| //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements some simple delegations needed for call lowering. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #define DEBUG_TYPE "call-lowering" |
| |
| using namespace llvm; |
| |
| void CallLowering::anchor() {} |
| |
| /// Helper function which updates \p Flags when \p AttrFn returns true. |
| static void |
| addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, |
| const std::function<bool(Attribute::AttrKind)> &AttrFn) { |
| if (AttrFn(Attribute::SExt)) |
| Flags.setSExt(); |
| if (AttrFn(Attribute::ZExt)) |
| Flags.setZExt(); |
| if (AttrFn(Attribute::InReg)) |
| Flags.setInReg(); |
| if (AttrFn(Attribute::StructRet)) |
| Flags.setSRet(); |
| if (AttrFn(Attribute::Nest)) |
| Flags.setNest(); |
| if (AttrFn(Attribute::ByVal)) |
| Flags.setByVal(); |
| if (AttrFn(Attribute::Preallocated)) |
| Flags.setPreallocated(); |
| if (AttrFn(Attribute::InAlloca)) |
| Flags.setInAlloca(); |
| if (AttrFn(Attribute::Returned)) |
| Flags.setReturned(); |
| if (AttrFn(Attribute::SwiftSelf)) |
| Flags.setSwiftSelf(); |
| if (AttrFn(Attribute::SwiftAsync)) |
| Flags.setSwiftAsync(); |
| if (AttrFn(Attribute::SwiftError)) |
| Flags.setSwiftError(); |
| } |
| |
| ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, |
| unsigned ArgIdx) const { |
| ISD::ArgFlagsTy Flags; |
| addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { |
| return Call.paramHasAttr(ArgIdx, Attr); |
| }); |
| return Flags; |
| } |
| |
| ISD::ArgFlagsTy |
| CallLowering::getAttributesForReturn(const CallBase &Call) const { |
| ISD::ArgFlagsTy Flags; |
| addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { |
| return Call.hasRetAttr(Attr); |
| }); |
| return Flags; |
| } |
| |
| void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, |
| const AttributeList &Attrs, |
| unsigned OpIdx) const { |
| addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { |
| return Attrs.hasAttributeAtIndex(OpIdx, Attr); |
| }); |
| } |
| |
| bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, |
| ArrayRef<Register> ResRegs, |
| ArrayRef<ArrayRef<Register>> ArgRegs, |
| Register SwiftErrorVReg, |
| std::function<unsigned()> GetCalleeReg) const { |
| CallLoweringInfo Info; |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| MachineFunction &MF = MIRBuilder.getMF(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| bool CanBeTailCalled = CB.isTailCall() && |
| isInTailCallPosition(CB, MF.getTarget()) && |
| (MF.getFunction() |
| .getFnAttribute("disable-tail-calls") |
| .getValueAsString() != "true"); |
| |
| CallingConv::ID CallConv = CB.getCallingConv(); |
| Type *RetTy = CB.getType(); |
| bool IsVarArg = CB.getFunctionType()->isVarArg(); |
| |
| SmallVector<BaseArgInfo, 4> SplitArgs; |
| getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); |
| Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); |
| |
| if (!Info.CanLowerReturn) { |
| // Callee requires sret demotion. |
| insertSRetOutgoingArgument(MIRBuilder, CB, Info); |
| |
| // The sret demotion isn't compatible with tail-calls, since the sret |
| // argument points into the caller's stack frame. |
| CanBeTailCalled = false; |
| } |
| |
| |
| // First step is to marshall all the function's parameters into the correct |
| // physregs and memory locations. Gather the sequence of argument types that |
| // we'll pass to the assigner function. |
| unsigned i = 0; |
| unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); |
| for (const auto &Arg : CB.args()) { |
| ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), |
| i < NumFixedArgs}; |
| setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); |
| |
| // If we have an explicit sret argument that is an Instruction, (i.e., it |
| // might point to function-local memory), we can't meaningfully tail-call. |
| if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) |
| CanBeTailCalled = false; |
| |
| Info.OrigArgs.push_back(OrigArg); |
| ++i; |
| } |
| |
| // Try looking through a bitcast from one function type to another. |
| // Commonly happens with calls to objc_msgSend(). |
| const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); |
| if (const Function *F = dyn_cast<Function>(CalleeV)) |
| Info.Callee = MachineOperand::CreateGA(F, 0); |
| else |
| Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); |
| |
| Register ReturnHintAlignReg; |
| Align ReturnHintAlign; |
| |
| Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; |
| |
| if (!Info.OrigRet.Ty->isVoidTy()) { |
| setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); |
| |
| if (MaybeAlign Alignment = CB.getRetAlign()) { |
| if (*Alignment > Align(1)) { |
| ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); |
| Info.OrigRet.Regs[0] = ReturnHintAlignReg; |
| ReturnHintAlign = *Alignment; |
| } |
| } |
| } |
| |
| auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); |
| if (Bundle && CB.isIndirectCall()) { |
| Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); |
| assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); |
| } |
| |
| Info.CB = &CB; |
| Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); |
| Info.CallConv = CallConv; |
| Info.SwiftErrorVReg = SwiftErrorVReg; |
| Info.IsMustTailCall = CB.isMustTailCall(); |
| Info.IsTailCall = CanBeTailCalled; |
| Info.IsVarArg = IsVarArg; |
| if (!lowerCall(MIRBuilder, Info)) |
| return false; |
| |
| if (ReturnHintAlignReg && !Info.IsTailCall) { |
| MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, |
| ReturnHintAlign); |
| } |
| |
| return true; |
| } |
| |
| template <typename FuncInfoTy> |
| void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, |
| const DataLayout &DL, |
| const FuncInfoTy &FuncInfo) const { |
| auto &Flags = Arg.Flags[0]; |
| const AttributeList &Attrs = FuncInfo.getAttributes(); |
| addArgFlagsFromAttributes(Flags, Attrs, OpIdx); |
| |
| PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); |
| if (PtrTy) { |
| Flags.setPointer(); |
| Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); |
| } |
| |
| Align MemAlign = DL.getABITypeAlign(Arg.Ty); |
| if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { |
| assert(OpIdx >= AttributeList::FirstArgIndex); |
| unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; |
| |
| Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); |
| if (!ElementTy) |
| ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); |
| if (!ElementTy) |
| ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); |
| assert(ElementTy && "Must have byval, inalloca or preallocated type"); |
| Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); |
| |
| // For ByVal, alignment should be passed from FE. BE will guess if |
| // this info is not there but there are cases it cannot get right. |
| if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) |
| MemAlign = *ParamAlign; |
| else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) |
| MemAlign = *ParamAlign; |
| else |
| MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); |
| } else if (OpIdx >= AttributeList::FirstArgIndex) { |
| if (auto ParamAlign = |
| FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) |
| MemAlign = *ParamAlign; |
| } |
| Flags.setMemAlign(MemAlign); |
| Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); |
| |
| // Don't try to use the returned attribute if the argument is marked as |
| // swiftself, since it won't be passed in x0. |
| if (Flags.isSwiftSelf()) |
| Flags.setReturned(false); |
| } |
| |
| template void |
| CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, |
| const DataLayout &DL, |
| const Function &FuncInfo) const; |
| |
| template void |
| CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, |
| const DataLayout &DL, |
| const CallBase &FuncInfo) const; |
| |
| void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, |
| SmallVectorImpl<ArgInfo> &SplitArgs, |
| const DataLayout &DL, |
| CallingConv::ID CallConv, |
| SmallVectorImpl<uint64_t> *Offsets) const { |
| LLVMContext &Ctx = OrigArg.Ty->getContext(); |
| |
| SmallVector<EVT, 4> SplitVTs; |
| ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); |
| |
| if (SplitVTs.size() == 0) |
| return; |
| |
| if (SplitVTs.size() == 1) { |
| // No splitting to do, but we want to replace the original type (e.g. [1 x |
| // double] -> double). |
| SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), |
| OrigArg.OrigArgIndex, OrigArg.Flags[0], |
| OrigArg.IsFixed, OrigArg.OrigValue); |
| return; |
| } |
| |
| // Create one ArgInfo for each virtual register in the original ArgInfo. |
| assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); |
| |
| bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( |
| OrigArg.Ty, CallConv, false, DL); |
| for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { |
| Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); |
| SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, |
| OrigArg.Flags[0], OrigArg.IsFixed); |
| if (NeedsRegBlock) |
| SplitArgs.back().Flags[0].setInConsecutiveRegs(); |
| } |
| |
| SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); |
| } |
| |
| /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. |
| static MachineInstrBuilder |
| mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, |
| ArrayRef<Register> SrcRegs) { |
| MachineRegisterInfo &MRI = *B.getMRI(); |
| LLT LLTy = MRI.getType(DstRegs[0]); |
| LLT PartLLT = MRI.getType(SrcRegs[0]); |
| |
| // Deal with v3s16 split into v2s16 |
| LLT LCMTy = getCoverTy(LLTy, PartLLT); |
| if (LCMTy == LLTy) { |
| // Common case where no padding is needed. |
| assert(DstRegs.size() == 1); |
| return B.buildConcatVectors(DstRegs[0], SrcRegs); |
| } |
| |
| // We need to create an unmerge to the result registers, which may require |
| // widening the original value. |
| Register UnmergeSrcReg; |
| if (LCMTy != PartLLT) { |
| assert(DstRegs.size() == 1); |
| return B.buildDeleteTrailingVectorElements( |
| DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); |
| } else { |
| // We don't need to widen anything if we're extracting a scalar which was |
| // promoted to a vector e.g. s8 -> v4s8 -> s8 |
| assert(SrcRegs.size() == 1); |
| UnmergeSrcReg = SrcRegs[0]; |
| } |
| |
| int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); |
| |
| SmallVector<Register, 8> PadDstRegs(NumDst); |
| std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); |
| |
| // Create the excess dead defs for the unmerge. |
| for (int I = DstRegs.size(); I != NumDst; ++I) |
| PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); |
| |
| if (PadDstRegs.size() == 1) |
| return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); |
| return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); |
| } |
| |
| /// Create a sequence of instructions to combine pieces split into register |
| /// typed values to the original IR value. \p OrigRegs contains the destination |
| /// value registers of type \p LLTy, and \p Regs contains the legalized pieces |
| /// with type \p PartLLT. This is used for incoming values (physregs to vregs). |
| static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, |
| ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, |
| const ISD::ArgFlagsTy Flags) { |
| MachineRegisterInfo &MRI = *B.getMRI(); |
| |
| if (PartLLT == LLTy) { |
| // We should have avoided introducing a new virtual register, and just |
| // directly assigned here. |
| assert(OrigRegs[0] == Regs[0]); |
| return; |
| } |
| |
| if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && |
| Regs.size() == 1) { |
| B.buildBitcast(OrigRegs[0], Regs[0]); |
| return; |
| } |
| |
| // A vector PartLLT needs extending to LLTy's element size. |
| // E.g. <2 x s64> = G_SEXT <2 x s32>. |
| if (PartLLT.isVector() == LLTy.isVector() && |
| PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && |
| (!PartLLT.isVector() || |
| PartLLT.getNumElements() == LLTy.getNumElements()) && |
| OrigRegs.size() == 1 && Regs.size() == 1) { |
| Register SrcReg = Regs[0]; |
| |
| LLT LocTy = MRI.getType(SrcReg); |
| |
| if (Flags.isSExt()) { |
| SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) |
| .getReg(0); |
| } else if (Flags.isZExt()) { |
| SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) |
| .getReg(0); |
| } |
| |
| // Sometimes pointers are passed zero extended. |
| LLT OrigTy = MRI.getType(OrigRegs[0]); |
| if (OrigTy.isPointer()) { |
| LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); |
| B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); |
| return; |
| } |
| |
| B.buildTrunc(OrigRegs[0], SrcReg); |
| return; |
| } |
| |
| if (!LLTy.isVector() && !PartLLT.isVector()) { |
| assert(OrigRegs.size() == 1); |
| LLT OrigTy = MRI.getType(OrigRegs[0]); |
| |
| unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); |
| if (SrcSize == OrigTy.getSizeInBits()) |
| B.buildMergeValues(OrigRegs[0], Regs); |
| else { |
| auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); |
| B.buildTrunc(OrigRegs[0], Widened); |
| } |
| |
| return; |
| } |
| |
| if (PartLLT.isVector()) { |
| assert(OrigRegs.size() == 1); |
| SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); |
| |
| // If PartLLT is a mismatched vector in both number of elements and element |
| // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to |
| // have the same elt type, i.e. v4s32. |
| if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && |
| PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && |
| Regs.size() == 1) { |
| LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) |
| .changeElementCount(PartLLT.getElementCount() * 2); |
| CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); |
| PartLLT = NewTy; |
| } |
| |
| if (LLTy.getScalarType() == PartLLT.getElementType()) { |
| mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); |
| } else { |
| unsigned I = 0; |
| LLT GCDTy = getGCDType(LLTy, PartLLT); |
| |
| // We are both splitting a vector, and bitcasting its element types. Cast |
| // the source pieces into the appropriate number of pieces with the result |
| // element type. |
| for (Register SrcReg : CastRegs) |
| CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); |
| mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); |
| } |
| |
| return; |
| } |
| |
| assert(LLTy.isVector() && !PartLLT.isVector()); |
| |
| LLT DstEltTy = LLTy.getElementType(); |
| |
| // Pointer information was discarded. We'll need to coerce some register types |
| // to avoid violating type constraints. |
| LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); |
| |
| assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); |
| |
| if (DstEltTy == PartLLT) { |
| // Vector was trivially scalarized. |
| |
| if (RealDstEltTy.isPointer()) { |
| for (Register Reg : Regs) |
| MRI.setType(Reg, RealDstEltTy); |
| } |
| |
| B.buildBuildVector(OrigRegs[0], Regs); |
| } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { |
| // Deal with vector with 64-bit elements decomposed to 32-bit |
| // registers. Need to create intermediate 64-bit elements. |
| SmallVector<Register, 8> EltMerges; |
| int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); |
| |
| assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); |
| |
| for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { |
| auto Merge = |
| B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); |
| // Fix the type in case this is really a vector of pointers. |
| MRI.setType(Merge.getReg(0), RealDstEltTy); |
| EltMerges.push_back(Merge.getReg(0)); |
| Regs = Regs.drop_front(PartsPerElt); |
| } |
| |
| B.buildBuildVector(OrigRegs[0], EltMerges); |
| } else { |
| // Vector was split, and elements promoted to a wider type. |
| // FIXME: Should handle floating point promotions. |
| LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); |
| auto BV = B.buildBuildVector(BVType, Regs); |
| B.buildTrunc(OrigRegs[0], BV); |
| } |
| } |
| |
| /// Create a sequence of instructions to expand the value in \p SrcReg (of type |
| /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should |
| /// contain the type of scalar value extension if necessary. |
| /// |
| /// This is used for outgoing values (vregs to physregs) |
| static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, |
| Register SrcReg, LLT SrcTy, LLT PartTy, |
| unsigned ExtendOp = TargetOpcode::G_ANYEXT) { |
| // We could just insert a regular copy, but this is unreachable at the moment. |
| assert(SrcTy != PartTy && "identical part types shouldn't reach here"); |
| |
| const unsigned PartSize = PartTy.getSizeInBits(); |
| |
| if (PartTy.isVector() == SrcTy.isVector() && |
| PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { |
| assert(DstRegs.size() == 1); |
| B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); |
| return; |
| } |
| |
| if (SrcTy.isVector() && !PartTy.isVector() && |
| PartSize > SrcTy.getElementType().getSizeInBits()) { |
| // Vector was scalarized, and the elements extended. |
| auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); |
| for (int i = 0, e = DstRegs.size(); i != e; ++i) |
| B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); |
| return; |
| } |
| |
| if (SrcTy.isVector() && PartTy.isVector() && |
| PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() && |
| SrcTy.getNumElements() < PartTy.getNumElements()) { |
| // A coercion like: v2f32 -> v4f32. |
| Register DstReg = DstRegs.front(); |
| B.buildPadVectorWithUndefElements(DstReg, SrcReg); |
| return; |
| } |
| |
| LLT GCDTy = getGCDType(SrcTy, PartTy); |
| if (GCDTy == PartTy) { |
| // If this already evenly divisible, we can create a simple unmerge. |
| B.buildUnmerge(DstRegs, SrcReg); |
| return; |
| } |
| |
| MachineRegisterInfo &MRI = *B.getMRI(); |
| LLT DstTy = MRI.getType(DstRegs[0]); |
| LLT LCMTy = getCoverTy(SrcTy, PartTy); |
| |
| if (PartTy.isVector() && LCMTy == PartTy) { |
| assert(DstRegs.size() == 1); |
| B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); |
| return; |
| } |
| |
| const unsigned DstSize = DstTy.getSizeInBits(); |
| const unsigned SrcSize = SrcTy.getSizeInBits(); |
| unsigned CoveringSize = LCMTy.getSizeInBits(); |
| |
| Register UnmergeSrc = SrcReg; |
| |
| if (!LCMTy.isVector() && CoveringSize != SrcSize) { |
| // For scalars, it's common to be able to use a simple extension. |
| if (SrcTy.isScalar() && DstTy.isScalar()) { |
| CoveringSize = alignTo(SrcSize, DstSize); |
| LLT CoverTy = LLT::scalar(CoveringSize); |
| UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); |
| } else { |
| // Widen to the common type. |
| // FIXME: This should respect the extend type |
| Register Undef = B.buildUndef(SrcTy).getReg(0); |
| SmallVector<Register, 8> MergeParts(1, SrcReg); |
| for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) |
| MergeParts.push_back(Undef); |
| UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); |
| } |
| } |
| |
| if (LCMTy.isVector() && CoveringSize != SrcSize) |
| UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); |
| |
| B.buildUnmerge(DstRegs, UnmergeSrc); |
| } |
| |
| bool CallLowering::determineAndHandleAssignments( |
| ValueHandler &Handler, ValueAssigner &Assigner, |
| SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, |
| CallingConv::ID CallConv, bool IsVarArg, |
| ArrayRef<Register> ThisReturnRegs) const { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| const Function &F = MF.getFunction(); |
| SmallVector<CCValAssign, 16> ArgLocs; |
| |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); |
| if (!determineAssignments(Assigner, Args, CCInfo)) |
| return false; |
| |
| return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, |
| ThisReturnRegs); |
| } |
| |
| static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { |
| if (Flags.isSExt()) |
| return TargetOpcode::G_SEXT; |
| if (Flags.isZExt()) |
| return TargetOpcode::G_ZEXT; |
| return TargetOpcode::G_ANYEXT; |
| } |
| |
| bool CallLowering::determineAssignments(ValueAssigner &Assigner, |
| SmallVectorImpl<ArgInfo> &Args, |
| CCState &CCInfo) const { |
| LLVMContext &Ctx = CCInfo.getContext(); |
| const CallingConv::ID CallConv = CCInfo.getCallingConv(); |
| |
| unsigned NumArgs = Args.size(); |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| EVT CurVT = EVT::getEVT(Args[i].Ty); |
| |
| MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); |
| |
| // If we need to split the type over multiple regs, check it's a scenario |
| // we currently support. |
| unsigned NumParts = |
| TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); |
| |
| if (NumParts == 1) { |
| // Try to use the register type if we couldn't assign the VT. |
| if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], |
| Args[i].Flags[0], CCInfo)) |
| return false; |
| continue; |
| } |
| |
| // For incoming arguments (physregs to vregs), we could have values in |
| // physregs (or memlocs) which we want to extract and copy to vregs. |
| // During this, we might have to deal with the LLT being split across |
| // multiple regs, so we have to record this information for later. |
| // |
| // If we have outgoing args, then we have the opposite case. We have a |
| // vreg with an LLT which we want to assign to a physical location, and |
| // we might have to record that the value has to be split later. |
| |
| // We're handling an incoming arg which is split over multiple regs. |
| // E.g. passing an s128 on AArch64. |
| ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; |
| Args[i].Flags.clear(); |
| |
| for (unsigned Part = 0; Part < NumParts; ++Part) { |
| ISD::ArgFlagsTy Flags = OrigFlags; |
| if (Part == 0) { |
| Flags.setSplit(); |
| } else { |
| Flags.setOrigAlign(Align(1)); |
| if (Part == NumParts - 1) |
| Flags.setSplitEnd(); |
| } |
| |
| Args[i].Flags.push_back(Flags); |
| if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], |
| Args[i].Flags[Part], CCInfo)) { |
| // Still couldn't assign this smaller part type for some reason. |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool CallLowering::handleAssignments(ValueHandler &Handler, |
| SmallVectorImpl<ArgInfo> &Args, |
| CCState &CCInfo, |
| SmallVectorImpl<CCValAssign> &ArgLocs, |
| MachineIRBuilder &MIRBuilder, |
| ArrayRef<Register> ThisReturnRegs) const { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const Function &F = MF.getFunction(); |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| |
| const unsigned NumArgs = Args.size(); |
| |
| // Stores thunks for outgoing register assignments. This is used so we delay |
| // generating register copies until mem loc assignments are done. We do this |
| // so that if the target is using the delayed stack protector feature, we can |
| // find the split point of the block accurately. E.g. if we have: |
| // G_STORE %val, %memloc |
| // $x0 = COPY %foo |
| // $x1 = COPY %bar |
| // CALL func |
| // ... then the split point for the block will correctly be at, and including, |
| // the copy to $x0. If instead the G_STORE instruction immediately precedes |
| // the CALL, then we'd prematurely choose the CALL as the split point, thus |
| // generating a split block with a CALL that uses undefined physregs. |
| SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; |
| |
| for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { |
| assert(j < ArgLocs.size() && "Skipped too many arg locs"); |
| CCValAssign &VA = ArgLocs[j]; |
| assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); |
| |
| if (VA.needsCustom()) { |
| std::function<void()> Thunk; |
| unsigned NumArgRegs = Handler.assignCustomValue( |
| Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); |
| if (Thunk) |
| DelayedOutgoingRegAssignments.emplace_back(Thunk); |
| if (!NumArgRegs) |
| return false; |
| j += NumArgRegs; |
| continue; |
| } |
| |
| const MVT ValVT = VA.getValVT(); |
| const MVT LocVT = VA.getLocVT(); |
| |
| const LLT LocTy(LocVT); |
| const LLT ValTy(ValVT); |
| const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; |
| const EVT OrigVT = EVT::getEVT(Args[i].Ty); |
| const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); |
| |
| // Expected to be multiple regs for a single incoming arg. |
| // There should be Regs.size() ArgLocs per argument. |
| // This should be the same as getNumRegistersForCallingConv |
| const unsigned NumParts = Args[i].Flags.size(); |
| |
| // Now split the registers into the assigned types. |
| Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); |
| |
| if (NumParts != 1 || NewLLT != OrigTy) { |
| // If we can't directly assign the register, we need one or more |
| // intermediate values. |
| Args[i].Regs.resize(NumParts); |
| |
| // For each split register, create and assign a vreg that will store |
| // the incoming component of the larger value. These will later be |
| // merged to form the final vreg. |
| for (unsigned Part = 0; Part < NumParts; ++Part) |
| Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); |
| } |
| |
| assert((j + (NumParts - 1)) < ArgLocs.size() && |
| "Too many regs for number of args"); |
| |
| // Coerce into outgoing value types before register assignment. |
| if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { |
| assert(Args[i].OrigRegs.size() == 1); |
| buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, |
| ValTy, extendOpFromFlags(Args[i].Flags[0])); |
| } |
| |
| bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); |
| for (unsigned Part = 0; Part < NumParts; ++Part) { |
| Register ArgReg = Args[i].Regs[Part]; |
| // There should be Regs.size() ArgLocs per argument. |
| unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; |
| CCValAssign &VA = ArgLocs[j + Idx]; |
| const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; |
| |
| if (VA.isMemLoc() && !Flags.isByVal()) { |
| // Individual pieces may have been spilled to the stack and others |
| // passed in registers. |
| |
| // TODO: The memory size may be larger than the value we need to |
| // store. We may need to adjust the offset for big endian targets. |
| LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); |
| |
| MachinePointerInfo MPO; |
| Register StackAddr = Handler.getStackAddress( |
| MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); |
| |
| Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); |
| continue; |
| } |
| |
| if (VA.isMemLoc() && Flags.isByVal()) { |
| assert(Args[i].Regs.size() == 1 && |
| "didn't expect split byval pointer"); |
| |
| if (Handler.isIncomingArgumentHandler()) { |
| // We just need to copy the frame index value to the pointer. |
| MachinePointerInfo MPO; |
| Register StackAddr = Handler.getStackAddress( |
| Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); |
| MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); |
| } else { |
| // For outgoing byval arguments, insert the implicit copy byval |
| // implies, such that writes in the callee do not modify the caller's |
| // value. |
| uint64_t MemSize = Flags.getByValSize(); |
| int64_t Offset = VA.getLocMemOffset(); |
| |
| MachinePointerInfo DstMPO; |
| Register StackAddr = |
| Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); |
| |
| MachinePointerInfo SrcMPO(Args[i].OrigValue); |
| if (!Args[i].OrigValue) { |
| // We still need to accurately track the stack address space if we |
| // don't know the underlying value. |
| const LLT PtrTy = MRI.getType(StackAddr); |
| SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); |
| } |
| |
| Align DstAlign = std::max(Flags.getNonZeroByValAlign(), |
| inferAlignFromPtrInfo(MF, DstMPO)); |
| |
| Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), |
| inferAlignFromPtrInfo(MF, SrcMPO)); |
| |
| Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], |
| DstMPO, DstAlign, SrcMPO, SrcAlign, |
| MemSize, VA); |
| } |
| continue; |
| } |
| |
| assert(!VA.needsCustom() && "custom loc should have been handled already"); |
| |
| if (i == 0 && !ThisReturnRegs.empty() && |
| Handler.isIncomingArgumentHandler() && |
| isTypeIsValidForThisReturn(ValVT)) { |
| Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); |
| continue; |
| } |
| |
| if (Handler.isIncomingArgumentHandler()) |
| Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); |
| else { |
| DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { |
| Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); |
| }); |
| } |
| } |
| |
| // Now that all pieces have been assigned, re-pack the register typed values |
| // into the original value typed registers. |
| if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { |
| // Merge the split registers into the expected larger result vregs of |
| // the original call. |
| buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, |
| LocTy, Args[i].Flags[0]); |
| } |
| |
| j += NumParts - 1; |
| } |
| for (auto &Fn : DelayedOutgoingRegAssignments) |
| Fn(); |
| |
| return true; |
| } |
| |
| void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, |
| ArrayRef<Register> VRegs, Register DemoteReg, |
| int FI) const { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const DataLayout &DL = MF.getDataLayout(); |
| |
| SmallVector<EVT, 4> SplitVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); |
| |
| assert(VRegs.size() == SplitVTs.size()); |
| |
| unsigned NumValues = SplitVTs.size(); |
| Align BaseAlign = DL.getPrefTypeAlign(RetTy); |
| Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); |
| LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); |
| |
| MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| |
| for (unsigned I = 0; I < NumValues; ++I) { |
| Register Addr; |
| MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); |
| auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, |
| MRI.getType(VRegs[I]), |
| commonAlignment(BaseAlign, Offsets[I])); |
| MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); |
| } |
| } |
| |
| void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, |
| ArrayRef<Register> VRegs, |
| Register DemoteReg) const { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const DataLayout &DL = MF.getDataLayout(); |
| |
| SmallVector<EVT, 4> SplitVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); |
| |
| assert(VRegs.size() == SplitVTs.size()); |
| |
| unsigned NumValues = SplitVTs.size(); |
| Align BaseAlign = DL.getPrefTypeAlign(RetTy); |
| unsigned AS = DL.getAllocaAddrSpace(); |
| LLT OffsetLLTy = |
| getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); |
| |
| MachinePointerInfo PtrInfo(AS); |
| |
| for (unsigned I = 0; I < NumValues; ++I) { |
| Register Addr; |
| MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); |
| auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, |
| MRI.getType(VRegs[I]), |
| commonAlignment(BaseAlign, Offsets[I])); |
| MIRBuilder.buildStore(VRegs[I], Addr, *MMO); |
| } |
| } |
| |
| void CallLowering::insertSRetIncomingArgument( |
| const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, |
| MachineRegisterInfo &MRI, const DataLayout &DL) const { |
| unsigned AS = DL.getAllocaAddrSpace(); |
| DemoteReg = MRI.createGenericVirtualRegister( |
| LLT::pointer(AS, DL.getPointerSizeInBits(AS))); |
| |
| Type *PtrTy = PointerType::get(F.getReturnType(), AS); |
| |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); |
| |
| // NOTE: Assume that a pointer won't get split into more than one VT. |
| assert(ValueVTs.size() == 1); |
| |
| ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), |
| ArgInfo::NoArgIndex); |
| setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); |
| DemoteArg.Flags[0].setSRet(); |
| SplitArgs.insert(SplitArgs.begin(), DemoteArg); |
| } |
| |
| void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, |
| const CallBase &CB, |
| CallLoweringInfo &Info) const { |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| Type *RetTy = CB.getType(); |
| unsigned AS = DL.getAllocaAddrSpace(); |
| LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); |
| |
| int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( |
| DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); |
| |
| Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); |
| ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), |
| ArgInfo::NoArgIndex); |
| setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); |
| DemoteArg.Flags[0].setSRet(); |
| |
| Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); |
| Info.DemoteStackIndex = FI; |
| Info.DemoteRegister = DemoteReg; |
| } |
| |
| bool CallLowering::checkReturn(CCState &CCInfo, |
| SmallVectorImpl<BaseArgInfo> &Outs, |
| CCAssignFn *Fn) const { |
| for (unsigned I = 0, E = Outs.size(); I < E; ++I) { |
| MVT VT = MVT::getVT(Outs[I].Ty); |
| if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) |
| return false; |
| } |
| return true; |
| } |
| |
| void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, |
| AttributeList Attrs, |
| SmallVectorImpl<BaseArgInfo> &Outs, |
| const DataLayout &DL) const { |
| LLVMContext &Context = RetTy->getContext(); |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| |
| SmallVector<EVT, 4> SplitVTs; |
| ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); |
| addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); |
| |
| for (EVT VT : SplitVTs) { |
| unsigned NumParts = |
| TLI->getNumRegistersForCallingConv(Context, CallConv, VT); |
| MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); |
| Type *PartTy = EVT(RegVT).getTypeForEVT(Context); |
| |
| for (unsigned I = 0; I < NumParts; ++I) { |
| Outs.emplace_back(PartTy, Flags); |
| } |
| } |
| } |
| |
| bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { |
| const auto &F = MF.getFunction(); |
| Type *ReturnType = F.getReturnType(); |
| CallingConv::ID CallConv = F.getCallingConv(); |
| |
| SmallVector<BaseArgInfo, 4> SplitArgs; |
| getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, |
| MF.getDataLayout()); |
| return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); |
| } |
| |
| bool CallLowering::parametersInCSRMatch( |
| const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, |
| const SmallVectorImpl<CCValAssign> &OutLocs, |
| const SmallVectorImpl<ArgInfo> &OutArgs) const { |
| for (unsigned i = 0; i < OutLocs.size(); ++i) { |
| const auto &ArgLoc = OutLocs[i]; |
| // If it's not a register, it's fine. |
| if (!ArgLoc.isRegLoc()) |
| continue; |
| |
| MCRegister PhysReg = ArgLoc.getLocReg(); |
| |
| // Only look at callee-saved registers. |
| if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) |
| continue; |
| |
| LLVM_DEBUG( |
| dbgs() |
| << "... Call has an argument passed in a callee-saved register.\n"); |
| |
| // Check if it was copied from. |
| const ArgInfo &OutInfo = OutArgs[i]; |
| |
| if (OutInfo.Regs.size() > 1) { |
| LLVM_DEBUG( |
| dbgs() << "... Cannot handle arguments in multiple registers.\n"); |
| return false; |
| } |
| |
| // Check if we copy the register, walking through copies from virtual |
| // registers. Note that getDefIgnoringCopies does not ignore copies from |
| // physical registers. |
| MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); |
| if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { |
| LLVM_DEBUG( |
| dbgs() |
| << "... Parameter was not copied into a VReg, cannot tail call.\n"); |
| return false; |
| } |
| |
| // Got a copy. Verify that it's the same as the register we want. |
| Register CopyRHS = RegDef->getOperand(1).getReg(); |
| if (CopyRHS != PhysReg) { |
| LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " |
| "VReg, cannot tail call.\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool CallLowering::resultsCompatible(CallLoweringInfo &Info, |
| MachineFunction &MF, |
| SmallVectorImpl<ArgInfo> &InArgs, |
| ValueAssigner &CalleeAssigner, |
| ValueAssigner &CallerAssigner) const { |
| const Function &F = MF.getFunction(); |
| CallingConv::ID CalleeCC = Info.CallConv; |
| CallingConv::ID CallerCC = F.getCallingConv(); |
| |
| if (CallerCC == CalleeCC) |
| return true; |
| |
| SmallVector<CCValAssign, 16> ArgLocs1; |
| CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); |
| if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) |
| return false; |
| |
| SmallVector<CCValAssign, 16> ArgLocs2; |
| CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); |
| if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) |
| return false; |
| |
| // We need the argument locations to match up exactly. If there's more in |
| // one than the other, then we are done. |
| if (ArgLocs1.size() != ArgLocs2.size()) |
| return false; |
| |
| // Make sure that each location is passed in exactly the same way. |
| for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { |
| const CCValAssign &Loc1 = ArgLocs1[i]; |
| const CCValAssign &Loc2 = ArgLocs2[i]; |
| |
| // We need both of them to be the same. So if one is a register and one |
| // isn't, we're done. |
| if (Loc1.isRegLoc() != Loc2.isRegLoc()) |
| return false; |
| |
| if (Loc1.isRegLoc()) { |
| // If they don't have the same register location, we're done. |
| if (Loc1.getLocReg() != Loc2.getLocReg()) |
| return false; |
| |
| // They matched, so we can move to the next ArgLoc. |
| continue; |
| } |
| |
| // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. |
| if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| LLT CallLowering::ValueHandler::getStackValueStoreType( |
| const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { |
| const MVT ValVT = VA.getValVT(); |
| if (ValVT != MVT::iPTR) { |
| LLT ValTy(ValVT); |
| |
| // We lost the pointeriness going through CCValAssign, so try to restore it |
| // based on the flags. |
| if (Flags.isPointer()) { |
| LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), |
| ValTy.getScalarSizeInBits()); |
| if (ValVT.isVector()) |
| return LLT::vector(ValTy.getElementCount(), PtrTy); |
| return PtrTy; |
| } |
| |
| return ValTy; |
| } |
| |
| unsigned AddrSpace = Flags.getPointerAddrSpace(); |
| return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); |
| } |
| |
| void CallLowering::ValueHandler::copyArgumentMemory( |
| const ArgInfo &Arg, Register DstPtr, Register SrcPtr, |
| const MachinePointerInfo &DstPtrInfo, Align DstAlign, |
| const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, |
| CCValAssign &VA) const { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| MachineMemOperand *SrcMMO = MF.getMachineMemOperand( |
| SrcPtrInfo, |
| MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, |
| SrcAlign); |
| |
| MachineMemOperand *DstMMO = MF.getMachineMemOperand( |
| DstPtrInfo, |
| MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, |
| MemSize, DstAlign); |
| |
| const LLT PtrTy = MRI.getType(DstPtr); |
| const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); |
| |
| auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); |
| MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); |
| } |
| |
| Register CallLowering::ValueHandler::extendRegister(Register ValReg, |
| CCValAssign &VA, |
| unsigned MaxSizeBits) { |
| LLT LocTy{VA.getLocVT()}; |
| LLT ValTy{VA.getValVT()}; |
| |
| if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) |
| return ValReg; |
| |
| if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { |
| if (MaxSizeBits <= ValTy.getSizeInBits()) |
| return ValReg; |
| LocTy = LLT::scalar(MaxSizeBits); |
| } |
| |
| const LLT ValRegTy = MRI.getType(ValReg); |
| if (ValRegTy.isPointer()) { |
| // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so |
| // we have to cast to do the extension. |
| LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); |
| ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: break; |
| case CCValAssign::Full: |
| case CCValAssign::BCvt: |
| // FIXME: bitconverting between vector types may or may not be a |
| // nop in big-endian situations. |
| return ValReg; |
| case CCValAssign::AExt: { |
| auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); |
| return MIB.getReg(0); |
| } |
| case CCValAssign::SExt: { |
| Register NewReg = MRI.createGenericVirtualRegister(LocTy); |
| MIRBuilder.buildSExt(NewReg, ValReg); |
| return NewReg; |
| } |
| case CCValAssign::ZExt: { |
| Register NewReg = MRI.createGenericVirtualRegister(LocTy); |
| MIRBuilder.buildZExt(NewReg, ValReg); |
| return NewReg; |
| } |
| } |
| llvm_unreachable("unable to extend register"); |
| } |
| |
| void CallLowering::ValueAssigner::anchor() {} |
| |
| Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, |
| Register SrcReg, |
| LLT NarrowTy) { |
| switch (VA.getLocInfo()) { |
| case CCValAssign::LocInfo::ZExt: { |
| return MIRBuilder |
| .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, |
| NarrowTy.getScalarSizeInBits()) |
| .getReg(0); |
| } |
| case CCValAssign::LocInfo::SExt: { |
| return MIRBuilder |
| .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, |
| NarrowTy.getScalarSizeInBits()) |
| .getReg(0); |
| break; |
| } |
| default: |
| return SrcReg; |
| } |
| } |
| |
| /// Check if we can use a basic COPY instruction between the two types. |
| /// |
| /// We're currently building on top of the infrastructure using MVT, which loses |
| /// pointer information in the CCValAssign. We accept copies from physical |
| /// registers that have been reported as integers if it's to an equivalent sized |
| /// pointer LLT. |
| static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { |
| if (SrcTy == DstTy) |
| return true; |
| |
| if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| return false; |
| |
| SrcTy = SrcTy.getScalarType(); |
| DstTy = DstTy.getScalarType(); |
| |
| return (SrcTy.isPointer() && DstTy.isScalar()) || |
| (DstTy.isPointer() && SrcTy.isScalar()); |
| } |
| |
| void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, |
| Register PhysReg, |
| CCValAssign VA) { |
| const MVT LocVT = VA.getLocVT(); |
| const LLT LocTy(LocVT); |
| const LLT RegTy = MRI.getType(ValVReg); |
| |
| if (isCopyCompatibleType(RegTy, LocTy)) { |
| MIRBuilder.buildCopy(ValVReg, PhysReg); |
| return; |
| } |
| |
| auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); |
| auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); |
| MIRBuilder.buildTrunc(ValVReg, Hint); |
| } |