| //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AsmPrinter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "CodeViewDebug.h" |
| #include "DwarfDebug.h" |
| #include "DwarfException.h" |
| #include "PseudoProbePrinter.h" |
| #include "WasmException.h" |
| #include "WinCFGuard.h" |
| #include "WinException.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/GCMetadataPrinter.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GCStrategy.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalIFunc.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Mangler.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PseudoProbe.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDirectives.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCSectionCOFF.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCSymbolELF.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/MC/SectionKind.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Remarks/RemarkStreamer.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cinttypes> |
| #include <cstdint> |
| #include <iterator> |
| #include <memory> |
| #include <optional> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "asm-printer" |
| |
| const char DWARFGroupName[] = "dwarf"; |
| const char DWARFGroupDescription[] = "DWARF Emission"; |
| const char DbgTimerName[] = "emit"; |
| const char DbgTimerDescription[] = "Debug Info Emission"; |
| const char EHTimerName[] = "write_exception"; |
| const char EHTimerDescription[] = "DWARF Exception Writer"; |
| const char CFGuardName[] = "Control Flow Guard"; |
| const char CFGuardDescription[] = "Control Flow Guard"; |
| const char CodeViewLineTablesGroupName[] = "linetables"; |
| const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; |
| const char PPTimerName[] = "emit"; |
| const char PPTimerDescription[] = "Pseudo Probe Emission"; |
| const char PPGroupName[] = "pseudo probe"; |
| const char PPGroupDescription[] = "Pseudo Probe Emission"; |
| |
| STATISTIC(EmittedInsts, "Number of machine instrs printed"); |
| |
| char AsmPrinter::ID = 0; |
| |
| namespace { |
| class AddrLabelMapCallbackPtr final : CallbackVH { |
| AddrLabelMap *Map = nullptr; |
| |
| public: |
| AddrLabelMapCallbackPtr() = default; |
| AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} |
| |
| void setPtr(BasicBlock *BB) { |
| ValueHandleBase::operator=(BB); |
| } |
| |
| void setMap(AddrLabelMap *map) { Map = map; } |
| |
| void deleted() override; |
| void allUsesReplacedWith(Value *V2) override; |
| }; |
| } // namespace |
| |
| class llvm::AddrLabelMap { |
| MCContext &Context; |
| struct AddrLabelSymEntry { |
| /// The symbols for the label. |
| TinyPtrVector<MCSymbol *> Symbols; |
| |
| Function *Fn; // The containing function of the BasicBlock. |
| unsigned Index; // The index in BBCallbacks for the BasicBlock. |
| }; |
| |
| DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; |
| |
| /// Callbacks for the BasicBlock's that we have entries for. We use this so |
| /// we get notified if a block is deleted or RAUWd. |
| std::vector<AddrLabelMapCallbackPtr> BBCallbacks; |
| |
| /// This is a per-function list of symbols whose corresponding BasicBlock got |
| /// deleted. These symbols need to be emitted at some point in the file, so |
| /// AsmPrinter emits them after the function body. |
| DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> |
| DeletedAddrLabelsNeedingEmission; |
| |
| public: |
| AddrLabelMap(MCContext &context) : Context(context) {} |
| |
| ~AddrLabelMap() { |
| assert(DeletedAddrLabelsNeedingEmission.empty() && |
| "Some labels for deleted blocks never got emitted"); |
| } |
| |
| ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); |
| |
| void takeDeletedSymbolsForFunction(Function *F, |
| std::vector<MCSymbol *> &Result); |
| |
| void UpdateForDeletedBlock(BasicBlock *BB); |
| void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); |
| }; |
| |
| ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { |
| assert(BB->hasAddressTaken() && |
| "Shouldn't get label for block without address taken"); |
| AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; |
| |
| // If we already had an entry for this block, just return it. |
| if (!Entry.Symbols.empty()) { |
| assert(BB->getParent() == Entry.Fn && "Parent changed"); |
| return Entry.Symbols; |
| } |
| |
| // Otherwise, this is a new entry, create a new symbol for it and add an |
| // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. |
| BBCallbacks.emplace_back(BB); |
| BBCallbacks.back().setMap(this); |
| Entry.Index = BBCallbacks.size() - 1; |
| Entry.Fn = BB->getParent(); |
| MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() |
| : Context.createTempSymbol(); |
| Entry.Symbols.push_back(Sym); |
| return Entry.Symbols; |
| } |
| |
| /// If we have any deleted symbols for F, return them. |
| void AddrLabelMap::takeDeletedSymbolsForFunction( |
| Function *F, std::vector<MCSymbol *> &Result) { |
| DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = |
| DeletedAddrLabelsNeedingEmission.find(F); |
| |
| // If there are no entries for the function, just return. |
| if (I == DeletedAddrLabelsNeedingEmission.end()) |
| return; |
| |
| // Otherwise, take the list. |
| std::swap(Result, I->second); |
| DeletedAddrLabelsNeedingEmission.erase(I); |
| } |
| |
| //===- Address of Block Management ----------------------------------------===// |
| |
| ArrayRef<MCSymbol *> |
| AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { |
| // Lazily create AddrLabelSymbols. |
| if (!AddrLabelSymbols) |
| AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); |
| return AddrLabelSymbols->getAddrLabelSymbolToEmit( |
| const_cast<BasicBlock *>(BB)); |
| } |
| |
| void AsmPrinter::takeDeletedSymbolsForFunction( |
| const Function *F, std::vector<MCSymbol *> &Result) { |
| // If no blocks have had their addresses taken, we're done. |
| if (!AddrLabelSymbols) |
| return; |
| return AddrLabelSymbols->takeDeletedSymbolsForFunction( |
| const_cast<Function *>(F), Result); |
| } |
| |
| void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { |
| // If the block got deleted, there is no need for the symbol. If the symbol |
| // was already emitted, we can just forget about it, otherwise we need to |
| // queue it up for later emission when the function is output. |
| AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); |
| AddrLabelSymbols.erase(BB); |
| assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); |
| BBCallbacks[Entry.Index] = nullptr; // Clear the callback. |
| |
| #if !LLVM_MEMORY_SANITIZER_BUILD |
| // BasicBlock is destroyed already, so this access is UB detectable by msan. |
| assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && |
| "Block/parent mismatch"); |
| #endif |
| |
| for (MCSymbol *Sym : Entry.Symbols) { |
| if (Sym->isDefined()) |
| return; |
| |
| // If the block is not yet defined, we need to emit it at the end of the |
| // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list |
| // for the containing Function. Since the block is being deleted, its |
| // parent may already be removed, we have to get the function from 'Entry'. |
| DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); |
| } |
| } |
| |
| void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { |
| // Get the entry for the RAUW'd block and remove it from our map. |
| AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); |
| AddrLabelSymbols.erase(Old); |
| assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); |
| |
| AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; |
| |
| // If New is not address taken, just move our symbol over to it. |
| if (NewEntry.Symbols.empty()) { |
| BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. |
| NewEntry = std::move(OldEntry); // Set New's entry. |
| return; |
| } |
| |
| BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. |
| |
| // Otherwise, we need to add the old symbols to the new block's set. |
| llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); |
| } |
| |
| void AddrLabelMapCallbackPtr::deleted() { |
| Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); |
| } |
| |
| void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { |
| Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); |
| } |
| |
| /// getGVAlignment - Return the alignment to use for the specified global |
| /// value. This rounds up to the preferred alignment if possible and legal. |
| Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, |
| Align InAlign) { |
| Align Alignment; |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| Alignment = DL.getPreferredAlign(GVar); |
| |
| // If InAlign is specified, round it to it. |
| if (InAlign > Alignment) |
| Alignment = InAlign; |
| |
| // If the GV has a specified alignment, take it into account. |
| const MaybeAlign GVAlign(GV->getAlign()); |
| if (!GVAlign) |
| return Alignment; |
| |
| assert(GVAlign && "GVAlign must be set"); |
| |
| // If the GVAlign is larger than NumBits, or if we are required to obey |
| // NumBits because the GV has an assigned section, obey it. |
| if (*GVAlign > Alignment || GV->hasSection()) |
| Alignment = *GVAlign; |
| return Alignment; |
| } |
| |
| AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) |
| : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), |
| OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), |
| SM(*this) { |
| VerboseAsm = OutStreamer->isVerboseAsm(); |
| DwarfUsesRelocationsAcrossSections = |
| MAI->doesDwarfUseRelocationsAcrossSections(); |
| } |
| |
| AsmPrinter::~AsmPrinter() { |
| assert(!DD && Handlers.size() == NumUserHandlers && |
| "Debug/EH info didn't get finalized"); |
| } |
| |
| bool AsmPrinter::isPositionIndependent() const { |
| return TM.isPositionIndependent(); |
| } |
| |
| /// getFunctionNumber - Return a unique ID for the current function. |
| unsigned AsmPrinter::getFunctionNumber() const { |
| return MF->getFunctionNumber(); |
| } |
| |
| const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { |
| return *TM.getObjFileLowering(); |
| } |
| |
| const DataLayout &AsmPrinter::getDataLayout() const { |
| return MMI->getModule()->getDataLayout(); |
| } |
| |
| // Do not use the cached DataLayout because some client use it without a Module |
| // (dsymutil, llvm-dwarfdump). |
| unsigned AsmPrinter::getPointerSize() const { |
| return TM.getPointerSize(0); // FIXME: Default address space |
| } |
| |
| const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { |
| assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); |
| return MF->getSubtarget<MCSubtargetInfo>(); |
| } |
| |
| void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { |
| S.emitInstruction(Inst, getSubtargetInfo()); |
| } |
| |
| void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { |
| if (DD) { |
| assert(OutStreamer->hasRawTextSupport() && |
| "Expected assembly output mode."); |
| // This is NVPTX specific and it's unclear why. |
| // PR51079: If we have code without debug information we need to give up. |
| DISubprogram *MFSP = MF.getFunction().getSubprogram(); |
| if (!MFSP) |
| return; |
| (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); |
| } |
| } |
| |
| /// getCurrentSection() - Return the current section we are emitting to. |
| const MCSection *AsmPrinter::getCurrentSection() const { |
| return OutStreamer->getCurrentSectionOnly(); |
| } |
| |
| void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
| AU.addRequired<GCModuleInfo>(); |
| } |
| |
| bool AsmPrinter::doInitialization(Module &M) { |
| auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); |
| MMI = MMIWP ? &MMIWP->getMMI() : nullptr; |
| HasSplitStack = false; |
| HasNoSplitStack = false; |
| |
| AddrLabelSymbols = nullptr; |
| |
| // Initialize TargetLoweringObjectFile. |
| const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) |
| .Initialize(OutContext, TM); |
| |
| const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) |
| .getModuleMetadata(M); |
| |
| OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); |
| |
| // Emit the version-min deployment target directive if needed. |
| // |
| // FIXME: If we end up with a collection of these sorts of Darwin-specific |
| // or ELF-specific things, it may make sense to have a platform helper class |
| // that will work with the target helper class. For now keep it here, as the |
| // alternative is duplicated code in each of the target asm printers that |
| // use the directive, where it would need the same conditionalization |
| // anyway. |
| const Triple &Target = TM.getTargetTriple(); |
| Triple TVT(M.getDarwinTargetVariantTriple()); |
| OutStreamer->emitVersionForTarget( |
| Target, M.getSDKVersion(), |
| M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, |
| M.getDarwinTargetVariantSDKVersion()); |
| |
| // Allow the target to emit any magic that it wants at the start of the file. |
| emitStartOfAsmFile(M); |
| |
| // Very minimal debug info. It is ignored if we emit actual debug info. If we |
| // don't, this at least helps the user find where a global came from. |
| if (MAI->hasSingleParameterDotFile()) { |
| // .file "foo.c" |
| |
| SmallString<128> FileName; |
| if (MAI->hasBasenameOnlyForFileDirective()) |
| FileName = llvm::sys::path::filename(M.getSourceFileName()); |
| else |
| FileName = M.getSourceFileName(); |
| if (MAI->hasFourStringsDotFile()) { |
| #ifdef PACKAGE_VENDOR |
| const char VerStr[] = |
| PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; |
| #else |
| const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; |
| #endif |
| // TODO: Add timestamp and description. |
| OutStreamer->emitFileDirective(FileName, VerStr, "", ""); |
| } else { |
| OutStreamer->emitFileDirective(FileName); |
| } |
| } |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (const auto &I : *MI) |
| if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) |
| MP->beginAssembly(M, *MI, *this); |
| |
| // Emit module-level inline asm if it exists. |
| if (!M.getModuleInlineAsm().empty()) { |
| OutStreamer->AddComment("Start of file scope inline assembly"); |
| OutStreamer->addBlankLine(); |
| emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), |
| TM.Options.MCOptions); |
| OutStreamer->AddComment("End of file scope inline assembly"); |
| OutStreamer->addBlankLine(); |
| } |
| |
| if (MAI->doesSupportDebugInformation()) { |
| bool EmitCodeView = M.getCodeViewFlag(); |
| if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { |
| Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), |
| DbgTimerName, DbgTimerDescription, |
| CodeViewLineTablesGroupName, |
| CodeViewLineTablesGroupDescription); |
| } |
| if (!EmitCodeView || M.getDwarfVersion()) { |
| if (MMI->hasDebugInfo()) { |
| DD = new DwarfDebug(this); |
| Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, |
| DbgTimerDescription, DWARFGroupName, |
| DWARFGroupDescription); |
| } |
| } |
| } |
| |
| if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { |
| PP = new PseudoProbeHandler(this); |
| Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, |
| PPTimerDescription, PPGroupName, PPGroupDescription); |
| } |
| |
| switch (MAI->getExceptionHandlingType()) { |
| case ExceptionHandling::None: |
| // We may want to emit CFI for debug. |
| [[fallthrough]]; |
| case ExceptionHandling::SjLj: |
| case ExceptionHandling::DwarfCFI: |
| case ExceptionHandling::ARM: |
| for (auto &F : M.getFunctionList()) { |
| if (getFunctionCFISectionType(F) != CFISection::None) |
| ModuleCFISection = getFunctionCFISectionType(F); |
| // If any function needsUnwindTableEntry(), it needs .eh_frame and hence |
| // the module needs .eh_frame. If we have found that case, we are done. |
| if (ModuleCFISection == CFISection::EH) |
| break; |
| } |
| assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || |
| ModuleCFISection != CFISection::EH); |
| break; |
| default: |
| break; |
| } |
| |
| EHStreamer *ES = nullptr; |
| switch (MAI->getExceptionHandlingType()) { |
| case ExceptionHandling::None: |
| if (!needsCFIForDebug()) |
| break; |
| [[fallthrough]]; |
| case ExceptionHandling::SjLj: |
| case ExceptionHandling::DwarfCFI: |
| ES = new DwarfCFIException(this); |
| break; |
| case ExceptionHandling::ARM: |
| ES = new ARMException(this); |
| break; |
| case ExceptionHandling::WinEH: |
| switch (MAI->getWinEHEncodingType()) { |
| default: llvm_unreachable("unsupported unwinding information encoding"); |
| case WinEH::EncodingType::Invalid: |
| break; |
| case WinEH::EncodingType::X86: |
| case WinEH::EncodingType::Itanium: |
| ES = new WinException(this); |
| break; |
| } |
| break; |
| case ExceptionHandling::Wasm: |
| ES = new WasmException(this); |
| break; |
| case ExceptionHandling::AIX: |
| ES = new AIXException(this); |
| break; |
| } |
| if (ES) |
| Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, |
| EHTimerDescription, DWARFGroupName, |
| DWARFGroupDescription); |
| |
| // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). |
| if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) |
| Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, |
| CFGuardDescription, DWARFGroupName, |
| DWARFGroupDescription); |
| |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->beginModule(&M); |
| } |
| |
| return false; |
| } |
| |
| static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { |
| if (!MAI.hasWeakDefCanBeHiddenDirective()) |
| return false; |
| |
| return GV->canBeOmittedFromSymbolTable(); |
| } |
| |
| void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { |
| GlobalValue::LinkageTypes Linkage = GV->getLinkage(); |
| switch (Linkage) { |
| case GlobalValue::CommonLinkage: |
| case GlobalValue::LinkOnceAnyLinkage: |
| case GlobalValue::LinkOnceODRLinkage: |
| case GlobalValue::WeakAnyLinkage: |
| case GlobalValue::WeakODRLinkage: |
| if (MAI->hasWeakDefDirective()) { |
| // .globl _foo |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); |
| |
| if (!canBeHidden(GV, *MAI)) |
| // .weak_definition _foo |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); |
| else |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); |
| } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { |
| // .globl _foo |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); |
| //NOTE: linkonce is handled by the section the symbol was assigned to. |
| } else { |
| // .weak _foo |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); |
| } |
| return; |
| case GlobalValue::ExternalLinkage: |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); |
| return; |
| case GlobalValue::PrivateLinkage: |
| case GlobalValue::InternalLinkage: |
| return; |
| case GlobalValue::ExternalWeakLinkage: |
| case GlobalValue::AvailableExternallyLinkage: |
| case GlobalValue::AppendingLinkage: |
| llvm_unreachable("Should never emit this"); |
| } |
| llvm_unreachable("Unknown linkage type!"); |
| } |
| |
| void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, |
| const GlobalValue *GV) const { |
| TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); |
| } |
| |
| MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { |
| return TM.getSymbol(GV); |
| } |
| |
| MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { |
| // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an |
| // exact definion (intersection of GlobalValue::hasExactDefinition() and |
| // !isInterposable()). These linkages include: external, appending, internal, |
| // private. It may be profitable to use a local alias for external. The |
| // assembler would otherwise be conservative and assume a global default |
| // visibility symbol can be interposable, even if the code generator already |
| // assumed it. |
| if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { |
| const Module &M = *GV.getParent(); |
| if (TM.getRelocationModel() != Reloc::Static && |
| M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) |
| return getSymbolWithGlobalValueBase(&GV, "$local"); |
| } |
| return TM.getSymbol(&GV); |
| } |
| |
| /// EmitGlobalVariable - Emit the specified global variable to the .s file. |
| void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { |
| bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); |
| assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && |
| "No emulated TLS variables in the common section"); |
| |
| // Never emit TLS variable xyz in emulated TLS model. |
| // The initialization value is in __emutls_t.xyz instead of xyz. |
| if (IsEmuTLSVar) |
| return; |
| |
| if (GV->hasInitializer()) { |
| // Check to see if this is a special global used by LLVM, if so, emit it. |
| if (emitSpecialLLVMGlobal(GV)) |
| return; |
| |
| // Skip the emission of global equivalents. The symbol can be emitted later |
| // on by emitGlobalGOTEquivs in case it turns out to be needed. |
| if (GlobalGOTEquivs.count(getSymbol(GV))) |
| return; |
| |
| if (isVerbose()) { |
| // When printing the control variable __emutls_v.*, |
| // we don't need to print the original TLS variable name. |
| GV->printAsOperand(OutStreamer->getCommentOS(), |
| /*PrintType=*/false, GV->getParent()); |
| OutStreamer->getCommentOS() << '\n'; |
| } |
| } |
| |
| MCSymbol *GVSym = getSymbol(GV); |
| MCSymbol *EmittedSym = GVSym; |
| |
| // getOrCreateEmuTLSControlSym only creates the symbol with name and default |
| // attributes. |
| // GV's or GVSym's attributes will be used for the EmittedSym. |
| emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); |
| |
| if (GV->isTagged()) { |
| Triple T = TM.getTargetTriple(); |
| |
| if (T.getArch() != Triple::aarch64 || !T.isAndroid()) |
| OutContext.reportError(SMLoc(), |
| "Tagged symbols (-fsanitize=memtag-globals) are " |
| "only supported on aarch64 + Android."); |
| OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); |
| } |
| |
| if (!GV->hasInitializer()) // External globals require no extra code. |
| return; |
| |
| GVSym->redefineIfPossible(); |
| if (GVSym->isDefined() || GVSym->isVariable()) |
| OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + |
| "' is already defined"); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); |
| |
| SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); |
| |
| const DataLayout &DL = GV->getParent()->getDataLayout(); |
| uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); |
| |
| // If the alignment is specified, we *must* obey it. Overaligning a global |
| // with a specified alignment is a prompt way to break globals emitted to |
| // sections and expected to be contiguous (e.g. ObjC metadata). |
| const Align Alignment = getGVAlignment(GV, DL); |
| |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, |
| HI.TimerGroupName, HI.TimerGroupDescription, |
| TimePassesIsEnabled); |
| HI.Handler->setSymbolSize(GVSym, Size); |
| } |
| |
| // Handle common symbols |
| if (GVKind.isCommon()) { |
| if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| // .comm _foo, 42, 4 |
| OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); |
| return; |
| } |
| |
| // Determine to which section this global should be emitted. |
| MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); |
| |
| // If we have a bss global going to a section that supports the |
| // zerofill directive, do so here. |
| if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && |
| TheSection->isVirtualSection()) { |
| if (Size == 0) |
| Size = 1; // zerofill of 0 bytes is undefined. |
| emitLinkage(GV, GVSym); |
| // .zerofill __DATA, __bss, _foo, 400, 5 |
| OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); |
| return; |
| } |
| |
| // If this is a BSS local symbol and we are emitting in the BSS |
| // section use .lcomm/.comm directive. |
| if (GVKind.isBSSLocal() && |
| getObjFileLowering().getBSSSection() == TheSection) { |
| if (Size == 0) |
| Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| |
| // Use .lcomm only if it supports user-specified alignment. |
| // Otherwise, while it would still be correct to use .lcomm in some |
| // cases (e.g. when Align == 1), the external assembler might enfore |
| // some -unknown- default alignment behavior, which could cause |
| // spurious differences between external and integrated assembler. |
| // Prefer to simply fall back to .local / .comm in this case. |
| if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { |
| // .lcomm _foo, 42 |
| OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); |
| return; |
| } |
| |
| // .local _foo |
| OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); |
| // .comm _foo, 42, 4 |
| OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); |
| return; |
| } |
| |
| // Handle thread local data for mach-o which requires us to output an |
| // additional structure of data and mangle the original symbol so that we |
| // can reference it later. |
| // |
| // TODO: This should become an "emit thread local global" method on TLOF. |
| // All of this macho specific stuff should be sunk down into TLOFMachO and |
| // stuff like "TLSExtraDataSection" should no longer be part of the parent |
| // TLOF class. This will also make it more obvious that stuff like |
| // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho |
| // specific code. |
| if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { |
| // Emit the .tbss symbol |
| MCSymbol *MangSym = |
| OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); |
| |
| if (GVKind.isThreadBSS()) { |
| TheSection = getObjFileLowering().getTLSBSSSection(); |
| OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); |
| } else if (GVKind.isThreadData()) { |
| OutStreamer->switchSection(TheSection); |
| |
| emitAlignment(Alignment, GV); |
| OutStreamer->emitLabel(MangSym); |
| |
| emitGlobalConstant(GV->getParent()->getDataLayout(), |
| GV->getInitializer()); |
| } |
| |
| OutStreamer->addBlankLine(); |
| |
| // Emit the variable struct for the runtime. |
| MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); |
| |
| OutStreamer->switchSection(TLVSect); |
| // Emit the linkage here. |
| emitLinkage(GV, GVSym); |
| OutStreamer->emitLabel(GVSym); |
| |
| // Three pointers in size: |
| // - __tlv_bootstrap - used to make sure support exists |
| // - spare pointer, used when mapped by the runtime |
| // - pointer to mangled symbol above with initializer |
| unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); |
| OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), |
| PtrSize); |
| OutStreamer->emitIntValue(0, PtrSize); |
| OutStreamer->emitSymbolValue(MangSym, PtrSize); |
| |
| OutStreamer->addBlankLine(); |
| return; |
| } |
| |
| MCSymbol *EmittedInitSym = GVSym; |
| |
| OutStreamer->switchSection(TheSection); |
| |
| emitLinkage(GV, EmittedInitSym); |
| emitAlignment(Alignment, GV); |
| |
| OutStreamer->emitLabel(EmittedInitSym); |
| MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); |
| if (LocalAlias != EmittedInitSym) |
| OutStreamer->emitLabel(LocalAlias); |
| |
| emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| // .size foo, 42 |
| OutStreamer->emitELFSize(EmittedInitSym, |
| MCConstantExpr::create(Size, OutContext)); |
| |
| OutStreamer->addBlankLine(); |
| } |
| |
| /// Emit the directive and value for debug thread local expression |
| /// |
| /// \p Value - The value to emit. |
| /// \p Size - The size of the integer (in bytes) to emit. |
| void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { |
| OutStreamer->emitValue(Value, Size); |
| } |
| |
| void AsmPrinter::emitFunctionHeaderComment() {} |
| |
| /// EmitFunctionHeader - This method emits the header for the current |
| /// function. |
| void AsmPrinter::emitFunctionHeader() { |
| const Function &F = MF->getFunction(); |
| |
| if (isVerbose()) |
| OutStreamer->getCommentOS() |
| << "-- Begin function " |
| << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; |
| |
| // Print out constants referenced by the function |
| emitConstantPool(); |
| |
| // Print the 'header' of function. |
| // If basic block sections are desired, explicitly request a unique section |
| // for this function's entry block. |
| if (MF->front().isBeginSection()) |
| MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); |
| else |
| MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); |
| OutStreamer->switchSection(MF->getSection()); |
| |
| if (!MAI->hasVisibilityOnlyWithLinkage()) |
| emitVisibility(CurrentFnSym, F.getVisibility()); |
| |
| if (MAI->needsFunctionDescriptors()) |
| emitLinkage(&F, CurrentFnDescSym); |
| |
| emitLinkage(&F, CurrentFnSym); |
| if (MAI->hasFunctionAlignment()) |
| emitAlignment(MF->getAlignment(), &F); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); |
| |
| if (F.hasFnAttribute(Attribute::Cold)) |
| OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); |
| |
| if (isVerbose()) { |
| F.printAsOperand(OutStreamer->getCommentOS(), |
| /*PrintType=*/false, F.getParent()); |
| emitFunctionHeaderComment(); |
| OutStreamer->getCommentOS() << '\n'; |
| } |
| |
| // Emit the prefix data. |
| if (F.hasPrefixData()) { |
| if (MAI->hasSubsectionsViaSymbols()) { |
| // Preserving prefix data on platforms which use subsections-via-symbols |
| // is a bit tricky. Here we introduce a symbol for the prefix data |
| // and use the .alt_entry attribute to mark the function's real entry point |
| // as an alternative entry point to the prefix-data symbol. |
| MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); |
| OutStreamer->emitLabel(PrefixSym); |
| |
| emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); |
| |
| // Emit an .alt_entry directive for the actual function symbol. |
| OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); |
| } else { |
| emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); |
| } |
| } |
| |
| // Emit KCFI type information before patchable-function-prefix nops. |
| emitKCFITypeId(*MF); |
| |
| // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily |
| // place prefix data before NOPs. |
| unsigned PatchableFunctionPrefix = 0; |
| unsigned PatchableFunctionEntry = 0; |
| (void)F.getFnAttribute("patchable-function-prefix") |
| .getValueAsString() |
| .getAsInteger(10, PatchableFunctionPrefix); |
| (void)F.getFnAttribute("patchable-function-entry") |
| .getValueAsString() |
| .getAsInteger(10, PatchableFunctionEntry); |
| if (PatchableFunctionPrefix) { |
| CurrentPatchableFunctionEntrySym = |
| OutContext.createLinkerPrivateTempSymbol(); |
| OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); |
| emitNops(PatchableFunctionPrefix); |
| } else if (PatchableFunctionEntry) { |
| // May be reassigned when emitting the body, to reference the label after |
| // the initial BTI (AArch64) or endbr32/endbr64 (x86). |
| CurrentPatchableFunctionEntrySym = CurrentFnBegin; |
| } |
| |
| // Emit the function descriptor. This is a virtual function to allow targets |
| // to emit their specific function descriptor. Right now it is only used by |
| // the AIX target. The PowerPC 64-bit V1 ELF target also uses function |
| // descriptors and should be converted to use this hook as well. |
| if (MAI->needsFunctionDescriptors()) |
| emitFunctionDescriptor(); |
| |
| // Emit the CurrentFnSym. This is a virtual function to allow targets to do |
| // their wild and crazy things as required. |
| emitFunctionEntryLabel(); |
| |
| // If the function had address-taken blocks that got deleted, then we have |
| // references to the dangling symbols. Emit them at the start of the function |
| // so that we don't get references to undefined symbols. |
| std::vector<MCSymbol*> DeadBlockSyms; |
| takeDeletedSymbolsForFunction(&F, DeadBlockSyms); |
| for (MCSymbol *DeadBlockSym : DeadBlockSyms) { |
| OutStreamer->AddComment("Address taken block that was later removed"); |
| OutStreamer->emitLabel(DeadBlockSym); |
| } |
| |
| if (CurrentFnBegin) { |
| if (MAI->useAssignmentForEHBegin()) { |
| MCSymbol *CurPos = OutContext.createTempSymbol(); |
| OutStreamer->emitLabel(CurPos); |
| OutStreamer->emitAssignment(CurrentFnBegin, |
| MCSymbolRefExpr::create(CurPos, OutContext)); |
| } else { |
| OutStreamer->emitLabel(CurrentFnBegin); |
| } |
| } |
| |
| // Emit pre-function debug and/or EH information. |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->beginFunction(MF); |
| } |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->beginBasicBlockSection(MF->front()); |
| } |
| |
| // Emit the prologue data. |
| if (F.hasPrologueData()) |
| emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); |
| |
| // Emit the function prologue data for the indirect call sanitizer. |
| if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { |
| assert(TM.getTargetTriple().getArch() == Triple::x86 || |
| TM.getTargetTriple().getArch() == Triple::x86_64); |
| assert(MD->getNumOperands() == 2); |
| |
| auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); |
| auto *FTRTTIProxy = mdconst::extract<Constant>(MD->getOperand(1)); |
| assert(PrologueSig && FTRTTIProxy); |
| emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig); |
| |
| const MCExpr *Proxy = lowerConstant(FTRTTIProxy); |
| const MCExpr *FnExp = MCSymbolRefExpr::create(CurrentFnSym, OutContext); |
| const MCExpr *PCRel = MCBinaryExpr::createSub(Proxy, FnExp, OutContext); |
| // Use 32 bit since only small code model is supported. |
| OutStreamer->emitValue(PCRel, 4u); |
| } |
| } |
| |
| /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the |
| /// function. This can be overridden by targets as required to do custom stuff. |
| void AsmPrinter::emitFunctionEntryLabel() { |
| CurrentFnSym->redefineIfPossible(); |
| |
| // The function label could have already been emitted if two symbols end up |
| // conflicting due to asm renaming. Detect this and emit an error. |
| if (CurrentFnSym->isVariable()) |
| report_fatal_error("'" + Twine(CurrentFnSym->getName()) + |
| "' is a protected alias"); |
| |
| OutStreamer->emitLabel(CurrentFnSym); |
| |
| if (TM.getTargetTriple().isOSBinFormatELF()) { |
| MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); |
| if (Sym != CurrentFnSym) { |
| cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); |
| CurrentFnBeginLocal = Sym; |
| OutStreamer->emitLabel(Sym); |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); |
| } |
| } |
| } |
| |
| /// emitComments - Pretty-print comments for instructions. |
| static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { |
| const MachineFunction *MF = MI.getMF(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| |
| // Check for spills and reloads |
| |
| // We assume a single instruction only has a spill or reload, not |
| // both. |
| std::optional<unsigned> Size; |
| if ((Size = MI.getRestoreSize(TII))) { |
| CommentOS << *Size << "-byte Reload\n"; |
| } else if ((Size = MI.getFoldedRestoreSize(TII))) { |
| if (*Size) { |
| if (*Size == unsigned(MemoryLocation::UnknownSize)) |
| CommentOS << "Unknown-size Folded Reload\n"; |
| else |
| CommentOS << *Size << "-byte Folded Reload\n"; |
| } |
| } else if ((Size = MI.getSpillSize(TII))) { |
| CommentOS << *Size << "-byte Spill\n"; |
| } else if ((Size = MI.getFoldedSpillSize(TII))) { |
| if (*Size) { |
| if (*Size == unsigned(MemoryLocation::UnknownSize)) |
| CommentOS << "Unknown-size Folded Spill\n"; |
| else |
| CommentOS << *Size << "-byte Folded Spill\n"; |
| } |
| } |
| |
| // Check for spill-induced copies |
| if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) |
| CommentOS << " Reload Reuse\n"; |
| } |
| |
| /// emitImplicitDef - This method emits the specified machine instruction |
| /// that is an implicit def. |
| void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { |
| Register RegNo = MI->getOperand(0).getReg(); |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << "implicit-def: " |
| << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); |
| |
| OutStreamer->AddComment(OS.str()); |
| OutStreamer->addBlankLine(); |
| } |
| |
| static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { |
| std::string Str; |
| raw_string_ostream OS(Str); |
| OS << "kill:"; |
| for (const MachineOperand &Op : MI->operands()) { |
| assert(Op.isReg() && "KILL instruction must have only register operands"); |
| OS << ' ' << (Op.isDef() ? "def " : "killed ") |
| << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); |
| } |
| AP.OutStreamer->AddComment(OS.str()); |
| AP.OutStreamer->addBlankLine(); |
| } |
| |
| /// emitDebugValueComment - This method handles the target-independent form |
| /// of DBG_VALUE, returning true if it was able to do so. A false return |
| /// means the target will need to handle MI in EmitInstruction. |
| static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { |
| // This code handles only the 4-operand target-independent form. |
| if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) |
| return false; |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << "DEBUG_VALUE: "; |
| |
| const DILocalVariable *V = MI->getDebugVariable(); |
| if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { |
| StringRef Name = SP->getName(); |
| if (!Name.empty()) |
| OS << Name << ":"; |
| } |
| OS << V->getName(); |
| OS << " <- "; |
| |
| const DIExpression *Expr = MI->getDebugExpression(); |
| // First convert this to a non-variadic expression if possible, to simplify |
| // the output. |
| if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) |
| Expr = *NonVariadicExpr; |
| // Then, output the possibly-simplified expression. |
| if (Expr->getNumElements()) { |
| OS << '['; |
| ListSeparator LS; |
| for (auto &Op : Expr->expr_ops()) { |
| OS << LS << dwarf::OperationEncodingString(Op.getOp()); |
| for (unsigned I = 0; I < Op.getNumArgs(); ++I) |
| OS << ' ' << Op.getArg(I); |
| } |
| OS << "] "; |
| } |
| |
| // Register or immediate value. Register 0 means undef. |
| for (const MachineOperand &Op : MI->debug_operands()) { |
| if (&Op != MI->debug_operands().begin()) |
| OS << ", "; |
| switch (Op.getType()) { |
| case MachineOperand::MO_FPImmediate: { |
| APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); |
| Type *ImmTy = Op.getFPImm()->getType(); |
| if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || |
| ImmTy->isDoubleTy()) { |
| OS << APF.convertToDouble(); |
| } else { |
| // There is no good way to print long double. Convert a copy to |
| // double. Ah well, it's only a comment. |
| bool ignored; |
| APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, |
| &ignored); |
| OS << "(long double) " << APF.convertToDouble(); |
| } |
| break; |
| } |
| case MachineOperand::MO_Immediate: { |
| OS << Op.getImm(); |
| break; |
| } |
| case MachineOperand::MO_CImmediate: { |
| Op.getCImm()->getValue().print(OS, false /*isSigned*/); |
| break; |
| } |
| case MachineOperand::MO_TargetIndex: { |
| OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; |
| break; |
| } |
| case MachineOperand::MO_Register: |
| case MachineOperand::MO_FrameIndex: { |
| Register Reg; |
| std::optional<StackOffset> Offset; |
| if (Op.isReg()) { |
| Reg = Op.getReg(); |
| } else { |
| const TargetFrameLowering *TFI = |
| AP.MF->getSubtarget().getFrameLowering(); |
| Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); |
| } |
| if (!Reg) { |
| // Suppress offset, it is not meaningful here. |
| OS << "undef"; |
| break; |
| } |
| // The second operand is only an offset if it's an immediate. |
| if (MI->isIndirectDebugValue()) |
| Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); |
| if (Offset) |
| OS << '['; |
| OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); |
| if (Offset) |
| OS << '+' << Offset->getFixed() << ']'; |
| break; |
| } |
| default: |
| llvm_unreachable("Unknown operand type"); |
| } |
| } |
| |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer->emitRawComment(OS.str()); |
| return true; |
| } |
| |
| /// This method handles the target-independent form of DBG_LABEL, returning |
| /// true if it was able to do so. A false return means the target will need |
| /// to handle MI in EmitInstruction. |
| static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { |
| if (MI->getNumOperands() != 1) |
| return false; |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << "DEBUG_LABEL: "; |
| |
| const DILabel *V = MI->getDebugLabel(); |
| if (auto *SP = dyn_cast<DISubprogram>( |
| V->getScope()->getNonLexicalBlockFileScope())) { |
| StringRef Name = SP->getName(); |
| if (!Name.empty()) |
| OS << Name << ":"; |
| } |
| OS << V->getName(); |
| |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer->emitRawComment(OS.str()); |
| return true; |
| } |
| |
| AsmPrinter::CFISection |
| AsmPrinter::getFunctionCFISectionType(const Function &F) const { |
| // Ignore functions that won't get emitted. |
| if (F.isDeclarationForLinker()) |
| return CFISection::None; |
| |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && |
| F.needsUnwindTableEntry()) |
| return CFISection::EH; |
| |
| if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) |
| return CFISection::Debug; |
| |
| return CFISection::None; |
| } |
| |
| AsmPrinter::CFISection |
| AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { |
| return getFunctionCFISectionType(MF.getFunction()); |
| } |
| |
| bool AsmPrinter::needsSEHMoves() { |
| return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); |
| } |
| |
| bool AsmPrinter::needsCFIForDebug() const { |
| return MAI->getExceptionHandlingType() == ExceptionHandling::None && |
| MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; |
| } |
| |
| void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { |
| ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); |
| if (!needsCFIForDebug() && |
| ExceptionHandlingType != ExceptionHandling::DwarfCFI && |
| ExceptionHandlingType != ExceptionHandling::ARM) |
| return; |
| |
| if (getFunctionCFISectionType(*MF) == CFISection::None) |
| return; |
| |
| // If there is no "real" instruction following this CFI instruction, skip |
| // emitting it; it would be beyond the end of the function's FDE range. |
| auto *MBB = MI.getParent(); |
| auto I = std::next(MI.getIterator()); |
| while (I != MBB->end() && I->isTransient()) |
| ++I; |
| if (I == MBB->instr_end() && |
| MBB->getReverseIterator() == MBB->getParent()->rbegin()) |
| return; |
| |
| const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); |
| unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); |
| const MCCFIInstruction &CFI = Instrs[CFIIndex]; |
| emitCFIInstruction(CFI); |
| } |
| |
| void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { |
| // The operands are the MCSymbol and the frame offset of the allocation. |
| MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); |
| int FrameOffset = MI.getOperand(1).getImm(); |
| |
| // Emit a symbol assignment. |
| OutStreamer->emitAssignment(FrameAllocSym, |
| MCConstantExpr::create(FrameOffset, OutContext)); |
| } |
| |
| /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a |
| /// given basic block. This can be used to capture more precise profile |
| /// information. We use the last 4 bits (LSBs) to encode the following |
| /// information: |
| /// * (1): set if return block (ret or tail call). |
| /// * (2): set if ends with a tail call. |
| /// * (3): set if exception handling (EH) landing pad. |
| /// * (4): set if the block can fall through to its next. |
| /// The remaining bits are zero. |
| static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { |
| const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); |
| return ((unsigned)MBB.isReturnBlock()) | |
| ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | |
| (MBB.isEHPad() << 2) | |
| (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); |
| } |
| |
| void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { |
| MCSection *BBAddrMapSection = |
| getObjFileLowering().getBBAddrMapSection(*MF.getSection()); |
| assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); |
| |
| const MCSymbol *FunctionSymbol = getFunctionBegin(); |
| |
| OutStreamer->pushSection(); |
| OutStreamer->switchSection(BBAddrMapSection); |
| OutStreamer->AddComment("version"); |
| uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); |
| OutStreamer->emitInt8(BBAddrMapVersion); |
| OutStreamer->AddComment("feature"); |
| OutStreamer->emitInt8(0); |
| OutStreamer->AddComment("function address"); |
| OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); |
| OutStreamer->AddComment("number of basic blocks"); |
| OutStreamer->emitULEB128IntValue(MF.size()); |
| const MCSymbol *PrevMBBEndSymbol = FunctionSymbol; |
| // Emit BB Information for each basic block in the funciton. |
| for (const MachineBasicBlock &MBB : MF) { |
| const MCSymbol *MBBSymbol = |
| MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); |
| // TODO: Remove this check when version 1 is deprecated. |
| if (BBAddrMapVersion > 1) { |
| OutStreamer->AddComment("BB id"); |
| // Emit the BB ID for this basic block. |
| OutStreamer->emitULEB128IntValue(*MBB.getBBID()); |
| } |
| // Emit the basic block offset relative to the end of the previous block. |
| // This is zero unless the block is padded due to alignment. |
| emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); |
| // Emit the basic block size. When BBs have alignments, their size cannot |
| // always be computed from their offsets. |
| emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); |
| // Emit the Metadata. |
| OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); |
| PrevMBBEndSymbol = MBB.getEndSymbol(); |
| } |
| OutStreamer->popSection(); |
| } |
| |
| void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, |
| const MCSymbol *Symbol) { |
| MCSection *Section = |
| getObjFileLowering().getKCFITrapSection(*MF.getSection()); |
| if (!Section) |
| return; |
| |
| OutStreamer->pushSection(); |
| OutStreamer->switchSection(Section); |
| |
| MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); |
| OutStreamer->emitLabel(Loc); |
| OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); |
| |
| OutStreamer->popSection(); |
| } |
| |
| void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { |
| const Function &F = MF.getFunction(); |
| if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) |
| emitGlobalConstant(F.getParent()->getDataLayout(), |
| mdconst::extract<ConstantInt>(MD->getOperand(0))); |
| } |
| |
| void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { |
| if (PP) { |
| auto GUID = MI.getOperand(0).getImm(); |
| auto Index = MI.getOperand(1).getImm(); |
| auto Type = MI.getOperand(2).getImm(); |
| auto Attr = MI.getOperand(3).getImm(); |
| DILocation *DebugLoc = MI.getDebugLoc(); |
| PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); |
| } |
| } |
| |
| void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { |
| if (!MF.getTarget().Options.EmitStackSizeSection) |
| return; |
| |
| MCSection *StackSizeSection = |
| getObjFileLowering().getStackSizesSection(*getCurrentSection()); |
| if (!StackSizeSection) |
| return; |
| |
| const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| // Don't emit functions with dynamic stack allocations. |
| if (FrameInfo.hasVarSizedObjects()) |
| return; |
| |
| OutStreamer->pushSection(); |
| OutStreamer->switchSection(StackSizeSection); |
| |
| const MCSymbol *FunctionSymbol = getFunctionBegin(); |
| uint64_t StackSize = |
| FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); |
| OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); |
| OutStreamer->emitULEB128IntValue(StackSize); |
| |
| OutStreamer->popSection(); |
| } |
| |
| void AsmPrinter::emitStackUsage(const MachineFunction &MF) { |
| const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; |
| |
| // OutputFilename empty implies -fstack-usage is not passed. |
| if (OutputFilename.empty()) |
| return; |
| |
| const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| uint64_t StackSize = |
| FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); |
| |
| if (StackUsageStream == nullptr) { |
| std::error_code EC; |
| StackUsageStream = |
| std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); |
| if (EC) { |
| errs() << "Could not open file: " << EC.message(); |
| return; |
| } |
| } |
| |
| *StackUsageStream << MF.getFunction().getParent()->getName(); |
| if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) |
| *StackUsageStream << ':' << DSP->getLine(); |
| |
| *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; |
| if (FrameInfo.hasVarSizedObjects()) |
| *StackUsageStream << "dynamic\n"; |
| else |
| *StackUsageStream << "static\n"; |
| } |
| |
| void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, |
| const MDNode &MD) { |
| MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); |
| OutStreamer->emitLabel(S); |
| PCSectionsSymbols[&MD].emplace_back(S); |
| } |
| |
| void AsmPrinter::emitPCSections(const MachineFunction &MF) { |
| const Function &F = MF.getFunction(); |
| if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) |
| return; |
| |
| const CodeModel::Model CM = MF.getTarget().getCodeModel(); |
| const unsigned RelativeRelocSize = |
| (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() |
| : 4; |
| |
| // Switch to PCSection, short-circuiting the common case where the current |
| // section is still valid (assume most MD_pcsections contain just 1 section). |
| auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { |
| if (Sec == Prev) |
| return; |
| MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); |
| assert(S && "PC section is not initialized"); |
| OutStreamer->switchSection(S); |
| Prev = Sec; |
| }; |
| // Emit symbols into sections and data as specified in the pcsections MDNode. |
| auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, |
| bool Deltas) { |
| // Expect the first operand to be a section name. After that, a tuple of |
| // constants may appear, which will simply be emitted into the current |
| // section (the user of MD_pcsections decides the format of encoded data). |
| assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); |
| for (const MDOperand &MDO : MD.operands()) { |
| if (auto *S = dyn_cast<MDString>(MDO)) { |
| SwitchSection(S->getString()); |
| const MCSymbol *Prev = Syms.front(); |
| for (const MCSymbol *Sym : Syms) { |
| if (Sym == Prev || !Deltas) { |
| // Use the entry itself as the base of the relative offset. |
| MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); |
| OutStreamer->emitLabel(Base); |
| // Emit relative relocation `addr - base`, which avoids a dynamic |
| // relocation in the final binary. User will get the address with |
| // `base + addr`. |
| emitLabelDifference(Sym, Base, RelativeRelocSize); |
| } else { |
| emitLabelDifference(Sym, Prev, 4); |
| } |
| Prev = Sym; |
| } |
| } else { |
| assert(isa<MDNode>(MDO) && "expecting either string or tuple"); |
| const auto *AuxMDs = cast<MDNode>(MDO); |
| for (const MDOperand &AuxMDO : AuxMDs->operands()) { |
| assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); |
| const auto *C = cast<ConstantAsMetadata>(AuxMDO); |
| emitGlobalConstant(F.getParent()->getDataLayout(), C->getValue()); |
| } |
| } |
| } |
| }; |
| |
| OutStreamer->pushSection(); |
| // Emit PCs for function start and function size. |
| if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) |
| EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); |
| // Emit PCs for instructions collected. |
| for (const auto &MS : PCSectionsSymbols) |
| EmitForMD(*MS.first, MS.second, false); |
| OutStreamer->popSection(); |
| PCSectionsSymbols.clear(); |
| } |
| |
| /// Returns true if function begin and end labels should be emitted. |
| static bool needFuncLabels(const MachineFunction &MF) { |
| MachineModuleInfo &MMI = MF.getMMI(); |
| if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || |
| MMI.hasDebugInfo() || |
| MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) |
| return true; |
| |
| // We might emit an EH table that uses function begin and end labels even if |
| // we don't have any landingpads. |
| if (!MF.getFunction().hasPersonalityFn()) |
| return false; |
| return !isNoOpWithoutInvoke( |
| classifyEHPersonality(MF.getFunction().getPersonalityFn())); |
| } |
| |
| /// EmitFunctionBody - This method emits the body and trailer for a |
| /// function. |
| void AsmPrinter::emitFunctionBody() { |
| emitFunctionHeader(); |
| |
| // Emit target-specific gunk before the function body. |
| emitFunctionBodyStart(); |
| |
| if (isVerbose()) { |
| // Get MachineDominatorTree or compute it on the fly if it's unavailable |
| MDT = getAnalysisIfAvailable<MachineDominatorTree>(); |
| if (!MDT) { |
| OwnedMDT = std::make_unique<MachineDominatorTree>(); |
| OwnedMDT->getBase().recalculate(*MF); |
| MDT = OwnedMDT.get(); |
| } |
| |
| // Get MachineLoopInfo or compute it on the fly if it's unavailable |
| MLI = getAnalysisIfAvailable<MachineLoopInfo>(); |
| if (!MLI) { |
| OwnedMLI = std::make_unique<MachineLoopInfo>(); |
| OwnedMLI->getBase().analyze(MDT->getBase()); |
| MLI = OwnedMLI.get(); |
| } |
| } |
| |
| // Print out code for the function. |
| bool HasAnyRealCode = false; |
| int NumInstsInFunction = 0; |
| |
| bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); |
| for (auto &MBB : *MF) { |
| // Print a label for the basic block. |
| emitBasicBlockStart(MBB); |
| DenseMap<StringRef, unsigned> MnemonicCounts; |
| for (auto &MI : MBB) { |
| // Print the assembly for the instruction. |
| if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && |
| !MI.isDebugInstr()) { |
| HasAnyRealCode = true; |
| ++NumInstsInFunction; |
| } |
| |
| // If there is a pre-instruction symbol, emit a label for it here. |
| if (MCSymbol *S = MI.getPreInstrSymbol()) |
| OutStreamer->emitLabel(S); |
| |
| if (MDNode *MD = MI.getPCSections()) |
| emitPCSectionsLabel(*MF, *MD); |
| |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->beginInstruction(&MI); |
| } |
| |
| if (isVerbose()) |
| emitComments(MI, OutStreamer->getCommentOS()); |
| |
| switch (MI.getOpcode()) { |
| case TargetOpcode::CFI_INSTRUCTION: |
| emitCFIInstruction(MI); |
| break; |
| case TargetOpcode::LOCAL_ESCAPE: |
| emitFrameAlloc(MI); |
| break; |
| case TargetOpcode::ANNOTATION_LABEL: |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::GC_LABEL: |
| OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); |
| break; |
| case TargetOpcode::INLINEASM: |
| case TargetOpcode::INLINEASM_BR: |
| emitInlineAsm(&MI); |
| break; |
| case TargetOpcode::DBG_VALUE: |
| case TargetOpcode::DBG_VALUE_LIST: |
| if (isVerbose()) { |
| if (!emitDebugValueComment(&MI, *this)) |
| emitInstruction(&MI); |
| } |
| break; |
| case TargetOpcode::DBG_INSTR_REF: |
| // This instruction reference will have been resolved to a machine |
| // location, and a nearby DBG_VALUE created. We can safely ignore |
| // the instruction reference. |
| break; |
| case TargetOpcode::DBG_PHI: |
| // This instruction is only used to label a program point, it's purely |
| // meta information. |
| break; |
| case TargetOpcode::DBG_LABEL: |
| if (isVerbose()) { |
| if (!emitDebugLabelComment(&MI, *this)) |
| emitInstruction(&MI); |
| } |
| break; |
| case TargetOpcode::IMPLICIT_DEF: |
| if (isVerbose()) emitImplicitDef(&MI); |
| break; |
| case TargetOpcode::KILL: |
| if (isVerbose()) emitKill(&MI, *this); |
| break; |
| case TargetOpcode::PSEUDO_PROBE: |
| emitPseudoProbe(MI); |
| break; |
| case TargetOpcode::ARITH_FENCE: |
| if (isVerbose()) |
| OutStreamer->emitRawComment("ARITH_FENCE"); |
| break; |
| case TargetOpcode::MEMBARRIER: |
| OutStreamer->emitRawComment("MEMBARRIER"); |
| break; |
| default: |
| emitInstruction(&MI); |
| if (CanDoExtraAnalysis) { |
| MCInst MCI; |
| MCI.setOpcode(MI.getOpcode()); |
| auto Name = OutStreamer->getMnemonic(MCI); |
| auto I = MnemonicCounts.insert({Name, 0u}); |
| I.first->second++; |
| } |
| break; |
| } |
| |
| // If there is a post-instruction symbol, emit a label for it here. |
| if (MCSymbol *S = MI.getPostInstrSymbol()) |
| OutStreamer->emitLabel(S); |
| |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->endInstruction(); |
| } |
| } |
| |
| // We must emit temporary symbol for the end of this basic block, if either |
| // we have BBLabels enabled or if this basic blocks marks the end of a |
| // section. |
| if (MF->hasBBLabels() || |
| (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) |
| OutStreamer->emitLabel(MBB.getEndSymbol()); |
| |
| if (MBB.isEndSection()) { |
| // The size directive for the section containing the entry block is |
| // handled separately by the function section. |
| if (!MBB.sameSection(&MF->front())) { |
| if (MAI->hasDotTypeDotSizeDirective()) { |
| // Emit the size directive for the basic block section. |
| const MCExpr *SizeExp = MCBinaryExpr::createSub( |
| MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), |
| MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), |
| OutContext); |
| OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); |
| } |
| MBBSectionRanges[MBB.getSectionIDNum()] = |
| MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; |
| } |
| } |
| emitBasicBlockEnd(MBB); |
| |
| if (CanDoExtraAnalysis) { |
| // Skip empty blocks. |
| if (MBB.empty()) |
| continue; |
| |
| MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", |
| MBB.begin()->getDebugLoc(), &MBB); |
| |
| // Generate instruction mix remark. First, sort counts in descending order |
| // by count and name. |
| SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; |
| for (auto &KV : MnemonicCounts) |
| MnemonicVec.emplace_back(KV.first, KV.second); |
| |
| sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, |
| const std::pair<StringRef, unsigned> &B) { |
| if (A.second > B.second) |
| return true; |
| if (A.second == B.second) |
| return StringRef(A.first) < StringRef(B.first); |
| return false; |
| }); |
| R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; |
| for (auto &KV : MnemonicVec) { |
| auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); |
| R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; |
| } |
| ORE->emit(R); |
| } |
| } |
| |
| EmittedInsts += NumInstsInFunction; |
| MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", |
| MF->getFunction().getSubprogram(), |
| &MF->front()); |
| R << ore::NV("NumInstructions", NumInstsInFunction) |
| << " instructions in function"; |
| ORE->emit(R); |
| |
| // If the function is empty and the object file uses .subsections_via_symbols, |
| // then we need to emit *something* to the function body to prevent the |
| // labels from collapsing together. Just emit a noop. |
| // Similarly, don't emit empty functions on Windows either. It can lead to |
| // duplicate entries (two functions with the same RVA) in the Guard CF Table |
| // after linking, causing the kernel not to load the binary: |
| // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html |
| // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. |
| const Triple &TT = TM.getTargetTriple(); |
| if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || |
| (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { |
| MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); |
| |
| // Targets can opt-out of emitting the noop here by leaving the opcode |
| // unspecified. |
| if (Noop.getOpcode()) { |
| OutStreamer->AddComment("avoids zero-length function"); |
| emitNops(1); |
| } |
| } |
| |
| // Switch to the original section in case basic block sections was used. |
| OutStreamer->switchSection(MF->getSection()); |
| |
| const Function &F = MF->getFunction(); |
| for (const auto &BB : F) { |
| if (!BB.hasAddressTaken()) |
| continue; |
| MCSymbol *Sym = GetBlockAddressSymbol(&BB); |
| if (Sym->isDefined()) |
| continue; |
| OutStreamer->AddComment("Address of block that was removed by CodeGen"); |
| OutStreamer->emitLabel(Sym); |
| } |
| |
| // Emit target-specific gunk after the function body. |
| emitFunctionBodyEnd(); |
| |
| // Even though wasm supports .type and .size in general, function symbols |
| // are automatically sized. |
| bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); |
| |
| if (needFuncLabels(*MF) || EmitFunctionSize) { |
| // Create a symbol for the end of function. |
| CurrentFnEnd = createTempSymbol("func_end"); |
| OutStreamer->emitLabel(CurrentFnEnd); |
| } |
| |
| // If the target wants a .size directive for the size of the function, emit |
| // it. |
| if (EmitFunctionSize) { |
| // We can get the size as difference between the function label and the |
| // temp label. |
| const MCExpr *SizeExp = MCBinaryExpr::createSub( |
| MCSymbolRefExpr::create(CurrentFnEnd, OutContext), |
| MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); |
| OutStreamer->emitELFSize(CurrentFnSym, SizeExp); |
| if (CurrentFnBeginLocal) |
| OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); |
| } |
| |
| // Call endBasicBlockSection on the last block now, if it wasn't already |
| // called. |
| if (!MF->back().isEndSection()) { |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->endBasicBlockSection(MF->back()); |
| } |
| } |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->markFunctionEnd(); |
| } |
| |
| MBBSectionRanges[MF->front().getSectionIDNum()] = |
| MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; |
| |
| // Print out jump tables referenced by the function. |
| emitJumpTableInfo(); |
| |
| // Emit post-function debug and/or EH information. |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->endFunction(MF); |
| } |
| |
| // Emit section containing BB address offsets and their metadata, when |
| // BB labels are requested for this function. Skip empty functions. |
| if (MF->hasBBLabels() && HasAnyRealCode) |
| emitBBAddrMapSection(*MF); |
| |
| // Emit sections containing instruction and function PCs. |
| emitPCSections(*MF); |
| |
| // Emit section containing stack size metadata. |
| emitStackSizeSection(*MF); |
| |
| // Emit .su file containing function stack size information. |
| emitStackUsage(*MF); |
| |
| emitPatchableFunctionEntries(); |
| |
| if (isVerbose()) |
| OutStreamer->getCommentOS() << "-- End function\n"; |
| |
| OutStreamer->addBlankLine(); |
| } |
| |
| /// Compute the number of Global Variables that uses a Constant. |
| static unsigned getNumGlobalVariableUses(const Constant *C) { |
| if (!C) |
| return 0; |
| |
| if (isa<GlobalVariable>(C)) |
| return 1; |
| |
| unsigned NumUses = 0; |
| for (const auto *CU : C->users()) |
| NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); |
| |
| return NumUses; |
| } |
| |
| /// Only consider global GOT equivalents if at least one user is a |
| /// cstexpr inside an initializer of another global variables. Also, don't |
| /// handle cstexpr inside instructions. During global variable emission, |
| /// candidates are skipped and are emitted later in case at least one cstexpr |
| /// isn't replaced by a PC relative GOT entry access. |
| static bool isGOTEquivalentCandidate(const GlobalVariable *GV, |
| unsigned &NumGOTEquivUsers) { |
| // Global GOT equivalents are unnamed private globals with a constant |
| // pointer initializer to another global symbol. They must point to a |
| // GlobalVariable or Function, i.e., as GlobalValue. |
| if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || |
| !GV->isConstant() || !GV->isDiscardableIfUnused() || |
| !isa<GlobalValue>(GV->getOperand(0))) |
| return false; |
| |
| // To be a got equivalent, at least one of its users need to be a constant |
| // expression used by another global variable. |
| for (const auto *U : GV->users()) |
| NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); |
| |
| return NumGOTEquivUsers > 0; |
| } |
| |
| /// Unnamed constant global variables solely contaning a pointer to |
| /// another globals variable is equivalent to a GOT table entry; it contains the |
| /// the address of another symbol. Optimize it and replace accesses to these |
| /// "GOT equivalents" by using the GOT entry for the final global instead. |
| /// Compute GOT equivalent candidates among all global variables to avoid |
| /// emitting them if possible later on, after it use is replaced by a GOT entry |
| /// access. |
| void AsmPrinter::computeGlobalGOTEquivs(Module &M) { |
| if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| return; |
| |
| for (const auto &G : M.globals()) { |
| unsigned NumGOTEquivUsers = 0; |
| if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) |
| continue; |
| |
| const MCSymbol *GOTEquivSym = getSymbol(&G); |
| GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); |
| } |
| } |
| |
| /// Constant expressions using GOT equivalent globals may not be eligible |
| /// for PC relative GOT entry conversion, in such cases we need to emit such |
| /// globals we previously omitted in EmitGlobalVariable. |
| void AsmPrinter::emitGlobalGOTEquivs() { |
| if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| return; |
| |
| SmallVector<const GlobalVariable *, 8> FailedCandidates; |
| for (auto &I : GlobalGOTEquivs) { |
| const GlobalVariable *GV = I.second.first; |
| unsigned Cnt = I.second.second; |
| if (Cnt) |
| FailedCandidates.push_back(GV); |
| } |
| GlobalGOTEquivs.clear(); |
| |
| for (const auto *GV : FailedCandidates) |
| emitGlobalVariable(GV); |
| } |
| |
| void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { |
| MCSymbol *Name = getSymbol(&GA); |
| bool IsFunction = GA.getValueType()->isFunctionTy(); |
| // Treat bitcasts of functions as functions also. This is important at least |
| // on WebAssembly where object and function addresses can't alias each other. |
| if (!IsFunction) |
| IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); |
| |
| // AIX's assembly directive `.set` is not usable for aliasing purpose, |
| // so AIX has to use the extra-label-at-definition strategy. At this |
| // point, all the extra label is emitted, we just have to emit linkage for |
| // those labels. |
| if (TM.getTargetTriple().isOSBinFormatXCOFF()) { |
| assert(MAI->hasVisibilityOnlyWithLinkage() && |
| "Visibility should be handled with emitLinkage() on AIX."); |
| |
| // Linkage for alias of global variable has been emitted. |
| if (isa<GlobalVariable>(GA.getAliaseeObject())) |
| return; |
| |
| emitLinkage(&GA, Name); |
| // If it's a function, also emit linkage for aliases of function entry |
| // point. |
| if (IsFunction) |
| emitLinkage(&GA, |
| getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); |
| return; |
| } |
| |
| if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) |
| OutStreamer->emitSymbolAttribute(Name, MCSA_Global); |
| else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) |
| OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); |
| else |
| assert(GA.hasLocalLinkage() && "Invalid alias linkage"); |
| |
| // Set the symbol type to function if the alias has a function type. |
| // This affects codegen when the aliasee is not a function. |
| if (IsFunction) { |
| OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); |
| if (TM.getTargetTriple().isOSBinFormatCOFF()) { |
| OutStreamer->beginCOFFSymbolDef(Name); |
| OutStreamer->emitCOFFSymbolStorageClass( |
| GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC |
| : COFF::IMAGE_SYM_CLASS_EXTERNAL); |
| OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION |
| << COFF::SCT_COMPLEX_TYPE_SHIFT); |
| OutStreamer->endCOFFSymbolDef(); |
| } |
| } |
| |
| emitVisibility(Name, GA.getVisibility()); |
| |
| const MCExpr *Expr = lowerConstant(GA.getAliasee()); |
| |
| if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) |
| OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); |
| |
| // Emit the directives as assignments aka .set: |
| OutStreamer->emitAssignment(Name, Expr); |
| MCSymbol *LocalAlias = getSymbolPreferLocal(GA); |
| if (LocalAlias != Name) |
| OutStreamer->emitAssignment(LocalAlias, Expr); |
| |
| // If the aliasee does not correspond to a symbol in the output, i.e. the |
| // alias is not of an object or the aliased object is private, then set the |
| // size of the alias symbol from the type of the alias. We don't do this in |
| // other situations as the alias and aliasee having differing types but same |
| // size may be intentional. |
| const GlobalObject *BaseObject = GA.getAliaseeObject(); |
| if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && |
| (!BaseObject || BaseObject->hasPrivateLinkage())) { |
| const DataLayout &DL = M.getDataLayout(); |
| uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); |
| OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); |
| } |
| } |
| |
| void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { |
| assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && |
| "IFunc is not supported on AIX."); |
| |
| MCSymbol *Name = getSymbol(&GI); |
| |
| if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) |
| OutStreamer->emitSymbolAttribute(Name, MCSA_Global); |
| else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) |
| OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); |
| else |
| assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); |
| |
| OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); |
| emitVisibility(Name, GI.getVisibility()); |
| |
| // Emit the directives as assignments aka .set: |
| const MCExpr *Expr = lowerConstant(GI.getResolver()); |
| OutStreamer->emitAssignment(Name, Expr); |
| MCSymbol *LocalAlias = getSymbolPreferLocal(GI); |
| if (LocalAlias != Name) |
| OutStreamer->emitAssignment(LocalAlias, Expr); |
| } |
| |
| void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { |
| if (!RS.needsSection()) |
| return; |
| |
| remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); |
| |
| std::optional<SmallString<128>> Filename; |
| if (std::optional<StringRef> FilenameRef = RS.getFilename()) { |
| Filename = *FilenameRef; |
| sys::fs::make_absolute(*Filename); |
| assert(!Filename->empty() && "The filename can't be empty."); |
| } |
| |
| std::string Buf; |
| raw_string_ostream OS(Buf); |
| std::unique_ptr<remarks::MetaSerializer> MetaSerializer = |
| Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) |
| : RemarkSerializer.metaSerializer(OS); |
| MetaSerializer->emit(); |
| |
| // Switch to the remarks section. |
| MCSection *RemarksSection = |
| OutContext.getObjectFileInfo()->getRemarksSection(); |
| OutStreamer->switchSection(RemarksSection); |
| |
| OutStreamer->emitBinaryData(OS.str()); |
| } |
| |
| bool AsmPrinter::doFinalization(Module &M) { |
| // Set the MachineFunction to nullptr so that we can catch attempted |
| // accesses to MF specific features at the module level and so that |
| // we can conditionalize accesses based on whether or not it is nullptr. |
| MF = nullptr; |
| |
| // Gather all GOT equivalent globals in the module. We really need two |
| // passes over the globals: one to compute and another to avoid its emission |
| // in EmitGlobalVariable, otherwise we would not be able to handle cases |
| // where the got equivalent shows up before its use. |
| computeGlobalGOTEquivs(M); |
| |
| // Emit global variables. |
| for (const auto &G : M.globals()) |
| emitGlobalVariable(&G); |
| |
| // Emit remaining GOT equivalent globals. |
| emitGlobalGOTEquivs(); |
| |
| const TargetLoweringObjectFile &TLOF = getObjFileLowering(); |
| |
| // Emit linkage(XCOFF) and visibility info for declarations |
| for (const Function &F : M) { |
| if (!F.isDeclarationForLinker()) |
| continue; |
| |
| MCSymbol *Name = getSymbol(&F); |
| // Function getSymbol gives us the function descriptor symbol for XCOFF. |
| |
| if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { |
| GlobalValue::VisibilityTypes V = F.getVisibility(); |
| if (V == GlobalValue::DefaultVisibility) |
| continue; |
| |
| emitVisibility(Name, V, false); |
| continue; |
| } |
| |
| if (F.isIntrinsic()) |
| continue; |
| |
| // Handle the XCOFF case. |
| // Variable `Name` is the function descriptor symbol (see above). Get the |
| // function entry point symbol. |
| MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); |
| // Emit linkage for the function entry point. |
| emitLinkage(&F, FnEntryPointSym); |
| |
| // Emit linkage for the function descriptor. |
| emitLinkage(&F, Name); |
| } |
| |
| // Emit the remarks section contents. |
| // FIXME: Figure out when is the safest time to emit this section. It should |
| // not come after debug info. |
| if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) |
| emitRemarksSection(*RS); |
| |
| TLOF.emitModuleMetadata(*OutStreamer, M); |
| |
| if (TM.getTargetTriple().isOSBinFormatELF()) { |
| MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); |
| |
| // Output stubs for external and common global variables. |
| MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); |
| if (!Stubs.empty()) { |
| OutStreamer->switchSection(TLOF.getDataSection()); |
| const DataLayout &DL = M.getDataLayout(); |
| |
| emitAlignment(Align(DL.getPointerSize())); |
| for (const auto &Stub : Stubs) { |
| OutStreamer->emitLabel(Stub.first); |
| OutStreamer->emitSymbolValue(Stub.second.getPointer(), |
| DL.getPointerSize()); |
| } |
| } |
| } |
| |
| if (TM.getTargetTriple().isOSBinFormatCOFF()) { |
| MachineModuleInfoCOFF &MMICOFF = |
| MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
| |
| // Output stubs for external and common global variables. |
| MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); |
| if (!Stubs.empty()) { |
| const DataLayout &DL = M.getDataLayout(); |
| |
| for (const auto &Stub : Stubs) { |
| SmallString<256> SectionName = StringRef(".rdata$"); |
| SectionName += Stub.first->getName(); |
| OutStreamer->switchSection(OutContext.getCOFFSection( |
| SectionName, |
| COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | |
| COFF::IMAGE_SCN_LNK_COMDAT, |
| SectionKind::getReadOnly(), Stub.first->getName(), |
| COFF::IMAGE_COMDAT_SELECT_ANY)); |
| emitAlignment(Align(DL.getPointerSize())); |
| OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); |
| OutStreamer->emitLabel(Stub.first); |
| OutStreamer->emitSymbolValue(Stub.second.getPointer(), |
| DL.getPointerSize()); |
| } |
| } |
| } |
| |
| // This needs to happen before emitting debug information since that can end |
| // arbitrary sections. |
| if (auto *TS = OutStreamer->getTargetStreamer()) |
| TS->emitConstantPools(); |
| |
| // Emit Stack maps before any debug info. Mach-O requires that no data or |
| // text sections come after debug info has been emitted. This matters for |
| // stack maps as they are arbitrary data, and may even have a custom format |
| // through user plugins. |
| emitStackMaps(); |
| |
| // Finalize debug and EH information. |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->endModule(); |
| } |
| |
| // This deletes all the ephemeral handlers that AsmPrinter added, while |
| // keeping all the user-added handlers alive until the AsmPrinter is |
| // destroyed. |
| Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); |
| DD = nullptr; |
| |
| // If the target wants to know about weak references, print them all. |
| if (MAI->getWeakRefDirective()) { |
| // FIXME: This is not lazy, it would be nice to only print weak references |
| // to stuff that is actually used. Note that doing so would require targets |
| // to notice uses in operands (due to constant exprs etc). This should |
| // happen with the MC stuff eventually. |
| |
| // Print out module-level global objects here. |
| for (const auto &GO : M.global_objects()) { |
| if (!GO.hasExternalWeakLinkage()) |
| continue; |
| OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); |
| } |
| if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { |
| auto SymbolName = "swift_async_extendedFramePointerFlags"; |
| auto Global = M.getGlobalVariable(SymbolName); |
| if (!Global) { |
| auto Int8PtrTy = Type::getInt8PtrTy(M.getContext()); |
| Global = new GlobalVariable(M, Int8PtrTy, false, |
| GlobalValue::ExternalWeakLinkage, nullptr, |
| SymbolName); |
| OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); |
| } |
| } |
| } |
| |
| // Print aliases in topological order, that is, for each alias a = b, |
| // b must be printed before a. |
| // This is because on some targets (e.g. PowerPC) linker expects aliases in |
| // such an order to generate correct TOC information. |
| SmallVector<const GlobalAlias *, 16> AliasStack; |
| SmallPtrSet<const GlobalAlias *, 16> AliasVisited; |
| for (const auto &Alias : M.aliases()) { |
| if (Alias.hasAvailableExternallyLinkage()) |
| continue; |
| for (const GlobalAlias *Cur = &Alias; Cur; |
| Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { |
| if (!AliasVisited.insert(Cur).second) |
| break; |
| AliasStack.push_back(Cur); |
| } |
| for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) |
| emitGlobalAlias(M, *AncestorAlias); |
| AliasStack.clear(); |
| } |
| for (const auto &IFunc : M.ifuncs()) |
| emitGlobalIFunc(M, IFunc); |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) |
| if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) |
| MP->finishAssembly(M, *MI, *this); |
| |
| // Emit llvm.ident metadata in an '.ident' directive. |
| emitModuleIdents(M); |
| |
| // Emit bytes for llvm.commandline metadata. |
| emitModuleCommandLines(M); |
| |
| // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if |
| // split-stack is used. |
| if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { |
| OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", |
| ELF::SHT_PROGBITS, 0)); |
| if (HasNoSplitStack) |
| OutStreamer->switchSection(OutContext.getELFSection( |
| ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); |
| } |
| |
| // If we don't have any trampolines, then we don't require stack memory |
| // to be executable. Some targets have a directive to declare this. |
| Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); |
| if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) |
| if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) |
| OutStreamer->switchSection(S); |
| |
| if (TM.Options.EmitAddrsig) { |
| // Emit address-significance attributes for all globals. |
| OutStreamer->emitAddrsig(); |
| for (const GlobalValue &GV : M.global_values()) { |
| if (!GV.use_empty() && !GV.isThreadLocal() && |
| !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && |
| !GV.hasAtLeastLocalUnnamedAddr()) |
| OutStreamer->emitAddrsigSym(getSymbol(&GV)); |
| } |
| } |
| |
| // Emit symbol partition specifications (ELF only). |
| if (TM.getTargetTriple().isOSBinFormatELF()) { |
| unsigned UniqueID = 0; |
| for (const GlobalValue &GV : M.global_values()) { |
| if (!GV.hasPartition() || GV.isDeclarationForLinker() || |
| GV.getVisibility() != GlobalValue::DefaultVisibility) |
| continue; |
| |
| OutStreamer->switchSection( |
| OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, |
| "", false, ++UniqueID, nullptr)); |
| OutStreamer->emitBytes(GV.getPartition()); |
| OutStreamer->emitZeros(1); |
| OutStreamer->emitValue( |
| MCSymbolRefExpr::create(getSymbol(&GV), OutContext), |
| MAI->getCodePointerSize()); |
| } |
| } |
| |
| // Allow the target to emit any magic that it wants at the end of the file, |
| // after everything else has gone out. |
| emitEndOfAsmFile(M); |
| |
| MMI = nullptr; |
| AddrLabelSymbols = nullptr; |
| |
| OutStreamer->finish(); |
| OutStreamer->reset(); |
| OwnedMLI.reset(); |
| OwnedMDT.reset(); |
| |
| return false; |
| } |
| |
| MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { |
| auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); |
| if (Res.second) |
| Res.first->second = createTempSymbol("exception"); |
| return Res.first->second; |
| } |
| |
| void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { |
| this->MF = &MF; |
| const Function &F = MF.getFunction(); |
| |
| // Record that there are split-stack functions, so we will emit a special |
| // section to tell the linker. |
| if (MF.shouldSplitStack()) { |
| HasSplitStack = true; |
| |
| if (!MF.getFrameInfo().needsSplitStackProlog()) |
| HasNoSplitStack = true; |
| } else |
| HasNoSplitStack = true; |
| |
| // Get the function symbol. |
| if (!MAI->needsFunctionDescriptors()) { |
| CurrentFnSym = getSymbol(&MF.getFunction()); |
| } else { |
| assert(TM.getTargetTriple().isOSAIX() && |
| "Only AIX uses the function descriptor hooks."); |
| // AIX is unique here in that the name of the symbol emitted for the |
| // function body does not have the same name as the source function's |
| // C-linkage name. |
| assert(CurrentFnDescSym && "The function descriptor symbol needs to be" |
| " initalized first."); |
| |
| // Get the function entry point symbol. |
| CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); |
| } |
| |
| CurrentFnSymForSize = CurrentFnSym; |
| CurrentFnBegin = nullptr; |
| CurrentFnBeginLocal = nullptr; |
| CurrentSectionBeginSym = nullptr; |
| MBBSectionRanges.clear(); |
| MBBSectionExceptionSyms.clear(); |
| bool NeedsLocalForSize = MAI->needsLocalForSize(); |
| if (F.hasFnAttribute("patchable-function-entry") || |
| F.hasFnAttribute("function-instrument") || |
| F.hasFnAttribute("xray-instruction-threshold") || |
| needFuncLabels(MF) || NeedsLocalForSize || |
| MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { |
| CurrentFnBegin = createTempSymbol("func_begin"); |
| if (NeedsLocalForSize) |
| CurrentFnSymForSize = CurrentFnBegin; |
| } |
| |
| ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); |
| } |
| |
| namespace { |
| |
| // Keep track the alignment, constpool entries per Section. |
| struct SectionCPs { |
| MCSection *S; |
| Align Alignment; |
| SmallVector<unsigned, 4> CPEs; |
| |
| SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// EmitConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| void AsmPrinter::emitConstantPool() { |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); |
| if (CP.empty()) return; |
| |
| // Calculate sections for constant pool entries. We collect entries to go into |
| // the same section together to reduce amount of section switch statements. |
| SmallVector<SectionCPs, 4> CPSections; |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| const MachineConstantPoolEntry &CPE = CP[i]; |
| Align Alignment = CPE.getAlign(); |
| |
| SectionKind Kind = CPE.getSectionKind(&getDataLayout()); |
| |
| const Constant *C = nullptr; |
| if (!CPE.isMachineConstantPoolEntry()) |
| C = CPE.Val.ConstVal; |
| |
| MCSection *S = getObjFileLowering().getSectionForConstant( |
| getDataLayout(), Kind, C, Alignment); |
| |
| // The number of sections are small, just do a linear search from the |
| // last section to the first. |
| bool Found = false; |
| unsigned SecIdx = CPSections.size(); |
| while (SecIdx != 0) { |
| if (CPSections[--SecIdx].S == S) { |
| Found = true; |
| break; |
| } |
| } |
| if (!Found) { |
| SecIdx = CPSections.size(); |
| CPSections.push_back(SectionCPs(S, Alignment)); |
| } |
| |
| if (Alignment > CPSections[SecIdx].Alignment) |
| CPSections[SecIdx].Alignment = Alignment; |
| CPSections[SecIdx].CPEs.push_back(i); |
| } |
| |
| // Now print stuff into the calculated sections. |
| const MCSection *CurSection = nullptr; |
| unsigned Offset = 0; |
| for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { |
| for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { |
| unsigned CPI = CPSections[i].CPEs[j]; |
| MCSymbol *Sym = GetCPISymbol(CPI); |
| if (!Sym->isUndefined()) |
| continue; |
| |
| if (CurSection != CPSections[i].S) { |
| OutStreamer->switchSection(CPSections[i].S); |
| emitAlignment(Align(CPSections[i].Alignment)); |
| CurSection = CPSections[i].S; |
| Offset = 0; |
| } |
| |
| MachineConstantPoolEntry CPE = CP[CPI]; |
| |
| // Emit inter-object padding for alignment. |
| unsigned NewOffset = alignTo(Offset, CPE.getAlign()); |
| OutStreamer->emitZeros(NewOffset - Offset); |
| |
| Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); |
| |
| OutStreamer->emitLabel(Sym); |
| if (CPE.isMachineConstantPoolEntry()) |
| emitMachineConstantPoolValue(CPE.Val.MachineCPVal); |
| else |
| emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); |
| } |
| } |
| } |
| |
| // Print assembly representations of the jump tables used by the current |
| // function. |
| void AsmPrinter::emitJumpTableInfo() { |
| const DataLayout &DL = MF->getDataLayout(); |
| const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| if (!MJTI) return; |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| // Pick the directive to use to print the jump table entries, and switch to |
| // the appropriate section. |
| const Function &F = MF->getFunction(); |
| const TargetLoweringObjectFile &TLOF = getObjFileLowering(); |
| bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( |
| MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, |
| F); |
| if (JTInDiffSection) { |
| // Drop it in the readonly section. |
| MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); |
| OutStreamer->switchSection(ReadOnlySection); |
| } |
| |
| emitAlignment(Align(MJTI->getEntryAlignment(DL))); |
| |
| // Jump tables in code sections are marked with a data_region directive |
| // where that's supported. |
| if (!JTInDiffSection) |
| OutStreamer->emitDataRegion(MCDR_DataRegionJT32); |
| |
| for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| |
| // If this jump table was deleted, ignore it. |
| if (JTBBs.empty()) continue; |
| |
| // For the EK_LabelDifference32 entry, if using .set avoids a relocation, |
| /// emit a .set directive for each unique entry. |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && |
| MAI->doesSetDirectiveSuppressReloc()) { |
| SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; |
| const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); |
| for (const MachineBasicBlock *MBB : JTBBs) { |
| if (!EmittedSets.insert(MBB).second) |
| continue; |
| |
| // .set LJTSet, LBB32-base |
| const MCExpr *LHS = |
| MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); |
| OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), |
| MCBinaryExpr::createSub(LHS, Base, |
| OutContext)); |
| } |
| } |
| |
| // On some targets (e.g. Darwin) we want to emit two consecutive labels |
| // before each jump table. The first label is never referenced, but tells |
| // the assembler and linker the extents of the jump table object. The |
| // second label is actually referenced by the code. |
| if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) |
| // FIXME: This doesn't have to have any specific name, just any randomly |
| // named and numbered local label started with 'l' would work. Simplify |
| // GetJTISymbol. |
| OutStreamer->emitLabel(GetJTISymbol(JTI, true)); |
| |
| MCSymbol* JTISymbol = GetJTISymbol(JTI); |
| OutStreamer->emitLabel(JTISymbol); |
| |
| for (const MachineBasicBlock *MBB : JTBBs) |
| emitJumpTableEntry(MJTI, MBB, JTI); |
| } |
| if (!JTInDiffSection) |
| OutStreamer->emitDataRegion(MCDR_DataRegionEnd); |
| } |
| |
| /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the |
| /// current stream. |
| void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned UID) const { |
| assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); |
| const MCExpr *Value = nullptr; |
| switch (MJTI->getEntryKind()) { |
| case MachineJumpTableInfo::EK_Inline: |
| llvm_unreachable("Cannot emit EK_Inline jump table entry"); |
| case MachineJumpTableInfo::EK_Custom32: |
| Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( |
| MJTI, MBB, UID, OutContext); |
| break; |
| case MachineJumpTableInfo::EK_BlockAddress: |
| // EK_BlockAddress - Each entry is a plain address of block, e.g.: |
| // .word LBB123 |
| Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); |
| break; |
| case MachineJumpTableInfo::EK_GPRel32BlockAddress: { |
| // EK_GPRel32BlockAddress - Each entry is an address of block, encoded |
| // with a relocation as gp-relative, e.g.: |
| // .gprel32 LBB123 |
| MCSymbol *MBBSym = MBB->getSymbol(); |
| OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); |
| return; |
| } |
| |
| case MachineJumpTableInfo::EK_GPRel64BlockAddress: { |
| // EK_GPRel64BlockAddress - Each entry is an address of block, encoded |
| // with a relocation as gp-relative, e.g.: |
| // .gpdword LBB123 |
| MCSymbol *MBBSym = MBB->getSymbol(); |
| OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); |
| return; |
| } |
| |
| case MachineJumpTableInfo::EK_LabelDifference32: { |
| // Each entry is the address of the block minus the address of the jump |
| // table. This is used for PIC jump tables where gprel32 is not supported. |
| // e.g.: |
| // .word LBB123 - LJTI1_2 |
| // If the .set directive avoids relocations, this is emitted as: |
| // .set L4_5_set_123, LBB123 - LJTI1_2 |
| // .word L4_5_set_123 |
| if (MAI->doesSetDirectiveSuppressReloc()) { |
| Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), |
| OutContext); |
| break; |
| } |
| Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); |
| const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); |
| Value = MCBinaryExpr::createSub(Value, Base, OutContext); |
| break; |
| } |
| } |
| |
| assert(Value && "Unknown entry kind!"); |
| |
| unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); |
| OutStreamer->emitValue(Value, EntrySize); |
| } |
| |
| /// EmitSpecialLLVMGlobal - Check to see if the specified global is a |
| /// special global used by LLVM. If so, emit it and return true, otherwise |
| /// do nothing and return false. |
| bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { |
| if (GV->getName() == "llvm.used") { |
| if (MAI->hasNoDeadStrip()) // No need to emit this at all. |
| emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); |
| return true; |
| } |
| |
| // Ignore debug and non-emitted data. This handles llvm.compiler.used. |
| if (GV->getSection() == "llvm.metadata" || |
| GV->hasAvailableExternallyLinkage()) |
| return true; |
| |
| if (!GV->hasAppendingLinkage()) return false; |
| |
| assert(GV->hasInitializer() && "Not a special LLVM global!"); |
| |
| if (GV->getName() == "llvm.global_ctors") { |
| emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), |
| /* isCtor */ true); |
| |
| return true; |
| } |
| |
| if (GV->getName() == "llvm.global_dtors") { |
| emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), |
| /* isCtor */ false); |
| |
| return true; |
| } |
| |
| report_fatal_error("unknown special variable"); |
| } |
| |
| /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each |
| /// global in the specified llvm.used list. |
| void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { |
| // Should be an array of 'i8*'. |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| const GlobalValue *GV = |
| dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); |
| if (GV) |
| OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); |
| } |
| } |
| |
| void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, |
| const Constant *List, |
| SmallVector<Structor, 8> &Structors) { |
| // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is |
| // the init priority. |
| if (!isa<ConstantArray>(List)) |
| return; |
| |
| // Gather the structors in a form that's convenient for sorting by priority. |
| for (Value *O : cast<ConstantArray>(List)->operands()) { |
| auto *CS = cast<ConstantStruct>(O); |
| if (CS->getOperand(1)->isNullValue()) |
| break; // Found a null terminator, skip the rest. |
| ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); |
| if (!Priority) |
| continue; // Malformed. |
| Structors.push_back(Structor()); |
| Structor &S = Structors.back(); |
| S.Priority = Priority->getLimitedValue(65535); |
| S.Func = CS->getOperand(1); |
| if (!CS->getOperand(2)->isNullValue()) { |
| if (TM.getTargetTriple().isOSAIX()) |
| llvm::report_fatal_error( |
| "associated data of XXStructor list is not yet supported on AIX"); |
| S.ComdatKey = |
| dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); |
| } |
| } |
| |
| // Emit the function pointers in the target-specific order |
| llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { |
| return L.Priority < R.Priority; |
| }); |
| } |
| |
| /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init |
| /// priority. |
| void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, |
| bool IsCtor) { |
| SmallVector<Structor, 8> Structors; |
| preprocessXXStructorList(DL, List, Structors); |
| if (Structors.empty()) |
| return; |
| |
| // Emit the structors in reverse order if we are using the .ctor/.dtor |
| // initialization scheme. |
| if (!TM.Options.UseInitArray) |
| std::reverse(Structors.begin(), Structors.end()); |
| |
| const Align Align = DL.getPointerPrefAlignment(); |
| for (Structor &S : Structors) { |
| const TargetLoweringObjectFile &Obj = getObjFileLowering(); |
| const MCSymbol *KeySym = nullptr; |
| if (GlobalValue *GV = S.ComdatKey) { |
| if (GV->isDeclarationForLinker()) |
| // If the associated variable is not defined in this module |
| // (it might be available_externally, or have been an |
| // available_externally definition that was dropped by the |
| // EliminateAvailableExternally pass), some other TU |
| // will provide its dynamic initializer. |
| continue; |
| |
| KeySym = getSymbol(GV); |
| } |
| |
| MCSection *OutputSection = |
| (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) |
| : Obj.getStaticDtorSection(S.Priority, KeySym)); |
| OutStreamer->switchSection(OutputSection); |
| if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) |
| emitAlignment(Align); |
| emitXXStructor(DL, S.Func); |
| } |
| } |
| |
| void AsmPrinter::emitModuleIdents(Module &M) { |
| if (!MAI->hasIdentDirective()) |
| return; |
| |
| if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { |
| const MDNode *N = NMD->getOperand(i); |
| assert(N->getNumOperands() == 1 && |
| "llvm.ident metadata entry can have only one operand"); |
| const MDString *S = cast<MDString>(N->getOperand(0)); |
| OutStreamer->emitIdent(S->getString()); |
| } |
| } |
| } |
| |
| void AsmPrinter::emitModuleCommandLines(Module &M) { |
| MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); |
| if (!CommandLine) |
| return; |
| |
| const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); |
| if (!NMD || !NMD->getNumOperands()) |
| return; |
| |
| OutStreamer->pushSection(); |
| OutStreamer->switchSection(CommandLine); |
| OutStreamer->emitZeros(1); |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { |
| const MDNode *N = NMD->getOperand(i); |
| assert(N->getNumOperands() == 1 && |
| "llvm.commandline metadata entry can have only one operand"); |
| const MDString *S = cast<MDString>(N->getOperand(0)); |
| OutStreamer->emitBytes(S->getString()); |
| OutStreamer->emitZeros(1); |
| } |
| OutStreamer->popSection(); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Emission and print routines |
| // |
| |
| /// Emit a byte directive and value. |
| /// |
| void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } |
| |
| /// Emit a short directive and value. |
| void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } |
| |
| /// Emit a long directive and value. |
| void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } |
| |
| /// Emit a long long directive and value. |
| void AsmPrinter::emitInt64(uint64_t Value) const { |
| OutStreamer->emitInt64(Value); |
| } |
| |
| /// Emit something like ".long Hi-Lo" where the size in bytes of the directive |
| /// is specified by Size and Hi/Lo specify the labels. This implicitly uses |
| /// .set if it avoids relocations. |
| void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, |
| unsigned Size) const { |
| OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); |
| } |
| |
| /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" |
| /// where the size in bytes of the directive is specified by Size and Label |
| /// specifies the label. This implicitly uses .set if it is available. |
| void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, |
| unsigned Size, |
| bool IsSectionRelative) const { |
| if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { |
| OutStreamer->emitCOFFSecRel32(Label, Offset); |
| if (Size > 4) |
| OutStreamer->emitZeros(Size - 4); |
| return; |
| } |
| |
| // Emit Label+Offset (or just Label if Offset is zero) |
| const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); |
| if (Offset) |
| Expr = MCBinaryExpr::createAdd( |
| Expr, MCConstantExpr::create(Offset, OutContext), OutContext); |
| |
| OutStreamer->emitValue(Expr, Size); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| // EmitAlignment - Emit an alignment directive to the specified power of |
| // two boundary. If a global value is specified, and if that global has |
| // an explicit alignment requested, it will override the alignment request |
| // if required for correctness. |
| void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, |
| unsigned MaxBytesToEmit) const { |
| if (GV) |
| Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); |
| |
| if (Alignment == Align(1)) |
| return; // 1-byte aligned: no need to emit alignment. |
| |
| if (getCurrentSection()->getKind().isText()) { |
| const MCSubtargetInfo *STI = nullptr; |
| if (this->MF) |
| STI = &getSubtargetInfo(); |
| else |
| STI = TM.getMCSubtargetInfo(); |
| OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); |
| } else |
| OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constant emission. |
| //===----------------------------------------------------------------------===// |
| |
| const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { |
| MCContext &Ctx = OutContext; |
| |
| if (CV->isNullValue() || isa<UndefValue>(CV)) |
| return MCConstantExpr::create(0, Ctx); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) |
| return MCConstantExpr::create(CI->getZExtValue(), Ctx); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) |
| return MCSymbolRefExpr::create(getSymbol(GV), Ctx); |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) |
| return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); |
| |
| if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) |
| return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); |
| |
| if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) |
| return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); |
| |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); |
| if (!CE) { |
| llvm_unreachable("Unknown constant value to lower!"); |
| } |
| |
| // The constant expression opcodes are limited to those that are necessary |
| // to represent relocations on supported targets. Expressions involving only |
| // constant addresses are constant folded instead. |
| switch (CE->getOpcode()) { |
| default: |
| break; // Error |
| case Instruction::AddrSpaceCast: { |
| const Constant *Op = CE->getOperand(0); |
| unsigned DstAS = CE->getType()->getPointerAddressSpace(); |
| unsigned SrcAS = Op->getType()->getPointerAddressSpace(); |
| if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) |
| return lowerConstant(Op); |
| |
| break; // Error |
| } |
| case Instruction::GetElementPtr: { |
| // Generate a symbolic expression for the byte address |
| APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); |
| cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); |
| |
| const MCExpr *Base = lowerConstant(CE->getOperand(0)); |
| if (!OffsetAI) |
| return Base; |
| |
| int64_t Offset = OffsetAI.getSExtValue(); |
| return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), |
| Ctx); |
| } |
| |
| case Instruction::Trunc: |
| // We emit the value and depend on the assembler to truncate the generated |
| // expression properly. This is important for differences between |
| // blockaddress labels. Since the two labels are in the same function, it |
| // is reasonable to treat their delta as a 32-bit value. |
| [[fallthrough]]; |
| case Instruction::BitCast: |
| return lowerConstant(CE->getOperand(0)); |
| |
| case Instruction::IntToPtr: { |
| const DataLayout &DL = getDataLayout(); |
| |
| // Handle casts to pointers by changing them into casts to the appropriate |
| // integer type. This promotes constant folding and simplifies this code. |
| Constant *Op = CE->getOperand(0); |
| Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), |
| false/*ZExt*/); |
| return lowerConstant(Op); |
| } |
| |
| case Instruction::PtrToInt: { |
| const DataLayout &DL = getDataLayout(); |
| |
| // Support only foldable casts to/from pointers that can be eliminated by |
| // changing the pointer to the appropriately sized integer type. |
| Constant *Op = CE->getOperand(0); |
| Type *Ty = CE->getType(); |
| |
| const MCExpr *OpExpr = lowerConstant(Op); |
| |
| // We can emit the pointer value into this slot if the slot is an |
| // integer slot equal to the size of the pointer. |
| // |
| // If the pointer is larger than the resultant integer, then |
| // as with Trunc just depend on the assembler to truncate it. |
| if (DL.getTypeAllocSize(Ty).getFixedValue() <= |
| DL.getTypeAllocSize(Op->getType()).getFixedValue()) |
| return OpExpr; |
| |
| break; // Error |
| } |
| |
| case Instruction::Sub: { |
| GlobalValue *LHSGV; |
| APInt LHSOffset; |
| DSOLocalEquivalent *DSOEquiv; |
| if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, |
| getDataLayout(), &DSOEquiv)) { |
| GlobalValue *RHSGV; |
| APInt RHSOffset; |
| if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, |
| getDataLayout())) { |
| const MCExpr *RelocExpr = |
| getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); |
| if (!RelocExpr) { |
| const MCExpr *LHSExpr = |
| MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); |
| if (DSOEquiv && |
| getObjFileLowering().supportDSOLocalEquivalentLowering()) |
| LHSExpr = |
| getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); |
| RelocExpr = MCBinaryExpr::createSub( |
| LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); |
| } |
| int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); |
| if (Addend != 0) |
| RelocExpr = MCBinaryExpr::createAdd( |
| RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); |
| return RelocExpr; |
| } |
| } |
| |
| const MCExpr *LHS = lowerConstant(CE->getOperand(0)); |
| const MCExpr *RHS = lowerConstant(CE->getOperand(1)); |
| return MCBinaryExpr::createSub(LHS, RHS, Ctx); |
| break; |
| } |
| |
| case Instruction::Add: { |
| const MCExpr *LHS = lowerConstant(CE->getOperand(0)); |
| const MCExpr *RHS = lowerConstant(CE->getOperand(1)); |
| return MCBinaryExpr::createAdd(LHS, RHS, Ctx); |
| } |
| } |
| |
| // If the code isn't optimized, there may be outstanding folding |
| // opportunities. Attempt to fold the expression using DataLayout as a |
| // last resort before giving up. |
| Constant *C = ConstantFoldConstant(CE, getDataLayout()); |
| if (C != CE) |
| return lowerConstant(C); |
| |
| // Otherwise report the problem to the user. |
| std::string S; |
| raw_string_ostream OS(S); |
| OS << "Unsupported expression in static initializer: "; |
| CE->printAsOperand(OS, /*PrintType=*/false, |
| !MF ? nullptr : MF->getFunction().getParent()); |
| report_fatal_error(Twine(OS.str())); |
| } |
| |
| static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, |
| AsmPrinter &AP, |
| const Constant *BaseCV = nullptr, |
| uint64_t Offset = 0, |
| AsmPrinter::AliasMapTy *AliasList = nullptr); |
| |
| static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); |
| static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); |
| |
| /// isRepeatedByteSequence - Determine whether the given value is |
| /// composed of a repeated sequence of identical bytes and return the |
| /// byte value. If it is not a repeated sequence, return -1. |
| static int isRepeatedByteSequence(const ConstantDataSequential *V) { |
| StringRef Data = V->getRawDataValues(); |
| assert(!Data.empty() && "Empty aggregates should be CAZ node"); |
| char C = Data[0]; |
| for (unsigned i = 1, e = Data.size(); i != e; ++i) |
| if (Data[i] != C) return -1; |
| return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. |
| } |
| |
| /// isRepeatedByteSequence - Determine whether the given value is |
| /// composed of a repeated sequence of identical bytes and return the |
| /// byte value. If it is not a repeated sequence, return -1. |
| static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); |
| assert(Size % 8 == 0); |
| |
| // Extend the element to take zero padding into account. |
| APInt Value = CI->getValue().zext(Size); |
| if (!Value.isSplat(8)) |
| return -1; |
| |
| return Value.zextOrTrunc(8).getZExtValue(); |
| } |
| if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { |
| // Make sure all array elements are sequences of the same repeated |
| // byte. |
| assert(CA->getNumOperands() != 0 && "Should be a CAZ"); |
| Constant *Op0 = CA->getOperand(0); |
| int Byte = isRepeatedByteSequence(Op0, DL); |
| if (Byte == -1) |
| return -1; |
| |
| // All array elements must be equal. |
| for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) |
| if (CA->getOperand(i) != Op0) |
| return -1; |
| return Byte; |
| } |
| |
| if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) |
| return isRepeatedByteSequence(CDS); |
| |
| return -1; |
| } |
| |
| static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, |
| AsmPrinter::AliasMapTy *AliasList) { |
| if (AliasList) { |
| auto AliasIt = AliasList->find(Offset); |
| if (AliasIt != AliasList->end()) { |
| for (const GlobalAlias *GA : AliasIt->second) |
| AP.OutStreamer->emitLabel(AP.getSymbol(GA)); |
| AliasList->erase(Offset); |
| } |
| } |
| } |
| |
| static void emitGlobalConstantDataSequential( |
| const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, |
| AsmPrinter::AliasMapTy *AliasList) { |
| // See if we can aggregate this into a .fill, if so, emit it as such. |
| int Value = isRepeatedByteSequence(CDS, DL); |
| if (Value != -1) { |
| uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); |
| // Don't emit a 1-byte object as a .fill. |
| if (Bytes > 1) |
| return AP.OutStreamer->emitFill(Bytes, Value); |
| } |
| |
| // If this can be emitted with .ascii/.asciz, emit it as such. |
| if (CDS->isString()) |
| return AP.OutStreamer->emitBytes(CDS->getAsString()); |
| |
| // Otherwise, emit the values in successive locations. |
| unsigned ElementByteSize = CDS->getElementByteSize(); |
| if (isa<IntegerType>(CDS->getElementType())) { |
| for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { |
| emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); |
| if (AP.isVerbose()) |
| AP.OutStreamer->getCommentOS() |
| << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); |
| AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), |
| ElementByteSize); |
| } |
| } else { |
| Type *ET = CDS->getElementType(); |
| for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { |
| emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); |
| emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); |
| } |
| } |
| |
| unsigned Size = DL.getTypeAllocSize(CDS->getType()); |
| unsigned EmittedSize = |
| DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); |
| assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); |
| if (unsigned Padding = Size - EmittedSize) |
| AP.OutStreamer->emitZeros(Padding); |
| } |
| |
| static void emitGlobalConstantArray(const DataLayout &DL, |
| const ConstantArray *CA, AsmPrinter &AP, |
| const Constant *BaseCV, uint64_t Offset, |
| AsmPrinter::AliasMapTy *AliasList) { |
| // See if we can aggregate some values. Make sure it can be |
| // represented as a series of bytes of the constant value. |
| int Value = isRepeatedByteSequence(CA, DL); |
| |
| if (Value != -1) { |
| uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); |
| AP.OutStreamer->emitFill(Bytes, Value); |
| } else { |
| for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { |
| emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, |
| AliasList); |
| Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); |
| } |
| } |
| } |
| |
| static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); |
| |
| static void emitGlobalConstantVector(const DataLayout &DL, |
| const ConstantVector *CV, AsmPrinter &AP, |
| AsmPrinter::AliasMapTy *AliasList) { |
| Type *ElementType = CV->getType()->getElementType(); |
| uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); |
| uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); |
| uint64_t EmittedSize; |
| if (ElementSizeInBits != ElementAllocSizeInBits) { |
| // If the allocation size of an element is different from the size in bits, |
| // printing each element separately will insert incorrect padding. |
| // |
| // The general algorithm here is complicated; instead of writing it out |
| // here, just use the existing code in ConstantFolding. |
| Type *IntT = |
| IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); |
| ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( |
| ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL)); |
| if (!CI) { |
| report_fatal_error( |
| "Cannot lower vector global with unusual element type"); |
| } |
| emitGlobalAliasInline(AP, 0, AliasList); |
| emitGlobalConstantLargeInt(CI, AP); |
| EmittedSize = DL.getTypeStoreSize(CV->getType()); |
| } else { |
| for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) { |
| emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); |
| emitGlobalConstantImpl(DL, CV->getOperand(I), AP); |
| } |
| EmittedSize = |
| DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements(); |
| } |
| |
| unsigned Size = DL.getTypeAllocSize(CV->getType()); |
| if (unsigned Padding = Size - EmittedSize) |
| AP.OutStreamer->emitZeros(Padding); |
| } |
| |
| static void emitGlobalConstantStruct(const DataLayout &DL, |
| const ConstantStruct *CS, AsmPrinter &AP, |
| const Constant *BaseCV, uint64_t Offset, |
| AsmPrinter::AliasMapTy *AliasList) { |
| // Print the fields in successive locations. Pad to align if needed! |
| unsigned Size = DL.getTypeAllocSize(CS->getType()); |
| const StructLayout *Layout = DL.getStructLayout(CS->getType()); |
| uint64_t SizeSoFar = 0; |
| for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { |
| const Constant *Field = CS->getOperand(I); |
| |
| // Print the actual field value. |
| emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, |
| AliasList); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); |
| uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - |
| Layout->getElementOffset(I)) - |
| FieldSize; |
| SizeSoFar += FieldSize + PadSize; |
| |
| // Insert padding - this may include padding to increase the size of the |
| // current field up to the ABI size (if the struct is not packed) as well |
| // as padding to ensure that the next field starts at the right offset. |
| AP.OutStreamer->emitZeros(PadSize); |
| } |
| assert(SizeSoFar == Layout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| } |
| |
| static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { |
| assert(ET && "Unknown float type"); |
| APInt API = APF.bitcastToAPInt(); |
| |
| // First print a comment with what we think the original floating-point value |
| // should have been. |
| if (AP.isVerbose()) { |
| SmallString<8> StrVal; |
| APF.toString(StrVal); |
| ET->print(AP.OutStreamer->getCommentOS()); |
| AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; |
| } |
| |
| // Now iterate through the APInt chunks, emitting them in endian-correct |
| // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit |
| // floats). |
| unsigned NumBytes = API.getBitWidth() / 8; |
| unsigned TrailingBytes = NumBytes % sizeof(uint64_t); |
| const uint64_t *p = API.getRawData(); |
| |
| // PPC's long double has odd notions of endianness compared to how LLVM |
| // handles it: p[0] goes first for *big* endian on PPC. |
| if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { |
| int Chunk = API.getNumWords() - 1; |
| |
| if (TrailingBytes) |
| AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); |
| |
| for (; Chunk >= 0; --Chunk) |
| AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); |
| } else { |
| unsigned Chunk; |
| for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) |
| AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); |
| |
| if (TrailingBytes) |
| AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); |
| } |
| |
| // Emit the tail padding for the long double. |
| const DataLayout &DL = AP.getDataLayout(); |
| AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); |
| } |
| |
| static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { |
| emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); |
| } |
| |
| static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { |
| const DataLayout &DL = AP.getDataLayout(); |
| unsigned BitWidth = CI->getBitWidth(); |
| |
| // Copy the value as we may massage the layout for constants whose bit width |
| // is not a multiple of 64-bits. |
| APInt Realigned(CI->getValue()); |
| uint64_t ExtraBits = 0; |
| unsigned ExtraBitsSize = BitWidth & 63; |
| |
| if (ExtraBitsSize) { |
| // The bit width of the data is not a multiple of 64-bits. |
| // The extra bits are expected to be at the end of the chunk of the memory. |
| // Little endian: |
| // * Nothing to be done, just record the extra bits to emit. |
| // Big endian: |
| // * Record the extra bits to emit. |
| // * Realign the raw data to emit the chunks of 64-bits. |
| if (DL.isBigEndian()) { |
| // Basically the structure of the raw data is a chunk of 64-bits cells: |
| // 0 1 BitWidth / 64 |
| // [chunk1][chunk2] ... [chunkN]. |
| // The most significant chunk is chunkN and it should be emitted first. |
| // However, due to the alignment issue chunkN contains useless bits. |
| // Realign the chunks so that they contain only useful information: |
| // ExtraBits 0 1 (BitWidth / 64) - 1 |
| // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] |
| ExtraBitsSize = alignTo(ExtraBitsSize, 8); |
| ExtraBits = Realigned.getRawData()[0] & |
| (((uint64_t)-1) >> (64 - ExtraBitsSize)); |
| Realigned.lshrInPlace(ExtraBitsSize); |
| } else |
| ExtraBits = Realigned.getRawData()[BitWidth / 64]; |
| } |
| |
| // We don't expect assemblers to support integer data directives |
| // for more than 64 bits, so we emit the data in at most 64-bit |
| // quantities at a time. |
| const uint64_t *RawData = Realigned.getRawData(); |
| for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { |
| uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; |
| AP.OutStreamer->emitIntValue(Val, 8); |
| } |
| |
| if (ExtraBitsSize) { |
| // Emit the extra bits after the 64-bits chunks. |
| |
| // Emit a directive that fills the expected size. |
| uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); |
| Size -= (BitWidth / 64) * 8; |
| assert(Size && Size * 8 >= ExtraBitsSize && |
| (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) |
| == ExtraBits && "Directive too small for extra bits."); |
| AP.OutStreamer->emitIntValue(ExtraBits, Size); |
| } |
| } |
| |
| /// Transform a not absolute MCExpr containing a reference to a GOT |
| /// equivalent global, by a target specific GOT pc relative access to the |
| /// final symbol. |
| static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, |
| const Constant *BaseCst, |
| uint64_t Offset) { |
| // The global @foo below illustrates a global that uses a got equivalent. |
| // |
| // @bar = global i32 42 |
| // @gotequiv = private unnamed_addr constant i32* @bar |
| // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), |
| // i64 ptrtoint (i32* @foo to i64)) |
| // to i32) |
| // |
| // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually |
| // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the |
| // form: |
| // |
| // foo = cstexpr, where |
| // cstexpr := <gotequiv> - "." + <cst> |
| // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> |
| // |
| // After canonicalization by evaluateAsRelocatable `ME` turns into: |
| // |
| // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where |
| // gotpcrelcst := <offset from @foo base> + <cst> |
| MCValue MV; |
| if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) |
| return; |
| const MCSymbolRefExpr *SymA = MV.getSymA(); |
| if (!SymA) |
| return; |
| |
| // Check that GOT equivalent symbol is cached. |
| const MCSymbol *GOTEquivSym = &SymA->getSymbol(); |
| if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) |
| return; |
| |
| const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); |
| if (!BaseGV) |
| return; |
| |
| // Check for a valid base symbol |
| const MCSymbol *BaseSym = AP.getSymbol(BaseGV); |
| const MCSymbolRefExpr *SymB = MV.getSymB(); |
| |
| if (!SymB || BaseSym != &SymB->getSymbol()) |
| return; |
| |
| // Make sure to match: |
| // |
| // gotpcrelcst := <offset from @foo base> + <cst> |
| // |
| // If gotpcrelcst is positive it means that we can safely fold the pc rel |
| // displacement into the GOTPCREL. We can also can have an extra offset <cst> |
| // if the target knows how to encode it. |
| int64_t GOTPCRelCst = Offset + MV.getConstant(); |
| if (GOTPCRelCst < 0) |
| return; |
| if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) |
| return; |
| |
| // Emit the GOT PC relative to replace the got equivalent global, i.e.: |
| // |
| // bar: |
| // .long 42 |
| // gotequiv: |
| // .quad bar |
| // foo: |
| // .long gotequiv - "." + <cst> |
| // |
| // is replaced by the target specific equivalent to: |
| // |
| // bar: |
| // .long 42 |
| // foo: |
| // .long bar@GOTPCREL+<gotpcrelcst> |
| AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; |
| const GlobalVariable *GV = Result.first; |
| int NumUses = (int)Result.second; |
| const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); |
| const MCSymbol *FinalSym = AP.getSymbol(FinalGV); |
| *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( |
| FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); |
| |
| // Update GOT equivalent usage information |
| --NumUses; |
| if (NumUses >= 0) |
| AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); |
| } |
| |
| static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, |
| AsmPrinter &AP, const Constant *BaseCV, |
| uint64_t Offset, |
| AsmPrinter::AliasMapTy *AliasList) { |
| emitGlobalAliasInline(AP, Offset, AliasList); |
| uint64_t Size = DL.getTypeAllocSize(CV->getType()); |
| |
| // Globals with sub-elements such as combinations of arrays and structs |
| // are handled recursively by emitGlobalConstantImpl. Keep track of the |
| // constant symbol base and the current position with BaseCV and Offset. |
| if (!BaseCV && CV->hasOneUse()) |
| BaseCV = dyn_cast<Constant>(CV->user_back()); |
| |
| if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) |
| return AP.OutStreamer->emitZeros(Size); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); |
| |
| if (StoreSize <= 8) { |
| if (AP.isVerbose()) |
| AP.OutStreamer->getCommentOS() |
| << format("0x%" PRIx64 "\n", CI->getZExtValue()); |
| AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); |
| } else { |
| emitGlobalConstantLargeInt(CI, AP); |
| } |
| |
| // Emit tail padding if needed |
| if (Size != StoreSize) |
| AP.OutStreamer->emitZeros(Size - StoreSize); |
| |
| return; |
| } |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) |
| return emitGlobalConstantFP(CFP, AP); |
| |
| if (isa<ConstantPointerNull>(CV)) { |
| AP.OutStreamer->emitIntValue(0, Size); |
| return; |
| } |
| |
| if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) |
| return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); |
| |
| if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) |
| return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); |
| |
| if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) |
| return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); |
| |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of |
| // vectors). |
| if (CE->getOpcode() == Instruction::BitCast) |
| return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); |
| |
| if (Size > 8) { |
| // If the constant expression's size is greater than 64-bits, then we have |
| // to emit the value in chunks. Try to constant fold the value and emit it |
| // that way. |
| Constant *New = ConstantFoldConstant(CE, DL); |
| if (New != CE) |
| return emitGlobalConstantImpl(DL, New, AP); |
| } |
| } |
| |
| if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) |
| return emitGlobalConstantVector(DL, V, AP, AliasList); |
| |
| // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it |
| // thread the streamer with EmitValue. |
| const MCExpr *ME = AP.lowerConstant(CV); |
| |
| // Since lowerConstant already folded and got rid of all IR pointer and |
| // integer casts, detect GOT equivalent accesses by looking into the MCExpr |
| // directly. |
| if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); |
| |
| AP.OutStreamer->emitValue(ME, Size); |
| } |
| |
| /// EmitGlobalConstant - Print a general LLVM constant to the .s file. |
| void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, |
| AliasMapTy *AliasList) { |
| uint64_t Size = DL.getTypeAllocSize(CV->getType()); |
| if (Size) |
| emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); |
| else if (MAI->hasSubsectionsViaSymbols()) { |
| // If the global has zero size, emit a single byte so that two labels don't |
| // look like they are at the same location. |
| OutStreamer->emitIntValue(0, 1); |
| } |
| if (!AliasList) |
| return; |
| // TODO: These remaining aliases are not emitted in the correct location. Need |
| // to handle the case where the alias offset doesn't refer to any sub-element. |
| for (auto &AliasPair : *AliasList) { |
| for (const GlobalAlias *GA : AliasPair.second) |
| OutStreamer->emitLabel(getSymbol(GA)); |
| } |
| } |
| |
| void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| // Target doesn't support this yet! |
| llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); |
| } |
| |
| void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { |
| if (Offset > 0) |
| OS << '+' << Offset; |
| else if (Offset < 0) |
| OS << Offset; |
| } |
| |
| void AsmPrinter::emitNops(unsigned N) { |
| MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); |
| for (; N; --N) |
| EmitToStreamer(*OutStreamer, Nop); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Lowering Routines. |
| //===----------------------------------------------------------------------===// |
| |
| MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { |
| return OutContext.createTempSymbol(Name, true); |
| } |
| |
| MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { |
| return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( |
| BA->getBasicBlock()); |
| } |
| |
| MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { |
| return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); |
| } |
| |
| /// GetCPISymbol - Return the symbol for the specified constant pool entry. |
| MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { |
| if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { |
| const MachineConstantPoolEntry &CPE = |
| MF->getConstantPool()->getConstants()[CPID]; |
| if (!CPE.isMachineConstantPoolEntry()) { |
| const DataLayout &DL = MF->getDataLayout(); |
| SectionKind Kind = CPE.getSectionKind(&DL); |
| const Constant *C = CPE.Val.ConstVal; |
| Align Alignment = CPE.Alignment; |
| if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( |
| getObjFileLowering().getSectionForConstant(DL, Kind, C, |
| Alignment))) { |
| if (MCSymbol *Sym = S->getCOMDATSymbol()) { |
| if (Sym->isUndefined()) |
| OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); |
| return Sym; |
| } |
| } |
| } |
| } |
| |
| const DataLayout &DL = getDataLayout(); |
| return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + |
| "CPI" + Twine(getFunctionNumber()) + "_" + |
| Twine(CPID)); |
| } |
| |
| /// GetJTISymbol - Return the symbol for the specified jump table entry. |
| MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { |
| return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); |
| } |
| |
| /// GetJTSetSymbol - Return the symbol for the specified jump table .set |
| /// FIXME: privatize to AsmPrinter. |
| MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { |
| const DataLayout &DL = getDataLayout(); |
| return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + |
| Twine(getFunctionNumber()) + "_" + |
| Twine(UID) + "_set_" + Twine(MBBID)); |
| } |
| |
| MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, |
| StringRef Suffix) const { |
| return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); |
| } |
| |
| /// Return the MCSymbol for the specified ExternalSymbol. |
| MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { |
| SmallString<60> NameStr; |
| Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); |
| return OutContext.getOrCreateSymbol(NameStr); |
| } |
| |
| /// PrintParentLoopComment - Print comments about parent loops of this one. |
| static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, |
| unsigned FunctionNumber) { |
| if (!Loop) return; |
| PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); |
| OS.indent(Loop->getLoopDepth()*2) |
| << "Parent Loop BB" << FunctionNumber << "_" |
| << Loop->getHeader()->getNumber() |
| << " Depth=" << Loop->getLoopDepth() << '\n'; |
| } |
| |
| /// PrintChildLoopComment - Print comments about child loops within |
| /// the loop for this basic block, with nesting. |
| static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, |
| unsigned FunctionNumber) { |
| // Add child loop information |
| for (const MachineLoop *CL : *Loop) { |
| OS.indent(CL->getLoopDepth()*2) |
| << "Child Loop BB" << FunctionNumber << "_" |
| << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() |
| << '\n'; |
| PrintChildLoopComment(OS, CL, FunctionNumber); |
| } |
| } |
| |
| /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. |
| static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, |
| const MachineLoopInfo *LI, |
| const AsmPrinter &AP) { |
| // Add loop depth information |
| const MachineLoop *Loop = LI->getLoopFor(&MBB); |
| if (!Loop) return; |
| |
| MachineBasicBlock *Header = Loop->getHeader(); |
| assert(Header && "No header for loop"); |
| |
| // If this block is not a loop header, just print out what is the loop header |
| // and return. |
| if (Header != &MBB) { |
| AP.OutStreamer->AddComment(" in Loop: Header=BB" + |
| Twine(AP.getFunctionNumber())+"_" + |
| Twine(Loop->getHeader()->getNumber())+ |
| " Depth="+Twine(Loop->getLoopDepth())); |
| return; |
| } |
| |
| // Otherwise, it is a loop header. Print out information about child and |
| // parent loops. |
| raw_ostream &OS = AP.OutStreamer->getCommentOS(); |
| |
| PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); |
| |
| OS << "=>"; |
| OS.indent(Loop->getLoopDepth()*2-2); |
| |
| OS << "This "; |
| if (Loop->isInnermost()) |
| OS << "Inner "; |
| OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; |
| |
| PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); |
| } |
| |
| /// emitBasicBlockStart - This method prints the label for the specified |
| /// MachineBasicBlock, an alignment (if present) and a comment describing |
| /// it if appropriate. |
| void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { |
| // End the previous funclet and start a new one. |
| if (MBB.isEHFuncletEntry()) { |
| for (const HandlerInfo &HI : Handlers) { |
| HI.Handler->endFunclet(); |
| HI.Handler->beginFunclet(MBB); |
| } |
| } |
| |
| // Switch to a new section if this basic block must begin a section. The |
| // entry block is always placed in the function section and is handled |
| // separately. |
| if (MBB.isBeginSection() && !MBB.isEntryBlock()) { |
| OutStreamer->switchSection( |
| getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), |
| MBB, TM)); |
| CurrentSectionBeginSym = MBB.getSymbol(); |
| } |
| |
| // Emit an alignment directive for this block, if needed. |
| const Align Alignment = MBB.getAlignment(); |
| if (Alignment != Align(1)) |
| emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); |
| |
| // If the block has its address taken, emit any labels that were used to |
| // reference the block. It is possible that there is more than one label |
| // here, because multiple LLVM BB's may have been RAUW'd to this block after |
| // the references were generated. |
| if (MBB.isIRBlockAddressTaken()) { |
| if (isVerbose()) |
| OutStreamer->AddComment("Block address taken"); |
| |
| BasicBlock *BB = MBB.getAddressTakenIRBlock(); |
| assert(BB && BB->hasAddressTaken() && "Missing BB"); |
| for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) |
| OutStreamer->emitLabel(Sym); |
| } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { |
| OutStreamer->AddComment("Block address taken"); |
| } |
| |
| // Print some verbose block comments. |
| if (isVerbose()) { |
| if (const BasicBlock *BB = MBB.getBasicBlock()) { |
| if (BB->hasName()) { |
| BB->printAsOperand(OutStreamer->getCommentOS(), |
| /*PrintType=*/false, BB->getModule()); |
| OutStreamer->getCommentOS() << '\n'; |
| } |
| } |
| |
| assert(MLI != nullptr && "MachineLoopInfo should has been computed"); |
| emitBasicBlockLoopComments(MBB, MLI, *this); |
| } |
| |
| // Print the main label for the block. |
| if (shouldEmitLabelForBasicBlock(MBB)) { |
| if (isVerbose() && MBB.hasLabelMustBeEmitted()) |
| OutStreamer->AddComment("Label of block must be emitted"); |
| OutStreamer->emitLabel(MBB.getSymbol()); |
| } else { |
| if (isVerbose()) { |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", |
| false); |
| } |
| } |
| |
| if (MBB.isEHCatchretTarget() && |
| MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { |
| OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); |
| } |
| |
| // With BB sections, each basic block must handle CFI information on its own |
| // if it begins a section (Entry block call is handled separately, next to |
| // beginFunction). |
| if (MBB.isBeginSection() && !MBB.isEntryBlock()) |
| for (const HandlerInfo &HI : Handlers) |
| HI.Handler->beginBasicBlockSection(MBB); |
| } |
| |
| void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { |
| // Check if CFI information needs to be updated for this MBB with basic block |
| // sections. |
| if (MBB.isEndSection()) |
| for (const HandlerInfo &HI : Handlers) |
| HI.Handler->endBasicBlockSection(MBB); |
| } |
| |
| void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, |
| bool IsDefinition) const { |
| MCSymbolAttr Attr = MCSA_Invalid; |
| |
| switch (Visibility) { |
| default: break; |
| case GlobalValue::HiddenVisibility: |
| if (IsDefinition) |
| Attr = MAI->getHiddenVisibilityAttr(); |
| else |
| Attr = MAI->getHiddenDeclarationVisibilityAttr(); |
| break; |
| case GlobalValue::ProtectedVisibility: |
| Attr = MAI->getProtectedVisibilityAttr(); |
| break; |
| } |
| |
| if (Attr != MCSA_Invalid) |
| OutStreamer->emitSymbolAttribute(Sym, Attr); |
| } |
| |
| bool AsmPrinter::shouldEmitLabelForBasicBlock( |
| const MachineBasicBlock &MBB) const { |
| // With `-fbasic-block-sections=`, a label is needed for every non-entry block |
| // in the labels mode (option `=labels`) and every section beginning in the |
| // sections mode (`=all` and `=list=`). |
| if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) |
| return true; |
| // A label is needed for any block with at least one predecessor (when that |
| // predecessor is not the fallthrough predecessor, or if it is an EH funclet |
| // entry, or if a label is forced). |
| return !MBB.pred_empty() && |
| (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || |
| MBB.hasLabelMustBeEmitted()); |
| } |
| |
| /// isBlockOnlyReachableByFallthough - Return true if the basic block has |
| /// exactly one predecessor and the control transfer mechanism between |
| /// the predecessor and this block is a fall-through. |
| bool AsmPrinter:: |
| isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { |
| // If this is a landing pad, it isn't a fall through. If it has no preds, |
| // then nothing falls through to it. |
| if (MBB->isEHPad() || MBB->pred_empty()) |
| return false; |
| |
| // If there isn't exactly one predecessor, it can't be a fall through. |
| if (MBB->pred_size() > 1) |
| return false; |
| |
| // The predecessor has to be immediately before this block. |
| MachineBasicBlock *Pred = *MBB->pred_begin(); |
| if (!Pred->isLayoutSuccessor(MBB)) |
| return false; |
| |
| // If the block is completely empty, then it definitely does fall through. |
| if (Pred->empty()) |
| return true; |
| |
| // Check the terminators in the previous blocks |
| for (const auto &MI : Pred->terminators()) { |
| // If it is not a simple branch, we are in a table somewhere. |
| if (!MI.isBranch() || MI.isIndirectBranch()) |
| return false; |
| |
| // If we are the operands of one of the branches, this is not a fall |
| // through. Note that targets with delay slots will usually bundle |
| // terminators with the delay slot instruction. |
| for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { |
| if (OP->isJTI()) |
| return false; |
| if (OP->isMBB() && OP->getMBB() == MBB) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { |
| if (!S.usesMetadata()) |
| return nullptr; |
| |
| auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); |
| if (!Inserted) |
| return GCPI->second.get(); |
| |
| auto Name = S.getName(); |
| |
| for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : |
| GCMetadataPrinterRegistry::entries()) |
| if (Name == GCMetaPrinter.getName()) { |
| std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); |
| GMP->S = &S; |
| GCPI->second = std::move(GMP); |
| return GCPI->second.get(); |
| } |
| |
| report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); |
| } |
| |
| void AsmPrinter::emitStackMaps() { |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| bool NeedsDefault = false; |
| if (MI->begin() == MI->end()) |
| // No GC strategy, use the default format. |
| NeedsDefault = true; |
| else |
| for (const auto &I : *MI) { |
| if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) |
| if (MP->emitStackMaps(SM, *this)) |
| continue; |
| // The strategy doesn't have printer or doesn't emit custom stack maps. |
| // Use the default format. |
| NeedsDefault = true; |
| } |
| |
| if (NeedsDefault) |
| SM.serializeToStackMapSection(); |
| } |
| |
| /// Pin vtable to this file. |
| AsmPrinterHandler::~AsmPrinterHandler() = default; |
| |
| void AsmPrinterHandler::markFunctionEnd() {} |
| |
| // In the binary's "xray_instr_map" section, an array of these function entries |
| // describes each instrumentation point. When XRay patches your code, the index |
| // into this table will be given to your handler as a patch point identifier. |
| void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { |
| auto Kind8 = static_cast<uint8_t>(Kind); |
| Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); |
| Out->emitBinaryData( |
| StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); |
| Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); |
| auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); |
| assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); |
| Out->emitZeros(Padding); |
| } |
| |
| void AsmPrinter::emitXRayTable() { |
| if (Sleds.empty()) |
| return; |
| |
| auto PrevSection = OutStreamer->getCurrentSectionOnly(); |
| const Function &F = MF->getFunction(); |
| MCSection *InstMap = nullptr; |
| MCSection *FnSledIndex = nullptr; |
| const Triple &TT = TM.getTargetTriple(); |
| // Use PC-relative addresses on all targets. |
| if (TT.isOSBinFormatELF()) { |
| auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); |
| auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; |
| StringRef GroupName; |
| if (F.hasComdat()) { |
| Flags |= ELF::SHF_GROUP; |
| GroupName = F.getComdat()->getName(); |
| } |
| InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, |
| Flags, 0, GroupName, F.hasComdat(), |
| MCSection::NonUniqueID, LinkedToSym); |
| |
| if (!TM.Options.XRayOmitFunctionIndex) |
| FnSledIndex = OutContext.getELFSection( |
| "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, |
| GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); |
| } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { |
| InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, |
| SectionKind::getReadOnlyWithRel()); |
| if (!TM.Options.XRayOmitFunctionIndex) |
| FnSledIndex = OutContext.getMachOSection( |
| "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); |
| } else { |
| llvm_unreachable("Unsupported target"); |
| } |
| |
| auto WordSizeBytes = MAI->getCodePointerSize(); |
| |
| // Now we switch to the instrumentation map section. Because this is done |
| // per-function, we are able to create an index entry that will represent the |
| // range of sleds associated with a function. |
| auto &Ctx = OutContext; |
| MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); |
| OutStreamer->switchSection(InstMap); |
| OutStreamer->emitLabel(SledsStart); |
| for (const auto &Sled : Sleds) { |
| MCSymbol *Dot = Ctx.createTempSymbol(); |
| OutStreamer->emitLabel(Dot); |
| OutStreamer->emitValueImpl( |
| MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), |
| MCSymbolRefExpr::create(Dot, Ctx), Ctx), |
| WordSizeBytes); |
| OutStreamer->emitValueImpl( |
| MCBinaryExpr::createSub( |
| MCSymbolRefExpr::create(CurrentFnBegin, Ctx), |
| MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), |
| MCConstantExpr::create(WordSizeBytes, Ctx), |
| Ctx), |
| Ctx), |
| WordSizeBytes); |
| Sled.emit(WordSizeBytes, OutStreamer.get()); |
| } |
| MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); |
| OutStreamer->emitLabel(SledsEnd); |
| |
| // We then emit a single entry in the index per function. We use the symbols |
| // that bound the instrumentation map as the range for a specific function. |
| // Each entry here will be 2 * word size aligned, as we're writing down two |
| // pointers. This should work for both 32-bit and 64-bit platforms. |
| if (FnSledIndex) { |
| OutStreamer->switchSection(FnSledIndex); |
| OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), |
| &getSubtargetInfo()); |
| OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); |
| OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); |
| OutStreamer->switchSection(PrevSection); |
| } |
| Sleds.clear(); |
| } |
| |
| void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, |
| SledKind Kind, uint8_t Version) { |
| const Function &F = MI.getMF()->getFunction(); |
| auto Attr = F.getFnAttribute("function-instrument"); |
| bool LogArgs = F.hasFnAttribute("xray-log-args"); |
| bool AlwaysInstrument = |
| Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; |
| if (Kind == SledKind::FUNCTION_ENTER && LogArgs) |
| Kind = SledKind::LOG_ARGS_ENTER; |
| Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, |
| AlwaysInstrument, &F, Version}); |
| } |
| |
| void AsmPrinter::emitPatchableFunctionEntries() { |
| const Function &F = MF->getFunction(); |
| unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; |
| (void)F.getFnAttribute("patchable-function-prefix") |
| .getValueAsString() |
| .getAsInteger(10, PatchableFunctionPrefix); |
| (void)F.getFnAttribute("patchable-function-entry") |
| .getValueAsString() |
| .getAsInteger(10, PatchableFunctionEntry); |
| if (!PatchableFunctionPrefix && !PatchableFunctionEntry) |
| return; |
| const unsigned PointerSize = getPointerSize(); |
| if (TM.getTargetTriple().isOSBinFormatELF()) { |
| auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; |
| const MCSymbolELF *LinkedToSym = nullptr; |
| StringRef GroupName; |
| |
| // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not |
| // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. |
| if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { |
| Flags |= ELF::SHF_LINK_ORDER; |
| if (F.hasComdat()) { |
| Flags |= ELF::SHF_GROUP; |
| GroupName = F.getComdat()->getName(); |
| } |
| LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); |
| } |
| OutStreamer->switchSection(OutContext.getELFSection( |
| "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, |
| F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); |
| emitAlignment(Align(PointerSize)); |
| OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); |
| } |
| } |
| |
| uint16_t AsmPrinter::getDwarfVersion() const { |
| return OutStreamer->getContext().getDwarfVersion(); |
| } |
| |
| void AsmPrinter::setDwarfVersion(uint16_t Version) { |
| OutStreamer->getContext().setDwarfVersion(Version); |
| } |
| |
| bool AsmPrinter::isDwarf64() const { |
| return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; |
| } |
| |
| unsigned int AsmPrinter::getDwarfOffsetByteSize() const { |
| return dwarf::getDwarfOffsetByteSize( |
| OutStreamer->getContext().getDwarfFormat()); |
| } |
| |
| dwarf::FormParams AsmPrinter::getDwarfFormParams() const { |
| return {getDwarfVersion(), uint8_t(getPointerSize()), |
| OutStreamer->getContext().getDwarfFormat(), |
| doesDwarfUseRelocationsAcrossSections()}; |
| } |
| |
| unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { |
| return dwarf::getUnitLengthFieldByteSize( |
| OutStreamer->getContext().getDwarfFormat()); |
| } |