blob: f780050ca3f160adc5a77a3274a798aeb89ddf06 [file] [log] [blame]
//===- llvm/CodeGen/GlobalISel/InstructionSelect.cpp - InstructionSelect ---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the InstructionSelect class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CodeGenCoverage.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "instruction-select"
using namespace llvm;
#ifdef LLVM_GISEL_COV_PREFIX
static cl::opt<std::string>
CoveragePrefix("gisel-coverage-prefix", cl::init(LLVM_GISEL_COV_PREFIX),
cl::desc("Record GlobalISel rule coverage files of this "
"prefix if instrumentation was generated"));
#else
static const std::string CoveragePrefix;
#endif
char InstructionSelect::ID = 0;
INITIALIZE_PASS_BEGIN(InstructionSelect, DEBUG_TYPE,
"Select target instructions out of generic instructions",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
INITIALIZE_PASS_END(InstructionSelect, DEBUG_TYPE,
"Select target instructions out of generic instructions",
false, false)
InstructionSelect::InstructionSelect(CodeGenOpt::Level OL)
: MachineFunctionPass(ID), OptLevel(OL) {}
// In order not to crash when calling getAnalysis during testing with -run-pass
// we use the default opt level here instead of None, so that the addRequired()
// calls are made in getAnalysisUsage().
InstructionSelect::InstructionSelect()
: MachineFunctionPass(ID), OptLevel(CodeGenOpt::Default) {}
void InstructionSelect::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (OptLevel != CodeGenOpt::None) {
AU.addRequired<ProfileSummaryInfoWrapperPass>();
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
}
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
bool InstructionSelect::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
LLVM_DEBUG(dbgs() << "Selecting function: " << MF.getName() << '\n');
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
InstructionSelector *ISel = MF.getSubtarget().getInstructionSelector();
CodeGenOpt::Level OldOptLevel = OptLevel;
auto RestoreOptLevel = make_scope_exit([=]() { OptLevel = OldOptLevel; });
OptLevel = MF.getFunction().hasOptNone() ? CodeGenOpt::None
: MF.getTarget().getOptLevel();
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
if (OptLevel != CodeGenOpt::None) {
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
if (PSI && PSI->hasProfileSummary())
BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
}
CodeGenCoverage CoverageInfo;
assert(ISel && "Cannot work without InstructionSelector");
ISel->setupMF(MF, KB, CoverageInfo, PSI, BFI);
// An optimization remark emitter. Used to report failures.
MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
// FIXME: There are many other MF/MFI fields we need to initialize.
MachineRegisterInfo &MRI = MF.getRegInfo();
#ifndef NDEBUG
// Check that our input is fully legal: we require the function to have the
// Legalized property, so it should be.
// FIXME: This should be in the MachineVerifier, as the RegBankSelected
// property check already is.
if (!DisableGISelLegalityCheck)
if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
reportGISelFailure(MF, TPC, MORE, "gisel-select",
"instruction is not legal", *MI);
return false;
}
// FIXME: We could introduce new blocks and will need to fix the outer loop.
// Until then, keep track of the number of blocks to assert that we don't.
const size_t NumBlocks = MF.size();
#endif
// Keep track of selected blocks, so we can delete unreachable ones later.
DenseSet<MachineBasicBlock *> SelectedBlocks;
for (MachineBasicBlock *MBB : post_order(&MF)) {
ISel->CurMBB = MBB;
SelectedBlocks.insert(MBB);
if (MBB->empty())
continue;
// Select instructions in reverse block order. We permit erasing so have
// to resort to manually iterating and recognizing the begin (rend) case.
bool ReachedBegin = false;
for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
!ReachedBegin;) {
#ifndef NDEBUG
// Keep track of the insertion range for debug printing.
const auto AfterIt = std::next(MII);
#endif
// Select this instruction.
MachineInstr &MI = *MII;
// And have our iterator point to the next instruction, if there is one.
if (MII == Begin)
ReachedBegin = true;
else
--MII;
LLVM_DEBUG(dbgs() << "Selecting: \n " << MI);
// We could have folded this instruction away already, making it dead.
// If so, erase it.
if (isTriviallyDead(MI, MRI)) {
LLVM_DEBUG(dbgs() << "Is dead; erasing.\n");
salvageDebugInfo(MRI, MI);
MI.eraseFromParent();
continue;
}
// Eliminate hints.
if (isPreISelGenericOptimizationHint(MI.getOpcode())) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
// At this point, the destination register class of the hint may have
// been decided.
//
// Propagate that through to the source register.
const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
if (DstRC)
MRI.setRegClass(SrcReg, DstRC);
assert(canReplaceReg(DstReg, SrcReg, MRI) &&
"Must be able to replace dst with src!");
MI.eraseFromParent();
MRI.replaceRegWith(DstReg, SrcReg);
continue;
}
if (MI.getOpcode() == TargetOpcode::G_INVOKE_REGION_START) {
MI.eraseFromParent();
continue;
}
if (!ISel->select(MI)) {
// FIXME: It would be nice to dump all inserted instructions. It's
// not obvious how, esp. considering select() can insert after MI.
reportGISelFailure(MF, TPC, MORE, "gisel-select", "cannot select", MI);
return false;
}
// Dump the range of instructions that MI expanded into.
LLVM_DEBUG({
auto InsertedBegin = ReachedBegin ? MBB->begin() : std::next(MII);
dbgs() << "Into:\n";
for (auto &InsertedMI : make_range(InsertedBegin, AfterIt))
dbgs() << " " << InsertedMI;
dbgs() << '\n';
});
}
}
for (MachineBasicBlock &MBB : MF) {
if (MBB.empty())
continue;
if (!SelectedBlocks.contains(&MBB)) {
// This is an unreachable block and therefore hasn't been selected, since
// the main selection loop above uses a postorder block traversal.
// We delete all the instructions in this block since it's unreachable.
MBB.clear();
// Don't delete the block in case the block has it's address taken or is
// still being referenced by a phi somewhere.
continue;
}
// Try to find redundant copies b/w vregs of the same register class.
bool ReachedBegin = false;
for (auto MII = std::prev(MBB.end()), Begin = MBB.begin(); !ReachedBegin;) {
// Select this instruction.
MachineInstr &MI = *MII;
// And have our iterator point to the next instruction, if there is one.
if (MII == Begin)
ReachedBegin = true;
else
--MII;
if (MI.getOpcode() != TargetOpcode::COPY)
continue;
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
if (SrcReg.isVirtual() && DstReg.isVirtual()) {
auto SrcRC = MRI.getRegClass(SrcReg);
auto DstRC = MRI.getRegClass(DstReg);
if (SrcRC == DstRC) {
MRI.replaceRegWith(DstReg, SrcReg);
MI.eraseFromParent();
}
}
}
}
#ifndef NDEBUG
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
// Now that selection is complete, there are no more generic vregs. Verify
// that the size of the now-constrained vreg is unchanged and that it has a
// register class.
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register VReg = Register::index2VirtReg(I);
MachineInstr *MI = nullptr;
if (!MRI.def_empty(VReg))
MI = &*MRI.def_instr_begin(VReg);
else if (!MRI.use_empty(VReg)) {
MI = &*MRI.use_instr_begin(VReg);
// Debug value instruction is permitted to use undefined vregs.
if (MI->isDebugValue())
continue;
}
if (!MI)
continue;
const TargetRegisterClass *RC = MRI.getRegClassOrNull(VReg);
if (!RC) {
reportGISelFailure(MF, TPC, MORE, "gisel-select",
"VReg has no regclass after selection", *MI);
return false;
}
const LLT Ty = MRI.getType(VReg);
if (Ty.isValid() && Ty.getSizeInBits() > TRI.getRegSizeInBits(*RC)) {
reportGISelFailure(
MF, TPC, MORE, "gisel-select",
"VReg's low-level type and register class have different sizes", *MI);
return false;
}
}
if (MF.size() != NumBlocks) {
MachineOptimizationRemarkMissed R("gisel-select", "GISelFailure",
MF.getFunction().getSubprogram(),
/*MBB=*/nullptr);
R << "inserting blocks is not supported yet";
reportGISelFailure(MF, TPC, MORE, R);
return false;
}
#endif
// Determine if there are any calls in this machine function. Ported from
// SelectionDAG.
MachineFrameInfo &MFI = MF.getFrameInfo();
for (const auto &MBB : MF) {
if (MFI.hasCalls() && MF.hasInlineAsm())
break;
for (const auto &MI : MBB) {
if ((MI.isCall() && !MI.isReturn()) || MI.isStackAligningInlineAsm())
MFI.setHasCalls(true);
if (MI.isInlineAsm())
MF.setHasInlineAsm(true);
}
}
// FIXME: FinalizeISel pass calls finalizeLowering, so it's called twice.
auto &TLI = *MF.getSubtarget().getTargetLowering();
TLI.finalizeLowering(MF);
LLVM_DEBUG({
dbgs() << "Rules covered by selecting function: " << MF.getName() << ":";
for (auto RuleID : CoverageInfo.covered())
dbgs() << " id" << RuleID;
dbgs() << "\n\n";
});
CoverageInfo.emit(CoveragePrefix,
TLI.getTargetMachine().getTarget().getBackendName());
// If we successfully selected the function nothing is going to use the vreg
// types after us (otherwise MIRPrinter would need them). Make sure the types
// disappear.
MRI.clearVirtRegTypes();
// FIXME: Should we accurately track changes?
return true;
}