| //===- LiveIntervalCalc.cpp - Calculate live interval --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the LiveIntervalCalc class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveIntervalCalc.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <cassert> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| // Reserve an address that indicates a value that is known to be "undef". |
| static VNInfo UndefVNI(0xbad, SlotIndex()); |
| |
| static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, |
| LiveRange &LR, const MachineOperand &MO) { |
| const MachineInstr &MI = *MO.getParent(); |
| SlotIndex DefIdx = |
| Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); |
| |
| // Create the def in LR. This may find an existing def. |
| LR.createDeadDef(DefIdx, Alloc); |
| } |
| |
| void LiveIntervalCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { |
| const MachineRegisterInfo *MRI = getRegInfo(); |
| SlotIndexes *Indexes = getIndexes(); |
| VNInfo::Allocator *Alloc = getVNAlloc(); |
| |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Step 1: Create minimal live segments for every definition of Reg. |
| // Visit all def operands. If the same instruction has multiple defs of Reg, |
| // createDeadDef() will deduplicate. |
| const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| Register Reg = LI.reg(); |
| for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| if (!MO.isDef() && !MO.readsReg()) |
| continue; |
| |
| unsigned SubReg = MO.getSubReg(); |
| if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { |
| LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| // If this is the first time we see a subregister def, initialize |
| // subranges by creating a copy of the main range. |
| if (!LI.hasSubRanges() && !LI.empty()) { |
| LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); |
| LI.createSubRangeFrom(*Alloc, ClassMask, LI); |
| } |
| |
| LI.refineSubRanges( |
| *Alloc, SubMask, |
| [&MO, Indexes, Alloc](LiveInterval::SubRange &SR) { |
| if (MO.isDef()) |
| createDeadDef(*Indexes, *Alloc, SR, MO); |
| }, |
| *Indexes, TRI); |
| } |
| |
| // Create the def in the main liverange. We do not have to do this if |
| // subranges are tracked as we recreate the main range later in this case. |
| if (MO.isDef() && !LI.hasSubRanges()) |
| createDeadDef(*Indexes, *Alloc, LI, MO); |
| } |
| |
| // We may have created empty live ranges for partially undefined uses, we |
| // can't keep them because we won't find defs in them later. |
| LI.removeEmptySubRanges(); |
| |
| const MachineFunction *MF = getMachineFunction(); |
| MachineDominatorTree *DomTree = getDomTree(); |
| // Step 2: Extend live segments to all uses, constructing SSA form as |
| // necessary. |
| if (LI.hasSubRanges()) { |
| for (LiveInterval::SubRange &S : LI.subranges()) { |
| LiveIntervalCalc SubLIC; |
| SubLIC.reset(MF, Indexes, DomTree, Alloc); |
| SubLIC.extendToUses(S, Reg, S.LaneMask, &LI); |
| } |
| LI.clear(); |
| constructMainRangeFromSubranges(LI); |
| } else { |
| resetLiveOutMap(); |
| extendToUses(LI, Reg, LaneBitmask::getAll()); |
| } |
| } |
| |
| void LiveIntervalCalc::constructMainRangeFromSubranges(LiveInterval &LI) { |
| // First create dead defs at all defs found in subranges. |
| LiveRange &MainRange = LI; |
| assert(MainRange.segments.empty() && MainRange.valnos.empty() && |
| "Expect empty main liverange"); |
| |
| VNInfo::Allocator *Alloc = getVNAlloc(); |
| for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| for (const VNInfo *VNI : SR.valnos) { |
| if (!VNI->isUnused() && !VNI->isPHIDef()) |
| MainRange.createDeadDef(VNI->def, *Alloc); |
| } |
| } |
| resetLiveOutMap(); |
| extendToUses(MainRange, LI.reg(), LaneBitmask::getAll(), &LI); |
| } |
| |
| void LiveIntervalCalc::createDeadDefs(LiveRange &LR, Register Reg) { |
| const MachineRegisterInfo *MRI = getRegInfo(); |
| SlotIndexes *Indexes = getIndexes(); |
| VNInfo::Allocator *Alloc = getVNAlloc(); |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Visit all def operands. If the same instruction has multiple defs of Reg, |
| // LR.createDeadDef() will deduplicate. |
| for (MachineOperand &MO : MRI->def_operands(Reg)) |
| createDeadDef(*Indexes, *Alloc, LR, MO); |
| } |
| |
| void LiveIntervalCalc::extendToUses(LiveRange &LR, Register Reg, |
| LaneBitmask Mask, LiveInterval *LI) { |
| const MachineRegisterInfo *MRI = getRegInfo(); |
| SlotIndexes *Indexes = getIndexes(); |
| SmallVector<SlotIndex, 4> Undefs; |
| if (LI != nullptr) |
| LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); |
| |
| // Visit all operands that read Reg. This may include partial defs. |
| bool IsSubRange = !Mask.all(); |
| const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| // Clear all kill flags. They will be reinserted after register allocation |
| // by LiveIntervals::addKillFlags(). |
| if (MO.isUse()) |
| MO.setIsKill(false); |
| // MO::readsReg returns "true" for subregister defs. This is for keeping |
| // liveness of the entire register (i.e. for the main range of the live |
| // interval). For subranges, definitions of non-overlapping subregisters |
| // do not count as uses. |
| if (!MO.readsReg() || (IsSubRange && MO.isDef())) |
| continue; |
| |
| unsigned SubReg = MO.getSubReg(); |
| if (SubReg != 0) { |
| LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); |
| if (MO.isDef()) |
| SLM = ~SLM; |
| // Ignore uses not reading the current (sub)range. |
| if ((SLM & Mask).none()) |
| continue; |
| } |
| |
| // Determine the actual place of the use. |
| const MachineInstr *MI = MO.getParent(); |
| unsigned OpNo = (&MO - &MI->getOperand(0)); |
| SlotIndex UseIdx; |
| if (MI->isPHI()) { |
| assert(!MO.isDef() && "Cannot handle PHI def of partial register."); |
| // The actual place where a phi operand is used is the end of the pred |
| // MBB. PHI operands are paired: (Reg, PredMBB). |
| UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo + 1).getMBB()); |
| } else { |
| // Check for early-clobber redefs. |
| bool isEarlyClobber = false; |
| unsigned DefIdx; |
| if (MO.isDef()) |
| isEarlyClobber = MO.isEarlyClobber(); |
| else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { |
| // FIXME: This would be a lot easier if tied early-clobber uses also |
| // had an early-clobber flag. |
| isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); |
| } |
| UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); |
| } |
| |
| // MI is reading Reg. We may have visited MI before if it happens to be |
| // reading Reg multiple times. That is OK, extend() is idempotent. |
| extend(LR, UseIdx, Reg, Undefs); |
| } |
| } |