blob: e839f9e0dfb2efecf764794183640dd65356fb32 [file] [log] [blame]
//===- MemoryLocation.cpp - Memory location descriptions -------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include <optional>
using namespace llvm;
void LocationSize::print(raw_ostream &OS) const {
OS << "LocationSize::";
if (*this == beforeOrAfterPointer())
OS << "beforeOrAfterPointer";
else if (*this == afterPointer())
OS << "afterPointer";
else if (*this == mapEmpty())
OS << "mapEmpty";
else if (*this == mapTombstone())
OS << "mapTombstone";
else if (isPrecise())
OS << "precise(" << getValue() << ')';
else
OS << "upperBound(" << getValue() << ')';
}
MemoryLocation MemoryLocation::get(const LoadInst *LI) {
const auto &DL = LI->getModule()->getDataLayout();
return MemoryLocation(
LI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(LI->getType())),
LI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const StoreInst *SI) {
const auto &DL = SI->getModule()->getDataLayout();
return MemoryLocation(SI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(
SI->getValueOperand()->getType())),
SI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const VAArgInst *VI) {
return MemoryLocation(VI->getPointerOperand(),
LocationSize::afterPointer(), VI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) {
const auto &DL = CXI->getModule()->getDataLayout();
return MemoryLocation(CXI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(
CXI->getCompareOperand()->getType())),
CXI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) {
const auto &DL = RMWI->getModule()->getDataLayout();
return MemoryLocation(RMWI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(
RMWI->getValOperand()->getType())),
RMWI->getAAMetadata());
}
std::optional<MemoryLocation>
MemoryLocation::getOrNone(const Instruction *Inst) {
switch (Inst->getOpcode()) {
case Instruction::Load:
return get(cast<LoadInst>(Inst));
case Instruction::Store:
return get(cast<StoreInst>(Inst));
case Instruction::VAArg:
return get(cast<VAArgInst>(Inst));
case Instruction::AtomicCmpXchg:
return get(cast<AtomicCmpXchgInst>(Inst));
case Instruction::AtomicRMW:
return get(cast<AtomicRMWInst>(Inst));
default:
return std::nullopt;
}
}
MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) {
return getForSource(cast<AnyMemTransferInst>(MTI));
}
MemoryLocation MemoryLocation::getForSource(const AtomicMemTransferInst *MTI) {
return getForSource(cast<AnyMemTransferInst>(MTI));
}
MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) {
assert(MTI->getRawSource() == MTI->getArgOperand(1));
return getForArgument(MTI, 1, nullptr);
}
MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) {
return getForDest(cast<AnyMemIntrinsic>(MI));
}
MemoryLocation MemoryLocation::getForDest(const AtomicMemIntrinsic *MI) {
return getForDest(cast<AnyMemIntrinsic>(MI));
}
MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) {
assert(MI->getRawDest() == MI->getArgOperand(0));
return getForArgument(MI, 0, nullptr);
}
std::optional<MemoryLocation>
MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) {
if (!CB->onlyAccessesArgMemory())
return std::nullopt;
if (CB->hasOperandBundles())
// TODO: remove implementation restriction
return std::nullopt;
Value *UsedV = nullptr;
std::optional<unsigned> UsedIdx;
for (unsigned i = 0; i < CB->arg_size(); i++) {
if (!CB->getArgOperand(i)->getType()->isPointerTy())
continue;
if (CB->onlyReadsMemory(i))
continue;
if (!UsedV) {
// First potentially writing parameter
UsedV = CB->getArgOperand(i);
UsedIdx = i;
continue;
}
UsedIdx = std::nullopt;
if (UsedV != CB->getArgOperand(i))
// Can't describe writing to two distinct locations.
// TODO: This results in an inprecision when two values derived from the
// same object are passed as arguments to the same function.
return std::nullopt;
}
if (!UsedV)
// We don't currently have a way to represent a "does not write" result
// and thus have to be conservative and return unknown.
return std::nullopt;
if (UsedIdx)
return getForArgument(CB, *UsedIdx, &TLI);
return MemoryLocation::getBeforeOrAfter(UsedV, CB->getAAMetadata());
}
MemoryLocation MemoryLocation::getForArgument(const CallBase *Call,
unsigned ArgIdx,
const TargetLibraryInfo *TLI) {
AAMDNodes AATags = Call->getAAMetadata();
const Value *Arg = Call->getArgOperand(ArgIdx);
// We may be able to produce an exact size for known intrinsics.
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
const DataLayout &DL = II->getModule()->getDataLayout();
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::memset:
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memmove:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memory intrinsic");
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
assert(ArgIdx == 1 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::precise(
cast<ConstantInt>(II->getArgOperand(0))->getZExtValue()),
AATags);
case Intrinsic::masked_load:
assert(ArgIdx == 0 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::upperBound(DL.getTypeStoreSize(II->getType())),
AATags);
case Intrinsic::masked_store:
assert(ArgIdx == 1 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::upperBound(
DL.getTypeStoreSize(II->getArgOperand(0)->getType())),
AATags);
case Intrinsic::invariant_end:
// The first argument to an invariant.end is a "descriptor" type (e.g. a
// pointer to a empty struct) which is never actually dereferenced.
if (ArgIdx == 0)
return MemoryLocation(Arg, LocationSize::precise(0), AATags);
assert(ArgIdx == 2 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::precise(
cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()),
AATags);
case Intrinsic::arm_neon_vld1:
assert(ArgIdx == 0 && "Invalid argument index");
// LLVM's vld1 and vst1 intrinsics currently only support a single
// vector register.
return MemoryLocation(
Arg, LocationSize::precise(DL.getTypeStoreSize(II->getType())),
AATags);
case Intrinsic::arm_neon_vst1:
assert(ArgIdx == 0 && "Invalid argument index");
return MemoryLocation(Arg,
LocationSize::precise(DL.getTypeStoreSize(
II->getArgOperand(1)->getType())),
AATags);
}
assert(
!isa<AnyMemTransferInst>(II) &&
"all memory transfer intrinsics should be handled by the switch above");
}
// We can bound the aliasing properties of memset_pattern16 just as we can
// for memcpy/memset. This is particularly important because the
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
// whenever possible.
LibFunc F;
if (TLI && TLI->getLibFunc(*Call, F) && TLI->has(F)) {
switch (F) {
case LibFunc_strcpy:
case LibFunc_strcat:
case LibFunc_strncat:
assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function");
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_memset_chk:
assert(ArgIdx == 0 && "Invalid argument index for memset_chk");
LLVM_FALLTHROUGH;
case LibFunc_memcpy_chk: {
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memcpy_chk");
LocationSize Size = LocationSize::afterPointer();
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
// memset_chk writes at most Len bytes, memcpy_chk reads/writes at most
// Len bytes. They may read/write less, if Len exceeds the specified max
// size and aborts.
Size = LocationSize::upperBound(Len->getZExtValue());
}
return MemoryLocation(Arg, Size, AATags);
}
case LibFunc_strncpy: {
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for strncpy");
LocationSize Size = LocationSize::afterPointer();
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
// strncpy is guaranteed to write Len bytes, but only reads up to Len
// bytes.
Size = ArgIdx == 0 ? LocationSize::precise(Len->getZExtValue())
: LocationSize::upperBound(Len->getZExtValue());
}
return MemoryLocation(Arg, Size, AATags);
}
case LibFunc_memset_pattern16:
case LibFunc_memset_pattern4:
case LibFunc_memset_pattern8:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memset_pattern16");
if (ArgIdx == 1) {
unsigned Size = 16;
if (F == LibFunc_memset_pattern4)
Size = 4;
else if (F == LibFunc_memset_pattern8)
Size = 8;
return MemoryLocation(Arg, LocationSize::precise(Size), AATags);
}
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_bcmp:
case LibFunc_memcmp:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memcmp/bcmp");
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_memchr:
assert((ArgIdx == 0) && "Invalid argument index for memchr");
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_memccpy:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memccpy");
// We only know an upper bound on the number of bytes read/written.
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(3)))
return MemoryLocation(
Arg, LocationSize::upperBound(LenCI->getZExtValue()), AATags);
return MemoryLocation::getAfter(Arg, AATags);
default:
break;
};
}
return MemoryLocation::getBeforeOrAfter(Call->getArgOperand(ArgIdx), AATags);
}