| //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs global common subexpression elimination on machine |
| // instructions using a scoped hash table based value numbering scheme. It |
| // must be run while the machine function is still in SSA form. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/ScopedHashTable.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCRegister.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/RecyclingAllocator.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <iterator> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "machine-cse" |
| |
| STATISTIC(NumCoalesces, "Number of copies coalesced"); |
| STATISTIC(NumCSEs, "Number of common subexpression eliminated"); |
| STATISTIC(NumPREs, "Number of partial redundant expression" |
| " transformed to fully redundant"); |
| STATISTIC(NumPhysCSEs, |
| "Number of physreg referencing common subexpr eliminated"); |
| STATISTIC(NumCrossBBCSEs, |
| "Number of cross-MBB physreg referencing CS eliminated"); |
| STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); |
| |
| // Threshold to avoid excessive cost to compute isProfitableToCSE. |
| static cl::opt<int> |
| CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024), |
| cl::desc("Threshold for the size of CSUses")); |
| |
| namespace { |
| |
| class MachineCSE : public MachineFunctionPass { |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| AliasAnalysis *AA; |
| MachineDominatorTree *DT; |
| MachineRegisterInfo *MRI; |
| MachineBlockFrequencyInfo *MBFI; |
| |
| public: |
| static char ID; // Pass identification |
| |
| MachineCSE() : MachineFunctionPass(ID) { |
| initializeMachineCSEPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addPreserved<MachineBlockFrequencyInfo>(); |
| } |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties() |
| .set(MachineFunctionProperties::Property::IsSSA); |
| } |
| |
| void releaseMemory() override { |
| ScopeMap.clear(); |
| PREMap.clear(); |
| Exps.clear(); |
| } |
| |
| private: |
| using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, |
| ScopedHashTableVal<MachineInstr *, unsigned>>; |
| using ScopedHTType = |
| ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, |
| AllocatorTy>; |
| using ScopeType = ScopedHTType::ScopeTy; |
| using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; |
| |
| unsigned LookAheadLimit = 0; |
| DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; |
| DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> |
| PREMap; |
| ScopedHTType VNT; |
| SmallVector<MachineInstr *, 64> Exps; |
| unsigned CurrVN = 0; |
| |
| bool PerformTrivialCopyPropagation(MachineInstr *MI, |
| MachineBasicBlock *MBB); |
| bool isPhysDefTriviallyDead(MCRegister Reg, |
| MachineBasicBlock::const_iterator I, |
| MachineBasicBlock::const_iterator E) const; |
| bool hasLivePhysRegDefUses(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| SmallSet<MCRegister, 8> &PhysRefs, |
| PhysDefVector &PhysDefs, bool &PhysUseDef) const; |
| bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, |
| SmallSet<MCRegister, 8> &PhysRefs, |
| PhysDefVector &PhysDefs, bool &NonLocal) const; |
| bool isCSECandidate(MachineInstr *MI); |
| bool isProfitableToCSE(Register CSReg, Register Reg, |
| MachineBasicBlock *CSBB, MachineInstr *MI); |
| void EnterScope(MachineBasicBlock *MBB); |
| void ExitScope(MachineBasicBlock *MBB); |
| bool ProcessBlockCSE(MachineBasicBlock *MBB); |
| void ExitScopeIfDone(MachineDomTreeNode *Node, |
| DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); |
| bool PerformCSE(MachineDomTreeNode *Node); |
| |
| bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs); |
| bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); |
| bool PerformSimplePRE(MachineDominatorTree *DT); |
| /// Heuristics to see if it's profitable to move common computations of MBB |
| /// and MBB1 to CandidateBB. |
| bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *MBB1); |
| }; |
| |
| } // end anonymous namespace |
| |
| char MachineCSE::ID = 0; |
| |
| char &llvm::MachineCSEID = MachineCSE::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, |
| "Machine Common Subexpression Elimination", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, |
| "Machine Common Subexpression Elimination", false, false) |
| |
| /// The source register of a COPY machine instruction can be propagated to all |
| /// its users, and this propagation could increase the probability of finding |
| /// common subexpressions. If the COPY has only one user, the COPY itself can |
| /// be removed. |
| bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, |
| MachineBasicBlock *MBB) { |
| bool Changed = false; |
| for (MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg.isVirtual()) |
| continue; |
| bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); |
| MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| if (!DefMI->isCopy()) |
| continue; |
| Register SrcReg = DefMI->getOperand(1).getReg(); |
| if (!SrcReg.isVirtual()) |
| continue; |
| if (DefMI->getOperand(0).getSubReg()) |
| continue; |
| // FIXME: We should trivially coalesce subregister copies to expose CSE |
| // opportunities on instructions with truncated operands (see |
| // cse-add-with-overflow.ll). This can be done here as follows: |
| // if (SrcSubReg) |
| // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, |
| // SrcSubReg); |
| // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); |
| // |
| // The 2-addr pass has been updated to handle coalesced subregs. However, |
| // some machine-specific code still can't handle it. |
| // To handle it properly we also need a way find a constrained subregister |
| // class given a super-reg class and subreg index. |
| if (DefMI->getOperand(1).getSubReg()) |
| continue; |
| if (!MRI->constrainRegAttrs(SrcReg, Reg)) |
| continue; |
| LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); |
| LLVM_DEBUG(dbgs() << "*** to: " << *MI); |
| |
| // Propagate SrcReg of copies to MI. |
| MO.setReg(SrcReg); |
| MRI->clearKillFlags(SrcReg); |
| // Coalesce single use copies. |
| if (OnlyOneUse) { |
| // If (and only if) we've eliminated all uses of the copy, also |
| // copy-propagate to any debug-users of MI, or they'll be left using |
| // an undefined value. |
| DefMI->changeDebugValuesDefReg(SrcReg); |
| |
| DefMI->eraseFromParent(); |
| ++NumCoalesces; |
| } |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| bool MachineCSE::isPhysDefTriviallyDead( |
| MCRegister Reg, MachineBasicBlock::const_iterator I, |
| MachineBasicBlock::const_iterator E) const { |
| unsigned LookAheadLeft = LookAheadLimit; |
| while (LookAheadLeft) { |
| // Skip over dbg_value's. |
| I = skipDebugInstructionsForward(I, E); |
| |
| if (I == E) |
| // Reached end of block, we don't know if register is dead or not. |
| return false; |
| |
| bool SeenDef = false; |
| for (const MachineOperand &MO : I->operands()) { |
| if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) |
| SeenDef = true; |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (!TRI->regsOverlap(MO.getReg(), Reg)) |
| continue; |
| if (MO.isUse()) |
| // Found a use! |
| return false; |
| SeenDef = true; |
| } |
| if (SeenDef) |
| // See a def of Reg (or an alias) before encountering any use, it's |
| // trivially dead. |
| return true; |
| |
| --LookAheadLeft; |
| ++I; |
| } |
| return false; |
| } |
| |
| static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, |
| const MachineOperand &MO, |
| const MachineFunction &MF, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| // MachineRegisterInfo::isConstantPhysReg directly called by |
| // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the |
| // reserved registers to be frozen. That doesn't cause a problem post-ISel as |
| // most (if not all) targets freeze reserved registers right after ISel. |
| // |
| // It does cause issues mid-GlobalISel, however, hence the additional |
| // reservedRegsFrozen check. |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) || |
| (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); |
| } |
| |
| /// hasLivePhysRegDefUses - Return true if the specified instruction read/write |
| /// physical registers (except for dead defs of physical registers). It also |
| /// returns the physical register def by reference if it's the only one and the |
| /// instruction does not uses a physical register. |
| bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| SmallSet<MCRegister, 8> &PhysRefs, |
| PhysDefVector &PhysDefs, |
| bool &PhysUseDef) const { |
| // First, add all uses to PhysRefs. |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || MO.isDef()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (Reg.isVirtual()) |
| continue; |
| // Reading either caller preserved or constant physregs is ok. |
| if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI, |
| *TII)) |
| for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) |
| PhysRefs.insert(*AI); |
| } |
| |
| // Next, collect all defs into PhysDefs. If any is already in PhysRefs |
| // (which currently contains only uses), set the PhysUseDef flag. |
| PhysUseDef = false; |
| MachineBasicBlock::const_iterator I = MI; I = std::next(I); |
| for (const auto &MOP : llvm::enumerate(MI->operands())) { |
| const MachineOperand &MO = MOP.value(); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (Reg.isVirtual()) |
| continue; |
| // Check against PhysRefs even if the def is "dead". |
| if (PhysRefs.count(Reg.asMCReg())) |
| PhysUseDef = true; |
| // If the def is dead, it's ok. But the def may not marked "dead". That's |
| // common since this pass is run before livevariables. We can scan |
| // forward a few instructions and check if it is obviously dead. |
| if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) |
| PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); |
| } |
| |
| // Finally, add all defs to PhysRefs as well. |
| for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) |
| for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); |
| ++AI) |
| PhysRefs.insert(*AI); |
| |
| return !PhysRefs.empty(); |
| } |
| |
| bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, |
| SmallSet<MCRegister, 8> &PhysRefs, |
| PhysDefVector &PhysDefs, |
| bool &NonLocal) const { |
| // For now conservatively returns false if the common subexpression is |
| // not in the same basic block as the given instruction. The only exception |
| // is if the common subexpression is in the sole predecessor block. |
| const MachineBasicBlock *MBB = MI->getParent(); |
| const MachineBasicBlock *CSMBB = CSMI->getParent(); |
| |
| bool CrossMBB = false; |
| if (CSMBB != MBB) { |
| if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) |
| return false; |
| |
| for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { |
| if (MRI->isAllocatable(PhysDefs[i].second) || |
| MRI->isReserved(PhysDefs[i].second)) |
| // Avoid extending live range of physical registers if they are |
| //allocatable or reserved. |
| return false; |
| } |
| CrossMBB = true; |
| } |
| MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); |
| MachineBasicBlock::const_iterator E = MI; |
| MachineBasicBlock::const_iterator EE = CSMBB->end(); |
| unsigned LookAheadLeft = LookAheadLimit; |
| while (LookAheadLeft) { |
| // Skip over dbg_value's. |
| while (I != E && I != EE && I->isDebugInstr()) |
| ++I; |
| |
| if (I == EE) { |
| assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); |
| (void)CrossMBB; |
| CrossMBB = false; |
| NonLocal = true; |
| I = MBB->begin(); |
| EE = MBB->end(); |
| continue; |
| } |
| |
| if (I == E) |
| return true; |
| |
| for (const MachineOperand &MO : I->operands()) { |
| // RegMasks go on instructions like calls that clobber lots of physregs. |
| // Don't attempt to CSE across such an instruction. |
| if (MO.isRegMask()) |
| return false; |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| Register MOReg = MO.getReg(); |
| if (MOReg.isVirtual()) |
| continue; |
| if (PhysRefs.count(MOReg.asMCReg())) |
| return false; |
| } |
| |
| --LookAheadLeft; |
| ++I; |
| } |
| |
| return false; |
| } |
| |
| bool MachineCSE::isCSECandidate(MachineInstr *MI) { |
| if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || |
| MI->isInlineAsm() || MI->isDebugInstr()) |
| return false; |
| |
| // Ignore copies. |
| if (MI->isCopyLike()) |
| return false; |
| |
| // Ignore stuff that we obviously can't move. |
| if (MI->mayStore() || MI->isCall() || MI->isTerminator() || |
| MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) |
| return false; |
| |
| if (MI->mayLoad()) { |
| // Okay, this instruction does a load. As a refinement, we allow the target |
| // to decide whether the loaded value is actually a constant. If so, we can |
| // actually use it as a load. |
| if (!MI->isDereferenceableInvariantLoad()) |
| // FIXME: we should be able to hoist loads with no other side effects if |
| // there are no other instructions which can change memory in this loop. |
| // This is a trivial form of alias analysis. |
| return false; |
| } |
| |
| // Ignore stack guard loads, otherwise the register that holds CSEed value may |
| // be spilled and get loaded back with corrupted data. |
| if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) |
| return false; |
| |
| return true; |
| } |
| |
| /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a |
| /// common expression that defines Reg. CSBB is basic block where CSReg is |
| /// defined. |
| bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, |
| MachineBasicBlock *CSBB, MachineInstr *MI) { |
| // FIXME: Heuristics that works around the lack the live range splitting. |
| |
| // If CSReg is used at all uses of Reg, CSE should not increase register |
| // pressure of CSReg. |
| bool MayIncreasePressure = true; |
| if (CSReg.isVirtual() && Reg.isVirtual()) { |
| MayIncreasePressure = false; |
| SmallPtrSet<MachineInstr*, 8> CSUses; |
| int NumOfUses = 0; |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { |
| CSUses.insert(&MI); |
| // Too costly to compute if NumOfUses is very large. Conservatively assume |
| // MayIncreasePressure to avoid spending too much time here. |
| if (++NumOfUses > CSUsesThreshold) { |
| MayIncreasePressure = true; |
| break; |
| } |
| } |
| if (!MayIncreasePressure) |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { |
| if (!CSUses.count(&MI)) { |
| MayIncreasePressure = true; |
| break; |
| } |
| } |
| } |
| if (!MayIncreasePressure) return true; |
| |
| // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in |
| // an immediate predecessor. We don't want to increase register pressure and |
| // end up causing other computation to be spilled. |
| if (TII->isAsCheapAsAMove(*MI)) { |
| MachineBasicBlock *BB = MI->getParent(); |
| if (CSBB != BB && !CSBB->isSuccessor(BB)) |
| return false; |
| } |
| |
| // Heuristics #2: If the expression doesn't not use a vr and the only use |
| // of the redundant computation are copies, do not cse. |
| bool HasVRegUse = false; |
| for (const MachineOperand &MO : MI->operands()) { |
| if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual()) { |
| HasVRegUse = true; |
| break; |
| } |
| } |
| if (!HasVRegUse) { |
| bool HasNonCopyUse = false; |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { |
| // Ignore copies. |
| if (!MI.isCopyLike()) { |
| HasNonCopyUse = true; |
| break; |
| } |
| } |
| if (!HasNonCopyUse) |
| return false; |
| } |
| |
| // Heuristics #3: If the common subexpression is used by PHIs, do not reuse |
| // it unless the defined value is already used in the BB of the new use. |
| bool HasPHI = false; |
| for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { |
| HasPHI |= UseMI.isPHI(); |
| if (UseMI.getParent() == MI->getParent()) |
| return true; |
| } |
| |
| return !HasPHI; |
| } |
| |
| void MachineCSE::EnterScope(MachineBasicBlock *MBB) { |
| LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); |
| ScopeType *Scope = new ScopeType(VNT); |
| ScopeMap[MBB] = Scope; |
| } |
| |
| void MachineCSE::ExitScope(MachineBasicBlock *MBB) { |
| LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); |
| DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); |
| assert(SI != ScopeMap.end()); |
| delete SI->second; |
| ScopeMap.erase(SI); |
| } |
| |
| bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { |
| bool Changed = false; |
| |
| SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; |
| SmallVector<unsigned, 2> ImplicitDefsToUpdate; |
| SmallVector<unsigned, 2> ImplicitDefs; |
| for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { |
| if (!isCSECandidate(&MI)) |
| continue; |
| |
| bool FoundCSE = VNT.count(&MI); |
| if (!FoundCSE) { |
| // Using trivial copy propagation to find more CSE opportunities. |
| if (PerformTrivialCopyPropagation(&MI, MBB)) { |
| Changed = true; |
| |
| // After coalescing MI itself may become a copy. |
| if (MI.isCopyLike()) |
| continue; |
| |
| // Try again to see if CSE is possible. |
| FoundCSE = VNT.count(&MI); |
| } |
| } |
| |
| // Commute commutable instructions. |
| bool Commuted = false; |
| if (!FoundCSE && MI.isCommutable()) { |
| if (MachineInstr *NewMI = TII->commuteInstruction(MI)) { |
| Commuted = true; |
| FoundCSE = VNT.count(NewMI); |
| if (NewMI != &MI) { |
| // New instruction. It doesn't need to be kept. |
| NewMI->eraseFromParent(); |
| Changed = true; |
| } else if (!FoundCSE) |
| // MI was changed but it didn't help, commute it back! |
| (void)TII->commuteInstruction(MI); |
| } |
| } |
| |
| // If the instruction defines physical registers and the values *may* be |
| // used, then it's not safe to replace it with a common subexpression. |
| // It's also not safe if the instruction uses physical registers. |
| bool CrossMBBPhysDef = false; |
| SmallSet<MCRegister, 8> PhysRefs; |
| PhysDefVector PhysDefs; |
| bool PhysUseDef = false; |
| if (FoundCSE && |
| hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) { |
| FoundCSE = false; |
| |
| // ... Unless the CS is local or is in the sole predecessor block |
| // and it also defines the physical register which is not clobbered |
| // in between and the physical register uses were not clobbered. |
| // This can never be the case if the instruction both uses and |
| // defines the same physical register, which was detected above. |
| if (!PhysUseDef) { |
| unsigned CSVN = VNT.lookup(&MI); |
| MachineInstr *CSMI = Exps[CSVN]; |
| if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) |
| FoundCSE = true; |
| } |
| } |
| |
| if (!FoundCSE) { |
| VNT.insert(&MI, CurrVN++); |
| Exps.push_back(&MI); |
| continue; |
| } |
| |
| // Found a common subexpression, eliminate it. |
| unsigned CSVN = VNT.lookup(&MI); |
| MachineInstr *CSMI = Exps[CSVN]; |
| LLVM_DEBUG(dbgs() << "Examining: " << MI); |
| LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); |
| |
| // Prevent CSE-ing non-local convergent instructions. |
| // LLVM's current definition of `isConvergent` does not necessarily prove |
| // that non-local CSE is illegal. The following check extends the definition |
| // of `isConvergent` to assume a convergent instruction is dependent not |
| // only on additional conditions, but also on fewer conditions. LLVM does |
| // not have a MachineInstr attribute which expresses this extended |
| // definition, so it's necessary to use `isConvergent` to prevent illegally |
| // CSE-ing the subset of `isConvergent` instructions which do fall into this |
| // extended definition. |
| if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) { |
| LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " |
| "different BBs, avoid CSE!\n"); |
| VNT.insert(&MI, CurrVN++); |
| Exps.push_back(&MI); |
| continue; |
| } |
| |
| // Check if it's profitable to perform this CSE. |
| bool DoCSE = true; |
| unsigned NumDefs = MI.getNumDefs(); |
| |
| for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| Register OldReg = MO.getReg(); |
| Register NewReg = CSMI->getOperand(i).getReg(); |
| |
| // Go through implicit defs of CSMI and MI, if a def is not dead at MI, |
| // we should make sure it is not dead at CSMI. |
| if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) |
| ImplicitDefsToUpdate.push_back(i); |
| |
| // Keep track of implicit defs of CSMI and MI, to clear possibly |
| // made-redundant kill flags. |
| if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) |
| ImplicitDefs.push_back(OldReg); |
| |
| if (OldReg == NewReg) { |
| --NumDefs; |
| continue; |
| } |
| |
| assert(OldReg.isVirtual() && NewReg.isVirtual() && |
| "Do not CSE physical register defs!"); |
| |
| if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) { |
| LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); |
| DoCSE = false; |
| break; |
| } |
| |
| // Don't perform CSE if the result of the new instruction cannot exist |
| // within the constraints (register class, bank, or low-level type) of |
| // the old instruction. |
| if (!MRI->constrainRegAttrs(NewReg, OldReg)) { |
| LLVM_DEBUG( |
| dbgs() << "*** Not the same register constraints, avoid CSE!\n"); |
| DoCSE = false; |
| break; |
| } |
| |
| CSEPairs.push_back(std::make_pair(OldReg, NewReg)); |
| --NumDefs; |
| } |
| |
| // Actually perform the elimination. |
| if (DoCSE) { |
| for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { |
| unsigned OldReg = CSEPair.first; |
| unsigned NewReg = CSEPair.second; |
| // OldReg may have been unused but is used now, clear the Dead flag |
| MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); |
| assert(Def != nullptr && "CSEd register has no unique definition?"); |
| Def->clearRegisterDeads(NewReg); |
| // Replace with NewReg and clear kill flags which may be wrong now. |
| MRI->replaceRegWith(OldReg, NewReg); |
| MRI->clearKillFlags(NewReg); |
| } |
| |
| // Go through implicit defs of CSMI and MI, if a def is not dead at MI, |
| // we should make sure it is not dead at CSMI. |
| for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) |
| CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); |
| for (const auto &PhysDef : PhysDefs) |
| if (!MI.getOperand(PhysDef.first).isDead()) |
| CSMI->getOperand(PhysDef.first).setIsDead(false); |
| |
| // Go through implicit defs of CSMI and MI, and clear the kill flags on |
| // their uses in all the instructions between CSMI and MI. |
| // We might have made some of the kill flags redundant, consider: |
| // subs ... implicit-def %nzcv <- CSMI |
| // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore |
| // subs ... implicit-def %nzcv <- MI, to be eliminated |
| // csinc ... implicit killed %nzcv |
| // Since we eliminated MI, and reused a register imp-def'd by CSMI |
| // (here %nzcv), that register, if it was killed before MI, should have |
| // that kill flag removed, because it's lifetime was extended. |
| if (CSMI->getParent() == MI.getParent()) { |
| for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II) |
| for (auto ImplicitDef : ImplicitDefs) |
| if (MachineOperand *MO = II->findRegisterUseOperand( |
| ImplicitDef, /*isKill=*/true, TRI)) |
| MO->setIsKill(false); |
| } else { |
| // If the instructions aren't in the same BB, bail out and clear the |
| // kill flag on all uses of the imp-def'd register. |
| for (auto ImplicitDef : ImplicitDefs) |
| MRI->clearKillFlags(ImplicitDef); |
| } |
| |
| if (CrossMBBPhysDef) { |
| // Add physical register defs now coming in from a predecessor to MBB |
| // livein list. |
| while (!PhysDefs.empty()) { |
| auto LiveIn = PhysDefs.pop_back_val(); |
| if (!MBB->isLiveIn(LiveIn.second)) |
| MBB->addLiveIn(LiveIn.second); |
| } |
| ++NumCrossBBCSEs; |
| } |
| |
| MI.eraseFromParent(); |
| ++NumCSEs; |
| if (!PhysRefs.empty()) |
| ++NumPhysCSEs; |
| if (Commuted) |
| ++NumCommutes; |
| Changed = true; |
| } else { |
| VNT.insert(&MI, CurrVN++); |
| Exps.push_back(&MI); |
| } |
| CSEPairs.clear(); |
| ImplicitDefsToUpdate.clear(); |
| ImplicitDefs.clear(); |
| } |
| |
| return Changed; |
| } |
| |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given |
| /// dominator tree node if its a leaf or all of its children are done. Walk |
| /// up the dominator tree to destroy ancestors which are now done. |
| void |
| MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, |
| DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { |
| if (OpenChildren[Node]) |
| return; |
| |
| // Pop scope. |
| ExitScope(Node->getBlock()); |
| |
| // Now traverse upwards to pop ancestors whose offsprings are all done. |
| while (MachineDomTreeNode *Parent = Node->getIDom()) { |
| unsigned Left = --OpenChildren[Parent]; |
| if (Left != 0) |
| break; |
| ExitScope(Parent->getBlock()); |
| Node = Parent; |
| } |
| } |
| |
| bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { |
| SmallVector<MachineDomTreeNode*, 32> Scopes; |
| SmallVector<MachineDomTreeNode*, 8> WorkList; |
| DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; |
| |
| CurrVN = 0; |
| |
| // Perform a DFS walk to determine the order of visit. |
| WorkList.push_back(Node); |
| do { |
| Node = WorkList.pop_back_val(); |
| Scopes.push_back(Node); |
| OpenChildren[Node] = Node->getNumChildren(); |
| append_range(WorkList, Node->children()); |
| } while (!WorkList.empty()); |
| |
| // Now perform CSE. |
| bool Changed = false; |
| for (MachineDomTreeNode *Node : Scopes) { |
| MachineBasicBlock *MBB = Node->getBlock(); |
| EnterScope(MBB); |
| Changed |= ProcessBlockCSE(MBB); |
| // If it's a leaf node, it's done. Traverse upwards to pop ancestors. |
| ExitScopeIfDone(Node, OpenChildren); |
| } |
| |
| return Changed; |
| } |
| |
| // We use stronger checks for PRE candidate rather than for CSE ones to embrace |
| // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps |
| // to exclude instrs created by PRE that won't be CSEed later. |
| bool MachineCSE::isPRECandidate(MachineInstr *MI, |
| SmallSet<MCRegister, 8> &PhysRefs) { |
| if (!isCSECandidate(MI) || |
| MI->isNotDuplicable() || |
| MI->mayLoad() || |
| TII->isAsCheapAsAMove(*MI) || |
| MI->getNumDefs() != 1 || |
| MI->getNumExplicitDefs() != 1) |
| return false; |
| |
| for (const MachineOperand &MO : MI->operands()) { |
| if (MO.isReg() && !MO.getReg().isVirtual()) { |
| if (MO.isDef()) |
| return false; |
| else |
| PhysRefs.insert(MO.getReg()); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, |
| MachineBasicBlock *MBB) { |
| bool Changed = false; |
| for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { |
| SmallSet<MCRegister, 8> PhysRefs; |
| if (!isPRECandidate(&MI, PhysRefs)) |
| continue; |
| |
| if (!PREMap.count(&MI)) { |
| PREMap[&MI] = MBB; |
| continue; |
| } |
| |
| auto MBB1 = PREMap[&MI]; |
| assert( |
| !DT->properlyDominates(MBB, MBB1) && |
| "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); |
| auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); |
| if (!CMBB->isLegalToHoistInto()) |
| continue; |
| |
| if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) |
| continue; |
| |
| // Two instrs are partial redundant if their basic blocks are reachable |
| // from one to another but one doesn't dominate another. |
| if (CMBB != MBB1) { |
| auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); |
| if (BB != nullptr && BB1 != nullptr && |
| (isPotentiallyReachable(BB1, BB) || |
| isPotentiallyReachable(BB, BB1))) { |
| // The following check extends the definition of `isConvergent` to |
| // assume a convergent instruction is dependent not only on additional |
| // conditions, but also on fewer conditions. LLVM does not have a |
| // MachineInstr attribute which expresses this extended definition, so |
| // it's necessary to use `isConvergent` to prevent illegally PRE-ing the |
| // subset of `isConvergent` instructions which do fall into this |
| // extended definition. |
| if (MI.isConvergent() && CMBB != MBB) |
| continue; |
| |
| // If this instruction uses physical registers then we can only do PRE |
| // if it's using the value that is live at the place we're hoisting to. |
| bool NonLocal; |
| PhysDefVector PhysDefs; |
| if (!PhysRefs.empty() && |
| !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs, |
| PhysDefs, NonLocal)) |
| continue; |
| |
| assert(MI.getOperand(0).isDef() && |
| "First operand of instr with one explicit def must be this def"); |
| Register VReg = MI.getOperand(0).getReg(); |
| Register NewReg = MRI->cloneVirtualRegister(VReg); |
| if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI)) |
| continue; |
| MachineInstr &NewMI = |
| TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI); |
| |
| // When hoisting, make sure we don't carry the debug location of |
| // the original instruction, as that's not correct and can cause |
| // unexpected jumps when debugging optimized code. |
| auto EmptyDL = DebugLoc(); |
| NewMI.setDebugLoc(EmptyDL); |
| |
| NewMI.getOperand(0).setReg(NewReg); |
| |
| PREMap[&MI] = CMBB; |
| ++NumPREs; |
| Changed = true; |
| } |
| } |
| } |
| return Changed; |
| } |
| |
| // This simple PRE (partial redundancy elimination) pass doesn't actually |
| // eliminate partial redundancy but transforms it to full redundancy, |
| // anticipating that the next CSE step will eliminate this created redundancy. |
| // If CSE doesn't eliminate this, than created instruction will remain dead |
| // and eliminated later by Remove Dead Machine Instructions pass. |
| bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { |
| SmallVector<MachineDomTreeNode *, 32> BBs; |
| |
| PREMap.clear(); |
| bool Changed = false; |
| BBs.push_back(DT->getRootNode()); |
| do { |
| auto Node = BBs.pop_back_val(); |
| append_range(BBs, Node->children()); |
| |
| MachineBasicBlock *MBB = Node->getBlock(); |
| Changed |= ProcessBlockPRE(DT, MBB); |
| |
| } while (!BBs.empty()); |
| |
| return Changed; |
| } |
| |
| bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *MBB1) { |
| if (CandidateBB->getParent()->getFunction().hasMinSize()) |
| return true; |
| assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); |
| assert(DT->dominates(CandidateBB, MBB1) && |
| "CandidateBB should dominate MBB1"); |
| return MBFI->getBlockFreq(CandidateBB) <= |
| MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); |
| } |
| |
| bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| TII = MF.getSubtarget().getInstrInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| DT = &getAnalysis<MachineDominatorTree>(); |
| MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); |
| LookAheadLimit = TII->getMachineCSELookAheadLimit(); |
| bool ChangedPRE, ChangedCSE; |
| ChangedPRE = PerformSimplePRE(DT); |
| ChangedCSE = PerformCSE(DT->getRootNode()); |
| return ChangedPRE || ChangedCSE; |
| } |