| //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the ML eviction advisor and reward injection pass |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AllocationOrder.h" |
| #include "RegAllocEvictionAdvisor.h" |
| #include "RegAllocGreedy.h" |
| #include "llvm/Analysis/MLModelRunner.h" |
| #include "llvm/Analysis/TensorSpec.h" |
| #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE) |
| #include "llvm/Analysis/ModelUnderTrainingRunner.h" |
| #include "llvm/Analysis/NoInferenceModelRunner.h" |
| #include "llvm/Analysis/Utils/TrainingLogger.h" |
| #endif |
| #include "MLRegallocEvictAdvisor.h" |
| #include "llvm/Analysis/ReleaseModeModelRunner.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveRegMatrix.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #include <array> |
| #include <memory> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ml-regalloc" |
| |
| // Generated header in release (AOT) mode |
| #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) |
| #include "RegallocEvictModel.h" |
| using CompiledModelType = RegallocEvictModel; |
| #else |
| using CompiledModelType = NoopSavedModelImpl; |
| #endif |
| |
| // Options that only make sense in development mode |
| #ifdef LLVM_HAVE_TFLITE |
| #include "RegAllocScore.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| |
| static cl::opt<std::string> TrainingLog( |
| "regalloc-training-log", cl::Hidden, |
| cl::desc("Training log for the register allocator eviction model")); |
| |
| static cl::opt<std::string> ModelUnderTraining( |
| "regalloc-model", cl::Hidden, |
| cl::desc("The model being trained for register allocation eviction")); |
| |
| static cl::opt<bool> EnableDevelopmentFeatures( |
| "regalloc-enable-development-features", cl::Hidden, |
| cl::desc("Whether or not to enable features under development for the ML " |
| "regalloc advisor")); |
| |
| #else |
| static const bool EnableDevelopmentFeatures = false; |
| #endif // #ifdef LLVM_HAVE_TFLITE |
| |
| extern cl::opt<unsigned> EvictInterferenceCutoff; |
| |
| /// The score injection pass. |
| /// This pass calculates the score for a function and inserts it in the log, but |
| /// this happens only in development mode. It's a no-op otherwise. |
| namespace llvm { |
| class RegAllocScoring : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| RegAllocScoring() : MachineFunctionPass(ID) { |
| initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| ~RegAllocScoring() override = default; |
| |
| StringRef getPassName() const override { |
| return "Register Allocation Pass Scoring"; |
| } |
| |
| /// RegAllocReward analysis usage. |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); |
| AU.addRequired<RegAllocPriorityAdvisorAnalysis>(); |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// Performs this pass |
| bool runOnMachineFunction(MachineFunction &) override; |
| }; |
| |
| char RegAllocScoring::ID = 0; |
| FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } |
| |
| } // namespace llvm |
| |
| INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", |
| "Register Allocation Scoring Pass", false, false) |
| |
| // =================================== |
| // Common ML Advisor declarations |
| // =================================== |
| namespace { |
| // The model can only accept a specified number of opcodes and will error it if |
| // fed an opcode it hasn't seen before. This constant sets the current cutoff. |
| static const int OpcodeValueCutoff = 17716; |
| |
| // Most features are as described above, so we'll reuse this vector in defining |
| // them. |
| static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; |
| |
| // -------------- |
| // Features table |
| // -------------- |
| // For each interfering live range (incl. the candidate) we collect a number of |
| // features. However, because the features are of different types (and because |
| // of ML best practices), we organize the tensors per feature, not per |
| // candidate. Each such tensor has a scalar value corresponding to the |
| // interferring live range at that position, in the order in AllocationOrder. |
| // The last position corresponds to the virt reg seeking allocation. |
| // Exception to all that is the progression feature, which is just a scalar (see |
| // its documentation for details). |
| // Note on naming: the "_by_max" are normalized using the largest value of that |
| // tensor, as observed in the current decision making stage (i.e. for the |
| // current call to the advisor's tryFindEvictionCandidate) |
| // |
| // The feature list format: type, name, shape, documentation. |
| // Note: we can really just use int64 and float, hence the modeling of some |
| // bools as int64 values. |
| #define RA_EVICT_FEATURES_LIST(M) \ |
| M(int64_t, mask, PerLiveRangeShape, \ |
| "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ |
| "it " \ |
| "can't be evicted)") \ |
| M(int64_t, is_free, PerLiveRangeShape, \ |
| "boolean values, 1 if this phys reg is actually free (no interferences)") \ |
| M(float, nr_urgent, PerLiveRangeShape, \ |
| "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ |
| "to break cascades") \ |
| M(float, nr_broken_hints, PerLiveRangeShape, \ |
| "if this position were evicted, how many broken hints would there be") \ |
| M(int64_t, is_hint, PerLiveRangeShape, \ |
| "is this a preferred phys reg for the candidate") \ |
| M(int64_t, is_local, PerLiveRangeShape, \ |
| "is this live range local to a basic block") \ |
| M(float, nr_rematerializable, PerLiveRangeShape, \ |
| "nr rematerializable ranges") \ |
| M(float, nr_defs_and_uses, PerLiveRangeShape, \ |
| "bb freq - weighed nr defs and uses") \ |
| M(float, weighed_reads_by_max, PerLiveRangeShape, \ |
| "bb freq - weighed nr of reads, normalized") \ |
| M(float, weighed_writes_by_max, PerLiveRangeShape, \ |
| "bb feq - weighed nr of writes, normalized") \ |
| M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ |
| "bb freq - weighed nr of uses that are both read and writes, normalized") \ |
| M(float, weighed_indvars_by_max, PerLiveRangeShape, \ |
| "bb freq - weighed nr of uses that are indvars, normalized") \ |
| M(float, hint_weights_by_max, PerLiveRangeShape, \ |
| "bb freq - weighed nr of uses that are hints, normalized") \ |
| M(float, start_bb_freq_by_max, PerLiveRangeShape, \ |
| "the freq in the start block, normalized") \ |
| M(float, end_bb_freq_by_max, PerLiveRangeShape, \ |
| "freq of end block, normalized") \ |
| M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ |
| "hottest BB freq, normalized") \ |
| M(float, liverange_size, PerLiveRangeShape, \ |
| "size (instr index diff) of the LR") \ |
| M(float, use_def_density, PerLiveRangeShape, \ |
| "the max weight, as computed by the manual heuristic") \ |
| M(int64_t, max_stage, PerLiveRangeShape, \ |
| "largest stage of an interval in this LR") \ |
| M(int64_t, min_stage, PerLiveRangeShape, \ |
| "lowest stage of an interval in this LR") \ |
| M(float, progress, {1}, "ratio of current queue size to initial size") |
| |
| #ifdef LLVM_HAVE_TFLITE |
| #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \ |
| M(int64_t, instructions, InstructionsShape, \ |
| "Opcodes of the instructions covered by the eviction problem") |
| |
| #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \ |
| M(int64_t, instructions_mapping, InstructionsMappingShape, \ |
| "A binary matrix mapping LRs to instruction opcodes") \ |
| M(float, mbb_frequencies, MBBFrequencyShape, \ |
| "A vector of machine basic block frequencies") \ |
| M(int64_t, mbb_mapping, InstructionsShape, \ |
| "A vector of indicies mapping instructions to MBBs") |
| #else |
| #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) |
| #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) |
| #endif |
| |
| // The model learns to pick one of the mask == 1 interferences. This is the |
| // name of the output tensor. The contract with the model is that the output |
| // will be guaranteed to be to a mask == 1 position. Using a macro here to |
| // avoid 'not used' warnings (and keep cond compilation to a minimum) |
| #define DecisionName "index_to_evict" |
| |
| // Named features index. |
| enum FeatureIDs { |
| #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name |
| #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D), |
| RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount, |
| #ifdef LLVM_HAVE_TFLITE |
| RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount, |
| #else |
| RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX) |
| #endif // #ifdef LLVM_HAVE_TFLITE |
| RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount |
| #undef _FEATURE_IDX |
| #undef _FEATURE_IDX_SIMPLE |
| }; |
| |
| // The ML advisor will typically have a sparse input to the evaluator, because |
| // various phys regs won't be available. It's easier (maintenance-wise) to |
| // bulk-reset the state of the evaluator each time we are about to use it |
| // again. |
| template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { |
| size_t Ret = sizeof(T); |
| for (const auto V : Shape) |
| Ret *= V; |
| return Ret; |
| } |
| |
| void resetInputs(MLModelRunner &Runner) { |
| #define _RESET(TYPE, NAME, SHAPE, __) \ |
| std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ |
| getTotalSize<TYPE>(SHAPE)); |
| RA_EVICT_FEATURES_LIST(_RESET) |
| if (EnableDevelopmentFeatures) { |
| RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET) |
| RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET) |
| #undef _RESET |
| } |
| } |
| |
| // Per-live interval components that get aggregated into the feature values |
| // that will be passed to the evaluator. |
| struct LIFeatureComponents { |
| double R = 0; |
| double W = 0; |
| double RW = 0; |
| double IndVarUpdates = 0; |
| double HintWeights = 0.0; |
| int64_t NrDefsAndUses = 0; |
| float HottestBlockFreq = 0.0; |
| bool IsRemat = false; |
| }; |
| |
| using CandidateRegList = |
| std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; |
| using FeaturesListNormalizer = |
| llvm::SmallVector<float, FeatureIDs::FeatureCount>; |
| |
| /// The ML evictor (commonalities between release and development mode) |
| class MLEvictAdvisor : public RegAllocEvictionAdvisor { |
| public: |
| MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, |
| const MachineLoopInfo &Loops); |
| |
| protected: |
| const RegAllocEvictionAdvisor &getDefaultAdvisor() const { |
| return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); |
| } |
| |
| // The assumption is that if the Runner could not be constructed, we emit-ed |
| // error, and we shouldn't be asking for it here. |
| const MLModelRunner &getRunner() const { return *Runner; } |
| |
| /// This just calls Evaluate on the Runner, but in the development mode |
| /// case, if we're just capturing the log of the default advisor, it needs |
| /// to call the latter instead, so we need to pass all the necessary |
| /// parameters for it. In the development case, it will also log. |
| virtual int64_t |
| tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, |
| const AllocationOrder &Order, |
| unsigned OrderLimit, uint8_t CostPerUseLimit, |
| const SmallVirtRegSet &FixedRegisters) const; |
| |
| /// Load the features of the given VirtReg (allocated or not) at column Pos, |
| /// but if that can't be evicted, return false instead. |
| bool |
| loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, |
| bool IsHint, const SmallVirtRegSet &FixedRegisters, |
| llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
| SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; |
| |
| private: |
| static float getInitialQueueSize(const MachineFunction &MF); |
| |
| MCRegister tryFindEvictionCandidate( |
| const LiveInterval &VirtReg, const AllocationOrder &Order, |
| uint8_t CostPerUseLimit, |
| const SmallVirtRegSet &FixedRegisters) const override; |
| |
| void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, |
| llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
| int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent, |
| SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; |
| |
| // Point-in-time: we didn't learn this, so we always delegate to the |
| // default. |
| bool canEvictHintInterference( |
| const LiveInterval &VirtReg, MCRegister PhysReg, |
| const SmallVirtRegSet &FixedRegisters) const override { |
| return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, |
| FixedRegisters); |
| } |
| |
| const LIFeatureComponents & |
| getLIFeatureComponents(const LiveInterval &LI) const; |
| |
| // Hold on to a default advisor for: |
| // 1) the implementation of canEvictHintInterference, because we didn't |
| // learn that nuance yet; 2) for bootstrapping (logging) in the development |
| // mode case. |
| const DefaultEvictionAdvisor DefaultAdvisor; |
| MLModelRunner *const Runner; |
| const MachineBlockFrequencyInfo &MBFI; |
| const MachineLoopInfo &Loops; |
| |
| // Indices of those features we don't want to normalize. |
| // This could be static and shared, but its initialization is non-trivial. |
| std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; |
| const float InitialQSize; |
| |
| using RegID = unsigned; |
| mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; |
| }; |
| |
| #define _DECL_FEATURES(type, name, shape, _) \ |
| TensorSpec::createSpec<type>(#name, shape), |
| |
| // =================================== |
| // Release (AOT) - specifics |
| // =================================== |
| class ReleaseModeEvictionAdvisorAnalysis final |
| : public RegAllocEvictionAdvisorAnalysis { |
| public: |
| ReleaseModeEvictionAdvisorAnalysis() |
| : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) { |
| if (EnableDevelopmentFeatures) { |
| InputFeatures = {RA_EVICT_FEATURES_LIST( |
| _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) |
| RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; |
| } else { |
| InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; |
| } |
| } |
| // support for isa<> and dyn_cast. |
| static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { |
| return R->getAdvisorMode() == AdvisorMode::Release; |
| } |
| |
| private: |
| std::vector<TensorSpec> InputFeatures; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addRequired<MachineLoopInfo>(); |
| RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); |
| } |
| |
| std::unique_ptr<RegAllocEvictionAdvisor> |
| getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { |
| if (!Runner) |
| Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( |
| MF.getFunction().getContext(), InputFeatures, DecisionName); |
| return std::make_unique<MLEvictAdvisor>( |
| MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), |
| getAnalysis<MachineLoopInfo>()); |
| } |
| std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner; |
| }; |
| |
| // =================================== |
| // Development mode-specifics |
| // =================================== |
| // |
| // Features we log |
| #ifdef LLVM_HAVE_TFLITE |
| static const TensorSpec Output = |
| TensorSpec::createSpec<int64_t>(DecisionName, {1}); |
| static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); |
| |
| // Features we bind on the model. The tensor names have a prefix, and we also |
| // need to include some tensors that are expected to be present by the |
| // training algo. |
| // TODO: can we just get rid of these? |
| #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ |
| TensorSpec::createSpec<type>(std::string("action_") + #name, shape), |
| |
| class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { |
| public: |
| DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| MLModelRunner *Runner, |
| const MachineBlockFrequencyInfo &MBFI, |
| const MachineLoopInfo &Loops, Logger *Log) |
| : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} |
| |
| private: |
| int64_t tryFindEvictionCandidatePosition( |
| const LiveInterval &VirtReg, const AllocationOrder &Order, |
| unsigned OrderLimit, uint8_t CostPerUseLimit, |
| const SmallVirtRegSet &FixedRegisters) const override; |
| |
| Logger *const Log; |
| }; |
| |
| class DevelopmentModeEvictionAdvisorAnalysis final |
| : public RegAllocEvictionAdvisorAnalysis { |
| public: |
| DevelopmentModeEvictionAdvisorAnalysis() |
| : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) { |
| if (EnableDevelopmentFeatures) { |
| InputFeatures = {RA_EVICT_FEATURES_LIST( |
| _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) |
| RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; |
| TrainingInputFeatures = { |
| RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
| RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES) |
| RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES) |
| TensorSpec::createSpec<float>("action_discount", {1}), |
| TensorSpec::createSpec<int32_t>("action_step_type", {1}), |
| TensorSpec::createSpec<float>("action_reward", {1})}; |
| } else { |
| InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; |
| TrainingInputFeatures = { |
| RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
| TensorSpec::createSpec<float>("action_discount", {1}), |
| TensorSpec::createSpec<int32_t>("action_step_type", {1}), |
| TensorSpec::createSpec<float>("action_reward", {1})}; |
| } |
| } |
| // support for isa<> and dyn_cast. |
| static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { |
| return R->getAdvisorMode() == AdvisorMode::Development; |
| } |
| |
| void logRewardIfNeeded(const MachineFunction &MF, |
| llvm::function_ref<float()> GetReward) override { |
| if (!Log) |
| return; |
| // The function pass manager would run all the function passes for a |
| // function, so we assume the last context belongs to this function. If |
| // this invariant ever changes, we can implement at that time switching |
| // contexts. At this point, it'd be an error |
| if (Log->currentContext() != MF.getName()) { |
| MF.getFunction().getContext().emitError( |
| "The training log context shouldn't have had changed."); |
| } |
| if (Log->hasObservationInProgress()) |
| Log->logReward<float>(GetReward()); |
| } |
| |
| private: |
| std::vector<TensorSpec> InputFeatures; |
| std::vector<TensorSpec> TrainingInputFeatures; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addRequired<MachineLoopInfo>(); |
| RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); |
| } |
| |
| bool doInitialization(Module &M) override { |
| LLVMContext &Ctx = M.getContext(); |
| if (ModelUnderTraining.empty() && TrainingLog.empty()) { |
| Ctx.emitError("Regalloc development mode should be requested with at " |
| "least logging enabled and/or a training model"); |
| return false; |
| } |
| if (ModelUnderTraining.empty()) |
| Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); |
| else |
| Runner = ModelUnderTrainingRunner::createAndEnsureValid( |
| Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); |
| if (!Runner) { |
| Ctx.emitError("Regalloc: could not set up the model runner"); |
| return false; |
| } |
| if (TrainingLog.empty()) |
| return false; |
| std::error_code EC; |
| auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); |
| if (EC) { |
| M.getContext().emitError(EC.message() + ":" + TrainingLog); |
| return false; |
| } |
| std::vector<TensorSpec> LFS = InputFeatures; |
| if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) |
| append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); |
| // We always log the output; in particular, if we're not evaluating, we |
| // don't have an output spec json file. That's why we handle the |
| // 'normal' output separately. |
| LFS.push_back(Output); |
| |
| Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, |
| /*IncludeReward*/ true); |
| return false; |
| } |
| |
| std::unique_ptr<RegAllocEvictionAdvisor> |
| getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { |
| if (!Runner) |
| return nullptr; |
| if (Log) |
| Log->switchContext(MF.getName()); |
| return std::make_unique<DevelopmentModeEvictAdvisor>( |
| MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), |
| getAnalysis<MachineLoopInfo>(), Log.get()); |
| } |
| |
| std::unique_ptr<MLModelRunner> Runner; |
| std::unique_ptr<Logger> Log; |
| }; |
| |
| #endif //#ifdef LLVM_HAVE_TFLITE |
| } // namespace |
| |
| float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { |
| auto &MRI = MF.getRegInfo(); |
| float Ret = 0.0; |
| for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| Register Reg = Register::index2VirtReg(I); |
| if (MRI.reg_nodbg_empty(Reg)) |
| continue; |
| ++Ret; |
| } |
| return Ret; |
| } |
| |
| MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| MLModelRunner *Runner, |
| const MachineBlockFrequencyInfo &MBFI, |
| const MachineLoopInfo &Loops) |
| : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), |
| Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), |
| InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { |
| assert(this->Runner); |
| DoNotNormalize.set(FeatureIDs::mask); |
| DoNotNormalize.set(FeatureIDs::is_free); |
| DoNotNormalize.set(FeatureIDs::is_hint); |
| DoNotNormalize.set(FeatureIDs::is_local); |
| DoNotNormalize.set(FeatureIDs::min_stage); |
| DoNotNormalize.set(FeatureIDs::max_stage); |
| DoNotNormalize.set(FeatureIDs::progress); |
| } |
| |
| int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( |
| const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, |
| const SmallVirtRegSet &) const { |
| int64_t Ret = Runner->evaluate<int64_t>(); |
| assert(Ret >= 0); |
| assert(Ret <= CandidateVirtRegPos); |
| return Ret; |
| } |
| |
| bool MLEvictAdvisor::loadInterferenceFeatures( |
| const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, |
| const SmallVirtRegSet &FixedRegisters, |
| llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
| llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { |
| // It is only possible to evict virtual register interference. |
| if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { |
| // leave unavailable |
| return false; |
| } |
| |
| const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); |
| int64_t LocalIntfs = 0; |
| float NrUrgent = 0.0f; |
| |
| // The cascade tracking is the same as in the default advisor |
| unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); |
| |
| SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); |
| // Different from the default heuristic, we don't make any assumptions |
| // about what having more than 10 results in the query may mean. |
| const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); |
| if (IFIntervals.empty() && InterferingIntervals.empty()) |
| continue; |
| if (IFIntervals.size() >= EvictInterferenceCutoff) |
| return false; |
| InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); |
| for (const LiveInterval *Intf : reverse(IFIntervals)) { |
| assert(Intf->reg().isVirtual() && |
| "Only expecting virtual register interference from query"); |
| // This is the same set of legality checks as in the default case: don't |
| // try to evict fixed regs or 'done' ones. Also don't break cascades, |
| // except in the urgent case, with the same nuances used in the default |
| // heuristic. |
| // We could try sharing this between the advisors, but it may end up |
| // more complex than it is right now. |
| if (FixedRegisters.count(Intf->reg())) |
| return false; |
| if (RA.getExtraInfo().getStage(*Intf) == RS_Done) |
| return false; |
| bool Urgent = |
| !VirtReg.isSpillable() && |
| (Intf->isSpillable() || |
| RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < |
| RegClassInfo.getNumAllocatableRegs( |
| MRI->getRegClass(Intf->reg()))); |
| // Only evict older cascades or live ranges without a cascade. |
| unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); |
| if (Cascade <= IntfCascade) { |
| if (!Urgent) |
| return false; |
| ++NrUrgent; |
| } |
| |
| LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && |
| (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); |
| } |
| } |
| // OK, so if we made it this far, this LR is an eviction candidate, load its |
| // features. |
| extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, |
| NrUrgent, LRPosInfo); |
| return true; |
| } |
| |
| MCRegister MLEvictAdvisor::tryFindEvictionCandidate( |
| const LiveInterval &VirtReg, const AllocationOrder &Order, |
| uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { |
| auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); |
| if (!MaybeOrderLimit) |
| return MCRegister::NoRegister; |
| unsigned OrderLimit = *MaybeOrderLimit; |
| |
| // The heuristic sets initial costs such as, if CostPerUseLimit is |
| // max<uint8_t>, then any of the costs of the legally-evictable intervals |
| // would be lower. When that happens, one of those will be selected. |
| // Therefore, we allow the candidate be selected, unless the candidate is |
| // unspillable, in which case it would be incorrect to not find a register |
| // for it. |
| const bool MustFindEviction = |
| (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); |
| // Number of available candidates - if 0, no need to continue. |
| size_t Available = 0; |
| // Make sure we don't have leftover partial state from an attempt where we |
| // had no available candidates and bailed out early. |
| resetInputs(*Runner); |
| |
| // Track the index->register mapping because AllocationOrder doesn't do that |
| // and we'd have to scan it. |
| // Also track their mask, to write asserts/debug. |
| CandidateRegList Regs; |
| Regs.fill({0, false}); |
| |
| // Track the largest value of features seen during this eviction session. We |
| // only normalize (some of) the float features, but it's just simpler to |
| // dimension 'Largest' to all the features, especially since we have the |
| // 'DoNotNormalize' list. |
| FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0); |
| |
| // Same overal idea as in the default eviction policy - we visit the values |
| // of AllocationOrder one at a time. If it's not legally available, we mask |
| // off the corresponding feature column (==do nothing because we already |
| // reset all the features to 0) Use Pos to capture the column we load |
| // features at - in AllocationOrder order. |
| size_t Pos = 0; |
| SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo; |
| for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; |
| ++I, ++Pos) { |
| MCRegister PhysReg = *I; |
| assert(!Regs[Pos].second); |
| assert(PhysReg); |
| if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { |
| continue; |
| } |
| if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, |
| Largest, Pos, LRPosInfo)) { |
| ++Available; |
| Regs[Pos] = std::make_pair(PhysReg, true); |
| } |
| } |
| if (Available == 0) { |
| // Nothing to decide, nothing to learn. |
| assert(!MustFindEviction); |
| return MCRegister::NoRegister; |
| } |
| const size_t ValidPosLimit = Pos; |
| // If we must find eviction, the candidate should be masked out of the |
| // decision making process. |
| Regs[CandidateVirtRegPos].second = !MustFindEviction; |
| if (!MustFindEviction) |
| extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, |
| CandidateVirtRegPos, /*IsHint*/ 0, |
| /*LocalIntfsCount*/ 0, |
| /*NrUrgent*/ 0.0, LRPosInfo); |
| assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " |
| "nothing to allocate initially."); |
| #ifdef LLVM_HAVE_TFLITE |
| if (EnableDevelopmentFeatures) { |
| extractInstructionFeatures( |
| LRPosInfo, Runner, |
| [this](SlotIndex InputIndex) -> int { |
| auto *CurrentMachineInstruction = |
| LIS->getInstructionFromIndex(InputIndex); |
| if (!CurrentMachineInstruction) { |
| return -1; |
| } |
| return CurrentMachineInstruction->getOpcode(); |
| }, |
| [this](SlotIndex InputIndex) -> float { |
| auto *CurrentMachineInstruction = |
| LIS->getInstructionFromIndex(InputIndex); |
| return MBFI.getBlockFreqRelativeToEntryBlock( |
| CurrentMachineInstruction->getParent()); |
| }, |
| [this](SlotIndex InputIndex) -> MachineBasicBlock * { |
| auto *CurrentMachineInstruction = |
| LIS->getInstructionFromIndex(InputIndex); |
| return CurrentMachineInstruction->getParent(); |
| }, |
| FeatureIDs::instructions, FeatureIDs::instructions_mapping, |
| FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping, |
| LIS->getSlotIndexes()->getLastIndex()); |
| } |
| #endif // #ifdef LLVM_HAVE_TFLITE |
| // Normalize the features. |
| for (auto &V : Largest) |
| V = V ? V : 1.0; |
| for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; |
| ++FeatureIndex) { |
| if (DoNotNormalize.test(FeatureIndex)) |
| continue; |
| for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { |
| Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; |
| } |
| } |
| *Runner->getTensor<float>(FeatureIDs::progress) = |
| static_cast<float>(RA.getQueueSize()) / InitialQSize; |
| |
| // Get a decision. |
| size_t CandidatePos = tryFindEvictionCandidatePosition( |
| VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); |
| // The contract with the ML side is that CandidatePos is mask == 1 (i.e. |
| // Regs[CandidatePos].second) |
| assert(Regs[CandidatePos].second); |
| if (CandidatePos == CandidateVirtRegPos) { |
| assert(!MustFindEviction); |
| return MCRegister::NoRegister; |
| } |
| assert(CandidatePos < ValidPosLimit); |
| (void)ValidPosLimit; |
| return Regs[CandidatePos].first; |
| } |
| |
| const LIFeatureComponents & |
| MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { |
| RegID ID = LI.reg().id(); |
| LIFeatureComponents Empty; |
| auto I = CachedFeatures.insert(std::make_pair(ID, Empty)); |
| LIFeatureComponents &Ret = I.first->getSecond(); |
| if (!I.second) |
| return Ret; |
| |
| SmallPtrSet<MachineInstr *, 8> Visited; |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| |
| for (MachineRegisterInfo::reg_instr_nodbg_iterator |
| I = MRI->reg_instr_nodbg_begin(LI.reg()), |
| E = MRI->reg_instr_nodbg_end(); |
| I != E;) { |
| MachineInstr *MI = &*(I++); |
| |
| ++Ret.NrDefsAndUses; |
| if (!Visited.insert(MI).second) |
| continue; |
| |
| if (MI->isIdentityCopy() || MI->isImplicitDef()) |
| continue; |
| |
| bool Reads, Writes; |
| std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); |
| |
| float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); |
| Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); |
| |
| Ret.R += (Reads && !Writes) * Freq; |
| Ret.W += (!Reads && Writes) * Freq; |
| Ret.RW += (Reads && Writes) * Freq; |
| |
| auto *MBB = MI->getParent(); |
| auto *Loop = Loops.getLoopFor(MBB); |
| bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; |
| |
| if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) |
| Ret.IndVarUpdates += Freq; |
| |
| if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) |
| Ret.HintWeights += Freq; |
| } |
| Ret.IsRemat = VirtRegAuxInfo::isRematerializable( |
| LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); |
| return Ret; |
| } |
| |
| // Overall, this currently mimics what we do for weight calculation, but instead |
| // of accummulating the various features, we keep them separate. |
| void MLEvictAdvisor::extractFeatures( |
| const SmallVectorImpl<const LiveInterval *> &Intervals, |
| llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint, |
| int64_t LocalIntfsCount, float NrUrgent, |
| SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { |
| int64_t NrDefsAndUses = 0; |
| int64_t NrBrokenHints = 0; |
| double R = 0.0; |
| double W = 0.0; |
| double RW = 0.0; |
| double IndVarUpdates = 0.0; |
| double HintWeights = 0.0; |
| float StartBBFreq = 0.0; |
| float EndBBFreq = 0.0; |
| float HottestBlockFreq = 0.0; |
| int32_t NrRematerializable = 0; |
| float TotalWeight = 0.0; |
| |
| SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); |
| SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); |
| int64_t MaxStage = 0; |
| int64_t MinStage = |
| Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); |
| |
| for (const auto *L : Intervals) { |
| const LiveInterval &LI = *L; |
| MaxStage = std::max<int64_t>( |
| MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); |
| MinStage = std::min<int64_t>( |
| MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); |
| |
| TotalWeight = std::max(TotalWeight, LI.weight()); |
| |
| if (LI.beginIndex() < StartSI) |
| StartSI = LI.beginIndex(); |
| |
| if (LI.endIndex() > EndSI) |
| EndSI = LI.endIndex(); |
| const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); |
| NrBrokenHints += VRM->hasPreferredPhys(LI.reg()); |
| |
| NrDefsAndUses += LIFC.NrDefsAndUses; |
| HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); |
| R += LIFC.R; |
| W += LIFC.W; |
| RW += LIFC.RW; |
| |
| IndVarUpdates += LIFC.IndVarUpdates; |
| |
| HintWeights += LIFC.HintWeights; |
| NrRematerializable += LIFC.IsRemat; |
| |
| if (EnableDevelopmentFeatures) { |
| for (auto CurrentSegment : LI) { |
| LRPosInfo.push_back( |
| LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos}); |
| } |
| } |
| } |
| size_t Size = 0; |
| if (!Intervals.empty()) { |
| StartBBFreq = |
| MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); |
| if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) |
| EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); |
| EndBBFreq = |
| MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); |
| Size = StartSI.distance(EndSI); |
| } |
| // Set the features at the column 'Pos'. |
| #define SET(ID, TYPE, VAL) \ |
| do { \ |
| Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ |
| if (!DoNotNormalize.test(FeatureIDs::ID)) \ |
| Largest[FeatureIDs::ID] = \ |
| std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ |
| } while (false) |
| SET(mask, int64_t, 1); |
| SET(is_free, int64_t, Intervals.empty()); |
| SET(nr_urgent, float, NrUrgent); |
| SET(nr_broken_hints, float, NrBrokenHints); |
| SET(is_hint, int64_t, IsHint); |
| SET(is_local, int64_t, LocalIntfsCount); |
| SET(nr_rematerializable, float, NrRematerializable); |
| SET(nr_defs_and_uses, float, NrDefsAndUses); |
| SET(weighed_reads_by_max, float, R); |
| SET(weighed_writes_by_max, float, W); |
| SET(weighed_read_writes_by_max, float, RW); |
| SET(weighed_indvars_by_max, float, IndVarUpdates); |
| SET(hint_weights_by_max, float, HintWeights); |
| SET(start_bb_freq_by_max, float, StartBBFreq); |
| SET(end_bb_freq_by_max, float, EndBBFreq); |
| SET(hottest_bb_freq_by_max, float, HottestBlockFreq); |
| SET(liverange_size, float, Size); |
| SET(use_def_density, float, TotalWeight); |
| SET(max_stage, int64_t, MaxStage); |
| SET(min_stage, int64_t, MinStage); |
| #undef SET |
| } |
| |
| void extractInstructionFeatures( |
| SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner, |
| function_ref<int(SlotIndex)> GetOpcode, |
| function_ref<float(SlotIndex)> GetMBBFreq, |
| function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference, |
| const int InstructionsIndex, const int InstructionsMappingIndex, |
| const int MBBFreqIndex, const int MBBMappingIndex, |
| const SlotIndex LastIndex) { |
| // This function extracts instruction based features relevant to the eviction |
| // problem currently being solved. This function ends up extracting two |
| // tensors. |
| // 1 - A vector of size max instruction count. It contains the opcodes of the |
| // instructions spanned by all the intervals in the current instance of the |
| // eviction problem. |
| // 2 - A binary mapping matrix of size (LR count * max |
| // instruction count) which maps where the LRs are live to the actual opcodes |
| // for which they are live. |
| // 3 - A vector of size max supported MBB count storing MBB frequencies, |
| // encompassing all of the MBBs covered by the eviction problem. |
| // 4 - A vector of size max instruction count of indices to members of the MBB |
| // frequency vector, mapping each instruction to its associated MBB. |
| |
| // Start off by sorting the segments based on the beginning slot index. |
| std::sort( |
| LRPosInfo.begin(), LRPosInfo.end(), |
| [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; }); |
| size_t InstructionIndex = 0; |
| size_t CurrentSegmentIndex = 0; |
| SlotIndex CurrentIndex = LRPosInfo[0].Begin; |
| std::map<MachineBasicBlock *, size_t> VisitedMBBs; |
| size_t CurrentMBBIndex = 0; |
| // This loop processes all the segments sequentially by starting at the |
| // beginning slot index of the first segment, iterating through all the slot |
| // indices before the end slot index of that segment (while checking for |
| // overlaps with segments that start at greater slot indices). After hitting |
| // that end index, the current segment being processed gets bumped until they |
| // are all processed or the max instruction count is hit, where everything is |
| // just truncated. |
| while (true) { |
| // If the index that we are currently at is within the current segment and |
| // we haven't hit the max instruction count, continue processing the current |
| // segment. |
| while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End && |
| InstructionIndex < ModelMaxSupportedInstructionCount) { |
| int CurrentOpcode = GetOpcode(CurrentIndex); |
| // If the current machine instruction is null, skip it |
| if (CurrentOpcode == -1) { |
| // If we're currently at the last index in the SlotIndex analysis, |
| // we can't go any further, so return from the function |
| if (CurrentIndex >= LastIndex) { |
| return; |
| } |
| CurrentIndex = CurrentIndex.getNextIndex(); |
| continue; |
| } |
| MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex); |
| if (VisitedMBBs.count(CurrentMBBReference) == 0) { |
| VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex; |
| ++CurrentMBBIndex; |
| } |
| extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs, |
| GetMBBFreq, CurrentMBBReference, RegallocRunner, |
| MBBFreqIndex, MBBMappingIndex); |
| // Current code assumes we're not going to get any disjointed segments |
| assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex); |
| RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] = |
| CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0; |
| // set value in the binary mapping matrix for the current instruction |
| auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos; |
| RegallocRunner->getTensor<int64_t>( |
| InstructionsMappingIndex)[CurrentSegmentPosition * |
| ModelMaxSupportedInstructionCount + |
| InstructionIndex] = 1; |
| // All of the segments are sorted based on the beginning slot index, but |
| // this doesn't mean that the beginning slot index of the next segment is |
| // after the end segment of the one being currently processed. This while |
| // loop checks for overlapping segments and modifies the portion of the |
| // column in the mapping matrix for the currently processed instruction |
| // for the LR it is checking. Also make sure that the beginning of the |
| // current segment we're checking for overlap in is less than the current |
| // index, otherwise we're done checking overlaps. |
| size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1; |
| while (OverlapCheckCurrentSegment < LRPosInfo.size() && |
| LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) { |
| auto OverlapCurrentSegmentPosition = |
| LRPosInfo[OverlapCheckCurrentSegment].Pos; |
| if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) { |
| RegallocRunner->getTensor<int64_t>( |
| InstructionsMappingIndex)[OverlapCurrentSegmentPosition * |
| ModelMaxSupportedInstructionCount + |
| InstructionIndex] = 1; |
| } |
| ++OverlapCheckCurrentSegment; |
| } |
| ++InstructionIndex; |
| if (CurrentIndex >= LastIndex) { |
| return; |
| } |
| CurrentIndex = CurrentIndex.getNextIndex(); |
| } |
| // if we've just finished processing through the last segment or if we've |
| // hit the maximum number of instructions, break out of the loop. |
| if (CurrentSegmentIndex == LRPosInfo.size() - 1 || |
| InstructionIndex >= ModelMaxSupportedInstructionCount) { |
| break; |
| } |
| // If the segments are not overlapping, we need to move to the beginning |
| // index of the next segment to avoid having instructions not attached to |
| // any register. |
| if (LRPosInfo[CurrentSegmentIndex + 1].Begin > |
| LRPosInfo[CurrentSegmentIndex].End) { |
| CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin; |
| } |
| ++CurrentSegmentIndex; |
| } |
| } |
| |
| void extractMBBFrequency(const SlotIndex CurrentIndex, |
| const size_t CurrentInstructionIndex, |
| std::map<MachineBasicBlock *, size_t> &VisitedMBBs, |
| function_ref<float(SlotIndex)> GetMBBFreq, |
| MachineBasicBlock *CurrentMBBReference, |
| MLModelRunner *RegallocRunner, const int MBBFreqIndex, |
| const int MBBMappingIndex) { |
| size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference]; |
| float CurrentMBBFreq = GetMBBFreq(CurrentIndex); |
| if (CurrentMBBIndex < ModelMaxSupportedMBBCount) { |
| RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] = |
| CurrentMBBFreq; |
| RegallocRunner->getTensor<int64_t>( |
| MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex; |
| } |
| } |
| |
| // Development mode-specific implementations |
| #ifdef LLVM_HAVE_TFLITE |
| |
| RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { |
| return new DevelopmentModeEvictionAdvisorAnalysis(); |
| } |
| |
| int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( |
| const LiveInterval &VirtReg, const AllocationOrder &Order, |
| unsigned OrderLimit, uint8_t CostPerUseLimit, |
| const SmallVirtRegSet &FixedRegisters) const { |
| int64_t Ret = 0; |
| if (isa<ModelUnderTrainingRunner>(getRunner())) { |
| Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( |
| VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); |
| } else { |
| MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( |
| VirtReg, Order, CostPerUseLimit, FixedRegisters); |
| // Find the index of the selected PhysReg. We need it for logging, |
| // otherwise this is wasted cycles (but so would starting development mode |
| // without a model nor logging) |
| if (!PhysReg) |
| Ret = CandidateVirtRegPos; |
| else |
| for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); |
| I != E; ++I, ++Ret) |
| if (*I == PhysReg) |
| break; |
| } |
| if (TrainingLog.empty()) |
| return Ret; |
| // TODO(mtrofin): when we support optional rewards, this can go away. In the |
| // meantime, we log the "pretend" reward (0) for the previous observation |
| // before starting a new one. |
| if (Log->hasObservationInProgress()) |
| Log->logReward<float>(0.0); |
| |
| Log->startObservation(); |
| size_t CurrentFeature = 0; |
| size_t FeatureCount = EnableDevelopmentFeatures |
| ? FeatureIDs::FeaturesWithDevelopmentCount |
| : FeatureIDs::FeatureCount; |
| for (; CurrentFeature < FeatureCount; ++CurrentFeature) { |
| Log->logTensorValue(CurrentFeature, |
| reinterpret_cast<const char *>( |
| getRunner().getTensorUntyped(CurrentFeature))); |
| } |
| if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) |
| for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); |
| ++I, ++CurrentFeature) |
| Log->logTensorValue( |
| CurrentFeature, |
| reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); |
| // The output is right after the features and the extra outputs |
| Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); |
| Log->endObservation(); |
| return Ret; |
| } |
| |
| bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { |
| std::optional<float> CachedReward; |
| auto GetReward = [&]() { |
| if (!CachedReward) |
| CachedReward = static_cast<float>( |
| calculateRegAllocScore(MF, getAnalysis<MachineBlockFrequencyInfo>()) |
| .getScore()); |
| return *CachedReward; |
| }; |
| |
| getAnalysis<RegAllocEvictionAdvisorAnalysis>().logRewardIfNeeded(MF, |
| GetReward); |
| getAnalysis<RegAllocPriorityAdvisorAnalysis>().logRewardIfNeeded(MF, |
| GetReward); |
| return false; |
| } |
| #endif // #ifdef LLVM_HAVE_TFLITE |
| |
| RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { |
| return new ReleaseModeEvictionAdvisorAnalysis(); |
| } |
| |
| // In all cases except development mode, we don't need scoring. |
| #if !defined(LLVM_HAVE_TFLITE) |
| bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } |
| #endif |