) { |
| MachineInstr *FirstClone = nullptr; |
| MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); |
| while (true) { |
| MachineInstr *Cloned = CloneMachineInstr(&*I); |
| MBB.insert(InsertBefore, Cloned); |
| if (FirstClone == nullptr) { |
| FirstClone = Cloned; |
| } else { |
| Cloned->bundleWithPred(); |
| } |
| |
| if (!I->isBundledWithSucc()) |
| break; |
| ++I; |
| } |
| // Copy over call site info to the cloned instruction if needed. If Orig is in |
| // a bundle, copyCallSiteInfo takes care of finding the call instruction in |
| // the bundle. |
| if (Orig.shouldUpdateCallSiteInfo()) |
| copyCallSiteInfo(&Orig, FirstClone); |
| return *FirstClone; |
| } |
| |
| /// Delete the given MachineInstr. |
| /// |
| /// This function also serves as the MachineInstr destructor - the real |
| /// ~MachineInstr() destructor must be empty. |
| void MachineFunction::deleteMachineInstr(MachineInstr *MI) { |
| // Verify that a call site info is at valid state. This assertion should |
| // be triggered during the implementation of support for the |
| // call site info of a new architecture. If the assertion is triggered, |
| // back trace will tell where to insert a call to updateCallSiteInfo(). |
| assert((!MI->isCandidateForCallSiteEntry() || |
| CallSitesInfo.find(MI) == CallSitesInfo.end()) && |
| "Call site info was not updated!"); |
| // Strip it for parts. The operand array and the MI object itself are |
| // independently recyclable. |
| if (MI->Operands) |
| deallocateOperandArray(MI->CapOperands, MI->Operands); |
| // Don't call ~MachineInstr() which must be trivial anyway because |
| // ~MachineFunction drops whole lists of MachineInstrs wihout calling their |
| // destructors. |
| InstructionRecycler.Deallocate(Allocator, MI); |
| } |
| |
| /// Allocate a new MachineBasicBlock. Use this instead of |
| /// `new MachineBasicBlock'. |
| MachineBasicBlock * |
| MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { |
| MachineBasicBlock *MBB = |
| new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) |
| MachineBasicBlock(*this, bb); |
| // Set BBID for `-basic-block=sections=labels` and |
| // `-basic-block-sections=list` to allow robust mapping of profiles to basic |
| // blocks. |
| if (Target.getBBSectionsType() == BasicBlockSection::Labels || |
| Target.getBBSectionsType() == BasicBlockSection::List) |
| MBB->setBBID(NextBBID++); |
| return MBB; |
| } |
| |
| /// Delete the given MachineBasicBlock. |
| void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { |
| assert(MBB->getParent() == this && "MBB parent mismatch!"); |
| // Clean up any references to MBB in jump tables before deleting it. |
| if (JumpTableInfo) |
| JumpTableInfo->RemoveMBBFromJumpTables(MBB); |
| MBB->~MachineBasicBlock(); |
| BasicBlockRecycler.Deallocate(Allocator, MBB); |
| } |
| |
| MachineMemOperand *MachineFunction::getMachineMemOperand( |
| MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, |
| Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, |
| SyncScope::ID SSID, AtomicOrdering Ordering, |
| AtomicOrdering FailureOrdering) { |
| return new (Allocator) |
| MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, |
| SSID, Ordering, FailureOrdering); |
| } |
| |
| MachineMemOperand *MachineFunction::getMachineMemOperand( |
| MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, |
| Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, |
| SyncScope::ID SSID, AtomicOrdering Ordering, |
| AtomicOrdering FailureOrdering) { |
| return new (Allocator) |
| MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, |
| Ordering, FailureOrdering); |
| } |
| |
| MachineMemOperand *MachineFunction::getMachineMemOperand( |
| const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { |
| return new (Allocator) |
| MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), |
| AAMDNodes(), nullptr, MMO->getSyncScopeID(), |
| MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| } |
| |
| MachineMemOperand *MachineFunction::getMachineMemOperand( |
| const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { |
| return new (Allocator) |
| MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), |
| AAMDNodes(), nullptr, MMO->getSyncScopeID(), |
| MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| } |
| |
| MachineMemOperand * |
| MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| int64_t Offset, LLT Ty) { |
| const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); |
| |
| // If there is no pointer value, the offset isn't tracked so we need to adjust |
| // the base alignment. |
| Align Alignment = PtrInfo.V.isNull() |
| ? commonAlignment(MMO->getBaseAlign(), Offset) |
| : MMO->getBaseAlign(); |
| |
| // Do not preserve ranges, since we don't necessarily know what the high bits |
| // are anymore. |
| return new (Allocator) MachineMemOperand( |
| PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, |
| MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), |
| MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| } |
| |
| MachineMemOperand * |
| MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| const AAMDNodes &AAInfo) { |
| MachinePointerInfo MPI = MMO->getValue() ? |
| MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : |
| MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); |
| |
| return new (Allocator) MachineMemOperand( |
| MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, |
| MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), |
| MMO->getFailureOrdering()); |
| } |
| |
| MachineMemOperand * |
| MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| MachineMemOperand::Flags Flags) { |
| return new (Allocator) MachineMemOperand( |
| MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), |
| MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), |
| MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| } |
| |
| MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( |
| ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, |
| MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, |
| uint32_t CFIType) { |
| return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, |
| PostInstrSymbol, HeapAllocMarker, |
| PCSections, CFIType); |
| } |
| |
| const char *MachineFunction::createExternalSymbolName(StringRef Name) { |
| char *Dest = Allocator.Allocate<char>(Name.size() + 1); |
| llvm::copy(Name, Dest); |
| Dest[Name.size()] = 0; |
| return Dest; |
| } |
| |
| uint32_t *MachineFunction::allocateRegMask() { |
| unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); |
| unsigned Size = MachineOperand::getRegMaskSize(NumRegs); |
| uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); |
| memset(Mask, 0, Size * sizeof(Mask[0])); |
| return Mask; |
| } |
| |
| ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { |
| int* AllocMask = Allocator.Allocate<int>(Mask.size()); |
| copy(Mask, AllocMask); |
| return {AllocMask, Mask.size()}; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MachineFunction::dump() const { |
| print(dbgs()); |
| } |
| #endif |
| |
| StringRef MachineFunction::getName() const { |
| return getFunction().getName(); |
| } |
| |
| void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { |
| OS << "# Machine code for function " << getName() << ": "; |
| getProperties().print(OS); |
| OS << '\n'; |
| |
| // Print Frame Information |
| FrameInfo->print(*this, OS); |
| |
| // Print JumpTable Information |
| if (JumpTableInfo) |
| JumpTableInfo->print(OS); |
| |
| // Print Constant Pool |
| ConstantPool->print(OS); |
| |
| const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); |
| |
| if (RegInfo && !RegInfo->livein_empty()) { |
| OS << "Function Live Ins: "; |
| for (MachineRegisterInfo::livein_iterator |
| I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { |
| OS << printReg(I->first, TRI); |
| if (I->second) |
| OS << " in " << printReg(I->second, TRI); |
| if (std::next(I) != E) |
| OS << ", "; |
| } |
| OS << '\n'; |
| } |
| |
| ModuleSlotTracker MST(getFunction().getParent()); |
| MST.incorporateFunction(getFunction()); |
| for (const auto &BB : *this) { |
| OS << '\n'; |
| // If we print the whole function, print it at its most verbose level. |
| BB.print(OS, MST, Indexes, /*IsStandalone=*/true); |
| } |
| |
| OS << "\n# End machine code for function " << getName() << ".\n\n"; |
| } |
| |
| /// True if this function needs frame moves for debug or exceptions. |
| bool MachineFunction::needsFrameMoves() const { |
| return getMMI().hasDebugInfo() || |
| getTarget().Options.ForceDwarfFrameSection || |
| F.needsUnwindTableEntry(); |
| } |
| |
| namespace llvm { |
| |
| template<> |
| struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { |
| DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
| |
| static std::string getGraphName(const MachineFunction *F) { |
| return ("CFG for '" + F->getName() + "' function").str(); |
| } |
| |
| std::string getNodeLabel(const MachineBasicBlock *Node, |
| const MachineFunction *Graph) { |
| std::string OutStr; |
| { |
| raw_string_ostream OSS(OutStr); |
| |
| if (isSimple()) { |
| OSS << printMBBReference(*Node); |
| if (const BasicBlock *BB = Node->getBasicBlock()) |
| OSS << ": " << BB->getName(); |
| } else |
| Node->print(OSS); |
| } |
| |
| if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); |
| |
| // Process string output to make it nicer... |
| for (unsigned i = 0; i != OutStr.length(); ++i) |
| if (OutStr[i] == '\n') { // Left justify |
| OutStr[i] = '\\'; |
| OutStr.insert(OutStr.begin()+i+1, 'l'); |
| } |
| return OutStr; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| void MachineFunction::viewCFG() const |
| { |
| #ifndef NDEBUG |
| ViewGraph(this, "mf" + getName()); |
| #else |
| errs() << "MachineFunction::viewCFG is only available in debug builds on " |
| << "systems with Graphviz or gv!\n"; |
| #endif // NDEBUG |
| } |
| |
| void MachineFunction::viewCFGOnly() const |
| { |
| #ifndef NDEBUG |
| ViewGraph(this, "mf" + getName(), true); |
| #else |
| errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " |
| << "systems with Graphviz or gv!\n"; |
| #endif // NDEBUG |
| } |
| |
| /// Add the specified physical register as a live-in value and |
| /// create a corresponding virtual register for it. |
| Register MachineFunction::addLiveIn(MCRegister PReg, |
| const TargetRegisterClass *RC) { |
| MachineRegisterInfo &MRI = getRegInfo(); |
| Register VReg = MRI.getLiveInVirtReg(PReg); |
| if (VReg) { |
| const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); |
| (void)VRegRC; |
| // A physical register can be added several times. |
| // Between two calls, the register class of the related virtual register |
| // may have been constrained to match some operation constraints. |
| // In that case, check that the current register class includes the |
| // physical register and is a sub class of the specified RC. |
| assert((VRegRC == RC || (VRegRC->contains(PReg) && |
| RC->hasSubClassEq(VRegRC))) && |
| "Register class mismatch!"); |
| return VReg; |
| } |
| VReg = MRI.createVirtualRegister(RC); |
| MRI.addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| /// Return the MCSymbol for the specified non-empty jump table. |
| /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a |
| /// normal 'L' label is returned. |
| MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, |
| bool isLinkerPrivate) const { |
| const DataLayout &DL = getDataLayout(); |
| assert(JumpTableInfo && "No jump tables"); |
| assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); |
| |
| StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() |
| : DL.getPrivateGlobalPrefix(); |
| SmallString<60> Name; |
| raw_svector_ostream(Name) |
| << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; |
| return Ctx.getOrCreateSymbol(Name); |
| } |
| |
| /// Return a function-local symbol to represent the PIC base. |
| MCSymbol *MachineFunction::getPICBaseSymbol() const { |
| const DataLayout &DL = getDataLayout(); |
| return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + |
| Twine(getFunctionNumber()) + "$pb"); |
| } |
| |
| /// \name Exception Handling |
| /// \{ |
| |
| LandingPadInfo & |
| MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { |
| unsigned N = LandingPads.size(); |
| for (unsigned i = 0; i < N; ++i) { |
| LandingPadInfo &LP = LandingPads[i]; |
| if (LP.LandingPadBlock == LandingPad) |
| return LP; |
| } |
| |
| LandingPads.push_back(LandingPadInfo(LandingPad)); |
| return LandingPads[N]; |
| } |
| |
| void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, |
| MCSymbol *BeginLabel, MCSymbol *EndLabel) { |
| LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); |
| LP.BeginLabels.push_back(BeginLabel); |
| LP.EndLabels.push_back(EndLabel); |
| } |
| |
| MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { |
| MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); |
| LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); |
| LP.LandingPadLabel = LandingPadLabel; |
| |
| const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); |
| if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { |
| // If there's no typeid list specified, then "cleanup" is implicit. |
| // Otherwise, id 0 is reserved for the cleanup action. |
| if (LPI->isCleanup() && LPI->getNumClauses() != 0) |
| LP.TypeIds.push_back(0); |
| |
| // FIXME: New EH - Add the clauses in reverse order. This isn't 100% |
| // correct, but we need to do it this way because of how the DWARF EH |
| // emitter processes the clauses. |
| for (unsigned I = LPI->getNumClauses(); I != 0; --I) { |
| Value *Val = LPI->getClause(I - 1); |
| if (LPI->isCatch(I - 1)) { |
| LP.TypeIds.push_back( |
| getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); |
| } else { |
| // Add filters in a list. |
| auto *CVal = cast<Constant>(Val); |
| SmallVector<unsigned, 4> FilterList; |
| for (const Use &U : CVal->operands()) |
| FilterList.push_back( |
| getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); |
| |
| LP.TypeIds.push_back(getFilterIDFor(FilterList)); |
| } |
| } |
| |
| } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { |
| for (unsigned I = CPI->arg_size(); I != 0; --I) { |
| auto *TypeInfo = |
| dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); |
| LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); |
| } |
| |
| } else { |
| assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); |
| } |
| |
| return LandingPadLabel; |
| } |
| |
| void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, |
| ArrayRef<unsigned> Sites) { |
| LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); |
| } |
| |
| unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { |
| for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) |
| if (TypeInfos[i] == TI) return i + 1; |
| |
| TypeInfos.push_back(TI); |
| return TypeInfos.size(); |
| } |
| |
| int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { |
| // If the new filter coincides with the tail of an existing filter, then |
| // re-use the existing filter. Folding filters more than this requires |
| // re-ordering filters and/or their elements - probably not worth it. |
| for (unsigned i : FilterEnds) { |
| unsigned j = TyIds.size(); |
| |
| while (i && j) |
| if (FilterIds[--i] != TyIds[--j]) |
| goto try_next; |
| |
| if (!j) |
| // The new filter coincides with range [i, end) of the existing filter. |
| return -(1 + i); |
| |
| try_next:; |
| } |
| |
| // Add the new filter. |
| int FilterID = -(1 + FilterIds.size()); |
| FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); |
| llvm::append_range(FilterIds, TyIds); |
| FilterEnds.push_back(FilterIds.size()); |
| FilterIds.push_back(0); // terminator |
| return FilterID; |
| } |
| |
| MachineFunction::CallSiteInfoMap::iterator |
| MachineFunction::getCallSiteInfo(const MachineInstr *MI) { |
| assert(MI->isCandidateForCallSiteEntry() && |
| "Call site info refers only to call (MI) candidates"); |
| |
| if (!Target.Options.EmitCallSiteInfo) |
| return CallSitesInfo.end(); |
| return CallSitesInfo.find(MI); |
| } |
| |
| /// Return the call machine instruction or find a call within bundle. |
| static const MachineInstr *getCallInstr(const MachineInstr *MI) { |
| if (!MI->isBundle()) |
| return MI; |
| |
| for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), |
| getBundleEnd(MI->getIterator()))) |
| if (BMI.isCandidateForCallSiteEntry()) |
| return &BMI; |
| |
| llvm_unreachable("Unexpected bundle without a call site candidate"); |
| } |
| |
| void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { |
| assert(MI->shouldUpdateCallSiteInfo() && |
| "Call site info refers only to call (MI) candidates or " |
| "candidates inside bundles"); |
| |
| const MachineInstr *CallMI = getCallInstr(MI); |
| CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); |
| if (CSIt == CallSitesInfo.end()) |
| return; |
| CallSitesInfo.erase(CSIt); |
| } |
| |
| void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, |
| const MachineInstr *New) { |
| assert(Old->shouldUpdateCallSiteInfo() && |
| "Call site info refers only to call (MI) candidates or " |
| "candidates inside bundles"); |
| |
| if (!New->isCandidateForCallSiteEntry()) |
| return eraseCallSiteInfo(Old); |
| |
| const MachineInstr *OldCallMI = getCallInstr(Old); |
| CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); |
| if (CSIt == CallSitesInfo.end()) |
| return; |
| |
| CallSiteInfo CSInfo = CSIt->second; |
| CallSitesInfo[New] = CSInfo; |
| } |
| |
| void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, |
| const MachineInstr *New) { |
| assert(Old->shouldUpdateCallSiteInfo() && |
| "Call site info refers only to call (MI) candidates or " |
| "candidates inside bundles"); |
| |
| if (!New->isCandidateForCallSiteEntry()) |
| return eraseCallSiteInfo(Old); |
| |
| const MachineInstr *OldCallMI = getCallInstr(Old); |
| CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); |
| if (CSIt == CallSitesInfo.end()) |
| return; |
| |
| CallSiteInfo CSInfo = std::move(CSIt->second); |
| CallSitesInfo.erase(CSIt); |
| CallSitesInfo[New] = CSInfo; |
| } |
| |
| void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { |
| DebugInstrNumberingCount = Num; |
| } |
| |
| void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, |
| DebugInstrOperandPair B, |
| unsigned Subreg) { |
| // Catch any accidental self-loops. |
| assert(A.first != B.first); |
| // Don't allow any substitutions _from_ the memory operand number. |
| assert(A.second != DebugOperandMemNumber); |
| |
| DebugValueSubstitutions.push_back({A, B, Subreg}); |
| } |
| |
| void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, |
| MachineInstr &New, |
| unsigned MaxOperand) { |
| // If the Old instruction wasn't tracked at all, there is no work to do. |
| unsigned OldInstrNum = Old.peekDebugInstrNum(); |
| if (!OldInstrNum) |
| return; |
| |
| // Iterate over all operands looking for defs to create substitutions for. |
| // Avoid creating new instr numbers unless we create a new substitution. |
| // While this has no functional effect, it risks confusing someone reading |
| // MIR output. |
| // Examine all the operands, or the first N specified by the caller. |
| MaxOperand = std::min(MaxOperand, Old.getNumOperands()); |
| for (unsigned int I = 0; I < MaxOperand; ++I) { |
| const auto &OldMO = Old.getOperand(I); |
| auto &NewMO = New.getOperand(I); |
| (void)NewMO; |
| |
| if (!OldMO.isReg() || !OldMO.isDef()) |
| continue; |
| assert(NewMO.isDef()); |
| |
| unsigned NewInstrNum = New.getDebugInstrNum(); |
| makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), |
| std::make_pair(NewInstrNum, I)); |
| } |
| } |
| |
| auto MachineFunction::salvageCopySSA( |
| MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) |
| -> DebugInstrOperandPair { |
| const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); |
| |
| // Check whether this copy-like instruction has already been salvaged into |
| // an operand pair. |
| Register Dest; |
| if (auto CopyDstSrc = TII.isCopyInstr(MI)) { |
| Dest = CopyDstSrc->Destination->getReg(); |
| } else { |
| assert(MI.isSubregToReg()); |
| Dest = MI.getOperand(0).getReg(); |
| } |
| |
| auto CacheIt = DbgPHICache.find(Dest); |
| if (CacheIt != DbgPHICache.end()) |
| return CacheIt->second; |
| |
| // Calculate the instruction number to use, or install a DBG_PHI. |
| auto OperandPair = salvageCopySSAImpl(MI); |
| DbgPHICache.insert({Dest, OperandPair}); |
| return OperandPair; |
| } |
| |
| auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) |
| -> DebugInstrOperandPair { |
| MachineRegisterInfo &MRI = getRegInfo(); |
| const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); |
| |
| // Chase the value read by a copy-like instruction back to the instruction |
| // that ultimately _defines_ that value. This may pass: |
| // * Through multiple intermediate copies, including subregister moves / |
| // copies, |
| // * Copies from physical registers that must then be traced back to the |
| // defining instruction, |
| // * Or, physical registers may be live-in to (only) the entry block, which |
| // requires a DBG_PHI to be created. |
| // We can pursue this problem in that order: trace back through copies, |
| // optionally through a physical register, to a defining instruction. We |
| // should never move from physreg to vreg. As we're still in SSA form, no need |
| // to worry about partial definitions of registers. |
| |
| // Helper lambda to interpret a copy-like instruction. Takes instruction, |
| // returns the register read and any subregister identifying which part is |
| // read. |
| auto GetRegAndSubreg = |
| [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { |
| Register NewReg, OldReg; |
| unsigned SubReg; |
| if (Cpy.isCopy()) { |
| OldReg = Cpy.getOperand(0).getReg(); |
| NewReg = Cpy.getOperand(1).getReg(); |
| SubReg = Cpy.getOperand(1).getSubReg(); |
| } else if (Cpy.isSubregToReg()) { |
| OldReg = Cpy.getOperand(0).getReg(); |
| NewReg = Cpy.getOperand(2).getReg(); |
| SubReg = Cpy.getOperand(3).getImm(); |
| } else { |
| auto CopyDetails = *TII.isCopyInstr(Cpy); |
| const MachineOperand &Src = *CopyDetails.Source; |
| const MachineOperand &Dest = *CopyDetails.Destination; |
| OldReg = Dest.getReg(); |
| NewReg = Src.getReg(); |
| SubReg = Src.getSubReg(); |
| } |
| |
| return {NewReg, SubReg}; |
| }; |
| |
| // First seek either the defining instruction, or a copy from a physreg. |
| // During search, the current state is the current copy instruction, and which |
| // register we've read. Accumulate qualifying subregisters into SubregsSeen; |
| // deal with those later. |
| auto State = GetRegAndSubreg(MI); |
| auto CurInst = MI.getIterator(); |
| SmallVector<unsigned, 4> SubregsSeen; |
| while (true) { |
| // If we've found a copy from a physreg, first portion of search is over. |
| if (!State.first.isVirtual()) |
| break; |
| |
| // Record any subregister qualifier. |
| if (State.second) |
| SubregsSeen.push_back(State.second); |
| |
| assert(MRI.hasOneDef(State.first)); |
| MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); |
| CurInst = Inst.getIterator(); |
| |
| // Any non-copy instruction is the defining instruction we're seeking. |
| if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) |
| break; |
| State = GetRegAndSubreg(Inst); |
| }; |
| |
| // Helper lambda to apply additional subregister substitutions to a known |
| // instruction/operand pair. Adds new (fake) substitutions so that we can |
| // record the subregister. FIXME: this isn't very space efficient if multiple |
| // values are tracked back through the same copies; cache something later. |
| auto ApplySubregisters = |
| [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { |
| for (unsigned Subreg : reverse(SubregsSeen)) { |
| // Fetch a new instruction number, not attached to an actual instruction. |
| unsigned NewInstrNumber = getNewDebugInstrNum(); |
| // Add a substitution from the "new" number to the known one, with a |
| // qualifying subreg. |
| makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); |
| // Return the new number; to find the underlying value, consumers need to |
| // deal with the qualifying subreg. |
| P = {NewInstrNumber, 0}; |
| } |
| return P; |
| }; |
| |
| // If we managed to find the defining instruction after COPYs, return an |
| // instruction / operand pair after adding subregister qualifiers. |
| if (State.first.isVirtual()) { |
| // Virtual register def -- we can just look up where this happens. |
| MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); |
| for (auto &MO : Inst->operands()) { |
| if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) |
| continue; |
| return ApplySubregisters( |
| {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); |
| } |
| |
| llvm_unreachable("Vreg def with no corresponding operand?"); |
| } |
| |
| // Our search ended in a copy from a physreg: walk back up the function |
| // looking for whatever defines the physreg. |
| assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); |
| State = GetRegAndSubreg(*CurInst); |
| Register RegToSeek = State.first; |
| |
| auto RMII = CurInst->getReverseIterator(); |
| auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); |
| for (auto &ToExamine : PrevInstrs) { |
| for (auto &MO : ToExamine.operands()) { |
| // Test for operand that defines something aliasing RegToSeek. |
| if (!MO.isReg() || !MO.isDef() || |
| !TRI.regsOverlap(RegToSeek, MO.getReg())) |
| continue; |
| |
| return ApplySubregisters( |
| {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); |
| } |
| } |
| |
| MachineBasicBlock &InsertBB = *CurInst->getParent(); |
| |
| // We reached the start of the block before finding a defining instruction. |
| // There are numerous scenarios where this can happen: |
| // * Constant physical registers, |
| // * Several intrinsics that allow LLVM-IR to read arbitary registers, |
| // * Arguments in the entry block, |
| // * Exception handling landing pads. |
| // Validating all of them is too difficult, so just insert a DBG_PHI reading |
| // the variable value at this position, rather than checking it makes sense. |
| |
| // Create DBG_PHI for specified physreg. |
| auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), |
| TII.get(TargetOpcode::DBG_PHI)); |
| Builder.addReg(State.first); |
| unsigned NewNum = getNewDebugInstrNum(); |
| Builder.addImm(NewNum); |
| return ApplySubregisters({NewNum, 0u}); |
| } |
| |
| void MachineFunction::finalizeDebugInstrRefs() { |
| auto *TII = getSubtarget().getInstrInfo(); |
| |
| auto MakeUndefDbgValue = [&](MachineInstr &MI) { |
| const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); |
| MI.setDesc(RefII); |
| MI.setDebugValueUndef(); |
| }; |
| |
| DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; |
| for (auto &MBB : *this) { |
| for (auto &MI : MBB) { |
| if (!MI.isDebugRef()) |
| continue; |
| |
| bool IsValidRef = true; |
| |
| for (MachineOperand &MO : MI.debug_operands()) { |
| if (!MO.isReg()) |
| continue; |
| |
| Register Reg = MO.getReg(); |
| |
| // Some vregs can be deleted as redundant in the meantime. Mark those |
| // as DBG_VALUE $noreg. Additionally, some normal instructions are |
| // quickly deleted, leaving dangling references to vregs with no def. |
| if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { |
| IsValidRef = false; |
| break; |
| } |
| |
| assert(Reg.isVirtual()); |
| MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); |
| |
| // If we've found a copy-like instruction, follow it back to the |
| // instruction that defines the source value, see salvageCopySSA docs |
| // for why this is important. |
| if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { |
| auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); |
| MO.ChangeToDbgInstrRef(Result.first, Result.second); |
| } else { |
| // Otherwise, identify the operand number that the VReg refers to. |
| unsigned OperandIdx = 0; |
| for (const auto &DefMO : DefMI.operands()) { |
| if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) |
| break; |
| ++OperandIdx; |
| } |
| assert(OperandIdx < DefMI.getNumOperands()); |
| |
| // Morph this instr ref to point at the given instruction and operand. |
| unsigned ID = DefMI.getDebugInstrNum(); |
| MO.ChangeToDbgInstrRef(ID, OperandIdx); |
| } |
| } |
| |
| if (!IsValidRef) |
| MakeUndefDbgValue(MI); |
| } |
| } |
| } |
| |
| bool MachineFunction::shouldUseDebugInstrRef() const { |
| // Disable instr-ref at -O0: it's very slow (in compile time). We can still |
| // have optimized code inlined into this unoptimized code, however with |
| // fewer and less aggressive optimizations happening, coverage and accuracy |
| // should not suffer. |
| if (getTarget().getOptLevel() == CodeGenOpt::None) |
| return false; |
| |
| // Don't use instr-ref if this function is marked optnone. |
| if (F.hasFnAttribute(Attribute::OptimizeNone)) |
| return false; |
| |
| if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) |
| return true; |
| |
| return false; |
| } |
| |
| bool MachineFunction::useDebugInstrRef() const { |
| return UseDebugInstrRef; |
| } |
| |
| void MachineFunction::setUseDebugInstrRef(bool Use) { |
| UseDebugInstrRef = Use; |
| } |
| |
| // Use one million as a high / reserved number. |
| const unsigned MachineFunction::DebugOperandMemNumber = 1000000; |
| |
| /// \} |
| |
| //===----------------------------------------------------------------------===// |
| // MachineJumpTableInfo implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// Return the size of each entry in the jump table. |
| unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { |
| // The size of a jump table entry is 4 bytes unless the entry is just the |
| // address of a block, in which case it is the pointer size. |
| switch (getEntryKind()) { |
| case MachineJumpTableInfo::EK_BlockAddress: |
| return TD.getPointerSize(); |
| case MachineJumpTableInfo::EK_GPRel64BlockAddress: |
| return 8; |
| case MachineJumpTableInfo::EK_GPRel32BlockAddress: |
| case MachineJumpTableInfo::EK_LabelDifference32: |
| case MachineJumpTableInfo::EK_Custom32: |
| return 4; |
| case MachineJumpTableInfo::EK_Inline: |
| return 0; |
| } |
| llvm_unreachable("Unknown jump table encoding!"); |
| } |
| |
| /// Return the alignment of each entry in the jump table. |
| unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { |
| // The alignment of a jump table entry is the alignment of int32 unless the |
| // entry is just the address of a block, in which case it is the pointer |
| // alignment. |
| switch (getEntryKind()) { |
| case MachineJumpTableInfo::EK_BlockAddress: |
| return TD.getPointerABIAlignment(0).value(); |
| case MachineJumpTableInfo::EK_GPRel64BlockAddress: |
| return TD.getABIIntegerTypeAlignment(64).value(); |
| case MachineJumpTableInfo::EK_GPRel32BlockAddress: |
| case MachineJumpTableInfo::EK_LabelDifference32: |
| case MachineJumpTableInfo::EK_Custom32: |
| return TD.getABIIntegerTypeAlignment(32).value(); |
| case MachineJumpTableInfo::EK_Inline: |
| return 1; |
| } |
| llvm_unreachable("Unknown jump table encoding!"); |
| } |
| |
| /// Create a new jump table entry in the jump table info. |
| unsigned MachineJumpTableInfo::createJumpTableIndex( |
| const std::vector<MachineBasicBlock*> &DestBBs) { |
| assert(!DestBBs.empty() && "Cannot create an empty jump table!"); |
| JumpTables.push_back(MachineJumpTableEntry(DestBBs)); |
| return JumpTables.size()-1; |
| } |
| |
| /// If Old is the target of any jump tables, update the jump tables to branch |
| /// to New instead. |
| bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| assert(Old != New && "Not making a change?"); |
| bool MadeChange = false; |
| for (size_t i = 0, e = JumpTables.size(); i != e; ++i) |
| ReplaceMBBInJumpTable(i, Old, New); |
| return MadeChange; |
| } |
| |
| /// If MBB is present in any jump tables, remove it. |
| bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { |
| bool MadeChange = false; |
| for (MachineJumpTableEntry &JTE : JumpTables) { |
| auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); |
| MadeChange |= (removeBeginItr != JTE.MBBs.end()); |
| JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); |
| } |
| return MadeChange; |
| } |
| |
| /// If Old is a target of the jump tables, update the jump table to branch to |
| /// New instead. |
| bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, |
| MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| assert(Old != New && "Not making a change?"); |
| bool MadeChange = false; |
| MachineJumpTableEntry &JTE = JumpTables[Idx]; |
| for (MachineBasicBlock *&MBB : JTE.MBBs) |
| if (MBB == Old) { |
| MBB = New; |
| MadeChange = true; |
| } |
| return MadeChange; |
| } |
| |
| void MachineJumpTableInfo::print(raw_ostream &OS) const { |
| if (JumpTables.empty()) return; |
| |
| OS << "Jump Tables:\n"; |
| |
| for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { |
| OS << printJumpTableEntryReference(i) << ':'; |
| for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) |
| OS << ' ' << printMBBReference(*MBB); |
| if (i != e) |
| OS << '\n'; |
| } |
| |
| OS << '\n'; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } |
| #endif |
| |
| Printable llvm::printJumpTableEntryReference(unsigned Idx) { |
| return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineConstantPool implementation |
| //===----------------------------------------------------------------------===// |
| |
| void MachineConstantPoolValue::anchor() {} |
| |
| unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { |
| return DL.getTypeAllocSize(Ty); |
| } |
| |
| unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { |
| if (isMachineConstantPoolEntry()) |
| return Val.MachineCPVal->getSizeInBytes(DL); |
| return DL.getTypeAllocSize(Val.ConstVal->getType()); |
| } |
| |
| bool MachineConstantPoolEntry::needsRelocation() const { |
| if (isMachineConstantPoolEntry()) |
| return true; |
| return Val.ConstVal->needsDynamicRelocation(); |
| } |
| |
| SectionKind |
| MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { |
| if (needsRelocation()) |
| return SectionKind::getReadOnlyWithRel(); |
| switch (getSizeInBytes(*DL)) { |
| case 4: |
| return SectionKind::getMergeableConst4(); |
| case 8: |
| return SectionKind::getMergeableConst8(); |
| case 16: |
| return SectionKind::getMergeableConst16(); |
| case 32: |
| return SectionKind::getMergeableConst32(); |
| default: |
| return SectionKind::getReadOnly(); |
| } |
| } |
| |
| MachineConstantPool::~MachineConstantPool() { |
| // A constant may be a member of both Constants and MachineCPVsSharingEntries, |
| // so keep track of which we've deleted to avoid double deletions. |
| DenseSet<MachineConstantPoolValue*> Deleted; |
| for (const MachineConstantPoolEntry &C : Constants) |
| if (C.isMachineConstantPoolEntry()) { |
| Deleted.insert(C.Val.MachineCPVal); |
| delete C.Val.MachineCPVal; |
| } |
| for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { |
| if (Deleted.count(CPV) == 0) |
| delete CPV; |
| } |
| } |
| |
| /// Test whether the given two constants can be allocated the same constant pool |
| /// entry. |
| static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, |
| const DataLayout &DL) { |
| // Handle the trivial case quickly. |
| if (A == B) return true; |
| |
| // If they have the same type but weren't the same constant, quickly |
| // reject them. |
| if (A->getType() == B->getType()) return false; |
| |
| // We can't handle structs or arrays. |
| if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || |
| isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) |
| return false; |
| |
| // For now, only support constants with the same size. |
| uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); |
| if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) |
| return false; |
| |
| Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); |
| |
| // Try constant folding a bitcast of both instructions to an integer. If we |
| // get two identical ConstantInt's, then we are good to share them. We use |
| // the constant folding APIs to do this so that we get the benefit of |
| // DataLayout. |
| if (isa<PointerType>(A->getType())) |
| A = ConstantFoldCastOperand(Instruction::PtrToInt, |
| const_cast<Constant *>(A), IntTy, DL); |
| else if (A->getType() != IntTy) |
| A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), |
| IntTy, DL); |
| if (isa<PointerType>(B->getType())) |
| B = ConstantFoldCastOperand(Instruction::PtrToInt, |
| const_cast<Constant *>(B), IntTy, DL); |
| else if (B->getType() != IntTy) |
| B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), |
| IntTy, DL); |
| |
| return A == B; |
| } |
| |
| /// Create a new entry in the constant pool or return an existing one. |
| /// User must specify the log2 of the minimum required alignment for the object. |
| unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, |
| Align Alignment) { |
| if (Alignment > PoolAlignment) PoolAlignment = Alignment; |
| |
| // Check to see if we already have this constant. |
| // |
| // FIXME, this could be made much more efficient for large constant pools. |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) |
| if (!Constants[i].isMachineConstantPoolEntry() && |
| CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { |
| if (Constants[i].getAlign() < Alignment) |
| Constants[i].Alignment = Alignment; |
| return i; |
| } |
| |
| Constants.push_back(MachineConstantPoolEntry(C, Alignment)); |
| return Constants.size()-1; |
| } |
| |
| unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, |
| Align Alignment) { |
| if (Alignment > PoolAlignment) PoolAlignment = Alignment; |
| |
| // Check to see if we already have this constant. |
| // |
| // FIXME, this could be made much more efficient for large constant pools. |
| int Idx = V->getExistingMachineCPValue(this, Alignment); |
| if (Idx != -1) { |
| MachineCPVsSharingEntries.insert(V); |
| return (unsigned)Idx; |
| } |
| |
| Constants.push_back(MachineConstantPoolEntry(V, Alignment)); |
| return Constants.size()-1; |
| } |
| |
| void MachineConstantPool::print(raw_ostream &OS) const { |
| if (Constants.empty()) return; |
| |
| OS << "Constant Pool:\n"; |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| OS << " cp#" << i << ": "; |
| if (Constants[i].isMachineConstantPoolEntry()) |
| Constants[i].Val.MachineCPVal->print(OS); |
| else |
| Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); |
| OS << ", align=" << Constants[i].getAlign().value(); |
| OS << "\n"; |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } |
| #endif |