| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements routines for folding instructions into simpler forms |
| // that do not require creating new instructions. This does constant folding |
| // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either |
| // returning a constant ("and i32 %x, 0" -> "0") or an already existing value |
| // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been |
| // simplified: This is usually true and assuming it simplifies the logic (if |
| // they have not been simplified then results are correct but maybe suboptimal). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InstructionSimplify.h" |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/CmpInstAnalysis.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstSimplifyFolder.h" |
| #include "llvm/Analysis/LoopAnalysisManager.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/OverflowInstAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/KnownBits.h" |
| #include <algorithm> |
| #include <optional> |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "instsimplify" |
| |
| enum { RecursionLimit = 3 }; |
| |
| STATISTIC(NumExpand, "Number of expansions"); |
| STATISTIC(NumReassoc, "Number of reassociations"); |
| |
| static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, |
| unsigned); |
| static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); |
| static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, |
| const SimplifyQuery &, unsigned); |
| static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, |
| unsigned); |
| static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, |
| const SimplifyQuery &, unsigned); |
| static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, |
| unsigned); |
| static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, unsigned MaxRecurse); |
| static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); |
| static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, |
| unsigned); |
| static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, |
| unsigned); |
| static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, |
| const SimplifyQuery &, unsigned); |
| static Value *simplifySelectInst(Value *, Value *, Value *, |
| const SimplifyQuery &, unsigned); |
| |
| static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, |
| Value *FalseVal) { |
| BinaryOperator::BinaryOps BinOpCode; |
| if (auto *BO = dyn_cast<BinaryOperator>(Cond)) |
| BinOpCode = BO->getOpcode(); |
| else |
| return nullptr; |
| |
| CmpInst::Predicate ExpectedPred, Pred1, Pred2; |
| if (BinOpCode == BinaryOperator::Or) { |
| ExpectedPred = ICmpInst::ICMP_NE; |
| } else if (BinOpCode == BinaryOperator::And) { |
| ExpectedPred = ICmpInst::ICMP_EQ; |
| } else |
| return nullptr; |
| |
| // %A = icmp eq %TV, %FV |
| // %B = icmp eq %X, %Y (and one of these is a select operand) |
| // %C = and %A, %B |
| // %D = select %C, %TV, %FV |
| // --> |
| // %FV |
| |
| // %A = icmp ne %TV, %FV |
| // %B = icmp ne %X, %Y (and one of these is a select operand) |
| // %C = or %A, %B |
| // %D = select %C, %TV, %FV |
| // --> |
| // %TV |
| Value *X, *Y; |
| if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), |
| m_Specific(FalseVal)), |
| m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || |
| Pred1 != Pred2 || Pred1 != ExpectedPred) |
| return nullptr; |
| |
| if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) |
| return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; |
| |
| return nullptr; |
| } |
| |
| /// For a boolean type or a vector of boolean type, return false or a vector |
| /// with every element false. |
| static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } |
| |
| /// For a boolean type or a vector of boolean type, return true or a vector |
| /// with every element true. |
| static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } |
| |
| /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? |
| static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS) { |
| CmpInst *Cmp = dyn_cast<CmpInst>(V); |
| if (!Cmp) |
| return false; |
| CmpInst::Predicate CPred = Cmp->getPredicate(); |
| Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); |
| if (CPred == Pred && CLHS == LHS && CRHS == RHS) |
| return true; |
| return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && |
| CRHS == LHS; |
| } |
| |
| /// Simplify comparison with true or false branch of select: |
| /// %sel = select i1 %cond, i32 %tv, i32 %fv |
| /// %cmp = icmp sle i32 %sel, %rhs |
| /// Compose new comparison by substituting %sel with either %tv or %fv |
| /// and see if it simplifies. |
| static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, Value *Cond, |
| const SimplifyQuery &Q, unsigned MaxRecurse, |
| Constant *TrueOrFalse) { |
| Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); |
| if (SimplifiedCmp == Cond) { |
| // %cmp simplified to the select condition (%cond). |
| return TrueOrFalse; |
| } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { |
| // It didn't simplify. However, if composed comparison is equivalent |
| // to the select condition (%cond) then we can replace it. |
| return TrueOrFalse; |
| } |
| return SimplifiedCmp; |
| } |
| |
| /// Simplify comparison with true branch of select |
| static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, Value *Cond, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, |
| getTrue(Cond->getType())); |
| } |
| |
| /// Simplify comparison with false branch of select |
| static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, Value *Cond, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, |
| getFalse(Cond->getType())); |
| } |
| |
| /// We know comparison with both branches of select can be simplified, but they |
| /// are not equal. This routine handles some logical simplifications. |
| static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, |
| Value *Cond, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| // If the false value simplified to false, then the result of the compare |
| // is equal to "Cond && TCmp". This also catches the case when the false |
| // value simplified to false and the true value to true, returning "Cond". |
| // Folding select to and/or isn't poison-safe in general; impliesPoison |
| // checks whether folding it does not convert a well-defined value into |
| // poison. |
| if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) |
| if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) |
| return V; |
| // If the true value simplified to true, then the result of the compare |
| // is equal to "Cond || FCmp". |
| if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) |
| if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) |
| return V; |
| // Finally, if the false value simplified to true and the true value to |
| // false, then the result of the compare is equal to "!Cond". |
| if (match(FCmp, m_One()) && match(TCmp, m_Zero())) |
| if (Value *V = simplifyXorInst( |
| Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) |
| return V; |
| return nullptr; |
| } |
| |
| /// Does the given value dominate the specified phi node? |
| static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) |
| // Arguments and constants dominate all instructions. |
| return true; |
| |
| // If we are processing instructions (and/or basic blocks) that have not been |
| // fully added to a function, the parent nodes may still be null. Simply |
| // return the conservative answer in these cases. |
| if (!I->getParent() || !P->getParent() || !I->getFunction()) |
| return false; |
| |
| // If we have a DominatorTree then do a precise test. |
| if (DT) |
| return DT->dominates(I, P); |
| |
| // Otherwise, if the instruction is in the entry block and is not an invoke, |
| // then it obviously dominates all phi nodes. |
| if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && |
| !isa<CallBrInst>(I)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Try to simplify a binary operator of form "V op OtherOp" where V is |
| /// "(B0 opex B1)" by distributing 'op' across 'opex' as |
| /// "(B0 op OtherOp) opex (B1 op OtherOp)". |
| static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, |
| Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| auto *B = dyn_cast<BinaryOperator>(V); |
| if (!B || B->getOpcode() != OpcodeToExpand) |
| return nullptr; |
| Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); |
| Value *L = |
| simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); |
| if (!L) |
| return nullptr; |
| Value *R = |
| simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); |
| if (!R) |
| return nullptr; |
| |
| // Does the expanded pair of binops simplify to the existing binop? |
| if ((L == B0 && R == B1) || |
| (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { |
| ++NumExpand; |
| return B; |
| } |
| |
| // Otherwise, return "L op' R" if it simplifies. |
| Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); |
| if (!S) |
| return nullptr; |
| |
| ++NumExpand; |
| return S; |
| } |
| |
| /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by |
| /// distributing op over op'. |
| static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, |
| Value *R, |
| Instruction::BinaryOps OpcodeToExpand, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) |
| return V; |
| if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) |
| return V; |
| return nullptr; |
| } |
| |
| /// Generic simplifications for associative binary operations. |
| /// Returns the simpler value, or null if none was found. |
| static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, |
| Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); |
| |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| |
| // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = RHS; |
| |
| // Does "B op C" simplify? |
| if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { |
| // It does! Return "A op V" if it simplifies or is already available. |
| // If V equals B then "A op V" is just the LHS. |
| if (V == B) |
| return LHS; |
| // Otherwise return "A op V" if it simplifies. |
| if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { |
| ++NumReassoc; |
| return W; |
| } |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = LHS; |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "A op B" simplify? |
| if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { |
| // It does! Return "V op C" if it simplifies or is already available. |
| // If V equals B then "V op C" is just the RHS. |
| if (V == B) |
| return RHS; |
| // Otherwise return "V op C" if it simplifies. |
| if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { |
| ++NumReassoc; |
| return W; |
| } |
| } |
| } |
| |
| // The remaining transforms require commutativity as well as associativity. |
| if (!Instruction::isCommutative(Opcode)) |
| return nullptr; |
| |
| // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = RHS; |
| |
| // Does "C op A" simplify? |
| if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { |
| // It does! Return "V op B" if it simplifies or is already available. |
| // If V equals A then "V op B" is just the LHS. |
| if (V == A) |
| return LHS; |
| // Otherwise return "V op B" if it simplifies. |
| if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { |
| ++NumReassoc; |
| return W; |
| } |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = LHS; |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { |
| // It does! Return "B op V" if it simplifies or is already available. |
| // If V equals C then "B op V" is just the RHS. |
| if (V == C) |
| return RHS; |
| // Otherwise return "B op V" if it simplifies. |
| if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { |
| ++NumReassoc; |
| return W; |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// In the case of a binary operation with a select instruction as an operand, |
| /// try to simplify the binop by seeing whether evaluating it on both branches |
| /// of the select results in the same value. Returns the common value if so, |
| /// otherwise returns null. |
| static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| SelectInst *SI; |
| if (isa<SelectInst>(LHS)) { |
| SI = cast<SelectInst>(LHS); |
| } else { |
| assert(isa<SelectInst>(RHS) && "No select instruction operand!"); |
| SI = cast<SelectInst>(RHS); |
| } |
| |
| // Evaluate the BinOp on the true and false branches of the select. |
| Value *TV; |
| Value *FV; |
| if (SI == LHS) { |
| TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); |
| FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); |
| } else { |
| TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); |
| FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); |
| } |
| |
| // If they simplified to the same value, then return the common value. |
| // If they both failed to simplify then return null. |
| if (TV == FV) |
| return TV; |
| |
| // If one branch simplified to undef, return the other one. |
| if (TV && Q.isUndefValue(TV)) |
| return FV; |
| if (FV && Q.isUndefValue(FV)) |
| return TV; |
| |
| // If applying the operation did not change the true and false select values, |
| // then the result of the binop is the select itself. |
| if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) |
| return SI; |
| |
| // If one branch simplified and the other did not, and the simplified |
| // value is equal to the unsimplified one, return the simplified value. |
| // For example, select (cond, X, X & Z) & Z -> X & Z. |
| if ((FV && !TV) || (TV && !FV)) { |
| // Check that the simplified value has the form "X op Y" where "op" is the |
| // same as the original operation. |
| Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); |
| if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { |
| // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". |
| // We already know that "op" is the same as for the simplified value. See |
| // if the operands match too. If so, return the simplified value. |
| Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); |
| Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; |
| Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; |
| if (Simplified->getOperand(0) == UnsimplifiedLHS && |
| Simplified->getOperand(1) == UnsimplifiedRHS) |
| return Simplified; |
| if (Simplified->isCommutative() && |
| Simplified->getOperand(1) == UnsimplifiedLHS && |
| Simplified->getOperand(0) == UnsimplifiedRHS) |
| return Simplified; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// In the case of a comparison with a select instruction, try to simplify the |
| /// comparison by seeing whether both branches of the select result in the same |
| /// value. Returns the common value if so, otherwise returns null. |
| /// For example, if we have: |
| /// %tmp = select i1 %cmp, i32 1, i32 2 |
| /// %cmp1 = icmp sle i32 %tmp, 3 |
| /// We can simplify %cmp1 to true, because both branches of select are |
| /// less than 3. We compose new comparison by substituting %tmp with both |
| /// branches of select and see if it can be simplified. |
| static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| // Make sure the select is on the LHS. |
| if (!isa<SelectInst>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); |
| SelectInst *SI = cast<SelectInst>(LHS); |
| Value *Cond = SI->getCondition(); |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| |
| // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. |
| // Does "cmp TV, RHS" simplify? |
| Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); |
| if (!TCmp) |
| return nullptr; |
| |
| // Does "cmp FV, RHS" simplify? |
| Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); |
| if (!FCmp) |
| return nullptr; |
| |
| // If both sides simplified to the same value, then use it as the result of |
| // the original comparison. |
| if (TCmp == FCmp) |
| return TCmp; |
| |
| // The remaining cases only make sense if the select condition has the same |
| // type as the result of the comparison, so bail out if this is not so. |
| if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) |
| return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); |
| |
| return nullptr; |
| } |
| |
| /// In the case of a binary operation with an operand that is a PHI instruction, |
| /// try to simplify the binop by seeing whether evaluating it on the incoming |
| /// phi values yields the same result for every value. If so returns the common |
| /// value, otherwise returns null. |
| static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| PHINode *PI; |
| if (isa<PHINode>(LHS)) { |
| PI = cast<PHINode>(LHS); |
| // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| if (!valueDominatesPHI(RHS, PI, Q.DT)) |
| return nullptr; |
| } else { |
| assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); |
| PI = cast<PHINode>(RHS); |
| // Bail out if LHS and the phi may be mutually interdependent due to a loop. |
| if (!valueDominatesPHI(LHS, PI, Q.DT)) |
| return nullptr; |
| } |
| |
| // Evaluate the BinOp on the incoming phi values. |
| Value *CommonValue = nullptr; |
| for (Value *Incoming : PI->incoming_values()) { |
| // If the incoming value is the phi node itself, it can safely be skipped. |
| if (Incoming == PI) |
| continue; |
| Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) |
| : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); |
| // If the operation failed to simplify, or simplified to a different value |
| // to previously, then give up. |
| if (!V || (CommonValue && V != CommonValue)) |
| return nullptr; |
| CommonValue = V; |
| } |
| |
| return CommonValue; |
| } |
| |
| /// In the case of a comparison with a PHI instruction, try to simplify the |
| /// comparison by seeing whether comparing with all of the incoming phi values |
| /// yields the same result every time. If so returns the common result, |
| /// otherwise returns null. |
| static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| // Make sure the phi is on the LHS. |
| if (!isa<PHINode>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); |
| PHINode *PI = cast<PHINode>(LHS); |
| |
| // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| if (!valueDominatesPHI(RHS, PI, Q.DT)) |
| return nullptr; |
| |
| // Evaluate the BinOp on the incoming phi values. |
| Value *CommonValue = nullptr; |
| for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { |
| Value *Incoming = PI->getIncomingValue(u); |
| Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); |
| // If the incoming value is the phi node itself, it can safely be skipped. |
| if (Incoming == PI) |
| continue; |
| // Change the context instruction to the "edge" that flows into the phi. |
| // This is important because that is where incoming is actually "evaluated" |
| // even though it is used later somewhere else. |
| Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), |
| MaxRecurse); |
| // If the operation failed to simplify, or simplified to a different value |
| // to previously, then give up. |
| if (!V || (CommonValue && V != CommonValue)) |
| return nullptr; |
| CommonValue = V; |
| } |
| |
| return CommonValue; |
| } |
| |
| static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, |
| Value *&Op0, Value *&Op1, |
| const SimplifyQuery &Q) { |
| if (auto *CLHS = dyn_cast<Constant>(Op0)) { |
| if (auto *CRHS = dyn_cast<Constant>(Op1)) { |
| switch (Opcode) { |
| default: |
| break; |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| if (Q.CxtI != nullptr) |
| return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); |
| } |
| return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); |
| } |
| |
| // Canonicalize the constant to the RHS if this is a commutative operation. |
| if (Instruction::isCommutative(Opcode)) |
| std::swap(Op0, Op1); |
| } |
| return nullptr; |
| } |
| |
| /// Given operands for an Add, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) |
| return C; |
| |
| // X + poison -> poison |
| if (isa<PoisonValue>(Op1)) |
| return Op1; |
| |
| // X + undef -> undef |
| if (Q.isUndefValue(Op1)) |
| return Op1; |
| |
| // X + 0 -> X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // If two operands are negative, return 0. |
| if (isKnownNegation(Op0, Op1)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X + (Y - X) -> Y |
| // (Y - X) + X -> Y |
| // Eg: X + -X -> 0 |
| Value *Y = nullptr; |
| if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || |
| match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) |
| return Y; |
| |
| // X + ~X -> -1 since ~X = -X-1 |
| Type *Ty = Op0->getType(); |
| if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) |
| return Constant::getAllOnesValue(Ty); |
| |
| // add nsw/nuw (xor Y, signmask), signmask --> Y |
| // The no-wrapping add guarantees that the top bit will be set by the add. |
| // Therefore, the xor must be clearing the already set sign bit of Y. |
| if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && |
| match(Op0, m_Xor(m_Value(Y), m_SignMask()))) |
| return Y; |
| |
| // add nuw %x, -1 -> -1, because %x can only be 0. |
| if (IsNUW && match(Op1, m_AllOnes())) |
| return Op1; // Which is -1. |
| |
| /// i1 add -> xor. |
| if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) |
| if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) |
| return V; |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = |
| simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // Threading Add over selects and phi nodes is pointless, so don't bother. |
| // Threading over the select in "A + select(cond, B, C)" means evaluating |
| // "A+B" and "A+C" and seeing if they are equal; but they are equal if and |
| // only if B and C are equal. If B and C are equal then (since we assume |
| // that operands have already been simplified) "select(cond, B, C)" should |
| // have been simplified to the common value of B and C already. Analysing |
| // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly |
| // for threading over phi nodes. |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Query) { |
| return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); |
| } |
| |
| /// Compute the base pointer and cumulative constant offsets for V. |
| /// |
| /// This strips all constant offsets off of V, leaving it the base pointer, and |
| /// accumulates the total constant offset applied in the returned constant. |
| /// It returns zero if there are no constant offsets applied. |
| /// |
| /// This is very similar to stripAndAccumulateConstantOffsets(), except it |
| /// normalizes the offset bitwidth to the stripped pointer type, not the |
| /// original pointer type. |
| static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, |
| bool AllowNonInbounds = false) { |
| assert(V->getType()->isPtrOrPtrVectorTy()); |
| |
| APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); |
| V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); |
| // As that strip may trace through `addrspacecast`, need to sext or trunc |
| // the offset calculated. |
| return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); |
| } |
| |
| /// Compute the constant difference between two pointer values. |
| /// If the difference is not a constant, returns zero. |
| static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, |
| Value *RHS) { |
| APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); |
| APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); |
| |
| // If LHS and RHS are not related via constant offsets to the same base |
| // value, there is nothing we can do here. |
| if (LHS != RHS) |
| return nullptr; |
| |
| // Otherwise, the difference of LHS - RHS can be computed as: |
| // LHS - RHS |
| // = (LHSOffset + Base) - (RHSOffset + Base) |
| // = LHSOffset - RHSOffset |
| Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); |
| if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) |
| Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); |
| return Res; |
| } |
| |
| /// Test if there is a dominating equivalence condition for the |
| /// two operands. If there is, try to reduce the binary operation |
| /// between the two operands. |
| /// Example: Op0 - Op1 --> 0 when Op0 == Op1 |
| static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| // Recursive run it can not get any benefit |
| if (MaxRecurse != RecursionLimit) |
| return nullptr; |
| |
| std::optional<bool> Imp = |
| isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); |
| if (Imp && *Imp) { |
| Type *Ty = Op0->getType(); |
| switch (Opcode) { |
| case Instruction::Sub: |
| case Instruction::Xor: |
| case Instruction::URem: |
| case Instruction::SRem: |
| return Constant::getNullValue(Ty); |
| |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| return ConstantInt::get(Ty, 1); |
| |
| case Instruction::And: |
| case Instruction::Or: |
| // Could be either one - choose Op1 since that's more likely a constant. |
| return Op1; |
| default: |
| break; |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Given operands for a Sub, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) |
| return C; |
| |
| // X - poison -> poison |
| // poison - X -> poison |
| if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) |
| return PoisonValue::get(Op0->getType()); |
| |
| // X - undef -> undef |
| // undef - X -> undef |
| if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) |
| return UndefValue::get(Op0->getType()); |
| |
| // X - 0 -> X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // X - X -> 0 |
| if (Op0 == Op1) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // Is this a negation? |
| if (match(Op0, m_Zero())) { |
| // 0 - X -> 0 if the sub is NUW. |
| if (IsNUW) |
| return Constant::getNullValue(Op0->getType()); |
| |
| KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (Known.Zero.isMaxSignedValue()) { |
| // Op1 is either 0 or the minimum signed value. If the sub is NSW, then |
| // Op1 must be 0 because negating the minimum signed value is undefined. |
| if (IsNSW) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // 0 - X -> X if X is 0 or the minimum signed value. |
| return Op1; |
| } |
| } |
| |
| // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. |
| // For example, (X + Y) - Y -> X; (Y + X) - Y -> X |
| Value *X = nullptr, *Y = nullptr, *Z = Op1; |
| if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z |
| // See if "V === Y - Z" simplifies. |
| if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) |
| // It does! Now see if "X + V" simplifies. |
| if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { |
| // It does, we successfully reassociated! |
| ++NumReassoc; |
| return W; |
| } |
| // See if "V === X - Z" simplifies. |
| if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) |
| // It does! Now see if "Y + V" simplifies. |
| if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { |
| // It does, we successfully reassociated! |
| ++NumReassoc; |
| return W; |
| } |
| } |
| |
| // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. |
| // For example, X - (X + 1) -> -1 |
| X = Op0; |
| if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) |
| // See if "V === X - Y" simplifies. |
| if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) |
| // It does! Now see if "V - Z" simplifies. |
| if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { |
| // It does, we successfully reassociated! |
| ++NumReassoc; |
| return W; |
| } |
| // See if "V === X - Z" simplifies. |
| if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) |
| // It does! Now see if "V - Y" simplifies. |
| if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { |
| // It does, we successfully reassociated! |
| ++NumReassoc; |
| return W; |
| } |
| } |
| |
| // Z - (X - Y) -> (Z - X) + Y if everything simplifies. |
| // For example, X - (X - Y) -> Y. |
| Z = Op0; |
| if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) |
| // See if "V === Z - X" simplifies. |
| if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) |
| // It does! Now see if "V + Y" simplifies. |
| if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { |
| // It does, we successfully reassociated! |
| ++NumReassoc; |
| return W; |
| } |
| |
| // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. |
| if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && |
| match(Op1, m_Trunc(m_Value(Y)))) |
| if (X->getType() == Y->getType()) |
| // See if "V === X - Y" simplifies. |
| if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) |
| // It does! Now see if "trunc V" simplifies. |
| if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), |
| Q, MaxRecurse - 1)) |
| // It does, return the simplified "trunc V". |
| return W; |
| |
| // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). |
| if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) |
| if (Constant *Result = computePointerDifference(Q.DL, X, Y)) |
| return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); |
| |
| // i1 sub -> xor. |
| if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) |
| if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) |
| return V; |
| |
| // Threading Sub over selects and phi nodes is pointless, so don't bother. |
| // Threading over the select in "A - select(cond, B, C)" means evaluating |
| // "A-B" and "A-C" and seeing if they are equal; but they are equal if and |
| // only if B and C are equal. If B and C are equal then (since we assume |
| // that operands have already been simplified) "select(cond, B, C)" should |
| // have been simplified to the common value of B and C already. Analysing |
| // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly |
| // for threading over phi nodes. |
| |
| if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q) { |
| return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); |
| } |
| |
| /// Given operands for a Mul, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) |
| return C; |
| |
| // X * poison -> poison |
| if (isa<PoisonValue>(Op1)) |
| return Op1; |
| |
| // X * undef -> 0 |
| // X * 0 -> 0 |
| if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X * 1 -> X |
| if (match(Op1, m_One())) |
| return Op0; |
| |
| // (X / Y) * Y -> X if the division is exact. |
| Value *X = nullptr; |
| if (Q.IIQ.UseInstrInfo && |
| (match(Op0, |
| m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y |
| match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) |
| return X; |
| |
| if (Op0->getType()->isIntOrIntVectorTy(1)) { |
| // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not |
| // representable). All other cases reduce to 0, so just return 0. |
| if (IsNSW) |
| return ConstantInt::getNullValue(Op0->getType()); |
| |
| // Treat "mul i1" as "and i1". |
| if (MaxRecurse) |
| if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) |
| return V; |
| } |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = |
| simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // Mul distributes over Add. Try some generic simplifications based on this. |
| if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, |
| Instruction::Add, Q, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = |
| threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = |
| threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q) { |
| return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); |
| } |
| |
| /// Check for common or similar folds of integer division or integer remainder. |
| /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). |
| static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, |
| Value *Op1, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); |
| bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); |
| |
| Type *Ty = Op0->getType(); |
| |
| // X / undef -> poison |
| // X % undef -> poison |
| if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) |
| return PoisonValue::get(Ty); |
| |
| // X / 0 -> poison |
| // X % 0 -> poison |
| // We don't need to preserve faults! |
| if (match(Op1, m_Zero())) |
| return PoisonValue::get(Ty); |
| |
| // If any element of a constant divisor fixed width vector is zero or undef |
| // the behavior is undefined and we can fold the whole op to poison. |
| auto *Op1C = dyn_cast<Constant>(Op1); |
| auto *VTy = dyn_cast<FixedVectorType>(Ty); |
| if (Op1C && VTy) { |
| unsigned NumElts = VTy->getNumElements(); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *Elt = Op1C->getAggregateElement(i); |
| if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) |
| return PoisonValue::get(Ty); |
| } |
| } |
| |
| // poison / X -> poison |
| // poison % X -> poison |
| if (isa<PoisonValue>(Op0)) |
| return Op0; |
| |
| // undef / X -> 0 |
| // undef % X -> 0 |
| if (Q.isUndefValue(Op0)) |
| return Constant::getNullValue(Ty); |
| |
| // 0 / X -> 0 |
| // 0 % X -> 0 |
| if (match(Op0, m_Zero())) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X / X -> 1 |
| // X % X -> 0 |
| if (Op0 == Op1) |
| return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); |
| |
| // X / 1 -> X |
| // X % 1 -> 0 |
| // If this is a boolean op (single-bit element type), we can't have |
| // division-by-zero or remainder-by-zero, so assume the divisor is 1. |
| // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. |
| Value *X; |
| if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || |
| (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) |
| return IsDiv ? Op0 : Constant::getNullValue(Ty); |
| |
| // If X * Y does not overflow, then: |
| // X * Y / Y -> X |
| // X * Y % Y -> 0 |
| if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { |
| auto *Mul = cast<OverflowingBinaryOperator>(Op0); |
| // The multiplication can't overflow if it is defined not to, or if |
| // X == A / Y for some A. |
| if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || |
| (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || |
| (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || |
| (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { |
| return IsDiv ? X : Constant::getNullValue(Op0->getType()); |
| } |
| } |
| |
| if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| /// Given a predicate and two operands, return true if the comparison is true. |
| /// This is a helper for div/rem simplification where we return some other value |
| /// when we can prove a relationship between the operands. |
| static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); |
| Constant *C = dyn_cast_or_null<Constant>(V); |
| return (C && C->isAllOnesValue()); |
| } |
| |
| /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer |
| /// to simplify X % Y to X. |
| static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, |
| unsigned MaxRecurse, bool IsSigned) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return false; |
| |
| if (IsSigned) { |
| // |X| / |Y| --> 0 |
| // |
| // We require that 1 operand is a simple constant. That could be extended to |
| // 2 variables if we computed the sign bit for each. |
| // |
| // Make sure that a constant is not the minimum signed value because taking |
| // the abs() of that is undefined. |
| Type *Ty = X->getType(); |
| const APInt *C; |
| if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { |
| // Is the variable divisor magnitude always greater than the constant |
| // dividend magnitude? |
| // |Y| > |C| --> Y < -abs(C) or Y > abs(C) |
| Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); |
| Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); |
| if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || |
| isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) |
| return true; |
| } |
| if (match(Y, m_APInt(C))) { |
| // Special-case: we can't take the abs() of a minimum signed value. If |
| // that's the divisor, then all we have to do is prove that the dividend |
| // is also not the minimum signed value. |
| if (C->isMinSignedValue()) |
| return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); |
| |
| // Is the variable dividend magnitude always less than the constant |
| // divisor magnitude? |
| // |X| < |C| --> X > -abs(C) and X < abs(C) |
| Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); |
| Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); |
| if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && |
| isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) |
| return true; |
| } |
| return false; |
| } |
| |
| // IsSigned == false. |
| |
| // Is the unsigned dividend known to be less than a constant divisor? |
| // TODO: Convert this (and above) to range analysis |
| // ("computeConstantRangeIncludingKnownBits")? |
| const APInt *C; |
| if (match(Y, m_APInt(C)) && |
| computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) |
| return true; |
| |
| // Try again for any divisor: |
| // Is the dividend unsigned less than the divisor? |
| return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); |
| } |
| |
| /// These are simplifications common to SDiv and UDiv. |
| static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, |
| bool IsExact, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) |
| return C; |
| |
| if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If this is an exact divide by a constant, then the dividend (Op0) must have |
| // at least as many trailing zeros as the divisor to divide evenly. If it has |
| // less trailing zeros, then the result must be poison. |
| const APInt *DivC; |
| if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countTrailingZeros()) { |
| KnownBits KnownOp0 = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (KnownOp0.countMaxTrailingZeros() < DivC->countTrailingZeros()) |
| return PoisonValue::get(Op0->getType()); |
| } |
| |
| bool IsSigned = Opcode == Instruction::SDiv; |
| |
| // (X rem Y) / Y -> 0 |
| if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || |
| (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // (X /u C1) /u C2 -> 0 if C1 * C2 overflow |
| ConstantInt *C1, *C2; |
| if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && |
| match(Op1, m_ConstantInt(C2))) { |
| bool Overflow; |
| (void)C1->getValue().umul_ov(C2->getValue(), Overflow); |
| if (Overflow) |
| return Constant::getNullValue(Op0->getType()); |
| } |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| return nullptr; |
| } |
| |
| /// These are simplifications common to SRem and URem. |
| static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) |
| return C; |
| |
| if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // (X % Y) % Y -> X % Y |
| if ((Opcode == Instruction::SRem && |
| match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || |
| (Opcode == Instruction::URem && |
| match(Op0, m_URem(m_Value(), m_Specific(Op1))))) |
| return Op0; |
| |
| // (X << Y) % X -> 0 |
| if (Q.IIQ.UseInstrInfo && |
| ((Opcode == Instruction::SRem && |
| match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || |
| (Opcode == Instruction::URem && |
| match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If X / Y == 0, then X % Y == X. |
| if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) |
| return Op0; |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an SDiv, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| // If two operands are negated and no signed overflow, return -1. |
| if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); |
| } |
| |
| Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q) { |
| return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); |
| } |
| |
| /// Given operands for a UDiv, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); |
| } |
| |
| Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q) { |
| return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an SRem, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| // If the divisor is 0, the result is undefined, so assume the divisor is -1. |
| // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 |
| Value *X; |
| if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) |
| return ConstantInt::getNullValue(Op0->getType()); |
| |
| // If the two operands are negated, return 0. |
| if (isKnownNegation(Op0, Op1)) |
| return ConstantInt::getNullValue(Op0->getType()); |
| |
| return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); |
| } |
| |
| Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); |
| } |
| |
| /// Given operands for a URem, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); |
| } |
| |
| Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); |
| } |
| |
| /// Returns true if a shift by \c Amount always yields poison. |
| static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { |
| Constant *C = dyn_cast<Constant>(Amount); |
| if (!C) |
| return false; |
| |
| // X shift by undef -> poison because it may shift by the bitwidth. |
| if (Q.isUndefValue(C)) |
| return true; |
| |
| // Shifting by the bitwidth or more is poison. This covers scalars and |
| // fixed/scalable vectors with splat constants. |
| const APInt *AmountC; |
| if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) |
| return true; |
| |
| // Try harder for fixed-length vectors: |
| // If all lanes of a vector shift are poison, the whole shift is poison. |
| if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { |
| for (unsigned I = 0, |
| E = cast<FixedVectorType>(C->getType())->getNumElements(); |
| I != E; ++I) |
| if (!isPoisonShift(C->getAggregateElement(I), Q)) |
| return false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Given operands for an Shl, LShr or AShr, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, |
| Value *Op1, bool IsNSW, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) |
| return C; |
| |
| // poison shift by X -> poison |
| if (isa<PoisonValue>(Op0)) |
| return Op0; |
| |
| // 0 shift by X -> 0 |
| if (match(Op0, m_Zero())) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X shift by 0 -> X |
| // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones |
| // would be poison. |
| Value *X; |
| if (match(Op1, m_Zero()) || |
| (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) |
| return Op0; |
| |
| // Fold undefined shifts. |
| if (isPoisonShift(Op1, Q)) |
| return PoisonValue::get(Op0->getType()); |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // If any bits in the shift amount make that value greater than or equal to |
| // the number of bits in the type, the shift is undefined. |
| KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) |
| return PoisonValue::get(Op0->getType()); |
| |
| // If all valid bits in the shift amount are known zero, the first operand is |
| // unchanged. |
| unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); |
| if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) |
| return Op0; |
| |
| // Check for nsw shl leading to a poison value. |
| if (IsNSW) { |
| assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); |
| KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); |
| |
| if (KnownVal.Zero.isSignBitSet()) |
| KnownShl.Zero.setSignBit(); |
| if (KnownVal.One.isSignBitSet()) |
| KnownShl.One.setSignBit(); |
| |
| if (KnownShl.hasConflict()) |
| return PoisonValue::get(Op0->getType()); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an Shl, LShr or AShr, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, |
| Value *Op1, bool IsExact, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Value *V = |
| simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) |
| return V; |
| |
| // X >> X -> 0 |
| if (Op0 == Op1) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // undef >> X -> 0 |
| // undef >> X -> undef (if it's exact) |
| if (Q.isUndefValue(Op0)) |
| return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); |
| |
| // The low bit cannot be shifted out of an exact shift if it is set. |
| // TODO: Generalize by counting trailing zeros (see fold for exact division). |
| if (IsExact) { |
| KnownBits Op0Known = |
| computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); |
| if (Op0Known.One[0]) |
| return Op0; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an Shl, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Value *V = |
| simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) |
| return V; |
| |
| // undef << X -> 0 |
| // undef << X -> undef if (if it's NSW/NUW) |
| if (Q.isUndefValue(Op0)) |
| return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Op0->getType()); |
| |
| // (X >> A) << A -> X |
| Value *X; |
| if (Q.IIQ.UseInstrInfo && |
| match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) |
| return X; |
| |
| // shl nuw i8 C, %x -> C iff C has sign bit set. |
| if (IsNUW && match(Op0, m_Negative())) |
| return Op0; |
| // NOTE: could use computeKnownBits() / LazyValueInfo, |
| // but the cost-benefit analysis suggests it isn't worth it. |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| const SimplifyQuery &Q) { |
| return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an LShr, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, |
| MaxRecurse)) |
| return V; |
| |
| // (X << A) >> A -> X |
| Value *X; |
| if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) |
| return X; |
| |
| // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. |
| // We can return X as we do in the above case since OR alters no bits in X. |
| // SimplifyDemandedBits in InstCombine can do more general optimization for |
| // bit manipulation. This pattern aims to provide opportunities for other |
| // optimizers by supporting a simple but common case in InstSimplify. |
| Value *Y; |
| const APInt *ShRAmt, *ShLAmt; |
| if (match(Op1, m_APInt(ShRAmt)) && |
| match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && |
| *ShRAmt == *ShLAmt) { |
| const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| const unsigned EffWidthY = YKnown.countMaxActiveBits(); |
| if (ShRAmt->uge(EffWidthY)) |
| return X; |
| } |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q) { |
| return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an AShr, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, |
| MaxRecurse)) |
| return V; |
| |
| // -1 >>a X --> -1 |
| // (-1 << X) a>> X --> -1 |
| // Do not return Op0 because it may contain undef elements if it's a vector. |
| if (match(Op0, m_AllOnes()) || |
| match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| // (X << A) >> A -> X |
| Value *X; |
| if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) |
| return X; |
| |
| // Arithmetic shifting an all-sign-bit value is a no-op. |
| unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (NumSignBits == Op0->getType()->getScalarSizeInBits()) |
| return Op0; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, |
| const SimplifyQuery &Q) { |
| return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); |
| } |
| |
| /// Commuted variants are assumed to be handled by calling this function again |
| /// with the parameters swapped. |
| static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, |
| ICmpInst *UnsignedICmp, bool IsAnd, |
| const SimplifyQuery &Q) { |
| Value *X, *Y; |
| |
| ICmpInst::Predicate EqPred; |
| if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || |
| !ICmpInst::isEquality(EqPred)) |
| return nullptr; |
| |
| ICmpInst::Predicate UnsignedPred; |
| |
| Value *A, *B; |
| // Y = (A - B); |
| if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { |
| if (match(UnsignedICmp, |
| m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && |
| ICmpInst::isUnsigned(UnsignedPred)) { |
| // A >=/<= B || (A - B) != 0 <--> true |
| if ((UnsignedPred == ICmpInst::ICMP_UGE || |
| UnsignedPred == ICmpInst::ICMP_ULE) && |
| EqPred == ICmpInst::ICMP_NE && !IsAnd) |
| return ConstantInt::getTrue(UnsignedICmp->getType()); |
| // A </> B && (A - B) == 0 <--> false |
| if ((UnsignedPred == ICmpInst::ICMP_ULT || |
| UnsignedPred == ICmpInst::ICMP_UGT) && |
| EqPred == ICmpInst::ICMP_EQ && IsAnd) |
| return ConstantInt::getFalse(UnsignedICmp->getType()); |
| |
| // A </> B && (A - B) != 0 <--> A </> B |
| // A </> B || (A - B) != 0 <--> (A - B) != 0 |
| if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || |
| UnsignedPred == ICmpInst::ICMP_UGT)) |
| return IsAnd ? UnsignedICmp : ZeroICmp; |
| |
| // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 |
| // A <=/>= B || (A - B) == 0 <--> A <=/>= B |
| if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || |
| UnsignedPred == ICmpInst::ICMP_UGE)) |
| return IsAnd ? ZeroICmp : UnsignedICmp; |
| } |
| |
| // Given Y = (A - B) |
| // Y >= A && Y != 0 --> Y >= A iff B != 0 |
| // Y < A || Y == 0 --> Y < A iff B != 0 |
| if (match(UnsignedICmp, |
| m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { |
| if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && |
| EqPred == ICmpInst::ICMP_NE && |
| isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) |
| return UnsignedICmp; |
| if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && |
| EqPred == ICmpInst::ICMP_EQ && |
| isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) |
| return UnsignedICmp; |
| } |
| } |
| |
| if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && |
| ICmpInst::isUnsigned(UnsignedPred)) |
| ; |
| else if (match(UnsignedICmp, |
| m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && |
| ICmpInst::isUnsigned(UnsignedPred)) |
| UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); |
| else |
| return nullptr; |
| |
| // X > Y && Y == 0 --> Y == 0 iff X != 0 |
| // X > Y || Y == 0 --> X > Y iff X != 0 |
| if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && |
| isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) |
| return IsAnd ? ZeroICmp : UnsignedICmp; |
| |
| // X <= Y && Y != 0 --> X <= Y iff X != 0 |
| // X <= Y || Y != 0 --> Y != 0 iff X != 0 |
| if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && |
| isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) |
| return IsAnd ? UnsignedICmp : ZeroICmp; |
| |
| // The transforms below here are expected to be handled more generally with |
| // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's |
| // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, |
| // these are candidates for removal. |
| |
| // X < Y && Y != 0 --> X < Y |
| // X < Y || Y != 0 --> Y != 0 |
| if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) |
| return IsAnd ? UnsignedICmp : ZeroICmp; |
| |
| // X >= Y && Y == 0 --> Y == 0 |
| // X >= Y || Y == 0 --> X >= Y |
| if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) |
| return IsAnd ? ZeroICmp : UnsignedICmp; |
| |
| // X < Y && Y == 0 --> false |
| if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && |
| IsAnd) |
| return getFalse(UnsignedICmp->getType()); |
| |
| // X >= Y || Y != 0 --> true |
| if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && |
| !IsAnd) |
| return getTrue(UnsignedICmp->getType()); |
| |
| return nullptr; |
| } |
| |
| /// Test if a pair of compares with a shared operand and 2 constants has an |
| /// empty set intersection, full set union, or if one compare is a superset of |
| /// the other. |
| static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool IsAnd) { |
| // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). |
| if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) |
| return nullptr; |
| |
| const APInt *C0, *C1; |
| if (!match(Cmp0->getOperand(1), m_APInt(C0)) || |
| !match(Cmp1->getOperand(1), m_APInt(C1))) |
| return nullptr; |
| |
| auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); |
| auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); |
| |
| // For and-of-compares, check if the intersection is empty: |
| // (icmp X, C0) && (icmp X, C1) --> empty set --> false |
| if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) |
| return getFalse(Cmp0->getType()); |
| |
| // For or-of-compares, check if the union is full: |
| // (icmp X, C0) || (icmp X, C1) --> full set --> true |
| if (!IsAnd && Range0.unionWith(Range1).isFullSet()) |
| return getTrue(Cmp0->getType()); |
| |
| // Is one range a superset of the other? |
| // If this is and-of-compares, take the smaller set: |
| // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 |
| // If this is or-of-compares, take the larger set: |
| // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 |
| if (Range0.contains(Range1)) |
| return IsAnd ? Cmp1 : Cmp0; |
| if (Range1.contains(Range0)) |
| return IsAnd ? Cmp0 : Cmp1; |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool IsAnd) { |
| ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); |
| if (!match(Cmp0->getOperand(1), m_Zero()) || |
| !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) |
| return nullptr; |
| |
| if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) |
| return nullptr; |
| |
| // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". |
| Value *X = Cmp0->getOperand(0); |
| Value *Y = Cmp1->getOperand(0); |
| |
| // If one of the compares is a masked version of a (not) null check, then |
| // that compare implies the other, so we eliminate the other. Optionally, look |
| // through a pointer-to-int cast to match a null check of a pointer type. |
| |
| // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 |
| // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 |
| // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 |
| // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 |
| if (match(Y, m_c_And(m_Specific(X), m_Value())) || |
| match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) |
| return Cmp1; |
| |
| // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 |
| // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 |
| // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 |
| // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 |
| if (match(X, m_c_And(m_Specific(Y), m_Value())) || |
| match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) |
| return Cmp0; |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, |
| const InstrInfoQuery &IIQ) { |
| // (icmp (add V, C0), C1) & (icmp V, C0) |
| ICmpInst::Predicate Pred0, Pred1; |
| const APInt *C0, *C1; |
| Value *V; |
| if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) |
| return nullptr; |
| |
| if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) |
| return nullptr; |
| |
| auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); |
| if (AddInst->getOperand(1) != Op1->getOperand(1)) |
| return nullptr; |
| |
| Type *ITy = Op0->getType(); |
| bool IsNSW = IIQ.hasNoSignedWrap(AddInst); |
| bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); |
| |
| const APInt Delta = *C1 - *C0; |
| if (C0->isStrictlyPositive()) { |
| if (Delta == 2) { |
| if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) |
| return getFalse(ITy); |
| if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) |
| return getFalse(ITy); |
| } |
| if (Delta == 1) { |
| if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) |
| return getFalse(ITy); |
| if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) |
| return getFalse(ITy); |
| } |
| } |
| if (C0->getBoolValue() && IsNUW) { |
| if (Delta == 2) |
| if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) |
| return getFalse(ITy); |
| if (Delta == 1) |
| if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) |
| return getFalse(ITy); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to eliminate compares with signed or unsigned min/max constants. |
| static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool IsAnd) { |
| // Canonicalize an equality compare as Cmp0. |
| if (Cmp1->isEquality()) |
| std::swap(Cmp0, Cmp1); |
| if (!Cmp0->isEquality()) |
| return nullptr; |
| |
| // The non-equality compare must include a common operand (X). Canonicalize |
| // the common operand as operand 0 (the predicate is swapped if the common |
| // operand was operand 1). |
| ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); |
| Value *X = Cmp0->getOperand(0); |
| ICmpInst::Predicate Pred1; |
| bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); |
| if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) |
| return nullptr; |
| if (ICmpInst::isEquality(Pred1)) |
| return nullptr; |
| |
| // The equality compare must be against a constant. Flip bits if we matched |
| // a bitwise not. Convert a null pointer constant to an integer zero value. |
| APInt MinMaxC; |
| const APInt *C; |
| if (match(Cmp0->getOperand(1), m_APInt(C))) |
| MinMaxC = HasNotOp ? ~*C : *C; |
| else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) |
| MinMaxC = APInt::getZero(8); |
| else |
| return nullptr; |
| |
| // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. |
| if (!IsAnd) { |
| Pred0 = ICmpInst::getInversePredicate(Pred0); |
| Pred1 = ICmpInst::getInversePredicate(Pred1); |
| } |
| |
| // Normalize to unsigned compare and unsigned min/max value. |
| // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 |
| if (ICmpInst::isSigned(Pred1)) { |
| Pred1 = ICmpInst::getUnsignedPredicate(Pred1); |
| MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); |
| } |
| |
| // (X != MAX) && (X < Y) --> X < Y |
| // (X == MAX) || (X >= Y) --> X >= Y |
| if (MinMaxC.isMaxValue()) |
| if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) |
| return Cmp1; |
| |
| // (X != MIN) && (X > Y) --> X > Y |
| // (X == MIN) || (X <= Y) --> X <= Y |
| if (MinMaxC.isMinValue()) |
| if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) |
| return Cmp1; |
| |
| return nullptr; |
| } |
| |
| /// Try to simplify and/or of icmp with ctpop intrinsic. |
| static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool IsAnd) { |
| ICmpInst::Predicate Pred0, Pred1; |
| Value *X; |
| const APInt *C; |
| if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), |
| m_APInt(C))) || |
| !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) |
| return nullptr; |
| |
| // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 |
| if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) |
| return Cmp1; |
| // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 |
| if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) |
| return Cmp1; |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, |
| const SimplifyQuery &Q) { |
| if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) |
| return X; |
| if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) |
| return X; |
| if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) |
| return X; |
| |
| if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) |
| return X; |
| if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) |
| return X; |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, |
| const InstrInfoQuery &IIQ) { |
| // (icmp (add V, C0), C1) | (icmp V, C0) |
| ICmpInst::Predicate Pred0, Pred1; |
| const APInt *C0, *C1; |
| Value *V; |
| if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) |
| return nullptr; |
| |
| if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) |
| return nullptr; |
| |
| auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); |
| if (AddInst->getOperand(1) != Op1->getOperand(1)) |
| return nullptr; |
| |
| Type *ITy = Op0->getType(); |
| bool IsNSW = IIQ.hasNoSignedWrap(AddInst); |
| bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); |
| |
| const APInt Delta = *C1 - *C0; |
| if (C0->isStrictlyPositive()) { |
| if (Delta == 2) { |
| if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) |
| return getTrue(ITy); |
| if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) |
| return getTrue(ITy); |
| } |
| if (Delta == 1) { |
| if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) |
| return getTrue(ITy); |
| if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) |
| return getTrue(ITy); |
| } |
| } |
| if (C0->getBoolValue() && IsNUW) { |
| if (Delta == 2) |
| if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) |
| return getTrue(ITy); |
| if (Delta == 1) |
| if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) |
| return getTrue(ITy); |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, |
| const SimplifyQuery &Q) { |
| if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) |
| return X; |
| if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) |
| return X; |
| |
| if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) |
| return X; |
| if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) |
| return X; |
| |
| if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) |
| return X; |
| if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) |
| return X; |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS, |
| FCmpInst *RHS, bool IsAnd) { |
| Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); |
| Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); |
| if (LHS0->getType() != RHS0->getType()) |
| return nullptr; |
| |
| FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || |
| (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { |
| // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y |
| // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X |
| // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y |
| // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X |
| // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y |
| // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X |
| // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y |
| // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X |
| if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || |
| (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) |
| return RHS; |
| |
| // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y |
| // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X |
| // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y |
| // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X |
| // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y |
| // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X |
| // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y |
| // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X |
| if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || |
| (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) |
| return LHS; |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, |
| Value *Op1, bool IsAnd) { |
| // Look through casts of the 'and' operands to find compares. |
| auto *Cast0 = dyn_cast<CastInst>(Op0); |
| auto *Cast1 = dyn_cast<CastInst>(Op1); |
| if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && |
| Cast0->getSrcTy() == Cast1->getSrcTy()) { |
| Op0 = Cast0->getOperand(0); |
| Op1 = Cast1->getOperand(0); |
| } |
| |
| Value *V = nullptr; |
| auto *ICmp0 = dyn_cast<ICmpInst>(Op0); |
| auto *ICmp1 = dyn_cast<ICmpInst>(Op1); |
| if (ICmp0 && ICmp1) |
| V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) |
| : simplifyOrOfICmps(ICmp0, ICmp1, Q); |
| |
| auto *FCmp0 = dyn_cast<FCmpInst>(Op0); |
| auto *FCmp1 = dyn_cast<FCmpInst>(Op1); |
| if (FCmp0 && FCmp1) |
| V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); |
| |
| if (!V) |
| return nullptr; |
| if (!Cast0) |
| return V; |
| |
| // If we looked through casts, we can only handle a constant simplification |
| // because we are not allowed to create a cast instruction here. |
| if (auto *C = dyn_cast<Constant>(V)) |
| return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); |
| |
| return nullptr; |
| } |
| |
| /// Given a bitwise logic op, check if the operands are add/sub with a common |
| /// source value and inverted constant (identity: C - X -> ~(X + ~C)). |
| static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, |
| Instruction::BinaryOps Opcode) { |
| assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); |
| assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); |
| Value *X; |
| Constant *C1, *C2; |
| if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && |
| match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || |
| (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && |
| match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { |
| if (ConstantExpr::getNot(C1) == C2) { |
| // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 |
| // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 |
| // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 |
| Type *Ty = Op0->getType(); |
| return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) |
| : ConstantInt::getAllOnesValue(Ty); |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Given operands for an And, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) |
| return C; |
| |
| // X & poison -> poison |
| if (isa<PoisonValue>(Op1)) |
| return Op1; |
| |
| // X & undef -> 0 |
| if (Q.isUndefValue(Op1)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X & X = X |
| if (Op0 == Op1) |
| return Op0; |
| |
| // X & 0 = 0 |
| if (match(Op1, m_Zero())) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X & -1 = X |
| if (match(Op1, m_AllOnes())) |
| return Op0; |
| |
| // A & ~A = ~A & A = 0 |
| if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // (A | ?) & A = A |
| if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) |
| return Op1; |
| |
| // A & (A | ?) = A |
| if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) |
| return Op0; |
| |
| // (X | Y) & (X | ~Y) --> X (commuted 8 ways) |
| Value *X, *Y; |
| if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && |
| match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) |
| return X; |
| if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && |
| match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) |
| return X; |
| |
| if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) |
| return V; |
| |
| // A mask that only clears known zeros of a shifted value is a no-op. |
| const APInt *Mask; |
| const APInt *ShAmt; |
| if (match(Op1, m_APInt(Mask))) { |
| // If all bits in the inverted and shifted mask are clear: |
| // and (shl X, ShAmt), Mask --> shl X, ShAmt |
| if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && |
| (~(*Mask)).lshr(*ShAmt).isZero()) |
| return Op0; |
| |
| // If all bits in the inverted and shifted mask are clear: |
| // and (lshr X, ShAmt), Mask --> lshr X, ShAmt |
| if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && |
| (~(*Mask)).shl(*ShAmt).isZero()) |
| return Op0; |
| } |
| |
| // If we have a multiplication overflow check that is being 'and'ed with a |
| // check that one of the multipliers is not zero, we can omit the 'and', and |
| // only keep the overflow check. |
| if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) |
| return Op1; |
| if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) |
| return Op0; |
| |
| // A & (-A) = A if A is a power of two or zero. |
| if (match(Op0, m_Neg(m_Specific(Op1))) || |
| match(Op1, m_Neg(m_Specific(Op0)))) { |
| if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, |
| Q.DT)) |
| return Op0; |
| if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, |
| Q.DT)) |
| return Op1; |
| } |
| |
| // This is a similar pattern used for checking if a value is a power-of-2: |
| // (A - 1) & A --> 0 (if A is a power-of-2 or 0) |
| // A & (A - 1) --> 0 (if A is a power-of-2 or 0) |
| if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && |
| isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) |
| return Constant::getNullValue(Op1->getType()); |
| if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && |
| isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) |
| return V; |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = |
| simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // And distributes over Or. Try some generic simplifications based on this. |
| if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, |
| Instruction::Or, Q, MaxRecurse)) |
| return V; |
| |
| // And distributes over Xor. Try some generic simplifications based on this. |
| if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, |
| Instruction::Xor, Q, MaxRecurse)) |
| return V; |
| |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { |
| if (Op0->getType()->isIntOrIntVectorTy(1)) { |
| // A & (A && B) -> A && B |
| if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) |
| return Op1; |
| else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) |
| return Op0; |
| } |
| // If the operation is with the result of a select instruction, check |
| // whether operating on either branch of the select always yields the same |
| // value. |
| if (Value *V = |
| threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| } |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = |
| threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // Assuming the effective width of Y is not larger than A, i.e. all bits |
| // from X and Y are disjoint in (X << A) | Y, |
| // if the mask of this AND op covers all bits of X or Y, while it covers |
| // no bits from the other, we can bypass this AND op. E.g., |
| // ((X << A) | Y) & Mask -> Y, |
| // if Mask = ((1 << effective_width_of(Y)) - 1) |
| // ((X << A) | Y) & Mask -> X << A, |
| // if Mask = ((1 << effective_width_of(X)) - 1) << A |
| // SimplifyDemandedBits in InstCombine can optimize the general case. |
| // This pattern aims to help other passes for a common case. |
| Value *XShifted; |
| if (match(Op1, m_APInt(Mask)) && |
| match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), |
| m_Value(XShifted)), |
| m_Value(Y)))) { |
| const unsigned Width = Op0->getType()->getScalarSizeInBits(); |
| const unsigned ShftCnt = ShAmt->getLimitedValue(Width); |
| const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| const unsigned EffWidthY = YKnown.countMaxActiveBits(); |
| if (EffWidthY <= ShftCnt) { |
| const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| const unsigned EffWidthX = XKnown.countMaxActiveBits(); |
| const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); |
| const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; |
| // If the mask is extracting all bits from X or Y as is, we can skip |
| // this AND op. |
| if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) |
| return Y; |
| if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) |
| return XShifted; |
| } |
| } |
| |
| // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 |
| // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 |
| BinaryOperator *Or; |
| if (match(Op0, m_c_Xor(m_Value(X), |
| m_CombineAnd(m_BinOp(Or), |
| m_c_Or(m_Deferred(X), m_Value(Y))))) && |
| match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) |
| return Constant::getNullValue(Op0->getType()); |
| |
| if (Op0->getType()->isIntOrIntVectorTy(1)) { |
| if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { |
| // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. |
| if (*Implied == true) |
| return Op0; |
| // If Op0 is true implies Op1 is false, then they are not true together. |
| if (*Implied == false) |
| return ConstantInt::getFalse(Op0->getType()); |
| } |
| if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { |
| // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. |
| if (*Implied) |
| return Op1; |
| // If Op1 is true implies Op0 is false, then they are not true together. |
| if (!*Implied) |
| return ConstantInt::getFalse(Op1->getType()); |
| } |
| } |
| |
| if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); |
| } |
| |
| // TODO: Many of these folds could use LogicalAnd/LogicalOr. |
| static Value *simplifyOrLogic(Value *X, Value *Y) { |
| assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); |
| Type *Ty = X->getType(); |
| |
| // X | ~X --> -1 |
| if (match(Y, m_Not(m_Specific(X)))) |
| return ConstantInt::getAllOnesValue(Ty); |
| |
| // X | ~(X & ?) = -1 |
| if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) |
| return ConstantInt::getAllOnesValue(Ty); |
| |
| // X | (X & ?) --> X |
| if (match(Y, m_c_And(m_Specific(X), m_Value()))) |
| return X; |
| |
| Value *A, *B; |
| |
| // (A ^ B) | (A | B) --> A | B |
| // (A ^ B) | (B | A) --> B | A |
| if (match(X, m_Xor(m_Value(A), m_Value(B))) && |
| match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return Y; |
| |
| // ~(A ^ B) | (A | B) --> -1 |
| // ~(A ^ B) | (B | A) --> -1 |
| if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && |
| match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return ConstantInt::getAllOnesValue(Ty); |
| |
| // (A & ~B) | (A ^ B) --> A ^ B |
| // (~B & A) | (A ^ B) --> A ^ B |
| // (A & ~B) | (B ^ A) --> B ^ A |
| // (~B & A) | (B ^ A) --> B ^ A |
| if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && |
| match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) |
| return Y; |
| |
| // (~A ^ B) | (A & B) --> ~A ^ B |
| // (B ^ ~A) | (A & B) --> B ^ ~A |
| // (~A ^ B) | (B & A) --> ~A ^ B |
| // (B ^ ~A) | (B & A) --> B ^ ~A |
| if (match(X, m_c_Xor(m_NotForbidUndef(m_Value(A)), m_Value(B))) && |
| match(Y, m_c_And(m_Specific(A), m_Specific(B)))) |
| return X; |
| |
| // (~A | B) | (A ^ B) --> -1 |
| // (~A | B) | (B ^ A) --> -1 |
| // (B | ~A) | (A ^ B) --> -1 |
| // (B | ~A) | (B ^ A) --> -1 |
| if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && |
| match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) |
| return ConstantInt::getAllOnesValue(Ty); |
| |
| // (~A & B) | ~(A | B) --> ~A |
| // (~A & B) | ~(B | A) --> ~A |
| // (B & ~A) | ~(A | B) --> ~A |
| // (B & ~A) | ~(B | A) --> ~A |
| Value *NotA; |
| if (match(X, |
| m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), |
| m_Value(B))) && |
| match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) |
| return NotA; |
| // The same is true of Logical And |
| // TODO: This could share the logic of the version above if there was a |
| // version of LogicalAnd that allowed more than just i1 types. |
| if (match(X, m_c_LogicalAnd( |
| m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), |
| m_Value(B))) && |
| match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) |
| return NotA; |
| |
| // ~(A ^ B) | (A & B) --> ~(A ^ B) |
| // ~(A ^ B) | (B & A) --> ~(A ^ B) |
| Value *NotAB; |
| if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), |
| m_Value(NotAB))) && |
| match(Y, m_c_And(m_Specific(A), m_Specific(B)))) |
| return NotAB; |
| |
| // ~(A & B) | (A ^ B) --> ~(A & B) |
| // ~(A & B) | (B ^ A) --> ~(A & B) |
| if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), |
| m_Value(NotAB))) && |
| match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) |
| return NotAB; |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an Or, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) |
| return C; |
| |
| // X | poison -> poison |
| if (isa<PoisonValue>(Op1)) |
| return Op1; |
| |
| // X | undef -> -1 |
| // X | -1 = -1 |
| // Do not return Op1 because it may contain undef elements if it's a vector. |
| if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| // X | X = X |
| // X | 0 = X |
| if (Op0 == Op1 || match(Op1, m_Zero())) |
| return Op0; |
| |
| if (Value *R = simplifyOrLogic(Op0, Op1)) |
| return R; |
| if (Value *R = simplifyOrLogic(Op1, Op0)) |
| return R; |
| |
| if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) |
| return V; |
| |
| // Rotated -1 is still -1: |
| // (-1 << X) | (-1 >> (C - X)) --> -1 |
| // (-1 >> X) | (-1 << (C - X)) --> -1 |
| // ...with C <= bitwidth (and commuted variants). |
| Value *X, *Y; |
| if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && |
| match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || |
| (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && |
| match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { |
| const APInt *C; |
| if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || |
| match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && |
| C->ule(X->getType()->getScalarSizeInBits())) { |
| return ConstantInt::getAllOnesValue(X->getType()); |
| } |
| } |
| |
| // A funnel shift (rotate) can be decomposed into simpler shifts. See if we |
| // are mixing in another shift that is redundant with the funnel shift. |
| |
| // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y |
| // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y |
| if (match(Op0, |
| m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && |
| match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) |
| return Op0; |
| if (match(Op1, |
| m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && |
| match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) |
| return Op1; |
| |
| // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y |
| // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y |
| if (match(Op0, |
| m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && |
| match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) |
| return Op0; |
| if (match(Op1, |
| m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && |
| match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) |
| return Op1; |
| |
| if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) |
| return V; |
| |
| // If we have a multiplication overflow check that is being 'and'ed with a |
| // check that one of the multipliers is not zero, we can omit the 'and', and |
| // only keep the overflow check. |
| if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) |
| return Op1; |
| if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) |
| return Op0; |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = |
| simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // Or distributes over And. Try some generic simplifications based on this. |
| if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, |
| Instruction::And, Q, MaxRecurse)) |
| return V; |
| |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { |
| if (Op0->getType()->isIntOrIntVectorTy(1)) { |
| // A | (A || B) -> A || B |
| if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) |
| return Op1; |
| else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) |
| return Op0; |
| } |
| // If the operation is with the result of a select instruction, check |
| // whether operating on either branch of the select always yields the same |
| // value. |
| if (Value *V = |
| threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| } |
| |
| // (A & C1)|(B & C2) |
| Value *A, *B; |
| const APInt *C1, *C2; |
| if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && |
| match(Op1, m_And(m_Value(B), m_APInt(C2)))) { |
| if (*C1 == ~*C2) { |
| // (A & C1)|(B & C2) |
| // If we have: ((V + N) & C1) | (V & C2) |
| // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 |
| // replace with V+N. |
| Value *N; |
| if (C2->isMask() && // C2 == 0+1+ |
| match(A, m_c_Add(m_Specific(B), m_Value(N)))) { |
| // Add commutes, try both ways. |
| if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
| return A; |
| } |
| // Or commutes, try both ways. |
| if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { |
| // Add commutes, try both ways. |
| if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
| return B; |
| } |
| } |
| } |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| if (Op0->getType()->isIntOrIntVectorTy(1)) { |
| if (std::optional<bool> Implied = |
| isImpliedCondition(Op0, Op1, Q.DL, false)) { |
| // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. |
| if (*Implied == false) |
| return Op0; |
| // If Op0 is false implies Op1 is true, then at least one is always true. |
| if (*Implied == true) |
| return ConstantInt::getTrue(Op0->getType()); |
| } |
| if (std::optional<bool> Implied = |
| isImpliedCondition(Op1, Op0, Q.DL, false)) { |
| // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. |
| if (*Implied == false) |
| return Op1; |
| // If Op1 is false implies Op0 is true, then at least one is always true. |
| if (*Implied == true) |
| return ConstantInt::getTrue(Op1->getType()); |
| } |
| } |
| |
| if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); |
| } |
| |
| /// Given operands for a Xor, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) |
| return C; |
| |
| // X ^ poison -> poison |
| if (isa<PoisonValue>(Op1)) |
| return Op1; |
| |
| // A ^ undef -> undef |
| if (Q.isUndefValue(Op1)) |
| return Op1; |
| |
| // A ^ 0 = A |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // A ^ A = 0 |
| if (Op0 == Op1) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // A ^ ~A = ~A ^ A = -1 |
| if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { |
| Value *A, *B; |
| // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. |
| if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && |
| match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return A; |
| |
| // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. |
| // The 'not' op must contain a complete -1 operand (no undef elements for |
| // vector) for the transform to be safe. |
| Value *NotA; |
| if (match(X, |
| m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), |
| m_Value(B))) && |
| match(Y, m_c_And(m_Specific(A), m_Specific(B)))) |
| return NotA; |
| |
| return nullptr; |
| }; |
| if (Value *R = foldAndOrNot(Op0, Op1)) |
| return R; |
| if (Value *R = foldAndOrNot(Op1, Op0)) |
| return R; |
| |
| if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) |
| return V; |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = |
| simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| // Threading Xor over selects and phi nodes is pointless, so don't bother. |
| // Threading over the select in "A ^ select(cond, B, C)" means evaluating |
| // "A^B" and "A^C" and seeing if they are equal; but they are equal if and |
| // only if B and C are equal. If B and C are equal then (since we assume |
| // that operands have already been simplified) "select(cond, B, C)" should |
| // have been simplified to the common value of B and C already. Analysing |
| // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly |
| // for threading over phi nodes. |
| |
| if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); |
| } |
| |
| static Type *getCompareTy(Value *Op) { |
| return CmpInst::makeCmpResultType(Op->getType()); |
| } |
| |
| /// Rummage around inside V looking for something equivalent to the comparison |
| /// "LHS Pred RHS". Return such a value if found, otherwise return null. |
| /// Helper function for analyzing max/min idioms. |
| static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, |
| Value *LHS, Value *RHS) { |
| SelectInst *SI = dyn_cast<SelectInst>(V); |
| if (!SI) |
| return nullptr; |
| CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); |
| if (!Cmp) |
| return nullptr; |
| Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); |
| if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) |
| return Cmp; |
| if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && |
| LHS == CmpRHS && RHS == CmpLHS) |
| return Cmp; |
| return nullptr; |
| } |
| |
| /// Return true if the underlying object (storage) must be disjoint from |
| /// storage returned by any noalias return call. |
| static bool isAllocDisjoint(const Value *V) { |
| // For allocas, we consider only static ones (dynamic |
| // allocas might be transformed into calls to malloc not simultaneously |
| // live with the compared-to allocation). For globals, we exclude symbols |
| // that might be resolve lazily to symbols in another dynamically-loaded |
| // library (and, thus, could be malloc'ed by the implementation). |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) |
| return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || |
| GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && |
| !GV->isThreadLocal(); |
| if (const Argument *A = dyn_cast<Argument>(V)) |
| return A->hasByValAttr(); |
| return false; |
| } |
| |
| /// Return true if V1 and V2 are each the base of some distict storage region |
| /// [V, object_size(V)] which do not overlap. Note that zero sized regions |
| /// *are* possible, and that zero sized regions do not overlap with any other. |
| static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { |
| // Global variables always exist, so they always exist during the lifetime |
| // of each other and all allocas. Global variables themselves usually have |
| // non-overlapping storage, but since their addresses are constants, the |
| // case involving two globals does not reach here and is instead handled in |
| // constant folding. |
| // |
| // Two different allocas usually have different addresses... |
| // |
| // However, if there's an @llvm.stackrestore dynamically in between two |
| // allocas, they may have the same address. It's tempting to reduce the |
| // scope of the problem by only looking at *static* allocas here. That would |
| // cover the majority of allocas while significantly reducing the likelihood |
| // of having an @llvm.stackrestore pop up in the middle. However, it's not |
| // actually impossible for an @llvm.stackrestore to pop up in the middle of |
| // an entry block. Also, if we have a block that's not attached to a |
| // function, we can't tell if it's "static" under the current definition. |
| // Theoretically, this problem could be fixed by creating a new kind of |
| // instruction kind specifically for static allocas. Such a new instruction |
| // could be required to be at the top of the entry block, thus preventing it |
| // from being subject to a @llvm.stackrestore. Instcombine could even |
| // convert regular allocas into these special allocas. It'd be nifty. |
| // However, until then, this problem remains open. |
| // |
| // So, we'll assume that two non-empty allocas have different addresses |
| // for now. |
| auto isByValArg = [](const Value *V) { |
| const Argument *A = dyn_cast<Argument>(V); |
| return A && A->hasByValAttr(); |
| }; |
| |
| // Byval args are backed by store which does not overlap with each other, |
| // allocas, or globals. |
| if (isByValArg(V1)) |
| return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); |
| if (isByValArg(V2)) |
| return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); |
| |
| return isa<AllocaInst>(V1) && |
| (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); |
| } |
| |
| // A significant optimization not implemented here is assuming that alloca |
| // addresses are not equal to incoming argument values. They don't *alias*, |
| // as we say, but that doesn't mean they aren't equal, so we take a |
| // conservative approach. |
| // |
| // This is inspired in part by C++11 5.10p1: |
| // "Two pointers of the same type compare equal if and only if they are both |
| // null, both point to the same function, or both represent the same |
| // address." |
| // |
| // This is pretty permissive. |
| // |
| // It's also partly due to C11 6.5.9p6: |
| // "Two pointers compare equal if and only if both are null pointers, both are |
| // pointers to the same object (including a pointer to an object and a |
| // subobject at its beginning) or function, both are pointers to one past the |
| // last element of the same array object, or one is a pointer to one past the |
| // end of one array object and the other is a pointer to the start of a |
| // different array object that happens to immediately follow the first array |
| // object in the address space.) |
| // |
| // C11's version is more restrictive, however there's no reason why an argument |
| // couldn't be a one-past-the-end value for a stack object in the caller and be |
| // equal to the beginning of a stack object in the callee. |
| // |
| // If the C and C++ standards are ever made sufficiently restrictive in this |
| // area, it may be possible to update LLVM's semantics accordingly and reinstate |
| // this optimization. |
| static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q) { |
| const DataLayout &DL = Q.DL; |
| const TargetLibraryInfo *TLI = Q.TLI; |
| const DominatorTree *DT = Q.DT; |
| const Instruction *CxtI = Q.CxtI; |
| const InstrInfoQuery &IIQ = Q.IIQ; |
| |
| // First, skip past any trivial no-ops. |
| LHS = LHS->stripPointerCasts(); |
| RHS = RHS->stripPointerCasts(); |
| |
| // A non-null pointer is not equal to a null pointer. |
| if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && |
| llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, |
| IIQ.UseInstrInfo)) |
| return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); |
| |
| // We can only fold certain predicates on pointer comparisons. |
| switch (Pred) { |
| default: |
| return nullptr; |
| |
| // Equality comparisons are easy to fold. |
| case CmpInst::ICMP_EQ: |
| case CmpInst::ICMP_NE: |
| break; |
| |
| // We can only handle unsigned relational comparisons because 'inbounds' on |
| // a GEP only protects against unsigned wrapping. |
| case CmpInst::ICMP_UGT: |
| case CmpInst::ICMP_UGE: |
| case CmpInst::ICMP_ULT: |
| case CmpInst::ICMP_ULE: |
| // However, we have to switch them to their signed variants to handle |
| // negative indices from the base pointer. |
| Pred = ICmpInst::getSignedPredicate(Pred); |
| break; |
| } |
| |
| // Strip off any constant offsets so that we can reason about them. |
| // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets |
| // here and compare base addresses like AliasAnalysis does, however there are |
| // numerous hazards. AliasAnalysis and its utilities rely on special rules |
| // governing loads and stores which don't apply to icmps. Also, AliasAnalysis |
| // doesn't need to guarantee pointer inequality when it says NoAlias. |
| |
| // Even if an non-inbounds GEP occurs along the path we can still optimize |
| // equality comparisons concerning the result. |
| bool AllowNonInbounds = ICmpInst::isEquality(Pred); |
| APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); |
| APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); |
| |
| // If LHS and RHS are related via constant offsets to the same base |
| // value, we can replace it with an icmp which just compares the offsets. |
| if (LHS == RHS) |
| return ConstantInt::get(getCompareTy(LHS), |
| ICmpInst::compare(LHSOffset, RHSOffset, Pred)); |
| |
| // Various optimizations for (in)equality comparisons. |
| if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { |
| // Different non-empty allocations that exist at the same time have |
| // different addresses (if the program can tell). If the offsets are |
| // within the bounds of their allocations (and not one-past-the-end! |
| // so we can't use inbounds!), and their allocations aren't the same, |
| // the pointers are not equal. |
| if (haveNonOverlappingStorage(LHS, RHS)) { |
| uint64_t LHSSize, RHSSize; |
| ObjectSizeOpts Opts; |
| Opts.EvalMode = ObjectSizeOpts::Mode::Min; |
| auto *F = [](Value *V) -> Function * { |
| if (auto *I = dyn_cast<Instruction>(V)) |
| return I->getFunction(); |
| if (auto *A = dyn_cast<Argument>(V)) |
| return A->getParent(); |
| return nullptr; |
| }(LHS); |
| Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; |
| if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && |
| getObjectSize(RHS, RHSSize, DL, TLI, Opts) && |
| !LHSOffset.isNegative() && !RHSOffset.isNegative() && |
| LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { |
| return ConstantInt::get(getCompareTy(LHS), |
| !CmpInst::isTrueWhenEqual(Pred)); |
| } |
| } |
| |
| // If one side of the equality comparison must come from a noalias call |
| // (meaning a system memory allocation function), and the other side must |
| // come from a pointer that cannot overlap with dynamically-allocated |
| // memory within the lifetime of the current function (allocas, byval |
| // arguments, globals), then determine the comparison result here. |
| SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; |
| getUnderlyingObjects(LHS, LHSUObjs); |
| getUnderlyingObjects(RHS, RHSUObjs); |
| |
| // Is the set of underlying objects all noalias calls? |
| auto IsNAC = [](ArrayRef<const Value *> Objects) { |
| return all_of(Objects, isNoAliasCall); |
| }; |
| |
| // Is the set of underlying objects all things which must be disjoint from |
| // noalias calls. We assume that indexing from such disjoint storage |
| // into the heap is undefined, and thus offsets can be safely ignored. |
| auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { |
| return all_of(Objects, ::isAllocDisjoint); |
| }; |
| |
| if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || |
| (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) |
| return ConstantInt::get(getCompareTy(LHS), |
| !CmpInst::isTrueWhenEqual(Pred)); |
| |
| // Fold comparisons for non-escaping pointer even if the allocation call |
| // cannot be elided. We cannot fold malloc comparison to null. Also, the |
| // dynamic allocation call could be either of the operands. Note that |
| // the other operand can not be based on the alloc - if it were, then |
| // the cmp itself would be a capture. |
| Value *MI = nullptr; |
| if (isAllocLikeFn(LHS, TLI) && |
| llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) |
| MI = LHS; |
| else if (isAllocLikeFn(RHS, TLI) && |
| llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) |
| MI = RHS; |
| // FIXME: We should also fold the compare when the pointer escapes, but the |
| // compare dominates the pointer escape |
| if (MI && !PointerMayBeCaptured(MI, true, true)) |
| return ConstantInt::get(getCompareTy(LHS), |
| CmpInst::isFalseWhenEqual(Pred)); |
| } |
| |
| // Otherwise, fail. |
| return nullptr; |
| } |
| |
| /// Fold an icmp when its operands have i1 scalar type. |
| static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q) { |
| Type *ITy = getCompareTy(LHS); // The return type. |
| Type *OpTy = LHS->getType(); // The operand type. |
| if (!OpTy->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| // A boolean compared to true/false can be reduced in 14 out of the 20 |
| // (10 predicates * 2 constants) possible combinations. The other |
| // 6 cases require a 'not' of the LHS. |
| |
| auto ExtractNotLHS = [](Value *V) -> Value * { |
| Value *X; |
| if (match(V, m_Not(m_Value(X)))) |
| return X; |
| return nullptr; |
| }; |
| |
| if (match(RHS, m_Zero())) { |
| switch (Pred) { |
| case CmpInst::ICMP_NE: // X != 0 -> X |
| case CmpInst::ICMP_UGT: // X >u 0 -> X |
| case CmpInst::ICMP_SLT: // X <s 0 -> X |
| return LHS; |
| |
| case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X |
| case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X |
| case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X |
| if (Value *X = ExtractNotLHS(LHS)) |
| return X; |
| break; |
| |
| case CmpInst::ICMP_ULT: // X <u 0 -> false |
| case CmpInst::ICMP_SGT: // X >s 0 -> false |
| return getFalse(ITy); |
| |
| case CmpInst::ICMP_UGE: // X >=u 0 -> true |
| case CmpInst::ICMP_SLE: // X <=s 0 -> true |
| return getTrue(ITy); |
| |
| default: |
| break; |
| } |
| } else if (match(RHS, m_One())) { |
| switch (Pred) { |
| case CmpInst::ICMP_EQ: // X == 1 -> X |
| case CmpInst::ICMP_UGE: // X >=u 1 -> X |
| case CmpInst::ICMP_SLE: // X <=s -1 -> X |
| return LHS; |
| |
| case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X |
| case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X |
| case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X |
| if (Value *X = ExtractNotLHS(LHS)) |
| return X; |
| break; |
| |
| case CmpInst::ICMP_UGT: // X >u 1 -> false |
| case CmpInst::ICMP_SLT: // X <s -1 -> false |
| return getFalse(ITy); |
| |
| case CmpInst::ICMP_ULE: // X <=u 1 -> true |
| case CmpInst::ICMP_SGE: // X >=s -1 -> true |
| return getTrue(ITy); |
| |
| default: |
| break; |
| } |
| } |
| |
| switch (Pred) { |
| default: |
| break; |
| case ICmpInst::ICMP_UGE: |
| if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) |
| return getTrue(ITy); |
| break; |
| case ICmpInst::ICMP_SGE: |
| /// For signed comparison, the values for an i1 are 0 and -1 |
| /// respectively. This maps into a truth table of: |
| /// LHS | RHS | LHS >=s RHS | LHS implies RHS |
| /// 0 | 0 | 1 (0 >= 0) | 1 |
| /// 0 | 1 | 1 (0 >= -1) | 1 |
| /// 1 | 0 | 0 (-1 >= 0) | 0 |
| /// 1 | 1 | 1 (-1 >= -1) | 1 |
| if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) |
| return getTrue(ITy); |
| break; |
| case ICmpInst::ICMP_ULE: |
| if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) |
| return getTrue(ITy); |
| break; |
| case ICmpInst::ICMP_SLE: |
| /// SLE follows the same logic as SGE with the LHS and RHS swapped. |
| if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) |
| return getTrue(ITy); |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try hard to fold icmp with zero RHS because this is a common case. |
| static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q) { |
| if (!match(RHS, m_Zero())) |
| return nullptr; |
| |
| Type *ITy = getCompareTy(LHS); // The return type. |
| switch (Pred) { |
| default: |
| llvm_unreachable("Unknown ICmp predicate!"); |
| case ICmpInst::ICMP_ULT: |
| return getFalse(ITy); |
| case ICmpInst::ICMP_UGE: |
| return getTrue(ITy); |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_ULE: |
| if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) |
| return getFalse(ITy); |
| break; |
| case ICmpInst::ICMP_NE: |
| case ICmpInst::ICMP_UGT: |
| if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) |
| return getTrue(ITy); |
| break; |
| case ICmpInst::ICMP_SLT: { |
| KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (LHSKnown.isNegative()) |
| return getTrue(ITy); |
| if (LHSKnown.isNonNegative()) |
| return getFalse(ITy); |
| break; |
| } |
| case ICmpInst::ICMP_SLE: { |
| KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (LHSKnown.isNegative()) |
| return getTrue(ITy); |
| if (LHSKnown.isNonNegative() && |
| isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
| return getFalse(ITy); |
| break; |
| } |
| case ICmpInst::ICMP_SGE: { |
| KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (LHSKnown.isNegative()) |
| return getFalse(ITy); |
| if (LHSKnown.isNonNegative()) |
| return getTrue(ITy); |
| break; |
| } |
| case ICmpInst::ICMP_SGT: { |
| KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (LHSKnown.isNegative()) |
| return getFalse(ITy); |
| if (LHSKnown.isNonNegative() && |
| isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
| return getTrue(ITy); |
| break; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const InstrInfoQuery &IIQ) { |
| Type *ITy = getCompareTy(RHS); // The return type. |
| |
| Value *X; |
| // Sign-bit checks can be optimized to true/false after unsigned |
| // floating-point casts: |
| // icmp slt (bitcast (uitofp X)), 0 --> false |
| // icmp sgt (bitcast (uitofp X)), -1 --> true |
| if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { |
| if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) |
| return ConstantInt::getFalse(ITy); |
| if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) |
| return ConstantInt::getTrue(ITy); |
| } |
| |
| const APInt *C; |
| if (!match(RHS, m_APIntAllowUndef(C))) |
| return nullptr; |
| |
| // Rule out tautological comparisons (eg., ult 0 or uge 0). |
| ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); |
| if (RHS_CR.isEmptySet()) |
| return ConstantInt::getFalse(ITy); |
| if (RHS_CR.isFullSet()) |
| return ConstantInt::getTrue(ITy); |
| |
| ConstantRange LHS_CR = |
| computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); |
| if (!LHS_CR.isFullSet()) { |
| if (RHS_CR.contains(LHS_CR)) |
| return ConstantInt::getTrue(ITy); |
| if (RHS_CR.inverse().contains(LHS_CR)) |
| return ConstantInt::getFalse(ITy); |
| } |
| |
| // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) |
| // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) |
| const APInt *MulC; |
| if (ICmpInst::isEquality(Pred) && |
| ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && |
| *MulC != 0 && C->urem(*MulC) != 0) || |
| (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && |
| *MulC != 0 && C->srem(*MulC) != 0))) |
| return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, |
| BinaryOperator *LBO, Value *RHS, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| Type *ITy = getCompareTy(RHS); // The return type. |
| |
| Value *Y = nullptr; |
| // icmp pred (or X, Y), X |
| if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { |
| if (Pred == ICmpInst::ICMP_ULT) |
| return getFalse(ITy); |
| if (Pred == ICmpInst::ICMP_UGE) |
| return getTrue(ITy); |
| |
| if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { |
| KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (RHSKnown.isNonNegative() && YKnown.isNegative()) |
| return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); |
| if (RHSKnown.isNegative() || YKnown.isNonNegative()) |
| return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); |
| } |
| } |
| |
| // icmp pred (and X, Y), X |
| if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { |
| if (Pred == ICmpInst::ICMP_UGT) |
| return getFalse(ITy); |
| if (Pred == ICmpInst::ICMP_ULE) |
| return getTrue(ITy); |
| } |
| |
| // icmp pred (urem X, Y), Y |
| if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { |
| switch (Pred) { |
| default: |
| break; |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: { |
| KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (!Known.isNonNegative()) |
| break; |
| [[fallthrough]]; |
| } |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| return getFalse(ITy); |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: { |
| KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); |
| if (!Known.isNonNegative()) |
| break; |
| [[fallthrough]]; |
| } |
| case ICmpInst::ICMP_NE: |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| return getTrue(ITy); |
| } |
| } |
| |
| // icmp pred (urem X, Y), X |
| if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { |
| if (Pred == ICmpInst::ICMP_ULE) |
| return getTrue(ITy); |
| if (Pred == ICmpInst::ICMP_UGT) |
| return getFalse(ITy); |
| } |
| |
| // x >>u y <=u x --> true. |
| // x >>u y >u x --> false. |
| // x udiv y <=u x --> true. |
| // x udiv y >u x --> false. |
| if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || |
| match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { |
| // icmp pred (X op Y), X |
| if (Pred == ICmpInst::ICMP_UGT) |
| return getFalse(ITy); |
| if (Pred == ICmpInst::ICMP_ULE) |
| return getTrue(ITy); |
| } |
| |
| // If x is nonzero: |
| // x >>u C <u x --> true for C != 0. |
| // x >>u C != x --> true for C != 0. |
| // x >>u C >=u x --> false for C != 0. |
| // x >>u C == x --> false for C != 0. |
| // x udiv C <u x --> true for C != 1. |
| // x udiv C != x --> true for C != 1. |
| // x udiv C >=u x --> false for C != 1. |
| // x udiv C == x --> false for C != 1. |
| // TODO: allow non-constant shift amount/divisor |
| const APInt *C; |
| if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || |
| (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { |
| if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { |
| switch (Pred) { |
| default: |
| break; |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_UGE: |
| return getFalse(ITy); |
| case ICmpInst::ICMP_NE: |
| case ICmpInst::ICMP_ULT: |
| return getTrue(ITy); |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_ULE: |
| // UGT/ULE are handled by the more general case just above |
| llvm_unreachable("Unexpected UGT/ULE, should have been handled"); |
| } |
| } |
| } |
| |
| // (x*C1)/C2 <= x for C1 <= C2. |
| // This holds even if the multiplication overflows: Assume that x != 0 and |
| // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and |
| // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. |
| // |
| // Additionally, either the multiplication and division might be represented |
| // as shifts: |
| // (x*C1)>>C2 <= x for C1 < 2**C2. |
| // (x<<C1)/C2 <= x for 2**C1 < C2. |
| const APInt *C1, *C2; |
| if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && |
| C1->ule(*C2)) || |
| (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && |
| C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || |
| (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && |
| (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { |
| if (Pred == ICmpInst::ICMP_UGT) |
| return getFalse(ITy); |
| if (Pred == ICmpInst::ICMP_ULE) |
| return getTrue(ITy); |
| } |
| |
| // (sub C, X) == X, C is odd --> false |
| // (sub C, X) != X, C is odd --> true |
| if (match(LBO, m_Sub(m_APIntAllowUndef(C), m_Specific(RHS))) && |
| (*C & 1) == 1 && ICmpInst::isEquality(Pred)) |
| return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); |
| |
| return nullptr; |
| } |
| |
| // If only one of the icmp's operands has NSW flags, try to prove that: |
| // |
| // icmp slt (x + C1), (x +nsw C2) |
| // |
| // is equivalent to: |
| // |
| // icmp slt C1, C2 |
| // |
| // which is true if x + C2 has the NSW flags set and: |
| // *) C1 < C2 && C1 >= 0, or |
| // *) C2 < C1 && C1 <= 0. |
| // |
| static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS) { |
| // TODO: only support icmp slt for now. |
| if (Pred != CmpInst::ICMP_SLT) |
| return false; |
| |
| // Canonicalize nsw add as RHS. |
| if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) |
| std::swap(LHS, RHS); |
| if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) |
| return false; |
| |
| Value *X; |
| const APInt *C1, *C2; |
| if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || |
| !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) |
| return false; |
| |
| return (C1->slt(*C2) && C1->isNonNegative()) || |
| (C2->slt(*C1) && C1->isNonPositive()); |
| } |
| |
| /// TODO: A large part of this logic is duplicated in InstCombine's |
| /// foldICmpBinOp(). We should be able to share that and avoid the code |
| /// duplication. |
| static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); |
| if (MaxRecurse && (LBO || RBO)) { |
| // Analyze the case when either LHS or RHS is an add instruction. |
| Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; |
| // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). |
| bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; |
| if (LBO && LBO->getOpcode() == Instruction::Add) { |
| A = LBO->getOperand(0); |
| B = LBO->getOperand(1); |
| NoLHSWrapProblem = |
| ICmpInst::isEquality(Pred) || |
| (CmpInst::isUnsigned(Pred) && |
| Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || |
| (CmpInst::isSigned(Pred) && |
| Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); |
| } |
| if (RBO && RBO->getOpcode() == Instruction::Add) { |
| C = RBO->getOperand(0); |
| D = RBO->getOperand(1); |
| NoRHSWrapProblem = |
| ICmpInst::isEquality(Pred) || |
| (CmpInst::isUnsigned(Pred) && |
| Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || |
| (CmpInst::isSigned(Pred) && |
| Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); |
| } |
| |
| // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. |
| if ((A == RHS || B == RHS) && NoLHSWrapProblem) |
| if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, |
| Constant::getNullValue(RHS->getType()), Q, |
| MaxRecurse - 1)) |
| return V; |
| |
| // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. |
| if ((C == LHS || D == LHS) && NoRHSWrapProblem) |
| if (Value *V = |
| simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), |
| C == LHS ? D : C, Q, MaxRecurse - 1)) |
| return V; |
| |
| // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. |
| bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || |
| trySimplifyICmpWithAdds(Pred, LHS, RHS); |
| if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { |
| // Determine Y and Z in the form icmp (X+Y), (X+Z). |
| Value *Y, *Z; |
| if (A == C) { |
| // C + B == C + D -> B == D |
| Y = B; |
| Z = D; |
| } else if (A == D) { |
| // D + B == C + D -> B == C |
| Y = B; |
| Z = C; |
| } else if (B == C) { |
| // A + C == C + D -> A == D |
| Y = A; |
| Z = D; |
| } else { |
| assert(B == D); |
| // A + D == C + D -> A == C |
| Y = A; |
| Z = C; |
| } |
| if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) |
| return V; |
| } |
| } |
| |
| if (LBO) |
| if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) |
| return V; |
| |
| if (RBO) |
| if (Value *V = simplifyICmpWithBinOpOnLHS( |
| ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) |
| return V; |
| |
| // 0 - (zext X) pred C |
| if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { |
| const APInt *C; |
| if (match(RHS, m_APInt(C))) { |
| if (C->isStrictlyPositive()) { |
| if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) |
| return ConstantInt::getTrue(getCompareTy(RHS)); |
| if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) |
| return ConstantInt::getFalse(getCompareTy(RHS)); |
| } |
| if (C->isNonNegative()) { |
| if (Pred == ICmpInst::ICMP_SLE) |
| return ConstantInt::getTrue(getCompareTy(RHS)); |
| if (Pred == ICmpInst::ICMP_SGT) |
| return ConstantInt::getFalse(getCompareTy(RHS)); |
| } |
| } |
| } |
| |
| // If C2 is a power-of-2 and C is not: |
| // (C2 << X) == C --> false |
| // (C2 << X) != C --> true |
| const APInt *C; |
| if (match(LHS, m_Shl(m_Power2(), m_Value())) && |
| match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { |
| // C2 << X can equal zero in some circumstances. |
| // This simplification might be unsafe if C is zero. |
| // |
| // We know it is safe if: |
| // - The shift is nsw. We can't shift out the one bit. |
| // - The shift is nuw. We can't shift out the one bit. |
| // - C2 is one. |
| // - C isn't zero. |
| if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || |
| Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || |
| match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { |
| if (Pred == ICmpInst::ICMP_EQ) |
| return ConstantInt::getFalse(getCompareTy(RHS)); |
| if (Pred == ICmpInst::ICMP_NE) |
| return ConstantInt::getTrue(getCompareTy(RHS)); |
| } |
| } |
| |
| // TODO: This is overly constrained. LHS can be any power-of-2. |
| // (1 << X) >u 0x8000 --> false |
| // (1 << X) <=u 0x8000 --> true |
| if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { |
| if (Pred == ICmpInst::ICMP_UGT) |
| return ConstantInt::getFalse(getCompareTy(RHS)); |
| if (Pred == ICmpInst::ICMP_ULE) |
| return ConstantInt::getTrue(getCompareTy(RHS)); |
| } |
| |
| if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && |
| LBO->getOperand(1) == RBO->getOperand(1)) { |
| switch (LBO->getOpcode()) { |
| default: |
| break; |
| case Instruction::UDiv: |
| case Instruction::LShr: |
| if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || |
| !Q.IIQ.isExact(RBO)) |
| break; |
| if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), |
| RBO->getOperand(0), Q, MaxRecurse - 1)) |
| return V; |
| break; |
| case Instruction::SDiv: |
| if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || |
| !Q.IIQ.isExact(RBO)) |
| break; |
| if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), |
| RBO->getOperand(0), Q, MaxRecurse - 1)) |
| return V; |
| break; |
| case Instruction::AShr: |
| if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) |
| break; |
| if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), |
| RBO->getOperand(0), Q, MaxRecurse - 1)) |
| return V; |
| break; |
| case Instruction::Shl: { |
| bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); |
| bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); |
| if (!NUW && !NSW) |
| break; |
| if (!NSW && ICmpInst::isSigned(Pred)) |
| break; |
| if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), |
| RBO->getOperand(0), Q, MaxRecurse - 1)) |
| return V; |
| break; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| /// simplify integer comparisons where at least one operand of the compare |
| /// matches an integer min/max idiom. |
| static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| Type *ITy = getCompareTy(LHS); // The return type. |
| Value *A, *B; |
| CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; |
| CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". |
| |
| // Signed variants on "max(a,b)>=a -> true". |
| if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { |
| if (A != RHS) |
| std::swap(A, B); // smax(A, B) pred A. |
| EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". |
| // We analyze this as smax(A, B) pred A. |
| P = Pred; |
| } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && |
| (A == LHS || B == LHS)) { |
| if (A != LHS) |
| std::swap(A, B); // A pred smax(A, B). |
| EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". |
| // We analyze this as smax(A, B) swapped-pred A. |
| P = CmpInst::getSwappedPredicate(Pred); |
| } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && |
| (A == RHS || B == RHS)) { |
| if (A != RHS) |
| std::swap(A, B); // smin(A, B) pred A. |
| EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". |
| // We analyze this as smax(-A, -B) swapped-pred -A. |
| // Note that we do not need to actually form -A or -B thanks to EqP. |
| P = CmpInst::getSwappedPredicate(Pred); |
| } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && |
| (A == LHS || B == LHS)) { |
| if (A != LHS) |
| std::swap(A, B); // A pred smin(A, B). |
| EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". |
| // We analyze this as smax(-A, -B) pred -A. |
| // Note that we do not need to actually form -A or -B thanks to EqP. |
| P = Pred; |
| } |
| if (P != CmpInst::BAD_ICMP_PREDICATE) { |
| // Cases correspond to "max(A, B) p A". |
| switch (P) { |
| default: |
| break; |
| case CmpInst::ICMP_EQ: |
| case CmpInst::ICMP_SLE: |
| // Equivalent to "A EqP B". This may be the same as the condition tested |
| // in the max/min; if so, we can just return that. |
| if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) |
| return V; |
| if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) |
| return V; |
| // Otherwise, see if "A EqP B" simplifies. |
| if (MaxRecurse) |
| if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) |
| return V; |
| break; |
| case CmpInst::ICMP_NE: |
| case CmpInst::ICMP_SGT: { |
| CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); |
| // Equivalent to "A InvEqP B". This may be the same as the condition |
| // tested in the max/min; if so, we can just return that. |
| if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) |
| return V; |
| if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) |
| return V; |
| // Otherwise, see if "A InvEqP B" simplifies. |
| if (MaxRecurse) |
| if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) |
| return V; |
| break; |
| } |
| case CmpInst::ICMP_SGE: |
| // Always true. |
| return getTrue(ITy); |
| case CmpInst::ICMP_SLT: |
| // Always false. |
| return getFalse(ITy); |
| } |
| } |
| |
| // Unsigned variants on "max(a,b)>=a -> true". |
| P = CmpInst::BAD_ICMP_PREDICATE; |
| if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { |
| if (A != RHS) |
| std::swap(A, B); // umax(A, B) pred A. |
| EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". |
| // We analyze this as umax(A, B) pred A. |
| P = Pred; |
| } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && |
| (A == LHS || B == LHS)) { |
| if (A != LHS) |
| std::swap(A, B); // A pred umax(A, B). |
| EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". |
| // We analyze this as umax(A, B) swapped-pred A. |
| P = CmpInst::getSwappedPredicate(Pred); |
| } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && |
| (A == RHS || B == RHS)) { |
| if (A != RHS) |
| std::swap(A, B); // umin(A, B) pred A. |
| EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". |
| // We analyze this as umax(-A, -B) swapped-pred -A. |
| // Note that we do not need to actually form -A or -B thanks to EqP. |
| P = CmpInst::getSwappedPredicate(Pred); |
| } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && |
| (A == LHS || B == LHS)) { |
| if (A != LHS) |
| std::swap(A, B); // A pred umin(A, B). |
| EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". |
| // We analyze this as umax(-A, -B) pred -A. |
| // Note that we do not need to actually form -A or -B thanks to EqP. |
| P = Pred; |
| } |
| if (P != CmpInst::BAD_ICMP_PREDICATE) { |
| // Cases correspond to "max(A, B) p A". |
| switch (P) { |
| default: |
| break; |
| case CmpInst::ICMP_EQ: |
| case CmpInst::ICMP_ULE: |
| // Equivalent to "A EqP B". This may be the same as the condition tested |
| // in the max/min; if so, we can just return that. |
| if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) |
| return V; |
| if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) |
| return V; |
| // Otherwise, see if "A EqP B" simplifies. |
| if (MaxRecurse) |
| if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) |
| return V; |
| break; |
| case CmpInst::ICMP_NE: |
| case CmpInst::ICMP_UGT: { |
| CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); |
| // Equivalent to "A InvEqP B". This may be the same as the condition |
| // tested in the max/min; if so, we can just return that. |
| if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) |
| return V; |
| if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) |
| return V; |
| // Otherwise, see if "A InvEqP B" simplifies. |
| if (MaxRecurse) |
| if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) |
| return V; |
| break; |
| } |
| case CmpInst::ICMP_UGE: |
| return getTrue(ITy); |
| case CmpInst::ICMP_ULT: |
| return getFalse(ITy); |
| } |
| } |
| |
| // Comparing 1 each of min/max with a common operand? |
| // Canonicalize min operand to RHS. |
| if (match(LHS, m_UMin(m_Value(), m_Value())) || |
| match(LHS, m_SMin(m_Value(), m_Value()))) { |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| Value *C, *D; |
| if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && |
| match(RHS, m_SMin(m_Value(C), m_Value(D))) && |
| (A == C || A == D || B == C || B == D)) { |
| // smax(A, B) >=s smin(A, D) --> true |
| if (Pred == CmpInst::ICMP_SGE) |
| return getTrue(ITy); |
| // smax(A, B) <s smin(A, D) --> false |
| if (Pred == CmpInst::ICMP_SLT) |
| return getFalse(ITy); |
| } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && |
| match(RHS, m_UMin(m_Value(C), m_Value(D))) && |
| (A == C || A == D || B == C || B == D)) { |
| // umax(A, B) >=u umin(A, D) --> true |
| if (Pred == CmpInst::ICMP_UGE) |
| return getTrue(ITy); |
| // umax(A, B) <u umin(A, D) --> false |
| if (Pred == CmpInst::ICMP_ULT) |
| return getFalse(ITy); |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, |
| Value *LHS, Value *RHS, |
| const SimplifyQuery &Q) { |
| // Gracefully handle instructions that have not been inserted yet. |
| if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) |
| return nullptr; |
| |
| for (Value *AssumeBaseOp : {LHS, RHS}) { |
| for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { |
| if (!AssumeVH) |
| continue; |
| |
| CallInst *Assume = cast<CallInst>(AssumeVH); |
| if (std::optional<bool> Imp = isImpliedCondition( |
| Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) |
| if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) |
| return ConstantInt::get(getCompareTy(LHS), *Imp); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an ICmpInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); |
| |
| // If we have a constant, make sure it is on the RHS. |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); |
| |
| Type *ITy = getCompareTy(LHS); // The return type. |
| |
| // icmp poison, X -> poison |
| if (isa<PoisonValue>(RHS)) |
| return PoisonValue::get(ITy); |
| |
| // For EQ and NE, we can always pick a value for the undef to make the |
| // predicate pass or fail, so we can return undef. |
| // Matches behavior in llvm::ConstantFoldCompareInstruction. |
| if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) |
| return UndefValue::get(ITy); |
| |
| // icmp X, X -> true/false |
| // icmp X, undef -> true/false because undef could be X. |
| if (LHS == RHS || Q.isUndefValue(RHS)) |
| return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); |
| |
| if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) |
| return V; |
| |
| // TODO: Sink/common this with other potentially expensive calls that use |
| // ValueTracking? See comment below for isKnownNonEqual(). |
| if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) |
| return V; |
| |
| if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) |
| return V; |
| |
| // If both operands have range metadata, use the metadata |
| // to simplify the comparison. |
| if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { |
| auto RHS_Instr = cast<Instruction>(RHS); |
| auto LHS_Instr = cast<Instruction>(LHS); |
| |
| if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && |
| Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { |
| auto RHS_CR = getConstantRangeFromMetadata( |
| *RHS_Instr->getMetadata(LLVMContext::MD_range)); |
| auto LHS_CR = getConstantRangeFromMetadata( |
| *LHS_Instr->getMetadata(LLVMContext::MD_range)); |
| |
| if (LHS_CR.icmp(Pred, RHS_CR)) |
| return ConstantInt::getTrue(RHS->getContext()); |
| |
| if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) |
| return ConstantInt::getFalse(RHS->getContext()); |
| } |
| } |
| |
| // Compare of cast, for example (zext X) != 0 -> X != 0 |
| if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { |
| Instruction *LI = cast<CastInst>(LHS); |
| Value *SrcOp = LI->getOperand(0); |
| Type *SrcTy = SrcOp->getType(); |
| Type *DstTy = LI->getType(); |
| |
| // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input |
| // if the integer type is the same size as the pointer type. |
| if (MaxRecurse && isa<PtrToIntInst>(LI) && |
| Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { |
| if (Constant *RHSC = dyn_cast<Constant>(RHS)) { |
| // Transfer the cast to the constant. |
| if (Value *V = simplifyICmpInst(Pred, SrcOp, |
| ConstantExpr::getIntToPtr(RHSC, SrcTy), |
| Q, MaxRecurse - 1)) |
| return V; |
| } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { |
| if (RI->getOperand(0)->getType() == SrcTy) |
| // Compare without the cast. |
| if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, |
| MaxRecurse - 1)) |
| return V; |
| } |
| } |
| |
| if (isa<ZExtInst>(LHS)) { |
| // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the |
| // same type. |
| if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { |
| if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) |
| // Compare X and Y. Note that signed predicates become unsigned. |
| if (Value *V = |
| simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, |
| RI->getOperand(0), Q, MaxRecurse - 1)) |
| return V; |
| } |
| // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. |
| else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { |
| if (SrcOp == RI->getOperand(0)) { |
| if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) |
| return ConstantInt::getTrue(ITy); |
| if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) |
| return ConstantInt::getFalse(ITy); |
| } |
| } |
| // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended |
| // too. If not, then try to deduce the result of the comparison. |
| else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // Compute the constant that would happen if we truncated to SrcTy then |
| // reextended to DstTy. |
| Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); |
| Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); |
| |
| // If the re-extended constant didn't change then this is effectively |
| // also a case of comparing two zero-extended values. |
| if (RExt == CI && MaxRecurse) |
| if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), |
| SrcOp, Trunc, Q, MaxRecurse - 1)) |
| return V; |
| |
| // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit |
| // there. Use this to work out the result of the comparison. |
| if (RExt != CI) { |
| switch (Pred) { |
| default: |
| llvm_unreachable("Unknown ICmp predicate!"); |
| // LHS <u RHS. |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| return ConstantInt::getFalse(CI->getContext()); |
| |
| case ICmpInst::ICMP_NE: |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| return ConstantInt::getTrue(CI->getContext()); |
| |
| // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS |
| // is non-negative then LHS <s RHS. |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| return CI->getValue().isNegative() |
| ? ConstantInt::getTrue(CI->getContext()) |
| : ConstantInt::getFalse(CI->getContext()); |
| |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| return CI->getValue().isNegative() |
| ? ConstantInt::getFalse(CI->getContext()) |
| : ConstantInt::getTrue(CI->getContext()); |
| } |
| } |
| } |
| } |
| |
| if (isa<SExtInst>(LHS)) { |
| // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the |
| // same type. |
| if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { |
| if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) |
| // Compare X and Y. Note that the predicate does not change. |
| if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, |
| MaxRecurse - 1)) |
| return V; |
| } |
| // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. |
| else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { |
| if (SrcOp == RI->getOperand(0)) { |
| if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) |
| return ConstantInt::getTrue(ITy); |
| if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) |
| return ConstantInt::getFalse(ITy); |
| } |
| } |
| // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended |
| // too. If not, then try to deduce the result of the comparison. |
| else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // Compute the constant that would happen if we truncated to SrcTy then |
| // reextended to DstTy. |
| Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); |
| Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); |
| |
| // If the re-extended constant didn't change then this is effectively |
| // also a case of comparing two sign-extended values. |
| if (RExt == CI && MaxRecurse) |
| if (Value *V = |
| simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) |
| return V; |
| |
| // Otherwise the upper bits of LHS are all equal, while RHS has varying |
| // bits there. Use this to work out the result of the comparison. |
| if (RExt != CI) { |
| switch (Pred) { |
| default: |
| llvm_unreachable("Unknown ICmp predicate!"); |
| case ICmpInst::ICMP_EQ: |
| return ConstantInt::getFalse(CI->getContext()); |
| case ICmpInst::ICMP_NE: |
| return ConstantInt::getTrue(CI->getContext()); |
| |
| // If RHS is non-negative then LHS <s RHS. If RHS is negative then |
| // LHS >s RHS. |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| return CI->getValue().isNegative() |
| ? ConstantInt::getTrue(CI->getContext()) |
| : ConstantInt::getFalse(CI->getContext()); |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| return CI->getValue().isNegative() |
| ? ConstantInt::getFalse(CI->getContext()) |
| : ConstantInt::getTrue(CI->getContext()); |
| |
| // If LHS is non-negative then LHS <u RHS. If LHS is negative then |
| // LHS >u RHS. |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| // Comparison is true iff the LHS <s 0. |
| if (MaxRecurse) |
| if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, |
| Constant::getNullValue(SrcTy), Q, |
| MaxRecurse - 1)) |
| return V; |
| break; |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| // Comparison is true iff the LHS >=s 0. |
| if (MaxRecurse) |
| if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, |
| Constant::getNullValue(SrcTy), Q, |
| MaxRecurse - 1)) |
| return V; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| // icmp eq|ne X, Y -> false|true if X != Y |
| // This is potentially expensive, and we have already computedKnownBits for |
| // compares with 0 above here, so only try this for a non-zero compare. |
| if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && |
| isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { |
| return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); |
| } |
| |
| if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) |
| return V; |
| |
| if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) |
| return V; |
| |
| if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) |
| return V; |
| |
| // Simplify comparisons of related pointers using a powerful, recursive |
| // GEP-walk when we have target data available.. |
| if (LHS->getType()->isPointerTy()) |
| if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) |
| return C; |
| if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) |
| if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) |
| if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == |
| Q.DL.getTypeSizeInBits(CLHS->getType()) && |
| Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == |
| Q.DL.getTypeSizeInBits(CRHS->getType())) |
| if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), |
| CRHS->getPointerOperand(), Q)) |
| return C; |
| |
| // If the comparison is with the result of a select instruction, check whether |
| // comparing with either branch of the select always yields the same value. |
| if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) |
| return V; |
| |
| // If the comparison is with the result of a phi instruction, check whether |
| // doing the compare with each incoming phi value yields a common result. |
| if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q) { |
| return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an FCmpInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| FastMathFlags FMF, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, |
| Q.CxtI); |
| |
| // If we have a constant, make sure it is on the RHS. |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Fold trivial predicates. |
| Type *RetTy = getCompareTy(LHS); |
| if (Pred == FCmpInst::FCMP_FALSE) |
| return getFalse(RetTy); |
| if (Pred == FCmpInst::FCMP_TRUE) |
| return getTrue(RetTy); |
| |
| // Fold (un)ordered comparison if we can determine there are no NaNs. |
| if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) |
| if (FMF.noNaNs() || |
| (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) |
| return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); |
| |
| // NaN is unordered; NaN is not ordered. |
| assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && |
| "Comparison must be either ordered or unordered"); |
| if (match(RHS, m_NaN())) |
| return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); |
| |
| // fcmp pred x, poison and fcmp pred poison, x |
| // fold to poison |
| if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) |
| return PoisonValue::get(RetTy); |
| |
| // fcmp pred x, undef and fcmp pred undef, x |
| // fold to true if unordered, false if ordered |
| if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { |
| // Choosing NaN for the undef will always make unordered comparison succeed |
| // and ordered comparison fail. |
| return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); |
| } |
| |
| // fcmp x,x -> true/false. Not all compares are foldable. |
| if (LHS == RHS) { |
| if (CmpInst::isTrueWhenEqual(Pred)) |
| return getTrue(RetTy); |
| if (CmpInst::isFalseWhenEqual(Pred)) |
| return getFalse(RetTy); |
| } |
| |
| // Handle fcmp with constant RHS. |
| // TODO: Use match with a specific FP value, so these work with vectors with |
| // undef lanes. |
| const APFloat *C; |
| if (match(RHS, m_APFloat(C))) { |
| // Check whether the constant is an infinity. |
| if (C->isInfinity()) { |
| if (C->isNegative()) { |
| switch (Pred) { |
| case FCmpInst::FCMP_OLT: |
| // No value is ordered and less than negative infinity. |
| return getFalse(RetTy); |
| case FCmpInst::FCMP_UGE: |
| // All values are unordered with or at least negative infinity. |
| return getTrue(RetTy); |
| default: |
| break; |
| } |
| } else { |
| switch (Pred) { |
| case FCmpInst::FCMP_OGT: |
| // No value is ordered and greater than infinity. |
| return getFalse(RetTy); |
| case FCmpInst::FCMP_ULE: |
| // All values are unordered with and at most infinity. |
| return getTrue(RetTy); |
| default: |
| break; |
| } |
| } |
| |
| // LHS == Inf |
| if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) |
| return getFalse(RetTy); |
| // LHS != Inf |
| if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) |
| return getTrue(RetTy); |
| // LHS == Inf || LHS == NaN |
| if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && |
| isKnownNeverNaN(LHS, Q.TLI)) |
| return getFalse(RetTy); |
| // LHS != Inf && LHS != NaN |
| if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && |
| isKnownNeverNaN(LHS, Q.TLI)) |
| return getTrue(RetTy); |
| } |
| if (C->isNegative() && !C->isNegZero()) { |
| assert(!C->isNaN() && "Unexpected NaN constant!"); |
| // TODO: We can catch more cases by using a range check rather than |
| // relying on CannotBeOrderedLessThanZero. |
| switch (Pred) { |
| case FCmpInst::FCMP_UGE: |
| case FCmpInst::FCMP_UGT: |
| case FCmpInst::FCMP_UNE: |
| // (X >= 0) implies (X > C) when (C < 0) |
| if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) |
| return getTrue(RetTy); |
| break; |
| case FCmpInst::FCMP_OEQ: |
| case FCmpInst::FCMP_OLE: |
| case FCmpInst::FCMP_OLT: |
| // (X >= 0) implies !(X < C) when (C < 0) |
| if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) |
| return getFalse(RetTy); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // Check comparison of [minnum/maxnum with constant] with other constant. |
| const APFloat *C2; |
| if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && |
| *C2 < *C) || |
| (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && |
| *C2 > *C)) { |
| bool IsMaxNum = |
| cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; |
| // The ordered relationship and minnum/maxnum guarantee that we do not |
| // have NaN constants, so ordered/unordered preds are handled the same. |
| switch (Pred) { |
| case FCmpInst::FCMP_OEQ: |
| case FCmpInst::FCMP_UEQ: |
| // minnum(X, LesserC) == C --> false |
| // maxnum(X, GreaterC) == C --> false |
| return getFalse(RetTy); |
| case FCmpInst::FCMP_ONE: |
| case FCmpInst::FCMP_UNE: |
| // minnum(X, LesserC) != C --> true |
| // maxnum(X, GreaterC) != C --> true |
| return getTrue(RetTy); |
| case FCmpInst::FCMP_OGE: |
| case FCmpInst::FCMP_UGE: |
| case FCmpInst::FCMP_OGT: |
| case FCmpInst::FCMP_UGT: |
| // minnum(X, LesserC) >= C --> false |
| // minnum(X, LesserC) > C --> false |
| // maxnum(X, GreaterC) >= C --> true |
| // maxnum(X, GreaterC) > C --> true |
| return ConstantInt::get(RetTy, IsMaxNum); |
| case FCmpInst::FCMP_OLE: |
| case FCmpInst::FCMP_ULE: |
| case FCmpInst::FCMP_OLT: |
| case FCmpInst::FCMP_ULT: |
| // minnum(X, LesserC) <= C --> true |
| // minnum(X, LesserC) < C --> true |
| // maxnum(X, GreaterC) <= C --> false |
| // maxnum(X, GreaterC) < C --> false |
| return ConstantInt::get(RetTy, !IsMaxNum); |
| default: |
| // TRUE/FALSE/ORD/UNO should be handled before this. |
| llvm_unreachable("Unexpected fcmp predicate"); |
| } |
| } |
| } |
| |
| if (match(RHS, m_AnyZeroFP())) { |
| switch (Pred) { |
| case FCmpInst::FCMP_OGE: |
| case FCmpInst::FCMP_ULT: |
| // Positive or zero X >= 0.0 --> true |
| // Positive or zero X < 0.0 --> false |
| if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && |
| CannotBeOrderedLessThanZero(LHS, Q.TLI)) |
| return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); |
| break; |
| case FCmpInst::FCMP_UGE: |
| case FCmpInst::FCMP_OLT: |
| // Positive or zero or nan X >= 0.0 --> true |
| // Positive or zero or nan X < 0.0 --> false |
| if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) |
| return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // If the comparison is with the result of a select instruction, check whether |
| // comparing with either branch of the select always yields the same value. |
| if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) |
| return V; |
| |
| // If the comparison is with the result of a phi instruction, check whether |
| // doing the compare with each incoming phi value yields a common result. |
| if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| FastMathFlags FMF, const SimplifyQuery &Q) { |
| return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); |
| } |
| |
| static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| const SimplifyQuery &Q, |
| bool AllowRefinement, |
| unsigned MaxRecurse) { |
| // Trivial replacement. |
| if (V == Op) |
| return RepOp; |
| |
| // We cannot replace a constant, and shouldn't even try. |
| if (isa<Constant>(Op)) |
| return nullptr; |
| |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I || !is_contained(I->operands(), Op)) |
| return nullptr; |
| |
| if (Op->getType()->isVectorTy()) { |
| // For vector types, the simplification must hold per-lane, so forbid |
| // potentially cross-lane operations like shufflevector. |
| assert(I->getType()->isVectorTy() && "Vector type mismatch"); |
| if (isa<ShuffleVectorInst>(I) || isa<CallBase>(I)) |
| return nullptr; |
| } |
| |
| // Replace Op with RepOp in instruction operands. |
| SmallVector<Value *, 8> NewOps(I->getNumOperands()); |
| transform(I->operands(), NewOps.begin(), |
| [&](Value *V) { return V == Op ? RepOp : V; }); |
| |
| if (!AllowRefinement) { |
| // General InstSimplify functions may refine the result, e.g. by returning |
| // a constant for a potentially poison value. To avoid this, implement only |
| // a few non-refining but profitable transforms here. |
| |
| if (auto *BO = dyn_cast<BinaryOperator>(I)) { |
| unsigned Opcode = BO->getOpcode(); |
| // id op x -> x, x op id -> x |
| if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) |
| return NewOps[1]; |
| if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), |
| /* RHS */ true)) |
| return NewOps[0]; |
| |
| // x & x -> x, x | x -> x |
| if ((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| NewOps[0] == NewOps[1]) |
| return NewOps[0]; |
| } |
| |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| // getelementptr x, 0 -> x |
| if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && |
| !GEP->isInBounds()) |
| return NewOps[0]; |
| } |
| } else if (MaxRecurse) { |
| // The simplification queries below may return the original value. Consider: |
| // %div = udiv i32 %arg, %arg2 |
| // %mul = mul nsw i32 %div, %arg2 |
| // %cmp = icmp eq i32 %mul, %arg |
| // %sel = select i1 %cmp, i32 %div, i32 undef |
| // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which |
| // simplifies back to %arg. This can only happen because %mul does not |
| // dominate %div. To ensure a consistent return value contract, we make sure |
| // that this case returns nullptr as well. |
| auto PreventSelfSimplify = [V](Value *Simplified) { |
| return Simplified != V ? Simplified : nullptr; |
| }; |
| |
| if (auto *B = dyn_cast<BinaryOperator>(I)) |
| return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0], |
| NewOps[1], Q, MaxRecurse - 1)); |
| |
| if (CmpInst *C = dyn_cast<CmpInst>(I)) |
| return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0], |
| NewOps[1], Q, MaxRecurse - 1)); |
| |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) |
| return PreventSelfSimplify(simplifyGEPInst( |
| GEP->getSourceElementType(), NewOps[0], ArrayRef(NewOps).slice(1), |
| GEP->isInBounds(), Q, MaxRecurse - 1)); |
| |
| if (isa<SelectInst>(I)) |
| return PreventSelfSimplify(simplifySelectInst( |
| NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1)); |
| // TODO: We could hand off more cases to instsimplify here. |
| } |
| |
| // If all operands are constant after substituting Op for RepOp then we can |
| // constant fold the instruction. |
| SmallVector<Constant *, 8> ConstOps; |
| for (Value *NewOp : NewOps) { |
| if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) |
| ConstOps.push_back(ConstOp); |
| else |
| return nullptr; |
| } |
| |
| // Consider: |
| // %cmp = icmp eq i32 %x, 2147483647 |
| // %add = add nsw i32 %x, 1 |
| // %sel = select i1 %cmp, i32 -2147483648, i32 %add |
| // |
| // We can't replace %sel with %add unless we strip away the flags (which |
| // will be done in InstCombine). |
| // TODO: This may be unsound, because it only catches some forms of |
| // refinement. |
| if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) |
| return nullptr; |
| |
| return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); |
| } |
| |
| Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| const SimplifyQuery &Q, |
| bool AllowRefinement) { |
| return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, |
| RecursionLimit); |
| } |
| |
| /// Try to simplify a select instruction when its condition operand is an |
| /// integer comparison where one operand of the compare is a constant. |
| static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, |
| const APInt *Y, bool TrueWhenUnset) { |
| const APInt *C; |
| |
| // (X & Y) == 0 ? X & ~Y : X --> X |
| // (X & Y) != 0 ? X & ~Y : X --> X & ~Y |
| if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && |
| *Y == ~*C) |
| return TrueWhenUnset ? FalseVal : TrueVal; |
| |
| // (X & Y) == 0 ? X : X & ~Y --> X & ~Y |
| // (X & Y) != 0 ? X : X & ~Y --> X |
| if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && |
| *Y == ~*C) |
| return TrueWhenUnset ? FalseVal : TrueVal; |
| |
| if (Y->isPowerOf2()) { |
| // (X & Y) == 0 ? X | Y : X --> X | Y |
| // (X & Y) != 0 ? X | Y : X --> X |
| if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && |
| *Y == *C) |
| return TrueWhenUnset ? TrueVal : FalseVal; |
| |
| // (X & Y) == 0 ? X : X | Y --> X |
| // (X & Y) != 0 ? X : X | Y --> X | Y |
| if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && |
| *Y == *C) |
| return TrueWhenUnset ? TrueVal : FalseVal; |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, |
| ICmpInst::Predicate Pred, Value *TVal, |
| Value *FVal) { |
| // Canonicalize common cmp+sel operand as CmpLHS. |
| if (CmpRHS == TVal || CmpRHS == FVal) { |
| std::swap(CmpLHS, CmpRHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Canonicalize common cmp+sel operand as TVal. |
| if (CmpLHS == FVal) { |
| std::swap(TVal, FVal); |
| Pred = ICmpInst::getInversePredicate(Pred); |
| } |
| |
| // A vector select may be shuffling together elements that are equivalent |
| // based on the max/min/select relationship. |
| Value *X = CmpLHS, *Y = CmpRHS; |
| bool PeekedThroughSelectShuffle = false; |
| auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); |
| if (Shuf && Shuf->isSelect()) { |
| if (Shuf->getOperand(0) == Y) |
| FVal = Shuf->getOperand(1); |
| else if (Shuf->getOperand(1) == Y) |
| FVal = Shuf->getOperand(0); |
| else |
| return nullptr; |
| PeekedThroughSelectShuffle = true; |
| } |
| |
| // (X pred Y) ? X : max/min(X, Y) |
| auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); |
| if (!MMI || TVal != X || |
| !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) |
| return nullptr; |
| |
| // (X > Y) ? X : max(X, Y) --> max(X, Y) |
| // (X >= Y) ? X : max(X, Y) --> max(X, Y) |
| // (X < Y) ? X : min(X, Y) --> min(X, Y) |
| // (X <= Y) ? X : min(X, Y) --> min(X, Y) |
| // |
| // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: |
| // (X > Y) ? X : (Z ? max(X, Y) : Y) |
| // If Z is true, this reduces as above, and if Z is false: |
| // (X > Y) ? X : Y --> max(X, Y) |
| ICmpInst::Predicate MMPred = MMI->getPredicate(); |
| if (MMPred == CmpInst::getStrictPredicate(Pred)) |
| return MMI; |
| |
| // Other transforms are not valid with a shuffle. |
| if (PeekedThroughSelectShuffle) |
| return nullptr; |
| |
| // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) |
| if (Pred == CmpInst::ICMP_EQ) |
| return MMI; |
| |
| // (X != Y) ? X : max/min(X, Y) --> X |
| if (Pred == CmpInst::ICMP_NE) |
| return X; |
| |
| // (X < Y) ? X : max(X, Y) --> X |
| // (X <= Y) ? X : max(X, Y) --> X |
| // (X > Y) ? X : min(X, Y) --> X |
| // (X >= Y) ? X : min(X, Y) --> X |
| ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); |
| if (MMPred == CmpInst::getStrictPredicate(InvPred)) |
| return X; |
| |
| return nullptr; |
| } |
| |
| /// An alternative way to test if a bit is set or not uses sgt/slt instead of |
| /// eq/ne. |
| static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, |
| ICmpInst::Predicate Pred, |
| Value *TrueVal, Value *FalseVal) { |
| Value *X; |
| APInt Mask; |
| if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) |
| return nullptr; |
| |
| return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, |
| Pred == ICmpInst::ICMP_EQ); |
| } |
| |
| /// Try to simplify a select instruction when its condition operand is an |
| /// integer comparison. |
| static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, |
| Value *FalseVal, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| ICmpInst::Predicate Pred; |
| Value *CmpLHS, *CmpRHS; |
| if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) |
| return nullptr; |
| |
| if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) |
| return V; |
| |
| // Canonicalize ne to eq predicate. |
| if (Pred == ICmpInst::ICMP_NE) { |
| Pred = ICmpInst::ICMP_EQ; |
| std::swap(TrueVal, FalseVal); |
| } |
| |
| // Check for integer min/max with a limit constant: |
| // X > MIN_INT ? X : MIN_INT --> X |
| // X < MAX_INT ? X : MAX_INT --> X |
| if (TrueVal->getType()->isIntOrIntVectorTy()) { |
| Value *X, *Y; |
| SelectPatternFlavor SPF = |
| matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, |
| X, Y) |
| .Flavor; |
| if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { |
| APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), |
| X->getType()->getScalarSizeInBits()); |
| if (match(Y, m_SpecificInt(LimitC))) |
| return X; |
| } |
| } |
| |
| if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { |
| Value *X; |
| const APInt *Y; |
| if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) |
| if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, |
| /*TrueWhenUnset=*/true)) |
| return V; |
| |
| // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. |
| Value *ShAmt; |
| auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), |
| m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); |
| // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X |
| // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X |
| if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) |
| return X; |
| |
| // Test for a zero-shift-guard-op around rotates. These are used to |
| // avoid UB from oversized shifts in raw IR rotate patterns, but the |
| // intrinsics do not have that problem. |
| // We do not allow this transform for the general funnel shift case because |
| // that would not preserve the poison safety of the original code. |
| auto isRotate = |
| m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), |
| m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); |
| // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) |
| // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) |
| if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && |
| Pred == ICmpInst::ICMP_EQ) |
| return FalseVal; |
| |
| // X == 0 ? abs(X) : -abs(X) --> -abs(X) |
| // X == 0 ? -abs(X) : abs(X) --> abs(X) |
| if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && |
| match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) |
| return FalseVal; |
| if (match(TrueVal, |
| m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && |
| match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) |
| return FalseVal; |
| } |
| |
| // Check for other compares that behave like bit test. |
| if (Value *V = |
| simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) |
| return V; |
| |
| // If we have a scalar equality comparison, then we know the value in one of |
| // the arms of the select. See if substituting this value into the arm and |
| // simplifying the result yields the same value as the other arm. |
| if (Pred == ICmpInst::ICMP_EQ) { |
| if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, |
| /* AllowRefinement */ false, |
| MaxRecurse) == TrueVal || |
| simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, |
| /* AllowRefinement */ false, |
| MaxRecurse) == TrueVal) |
| return FalseVal; |
| if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, |
| /* AllowRefinement */ true, |
| MaxRecurse) == FalseVal || |
| simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, |
| /* AllowRefinement */ true, |
| MaxRecurse) == FalseVal) |
| return FalseVal; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to simplify a select instruction when its condition operand is a |
| /// floating-point comparison. |
| static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, |
| const SimplifyQuery &Q) { |
| FCmpInst::Predicate Pred; |
| if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && |
| !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) |
| return nullptr; |
| |
| // This transform is safe if we do not have (do not care about) -0.0 or if |
| // at least one operand is known to not be -0.0. Otherwise, the select can |
| // change the sign of a zero operand. |
| bool HasNoSignedZeros = |
| Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); |
| const APFloat *C; |
| if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || |
| (match(F, m_APFloat(C)) && C->isNonZero())) { |
| // (T == F) ? T : F --> F |
| // (F == T) ? T : F --> F |
| if (Pred == FCmpInst::FCMP_OEQ) |
| return F; |
| |
| // (T != F) ? T : F --> T |
| // (F != T) ? T : F --> T |
| if (Pred == FCmpInst::FCMP_UNE) |
| return T; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given operands for a SelectInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (auto *CondC = dyn_cast<Constant>(Cond)) { |
| if (auto *TrueC = dyn_cast<Constant>(TrueVal)) |
| if (auto *FalseC = dyn_cast<Constant>(FalseVal)) |
| return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); |
| |
| // select poison, X, Y -> poison |
| if (isa<PoisonValue>(CondC)) |
| return PoisonValue::get(TrueVal->getType()); |
| |
| // select undef, X, Y -> X or Y |
| if (Q.isUndefValue(CondC)) |
| return isa<Constant>(FalseVal) ? FalseVal : TrueVal; |
| |
| // select true, X, Y --> X |
| // select false, X, Y --> Y |
| // For vectors, allow undef/poison elements in the condition to match the |
| // defined elements, so we can eliminate the select. |
| if (match(CondC, m_One())) |
| return TrueVal; |
| if (match(CondC, m_Zero())) |
| return FalseVal; |
| } |
| |
| assert(Cond->getType()->isIntOrIntVectorTy(1) && |
| "Select must have bool or bool vector condition"); |
| assert(TrueVal->getType() == FalseVal->getType() && |
| "Select must have same types for true/false ops"); |
| |
| if (Cond->getType() == TrueVal->getType()) { |
| // select i1 Cond, i1 true, i1 false --> i1 Cond |
| if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) |
| return Cond; |
| |
| // (X && Y) ? X : Y --> Y (commuted 2 ways) |
| if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) |
| return FalseVal; |
| |
| // (X || Y) ? X : Y --> X (commuted 2 ways) |
| if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) |
| return TrueVal; |
| |
| // (X || Y) ? false : X --> false (commuted 2 ways) |
| if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && |
| match(TrueVal, m_ZeroInt())) |
| return ConstantInt::getFalse(Cond->getType()); |
| |
| // Match patterns that end in logical-and. |
| if (match(FalseVal, m_ZeroInt())) { |
| // !(X || Y) && X --> false (commuted 2 ways) |
| if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) |
| return ConstantInt::getFalse(Cond->getType()); |
| |
| // (X || Y) && Y --> Y (commuted 2 ways) |
| if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) |
| return TrueVal; |
| // Y && (X || Y) --> Y (commuted 2 ways) |
| if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) |
| return Cond; |
| |
| // (X || Y) && (X || !Y) --> X (commuted 8 ways) |
| Value *X, *Y; |
| if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && |
| match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) |
| return X; |
| if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && |
| match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) |
| return X; |
| } |
| |
| // Match patterns that end in logical-or. |
| if (match(TrueVal, m_One())) { |
| // (X && Y) || Y --> Y (commuted 2 ways) |
| if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) |
| return FalseVal; |
| // Y || (X && Y) --> Y (commuted 2 ways) |
| if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) |
| return Cond; |
| } |
| } |
| |
| // select ?, X, X -> X |
| if (TrueVal == FalseVal) |
| return TrueVal; |
| |
| if (Cond == TrueVal) { |
| // select i1 X, i1 X, i1 false --> X (logical-and) |
| if (match(FalseVal, m_ZeroInt())) |
| return Cond; |
| // select i1 X, i1 X, i1 true --> true |
| if (match(FalseVal, m_One())) |
| return ConstantInt::getTrue(Cond->getType()); |
| } |
| if (Cond == FalseVal) { |
| // select i1 X, i1 true, i1 X --> X (logical-or) |
| if (match(TrueVal, m_One())) |
| return Cond; |
| // select i1 X, i1 false, i1 X --> false |
| if (match(TrueVal, m_ZeroInt())) |
| return ConstantInt::getFalse(Cond->getType()); |
| } |
| |
| // If the true or false value is poison, we can fold to the other value. |
| // If the true or false value is undef, we can fold to the other value as |
| // long as the other value isn't poison. |
| // select ?, poison, X -> X |
| // select ?, undef, X -> X |
| if (isa<PoisonValue>(TrueVal) || |
| (Q.isUndefValue(TrueVal) && |
| isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) |
| return FalseVal; |
| // select ?, X, poison -> X |
| // select ?, X, undef -> X |
| if (isa<PoisonValue>(FalseVal) || |
| (Q.isUndefValue(FalseVal) && |
| isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) |
| return TrueVal; |
| |
| // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' |
| Constant *TrueC, *FalseC; |
| if (isa<FixedVectorType>(TrueVal->getType()) && |
| match(TrueVal, m_Constant(TrueC)) && |
| match(FalseVal, m_Constant(FalseC))) { |
| unsigned NumElts = |
| cast<FixedVectorType>(TrueC->getType())->getNumElements(); |
| SmallVector<Constant *, 16> NewC; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // Bail out on incomplete vector constants. |
| Constant *TEltC = TrueC->getAggregateElement(i); |
| Constant *FEltC = FalseC->getAggregateElement(i); |
| if (!TEltC || !FEltC) |
| break; |
| |
| // If the elements match (undef or not), that value is the result. If only |
| // one element is undef, choose the defined element as the safe result. |
| if (TEltC == FEltC) |
| NewC.push_back(TEltC); |
| else if (isa<PoisonValue>(TEltC) || |
| (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) |
| NewC.push_back(FEltC); |
| else if (isa<PoisonValue>(FEltC) || |
| (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) |
| NewC.push_back(TEltC); |
| else |
| break; |
| } |
| if (NewC.size() == NumElts) |
| return ConstantVector::get(NewC); |
| } |
| |
| if (Value *V = |
| simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) |
| return V; |
| |
| if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) |
| return V; |
| |
| if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) |
| return V; |
| |
| std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); |
| if (Imp) |
| return *Imp ? TrueVal : FalseVal; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, |
| const SimplifyQuery &Q) { |
| return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an GetElementPtrInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, |
| ArrayRef<Value *> Indices, bool InBounds, |
| const SimplifyQuery &Q, unsigned) { |
| // The type of the GEP pointer operand. |
| unsigned AS = |
| cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); |
| |
| // getelementptr P -> P. |
| if (Indices.empty()) |
| return Ptr; |
| |
| // Compute the (pointer) type returned by the GEP instruction. |
| Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); |
| Type *GEPTy = PointerType::get(LastType, AS); |
| if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) |
| GEPTy = VectorType::get(GEPTy, VT->getElementCount()); |
| else { |
| for (Value *Op : Indices) { |
| // If one of the operands is a vector, the result type is a vector of |
| // pointers. All vector operands must have the same number of elements. |
| if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { |
| GEPTy = VectorType::get(GEPTy, VT->getElementCount()); |
| break; |
| } |
| } |
| } |
| |
| // For opaque pointers an all-zero GEP is a no-op. For typed pointers, |
| // it may be equivalent to a bitcast. |
| if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && |
| Ptr->getType() == GEPTy && |
| all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) |
| return Ptr; |
| |
| // getelementptr poison, idx -> poison |
| // getelementptr baseptr, poison -> poison |
| if (isa<PoisonValue>(Ptr) || |
| any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) |
| return PoisonValue::get(GEPTy); |
| |
| if (Q.isUndefValue(Ptr)) |
| // If inbounds, we can choose an out-of-bounds pointer as a base pointer. |
| return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); |
| |
| bool IsScalableVec = |
| isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { |
| return isa<ScalableVectorType>(V->getType()); |
| }); |
| |
| if (Indices.size() == 1) { |
| // getelementptr P, 0 -> P. |
| if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) |
| return Ptr; |
| |
| Type *Ty = SrcTy; |
| if (!IsScalableVec && Ty->isSized()) { |
| Value *P; |
| uint64_t C; |
| uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); |
| // getelementptr P, N -> P if P points to a type of zero size. |
| if (TyAllocSize == 0 && Ptr->getType() == GEPTy) |
| return Ptr; |
| |
| // The following transforms are only safe if the ptrtoint cast |
| // doesn't truncate the pointers. |
| if (Indices[0]->getType()->getScalarSizeInBits() == |
| Q.DL.getPointerSizeInBits(AS)) { |
| auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { |
| return P->getType() == GEPTy && |
| getUnderlyingObject(P) == getUnderlyingObject(Ptr); |
| }; |
| // getelementptr V, (sub P, V) -> P if P points to a type of size 1. |
| if (TyAllocSize == 1 && |
| match(Indices[0], |
| m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && |
| CanSimplify()) |
| return P; |
| |
| // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of |
| // size 1 << C. |
| if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), |
| m_PtrToInt(m_Specific(Ptr))), |
| m_ConstantInt(C))) && |
| TyAllocSize == 1ULL << C && CanSimplify()) |
| return P; |
| |
| // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of |
| // size C. |
| if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), |
| m_PtrToInt(m_Specific(Ptr))), |
| m_SpecificInt(TyAllocSize))) && |
| CanSimplify()) |
| return P; |
| } |
| } |
| } |
| |
| if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && |
| all_of(Indices.drop_back(1), |
| [](Value *Idx) { return match(Idx, m_Zero()); })) { |
| unsigned IdxWidth = |
| Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); |
| if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { |
| APInt BasePtrOffset(IdxWidth, 0); |
| Value *StrippedBasePtr = |
| Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); |
| |
| // Avoid creating inttoptr of zero here: While LLVMs treatment of |
| // inttoptr is generally conservative, this particular case is folded to |
| // a null pointer, which will have incorrect provenance. |
| |
| // gep (gep V, C), (sub 0, V) -> C |
| if (match(Indices.back(), |
| m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && |
| !BasePtrOffset.isZero()) { |
| auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); |
| return ConstantExpr::getIntToPtr(CI, GEPTy); |
| } |
| // gep (gep V, C), (xor V, -1) -> C-1 |
| if (match(Indices.back(), |
| m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && |
| !BasePtrOffset.isOne()) { |
| auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); |
| return ConstantExpr::getIntToPtr(CI, GEPTy); |
| } |
| } |
| } |
| |
| // Check to see if this is constant foldable. |
| if (!isa<Constant>(Ptr) || |
| !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) |
| return nullptr; |
| |
| auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, |
| InBounds); |
| return ConstantFoldConstant(CE, Q.DL); |
| } |
| |
| Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, |
| bool InBounds, const SimplifyQuery &Q) { |
| return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an InsertValueInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyInsertValueInst(Value *Agg, Value *Val, |
| ArrayRef<unsigned> Idxs, |
| const SimplifyQuery &Q, unsigned) { |
| if (Constant *CAgg = dyn_cast<Constant>(Agg)) |
| if (Constant *CVal = dyn_cast<Constant>(Val)) |
| return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); |
| |
| // insertvalue x, poison, n -> x |
| // insertvalue x, undef, n -> x if x cannot be poison |
| if (isa<PoisonValue>(Val) || |
| (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) |
| return Agg; |
| |
| // insertvalue x, (extractvalue y, n), n |
| if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) |
| if (EV->getAggregateOperand()->getType() == Agg->getType() && |
| EV->getIndices() == Idxs) { |
| // insertvalue undef, (extractvalue y, n), n -> y |
| if (Q.isUndefValue(Agg)) |
| return EV->getAggregateOperand(); |
| |
| // insertvalue y, (extractvalue y, n), n -> y |
| if (Agg == EV->getAggregateOperand()) |
| return Agg; |
| } |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, |
| ArrayRef<unsigned> Idxs, |
| const SimplifyQuery &Q) { |
| return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); |
| } |
| |
| Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, |
| const SimplifyQuery &Q) { |
| // Try to constant fold. |
| auto *VecC = dyn_cast<Constant>(Vec); |
| auto *ValC = dyn_cast<Constant>(Val); |
| auto *IdxC = dyn_cast<Constant>(Idx); |
| if (VecC && ValC && IdxC) |
| return ConstantExpr::getInsertElement(VecC, ValC, IdxC); |
| |
| // For fixed-length vector, fold into poison if index is out of bounds. |
| if (auto *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (isa<FixedVectorType>(Vec->getType()) && |
| CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) |
| return PoisonValue::get(Vec->getType()); |
| } |
| |
| // If index is undef, it might be out of bounds (see above case) |
| if (Q.isUndefValue(Idx)) |
| return PoisonValue::get(Vec->getType()); |
| |
| // If the scalar is poison, or it is undef and there is no risk of |
| // propagating poison from the vector value, simplify to the vector value. |
| if (isa<PoisonValue>(Val) || |
| (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) |
| return Vec; |
| |
| // If we are extracting a value from a vector, then inserting it into the same |
| // place, that's the input vector: |
| // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec |
| if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) |
| return Vec; |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an ExtractValueInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, |
| const SimplifyQuery &, unsigned) { |
| if (auto *CAgg = dyn_cast<Constant>(Agg)) |
| return ConstantFoldExtractValueInstruction(CAgg, Idxs); |
| |
| // extractvalue x, (insertvalue y, elt, n), n -> elt |
| unsigned NumIdxs = Idxs.size(); |
| for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; |
| IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { |
| ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); |
| unsigned NumInsertValueIdxs = InsertValueIdxs.size(); |
| unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); |
| if (InsertValueIdxs.slice(0, NumCommonIdxs) == |
| Idxs.slice(0, NumCommonIdxs)) { |
| if (NumIdxs == NumInsertValueIdxs) |
| return IVI->getInsertedValueOperand(); |
| break; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, |
| const SimplifyQuery &Q) { |
| return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); |
| } |
| |
| /// Given operands for an ExtractElementInst, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, |
| const SimplifyQuery &Q, unsigned) { |
| auto *VecVTy = cast<VectorType>(Vec->getType()); |
| if (auto *CVec = dyn_cast<Constant>(Vec)) { |
| if (auto *CIdx = dyn_cast<Constant>(Idx)) |
| return ConstantExpr::getExtractElement(CVec, CIdx); |
| |
| if (Q.isUndefValue(Vec)) |
| return UndefValue::get(VecVTy->getElementType()); |
| } |
| |
| // An undef extract index can be arbitrarily chosen to be an out-of-range |
| // index value, which would result in the instruction being poison. |
| if (Q.isUndefValue(Idx)) |
| return PoisonValue::get(VecVTy->getElementType()); |
| |
| // If extracting a specified index from the vector, see if we can recursively |
| // find a previously computed scalar that was inserted into the vector. |
| if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { |
| // For fixed-length vector, fold into undef if index is out of bounds. |
| unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); |
| if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) |
| return PoisonValue::get(VecVTy->getElementType()); |
| // Handle case where an element is extracted from a splat. |
| if (IdxC->getValue().ult(MinNumElts)) |
| if (auto *Splat = getSplatValue(Vec)) |
| return Splat; |
| if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) |
| return Elt; |
| } else { |
| // extractelt x, (insertelt y, elt, n), n -> elt |
| // If the possibly-variable indices are trivially known to be equal |
| // (because they are the same operand) then use the value that was |
| // inserted directly. |
| auto *IE = dyn_cast<InsertElementInst>(Vec); |
| if (IE && IE->getOperand(2) == Idx) |
| return IE->getOperand(1); |
| |
| // The index is not relevant if our vector is a splat. |
| if (Value *Splat = getSplatValue(Vec)) |
| return Splat; |
| } |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, |
| const SimplifyQuery &Q) { |
| return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); |
| } |
| |
| /// See if we can fold the given phi. If not, returns null. |
| static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, |
| const SimplifyQuery &Q) { |
| // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE |
| // here, because the PHI we may succeed simplifying to was not |
| // def-reachable from the original PHI! |
| |
| // If all of the PHI's incoming values are the same then replace the PHI node |
| // with the common value. |
| Value *CommonValue = nullptr; |
| bool HasUndefInput = false; |
| for (Value *Incoming : IncomingValues) { |
| // If the incoming value is the phi node itself, it can safely be skipped. |
| if (Incoming == PN) |
| continue; |
| if (Q.isUndefValue(Incoming)) { |
| // Remember that we saw an undef value, but otherwise ignore them. |
| HasUndefInput = true; |
| continue; |
| } |
| if (CommonValue && Incoming != CommonValue) |
| return nullptr; // Not the same, bail out. |
| CommonValue = Incoming; |
| } |
| |
| // If CommonValue is null then all of the incoming values were either undef or |
| // equal to the phi node itself. |
| if (!CommonValue) |
| return UndefValue::get(PN->getType()); |
| |
| if (HasUndefInput) { |
| // If we have a PHI node like phi(X, undef, X), where X is defined by some |
| // instruction, we cannot return X as the result of the PHI node unless it |
| // dominates the PHI block. |
| return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; |
| } |
| |
| return CommonValue; |
| } |
| |
| static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (auto *C = dyn_cast<Constant>(Op)) |
| return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); |
| |
| if (auto *CI = dyn_cast<CastInst>(Op)) { |
| auto *Src = CI->getOperand(0); |
| Type *SrcTy = Src->getType(); |
| Type *MidTy = CI->getType(); |
| Type *DstTy = Ty; |
| if (Src->getType() == Ty) { |
| auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); |
| auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); |
| Type *SrcIntPtrTy = |
| SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; |
| Type *MidIntPtrTy = |
| MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; |
| Type *DstIntPtrTy = |
| DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; |
| if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, |
| SrcIntPtrTy, MidIntPtrTy, |
| DstIntPtrTy) == Instruction::BitCast) |
| return Src; |
| } |
| } |
| |
| // bitcast x -> x |
| if (CastOpc == Instruction::BitCast) |
| if (Op->getType() == Ty) |
| return Op; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, |
| const SimplifyQuery &Q) { |
| return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); |
| } |
| |
| /// For the given destination element of a shuffle, peek through shuffles to |
| /// match a root vector source operand that contains that element in the same |
| /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). |
| static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, |
| int MaskVal, Value *RootVec, |
| unsigned MaxRecurse) { |
| if (!MaxRecurse--) |
| return nullptr; |
| |
| // Bail out if any mask value is undefined. That kind of shuffle may be |
| // simplified further based on demanded bits or other folds. |
| if (MaskVal == -1) |
| return nullptr; |
| |
| // The mask value chooses which source operand we need to look at next. |
| int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); |
| int RootElt = MaskVal; |
| Value *SourceOp = Op0; |
| if (MaskVal >= InVecNumElts) { |
| RootElt = MaskVal - InVecNumElts; |
| SourceOp = Op1; |
| } |
| |
| // If the source operand is a shuffle itself, look through it to find the |
| // matching root vector. |
| if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { |
| return foldIdentityShuffles( |
| DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), |
| SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); |
| } |
| |
| // TODO: Look through bitcasts? What if the bitcast changes the vector element |
| // size? |
| |
| // The source operand is not a shuffle. Initialize the root vector value for |
| // this shuffle if that has not been done yet. |
| if (!RootVec) |
| RootVec = SourceOp; |
| |
| // Give up as soon as a source operand does not match the existing root value. |
| if (RootVec != SourceOp) |
| return nullptr; |
| |
| // The element must be coming from the same lane in the source vector |
| // (although it may have crossed lanes in intermediate shuffles). |
| if (RootElt != DestElt) |
| return nullptr; |
| |
| return RootVec; |
| } |
| |
| static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, |
| ArrayRef<int> Mask, Type *RetTy, |
| const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) |
| return UndefValue::get(RetTy); |
| |
| auto *InVecTy = cast<VectorType>(Op0->getType()); |
| unsigned MaskNumElts = Mask.size(); |
| ElementCount InVecEltCount = InVecTy->getElementCount(); |
| |
| bool Scalable = InVecEltCount.isScalable(); |
| |
| SmallVector<int, 32> Indices; |
| Indices.assign(Mask.begin(), Mask.end()); |
| |
| // Canonicalization: If mask does not select elements from an input vector, |
| // replace that input vector with poison. |
| if (!Scalable) { |
| bool MaskSelects0 = false, MaskSelects1 = false; |
| unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| if (Indices[i] == -1) |
| continue; |
| if ((unsigned)Indices[i] < InVecNumElts) |
| MaskSelects0 = true; |
| else |
| MaskSelects1 = true; |
| } |
| if (!MaskSelects0) |
| Op0 = PoisonValue::get(InVecTy); |
| if (!MaskSelects1) |
| Op1 = PoisonValue::get(InVecTy); |
| } |
| |
| auto *Op0Const = dyn_cast<Constant>(Op0); |
| auto *Op1Const = dyn_cast<Constant>(Op1); |
| |
| // If all operands are constant, constant fold the shuffle. This |
| // transformation depends on the value of the mask which is not known at |
| // compile time for scalable vectors |
| if (Op0Const && Op1Const) |
| return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); |
| |
| // Canonicalization: if only one input vector is constant, it shall be the |
| // second one. This transformation depends on the value of the mask which |
| // is not known at compile time for scalable vectors |
| if (!Scalable && Op0Const && !Op1Const) { |
| std::swap(Op0, Op1); |
| ShuffleVectorInst::commuteShuffleMask(Indices, |
| InVecEltCount.getKnownMinValue()); |
| } |
| |
| // A splat of an inserted scalar constant becomes a vector constant: |
| // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> |
| // NOTE: We may have commuted above, so analyze the updated Indices, not the |
| // original mask constant. |
| // NOTE: This transformation depends on the value of the mask which is not |
| // known at compile time for scalable vectors |
| Constant *C; |
| ConstantInt *IndexC; |
| if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), |
| m_ConstantInt(IndexC)))) { |
| // Match a splat shuffle mask of the insert index allowing undef elements. |
| int InsertIndex = IndexC->getZExtValue(); |
| if (all_of(Indices, [InsertIndex](int MaskElt) { |
| return MaskElt == InsertIndex || MaskElt == -1; |
| })) { |
| assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); |
| |
| // Shuffle mask undefs become undefined constant result elements. |
| SmallVector<Constant *, 16> VecC(MaskNumElts, C); |
| for (unsigned i = 0; i != MaskNumElts; ++i) |
| if (Indices[i] == -1) |
| VecC[i] = UndefValue::get(C->getType()); |
| return ConstantVector::get(VecC); |
| } |
| } |
| |
| // A shuffle of a splat is always the splat itself. Legal if the shuffle's |
| // value type is same as the input vectors' type. |
| if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) |
| if (Q.isUndefValue(Op1) && RetTy == InVecTy && |
| all_equal(OpShuf->getShuffleMask())) |
| return Op0; |
| |
| // All remaining transformation depend on the value of the mask, which is |
| // not known at compile time for scalable vectors. |
| if (Scalable) |
| return nullptr; |
| |
| // Don't fold a shuffle with undef mask elements. This may get folded in a |
| // better way using demanded bits or other analysis. |
| // TODO: Should we allow this? |
| if (is_contained(Indices, -1)) |
| return nullptr; |
| |
| // Check if every element of this shuffle can be mapped back to the |
| // corresponding element of a single root vector. If so, we don't need this |
| // shuffle. This handles simple identity shuffles as well as chains of |
| // shuffles that may widen/narrow and/or move elements across lanes and back. |
| Value *RootVec = nullptr; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| // Note that recursion is limited for each vector element, so if any element |
| // exceeds the limit, this will fail to simplify. |
| RootVec = |
| foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); |
| |
| // We can't replace a widening/narrowing shuffle with one of its operands. |
| if (!RootVec || RootVec->getType() != RetTy) |
| return nullptr; |
| } |
| return RootVec; |
| } |
| |
| /// Given operands for a ShuffleVectorInst, fold the result or return null. |
| Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, |
| ArrayRef<int> Mask, Type *RetTy, |
| const SimplifyQuery &Q) { |
| return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); |
| } |
| |
| static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, |
| const SimplifyQuery &Q) { |
| if (auto *C = dyn_cast<Constant>(Op)) |
| return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); |
| return nullptr; |
| } |
| |
| /// Given the operand for an FNeg, see if we can fold the result. If not, this |
| /// returns null. |
| static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) |
| return C; |
| |
| Value *X; |
| // fneg (fneg X) ==> X |
| if (match(Op, m_FNeg(m_Value(X)))) |
| return X; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, |
| const SimplifyQuery &Q) { |
| return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); |
| } |
| |
| /// Try to propagate existing NaN values when possible. If not, replace the |
| /// constant or elements in the constant with a canonical NaN. |
| static Constant *propagateNaN(Constant *In) { |
| if (auto *VecTy = dyn_cast<FixedVectorType>(In->getType())) { |
| unsigned NumElts = VecTy->getNumElements(); |
| SmallVector<Constant *, 32> NewC(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *EltC = In->getAggregateElement(i); |
| // Poison and existing NaN elements propagate. |
| // Replace unknown or undef elements with canonical NaN. |
| if (EltC && (isa<PoisonValue>(EltC) || EltC->isNaN())) |
| NewC[i] = EltC; |
| else |
| NewC[i] = (ConstantFP::getNaN(VecTy->getElementType())); |
| } |
| return ConstantVector::get(NewC); |
| } |
| |
| // It is not a fixed vector, but not a simple NaN either? |
| if (!In->isNaN()) |
| return ConstantFP::getNaN(In->getType()); |
| |
| // Propagate the existing NaN constant when possible. |
| // TODO: Should we quiet a signaling NaN? |
| return In; |
| } |
| |
| /// Perform folds that are common to any floating-point operation. This implies |
| /// transforms based on poison/undef/NaN because the operation itself makes no |
| /// difference to the result. |
| static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| // Poison is independent of anything else. It always propagates from an |
| // operand to a math result. |
| if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) |
| return PoisonValue::get(Ops[0]->getType()); |
| |
| for (Value *V : Ops) { |
| bool IsNan = match(V, m_NaN()); |
| bool IsInf = match(V, m_Inf()); |
| bool IsUndef = Q.isUndefValue(V); |
| |
| // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand |
| // (an undef operand can be chosen to be Nan/Inf), then the result of |
| // this operation is poison. |
| if (FMF.noNaNs() && (IsNan || IsUndef)) |
| return PoisonValue::get(V->getType()); |
| if (FMF.noInfs() && (IsInf || IsUndef)) |
| return PoisonValue::get(V->getType()); |
| |
| if (isDefaultFPEnvironment(ExBehavior, Rounding)) { |
| // Undef does not propagate because undef means that all bits can take on |
| // any value. If this is undef * NaN for example, then the result values |
| // (at least the exponent bits) are limited. Assume the undef is a |
| // canonical NaN and propagate that. |
| if (IsUndef) |
| return ConstantFP::getNaN(V->getType()); |
| if (IsNan) |
| return propagateNaN(cast<Constant>(V)); |
| } else if (ExBehavior != fp::ebStrict) { |
| if (IsNan) |
| return propagateNaN(cast<Constant>(V)); |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Given operands for an FAdd, see if we can fold the result. If not, this |
| /// returns null. |
| static Value * |
| simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned MaxRecurse, |
| fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| if (isDefaultFPEnvironment(ExBehavior, Rounding)) |
| if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) |
| return C; |
| |
| if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| return C; |
| |
| // fadd X, -0 ==> X |
| // With strict/constrained FP, we have these possible edge cases that do |
| // not simplify to Op0: |
| // fadd SNaN, -0.0 --> QNaN |
| // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) |
| if (canIgnoreSNaN(ExBehavior, FMF) && |
| (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || |
| FMF.noSignedZeros())) |
| if (match(Op1, m_NegZeroFP())) |
| return Op0; |
| |
| // fadd X, 0 ==> X, when we know X is not -0 |
| if (canIgnoreSNaN(ExBehavior, FMF)) |
| if (match(Op1, m_PosZeroFP()) && |
| (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) |
| return Op0; |
| |
| if (!isDefaultFPEnvironment(ExBehavior, Rounding)) |
| return nullptr; |
| |
| if (FMF.noNaNs()) { |
| // With nnan: X + {+/-}Inf --> {+/-}Inf |
| if (match(Op1, m_Inf())) |
| return Op1; |
| |
| // With nnan: -X + X --> 0.0 (and commuted variant) |
| // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. |
| // Negative zeros are allowed because we always end up with positive zero: |
| // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 |
| // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 |
| // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 |
| // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 |
| if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || |
| match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) |
| return ConstantFP::getNullValue(Op0->getType()); |
| |
| if (match(Op0, m_FNeg(m_Specific(Op1))) || |
| match(Op1, m_FNeg(m_Specific(Op0)))) |
| return ConstantFP::getNullValue(Op0->getType()); |
| } |
| |
| // (X - Y) + Y --> X |
| // Y + (X - Y) --> X |
| Value *X; |
| if (FMF.noSignedZeros() && FMF.allowReassoc() && |
| (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || |
| match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) |
| return X; |
| |
| return nullptr; |
| } |
| |
| /// Given operands for an FSub, see if we can fold the result. If not, this |
| /// returns null. |
| static Value * |
| simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned MaxRecurse, |
| fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| if (isDefaultFPEnvironment(ExBehavior, Rounding)) |
| if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) |
| return C; |
| |
| if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| return C; |
| |
| // fsub X, +0 ==> X |
| if (canIgnoreSNaN(ExBehavior, FMF) && |
| (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || |
| FMF.noSignedZeros())) |
| if (match(Op1, m_PosZeroFP())) |
| return Op0; |
| |
| // fsub X, -0 ==> X, when we know X is not -0 |
| if (canIgnoreSNaN(ExBehavior, FMF)) |
| if (match(Op1, m_NegZeroFP()) && |
| (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) |
| return Op0; |
| |
| // fsub -0.0, (fsub -0.0, X) ==> X |
| // fsub -0.0, (fneg X) ==> X |
| Value *X; |
| if (canIgnoreSNaN(ExBehavior, FMF)) |
| if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) |
| return X; |
| |
| // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. |
| // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. |
| if (canIgnoreSNaN(ExBehavior, FMF)) |
| if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && |
| (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || |
| match(Op1, m_FNeg(m_Value(X))))) |
| return X; |
| |
| if (!isDefaultFPEnvironment(ExBehavior, Rounding)) |
| return nullptr; |
| |
| if (FMF.noNaNs()) { |
| // fsub nnan x, x ==> 0.0 |
| if (Op0 == Op1) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // With nnan: {+/-}Inf - X --> {+/-}Inf |
| if (match(Op0, m_Inf())) |
| return Op0; |
| |
| // With nnan: X - {+/-}Inf --> {-/+}Inf |
| if (match(Op1, m_Inf())) |
| return foldConstant(Instruction::FNeg, Op1, Q); |
| } |
| |
| // Y - (Y - X) --> X |
| // (X + Y) - Y --> X |
| if (FMF.noSignedZeros() && FMF.allowReassoc() && |
| (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || |
| match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) |
| return X; |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned MaxRecurse, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| return C; |
| |
| if (!isDefaultFPEnvironment(ExBehavior, Rounding)) |
| return nullptr; |
| |
| // Canonicalize special constants as operand 1. |
| if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) |
| std::swap(Op0, Op1); |
| |
| // X * 1.0 --> X |
| if (match(Op1, m_FPOne())) |
| return Op0; |
| |
| if (match(Op1, m_AnyZeroFP())) { |
| // X * 0.0 --> 0.0 (with nnan and nsz) |
| if (FMF.noNaNs() && FMF.noSignedZeros()) |
| return ConstantFP::getNullValue(Op0->getType()); |
| |
| // +normal number * (-)0.0 --> (-)0.0 |
| if (isKnownNeverInfinity(Op0, Q.TLI) && isKnownNeverNaN(Op0, Q.TLI) && |
| SignBitMustBeZero(Op0, Q.TLI)) |
| return Op1; |
| } |
| |
| // sqrt(X) * sqrt(X) --> X, if we can: |
| // 1. Remove the intermediate rounding (reassociate). |
| // 2. Ignore non-zero negative numbers because sqrt would produce NAN. |
| // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. |
| Value *X; |
| if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && |
| FMF.noNaNs() && FMF.noSignedZeros()) |
| return X; |
| |
| return nullptr; |
| } |
| |
| /// Given the operands for an FMul, see if we can fold the result |
| static Value * |
| simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned MaxRecurse, |
| fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| if (isDefaultFPEnvironment(ExBehavior, Rounding)) |
| if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) |
| return C; |
| |
| // Now apply simplifications that do not require rounding. |
| return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); |
| } |
| |
| Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| Rounding); |
| } |
| |
| Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| Rounding); |
| } |
| |
| Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| Rounding); |
| } |
| |
| Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| Rounding); |
| } |
| |
| static Value * |
| simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned, |
| fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| if (isDefaultFPEnvironment(ExBehavior, Rounding)) |
| if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) |
| return C; |
| |
| if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| return C; |
| |
| if (!isDefaultFPEnvironment(ExBehavior, Rounding)) |
| return nullptr; |
| |
| // X / 1.0 -> X |
| if (match(Op1, m_FPOne())) |
| return Op0; |
| |
| // 0 / X -> 0 |
| // Requires that NaNs are off (X could be zero) and signed zeroes are |
| // ignored (X could be positive or negative, so the output sign is unknown). |
| if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) |
| return ConstantFP::getNullValue(Op0->getType()); |
| |
| if (FMF.noNaNs()) { |
| // X / X -> 1.0 is legal when NaNs are ignored. |
| // We can ignore infinities because INF/INF is NaN. |
| if (Op0 == Op1) |
| return ConstantFP::get(Op0->getType(), 1.0); |
| |
| // (X * Y) / Y --> X if we can reassociate to the above form. |
| Value *X; |
| if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) |
| return X; |
| |
| // -X / X -> -1.0 and |
| // X / -X -> -1.0 are legal when NaNs are ignored. |
| // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. |
| if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || |
| match(Op1, m_FNegNSZ(m_Specific(Op0)))) |
| return ConstantFP::get(Op0->getType(), -1.0); |
| |
| // nnan ninf X / [-]0.0 -> poison |
| if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) |
| return PoisonValue::get(Op1->getType()); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| Rounding); |
| } |
| |
| static Value * |
| simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, unsigned, |
| fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| if (isDefaultFPEnvironment(ExBehavior, Rounding)) |
| if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) |
| return C; |
| |
| if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| return C; |
| |
| if (!isDefaultFPEnvironment(ExBehavior, Rounding)) |
| return nullptr; |
| |
| // Unlike fdiv, the result of frem always matches the sign of the dividend. |
| // The constant match may include undef elements in a vector, so return a full |
| // zero constant as the result. |
| if (FMF.noNaNs()) { |
| // +0 % X -> 0 |
| if (match(Op0, m_PosZeroFP())) |
| return ConstantFP::getNullValue(Op0->getType()); |
| // -0 % X -> -0 |
| if (match(Op0, m_NegZeroFP())) |
| return ConstantFP::getNegativeZero(Op0->getType()); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| const SimplifyQuery &Q, |
| fp::ExceptionBehavior ExBehavior, |
| RoundingMode Rounding) { |
| return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| Rounding); |
| } |
| |
| //=== Helper functions for higher up the class hierarchy. |
| |
| /// Given the operand for a UnaryOperator, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| switch (Opcode) { |
| case Instruction::FNeg: |
| return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| } |
| } |
| |
| /// Given the operand for a UnaryOperator, see if we can fold the result. |
| /// If not, this returns null. |
| /// Try to use FastMathFlags when folding the result. |
| static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, |
| const FastMathFlags &FMF, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| switch (Opcode) { |
| case Instruction::FNeg: |
| return simplifyFNegInst(Op, FMF, Q, MaxRecurse); |
| default: |
| return simplifyUnOp(Opcode, Op, Q, MaxRecurse); |
| } |
| } |
| |
| Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { |
| return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); |
| } |
| |
| Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, |
| const SimplifyQuery &Q) { |
| return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); |
| } |
| |
| /// Given operands for a BinaryOperator, see if we can fold the result. |
| /// If not, this returns null. |
| static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| switch (Opcode) { |
| case Instruction::Add: |
| return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| MaxRecurse); |
| case Instruction::Sub: |
| return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| MaxRecurse); |
| case Instruction::Mul: |
| return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| MaxRecurse); |
| case Instruction::SDiv: |
| return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); |
| case Instruction::UDiv: |
| return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); |
| case Instruction::SRem: |
| return simplifySRemInst(LHS, RHS, Q, MaxRecurse); |
| case Instruction::URem: |
| return simplifyURemInst(LHS, RHS, Q, MaxRecurse); |
| case Instruction::Shl: |
| return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| MaxRecurse); |
| case Instruction::LShr: |
| return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); |
| case Instruction::AShr: |
| return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); |
| case Instruction::And: |
| return simplifyAndInst(LHS, RHS, Q, MaxRecurse); |
| case Instruction::Or: |
| return simplifyOrInst(LHS, RHS, Q, MaxRecurse); |
| case Instruction::Xor: |
| return simplifyXorInst(LHS, RHS, Q, MaxRecurse); |
| case Instruction::FAdd: |
| return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); |
| case Instruction::FSub: |
| return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); |
| case Instruction::FMul: |
| return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); |
| case Instruction::FDiv: |
| return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); |
| case Instruction::FRem: |
| return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| } |
| } |
| |
| /// Given operands for a BinaryOperator, see if we can fold the result. |
| /// If not, this returns null. |
| /// Try to use FastMathFlags when folding the result. |
| static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const FastMathFlags &FMF, const SimplifyQuery &Q, |
| unsigned MaxRecurse) { |
| switch (Opcode) { |
| case Instruction::FAdd: |
| return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); |
| case Instruction::FSub: |
| return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); |
| case Instruction::FMul: |
| return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); |
| case Instruction::FDiv: |
| return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); |
| default: |
| return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); |
| } |
| } |
| |
| Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q) { |
| return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); |
| } |
| |
| Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| FastMathFlags FMF, const SimplifyQuery &Q) { |
| return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); |
| } |
| |
| /// Given operands for a CmpInst, see if we can fold the result. |
| static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q, unsigned MaxRecurse) { |
| if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) |
| return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); |
| return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); |
| } |
| |
| Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const SimplifyQuery &Q) { |
| return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); |
| } |
| |
| static bool isIdempotent(Intrinsic::ID ID) { |
| switch (ID) { |
| default: |
| return false; |
| |
| // Unary idempotent: f(f(x)) = f(x) |
| case Intrinsic::fabs: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::round: |
| case Intrinsic::roundeven: |
| case Intrinsic::canonicalize: |
| case Intrinsic::arithmetic_fence: |
| return true; |
| } |
| } |
| |
| /// Return true if the intrinsic rounds a floating-point value to an integral |
| /// floating-point value (not an integer type). |
| static bool removesFPFraction(Intrinsic::ID ID) { |
| switch (ID) { |
| default: |
| return false; |
| |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::round: |
| case Intrinsic::roundeven: |
| return true; |
| } |
| } |
| |
| static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, |
| const DataLayout &DL) { |
| GlobalValue *PtrSym; |
| APInt PtrOffset; |
| if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) |
| return nullptr; |
| |
| Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); |
| Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); |
| Type *Int32PtrTy = Int32Ty->getPointerTo(); |
| Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); |
| |
| auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); |
| if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) |
| return nullptr; |
| |
| uint64_t OffsetInt = OffsetConstInt->getSExtValue(); |
| if (OffsetInt % 4 != 0) |
| return nullptr; |
| |
| Constant *C = ConstantExpr::getGetElementPtr( |
| Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), |
| ConstantInt::get(Int64Ty, OffsetInt / 4)); |
| Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); |
| if (!Loaded) |
| return nullptr; |
| |
| auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); |
| if (!LoadedCE) |
| return nullptr; |
| |
| if (LoadedCE->getOpcode() == Instruction::Trunc) { |
| LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); |
| if (!LoadedCE) |
| return nullptr; |
| } |
| |
| if (LoadedCE->getOpcode() != Instruction::Sub) |
| return nullptr; |
| |
| auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); |
| if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) |
| return nullptr; |
| auto *LoadedLHSPtr = LoadedLHS->getOperand(0); |
| |
| Constant *LoadedRHS = LoadedCE->getOperand(1); |
| GlobalValue *LoadedRHSSym; |
| APInt LoadedRHSOffset; |
| if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, |
| DL) || |
| PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) |
| return nullptr; |
| |
| return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); |
| } |
| |
| static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, |
| const SimplifyQuery &Q) { |
| // Idempotent functions return the same result when called repeatedly. |
| Intrinsic::ID IID = F->getIntrinsicID(); |
| if (isIdempotent(IID)) |
| if (auto *II = dyn_cast<IntrinsicInst>(Op0)) |
| if (II->getIntrinsicID() == IID) |
| return II; |
| |
| if (removesFPFraction(IID)) { |
| // Converting from int or calling a rounding function always results in a |
| // finite integral number or infinity. For those inputs, rounding functions |
| // always return the same value, so the (2nd) rounding is eliminated. Ex: |
| // floor (sitofp x) -> sitofp x |
| // round (ceil x) -> ceil x |
| auto *II = dyn_cast<IntrinsicInst>(Op0); |
| if ((II && removesFPFraction(II->getIntrinsicID())) || |
| match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) |
| return Op0; |
| } |
| |
| Value *X; |
| switch (IID) { |
| case Intrinsic::fabs: |
| if (SignBitMustBeZero(Op0, Q.TLI)) |
| return Op0; |
| break; |
| case Intrinsic::bswap: |
| // bswap(bswap(x)) -> x |
| if (match(Op0, m_BSwap(m_Value(X)))) |
| return X; |
| break; |
| case Intrinsic::bitreverse: |
| // bitreverse(bitreverse(x)) -> x |
| if (match(Op0, m_BitReverse(m_Value(X)))) |
| return X; |
| break; |
| case Intrinsic::ctpop: { |
| // ctpop(X) -> 1 iff X is non-zero power of 2. |
| if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, |
| Q.DT)) |
| return ConstantInt::get(Op0->getType(), 1); |
| // If everything but the lowest bit is zero, that bit is the pop-count. Ex: |
| // ctpop(and X, 1) --> and X, 1 |
| unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); |
| if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), |
| Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
| return Op0; |
| break; |
| } |
| case Intrinsic::exp: |
| // exp(log(x)) -> x |
| if (Q.CxtI->hasAllowReassoc() && |
| match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) |
| return X; |
| break; |
| case Intrinsic::exp2: |
| // exp2(log2(x)) -> x |
| if (Q.CxtI->hasAllowReassoc() && |
| match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) |
| return X; |
| break; |
| case Intrinsic::log: |
| // log(exp(x)) -> x |
| if (Q.CxtI->hasAllowReassoc() && |
| match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) |
| return X; |
| break; |
| case Intrinsic::log2: |
| // log2(exp2(x)) -> x |
| if (Q.CxtI->hasAllowReassoc() && |
| (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || |
| match(Op0, |
| m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) |
| return X; |
| break; |
| case Intrinsic::log10: |
| // log10(pow(10.0, x)) -> x |
| if (Q.CxtI->hasAllowReassoc() && |
| match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))) |
| return X; |
| break; |
| case Intrinsic::experimental_vector_reverse: |
| // experimental.vector.reverse(experimental.vector.reverse(x)) -> x |
| if (match(Op0, m_VecReverse(m_Value(X)))) |
| return X; |
| // experimental.vector.reverse(splat(X)) -> splat(X) |
| if (isSplatValue(Op0)) |
| return Op0; |
| break; |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given a min/max intrinsic, see if it can be removed based on having an |
| /// operand that is another min/max intrinsic with shared operand(s). The caller |
| /// is expected to swap the operand arguments to handle commutation. |
| static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { |
| Value *X, *Y; |
| if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) |
| return nullptr; |
| |
| auto *MM0 = dyn_cast<IntrinsicInst>(Op0); |
| if (!MM0) |
| return nullptr; |
| Intrinsic::ID IID0 = MM0->getIntrinsicID(); |
| |
| if (Op1 == X || Op1 == Y || |
| match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { |
| // max (max X, Y), X --> max X, Y |
| if (IID0 == IID) |
| return MM0; |
| // max (min X, Y), X --> X |
| if (IID0 == getInverseMinMaxIntrinsic(IID)) |
| return Op1; |
| } |
| return nullptr; |
| } |
| |
| static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, |
| const SimplifyQuery &Q) { |
| Intrinsic::ID IID = F->getIntrinsicID(); |
| Type *ReturnType = F->getReturnType(); |
| unsigned BitWidth = ReturnType->getScalarSizeInBits(); |
| switch (IID) { |
| case Intrinsic::abs: |
| // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. |
| // It is always ok to pick the earlier abs. We'll just lose nsw if its only |
| // on the outer abs. |
| if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) |
| return Op0; |
| break; |
| |
| case Intrinsic::cttz: { |
| Value *X; |
| if (match(Op0, m_Shl(m_One(), m_Value(X)))) |
| return X; |
| break; |
| } |
| case Intrinsic::ctlz: { |
| Value *X; |
| if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) |
| return X; |
| if (match(Op0, m_AShr(m_Negative(), m_Value()))) |
| return Constant::getNullValue(ReturnType); |
| break; |
| } |
| case Intrinsic::smax: |
| case Intrinsic::smin: |
| case Intrinsic::umax: |
| case Intrinsic::umin: { |
| // If the arguments are the same, this is a no-op. |
| if (Op0 == Op1) |
| return Op0; |
| |
| // Canonicalize immediate constant operand as Op1. |
| if (match(Op0, m_ImmConstant())) |
| std::swap(Op0, Op1); |
| |
| // Assume undef is the limit value. |
| if (Q.isUndefValue(Op1)) |
| return ConstantInt::get( |
| ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); |
| |
| const APInt *C; |
| if (match(Op1, m_APIntAllowUndef(C))) { |
| // Clamp to limit value. For example: |
| // umax(i8 %x, i8 255) --> 255 |
| if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) |
| return ConstantInt::get(ReturnType, *C); |
| |
| // If the constant op is the opposite of the limit value, the other must |
| // be larger/smaller or equal. For example: |
| // umin(i8 %x, i8 255) --> %x |
| if (*C == MinMaxIntrinsic::getSaturationPoint( |
| getInverseMinMaxIntrinsic(IID), BitWidth)) |
| return Op0; |
| |
| // Remove nested call if constant operands allow it. Example: |
| // max (max X, 7), 5 -> max X, 7 |
| auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); |
| if (MinMax0 && MinMax0->getIntrinsicID() == IID) { |
| // TODO: loosen undef/splat restrictions for vector constants. |
| Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); |
| const APInt *InnerC; |
| if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && |
| ICmpInst::compare(*InnerC, *C, |
| ICmpInst::getNonStrictPredicate( |
| MinMaxIntrinsic::getPredicate(IID)))) |
| return Op0; |
| } |
| } |
| |
| if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) |
| return V; |
| if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) |
| return V; |
| |
| ICmpInst::Predicate Pred = |
| ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); |
| if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) |
| return Op0; |
| if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) |
| return Op1; |
| |
| if (std::optional<bool> Imp = |
| isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) |
| return *Imp ? Op0 : Op1; |
| if (std::optional<bool> Imp = |
| isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) |
| return *Imp ? Op1 : Op0; |
| |
| break; |
| } |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| // X - X -> { 0, false } |
| // X - undef -> { 0, false } |
| // undef - X -> { 0, false } |
| if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) |
| return Constant::getNullValue(ReturnType); |
| break; |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| // X + undef -> { -1, false } |
| // undef + x -> { -1, false } |
| if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { |
| return ConstantStruct::get( |
| cast<StructType>(ReturnType), |
| {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), |
| Constant::getNullValue(ReturnType->getStructElementType(1))}); |
| } |
| break; |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| // 0 * X -> { 0, false } |
| // X * 0 -> { 0, false } |
| if (match(Op0, m_Zero()) || match(Op1, m_Zero())) |
| return Constant::getNullValue(ReturnType); |
| // undef * X -> { 0, false } |
| // X * undef -> { 0, false } |
| if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) |
| return Constant::getNullValue(ReturnType); |
| break; |
| case Intrinsic::uadd_sat: |
| // sat(MAX + X) -> MAX |
| // sat(X + MAX) -> MAX |
| if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) |
| return Constant::getAllOnesValue(ReturnType); |
| [[fallthrough]]; |
| case Intrinsic::sadd_sat: |
| // sat(X + undef) -> -1 |
| // sat(undef + X) -> -1 |
| // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). |
| // For signed: Assume undef is ~X, in which case X + ~X = -1. |
| if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) |
| return Constant::getAllOnesValue(ReturnType); |
| |
| // X + 0 -> X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| // 0 + X -> X |
| if (match(Op0, m_Zero())) |
| return Op1; |
| break; |
| case Intrinsic::usub_sat: |
| // sat(0 - X) -> 0, sat(X - MAX) -> 0 |
| if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) |
| return Constant::getNullValue(ReturnType); |
| [[fallthrough]]; |
| case Intrinsic::ssub_sat: |
| // X - X -> 0, X - undef -> 0, undef - X -> 0 |
| if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) |
| return Constant::getNullValue(ReturnType); |
| // X - 0 -> X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| break; |
| case Intrinsic::load_relative: |
| if (auto *C0 = dyn_cast<Constant>(Op0)) |
| if (auto *C1 = dyn_cast<Constant>(Op1)) |
| return simplifyRelativeLoad(C0, C1, Q.DL); |
| break; |
| case Intrinsic::powi: |
| if (auto *Power = dyn_cast<ConstantInt>(Op1)) { |
| // powi(x, 0) -> 1.0 |
| if (Power->isZero()) |
| return ConstantFP::get(Op0->getType(), 1.0); |
| // powi(x, 1) -> x |
| if (Power->isOne()) |
| return Op0; |
| } |
| break; |
| case Intrinsic::copysign: |
| // copysign X, X --> X |
| if (Op0 == Op1) |
| return Op0; |
| // copysign -X, X --> X |
| // copysign X, -X --> -X |
| if (match(Op0, m_FNeg(m_Specific(Op1))) || |
| match(Op1, m_FNeg(m_Specific(Op0)))) |
| return Op1; |
| break; |
| case Intrinsic::is_fpclass: { |
| if (isa<PoisonValue>(Op0)) |
| return PoisonValue::get(ReturnType); |
| |
| uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); |
| // If all tests are made, it doesn't matter what the value is. |
| if ((Mask & fcAllFlags) == fcAllFlags) |
| return ConstantInt::get(ReturnType, true); |
| if ((Mask & fcAllFlags) == 0) |
| return ConstantInt::get(ReturnType, false); |
| if (Q.isUndefValue(Op0)) |
| return UndefValue::get(ReturnType); |
| break; |
| } |
| case Intrinsic::maxnum: |
| case Intrinsic::minnum: |
| case Intrinsic::maximum: |
| case Intrinsic::minimum: { |
| // If the arguments are the same, this is a no-op. |
| if (Op0 == Op1) |
| return Op0; |
| |
| // Canonicalize constant operand as Op1. |
| if (isa<Constant>(Op0)) |
| std::swap(Op0, Op1); |
| |
| // If an argument is undef, return the other argument. |
| if (Q.isUndefValue(Op1)) |
| return Op0; |
| |
| bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; |
| bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; |
| |
| // minnum(X, nan) -> X |
| // maxnum(X, nan) -> X |
| // minimum(X, nan) -> nan |
| // maximum(X, nan) -> nan |
| if (match(Op1, m_NaN())) |
| return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; |
| |
| // In the following folds, inf can be replaced with the largest finite |
| // float, if the ninf flag is set. |
| const APFloat *C; |
| if (match(Op1, m_APFloat(C)) && |
| (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { |
| // minnum(X, -inf) -> -inf |
| // maxnum(X, +inf) -> +inf |
| // minimum(X, -inf) -> -inf if nnan |
| // maximum(X, +inf) -> +inf if nnan |
| if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) |
| return ConstantFP::get(ReturnType, *C); |
| |
| // minnum(X, +inf) -> X if nnan |
| // maxnum(X, -inf) -> X if nnan |
| // minimum(X, +inf) -> X |
| // maximum(X, -inf) -> X |
| if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) |
| return Op0; |
| } |
| |
| // Min/max of the same operation with common operand: |
| // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) |
| if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) |
| if (M0->getIntrinsicID() == IID && |
| (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) |
| return Op0; |
| if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) |
| if (M1->getIntrinsicID() == IID && |
| (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) |
| return Op1; |
| |
| break; |
| } |
| case Intrinsic::vector_extract: { |
| Type *ReturnType = F->getReturnType(); |
| |
| // (extract_vector (insert_vector _, X, 0), 0) -> X |
| unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); |
| Value *X = nullptr; |
| if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), |
| m_Zero())) && |
| IdxN == 0 && X->getType() == ReturnType) |
| return X; |
| |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { |
| |
| unsigned NumOperands = Call->arg_size(); |
| Function *F = cast<Function>(Call->getCalledFunction()); |
| Intrinsic::ID IID = F->getIntrinsicID(); |
| |
| // Most of the intrinsics with no operands have some kind of side effect. |
| // Don't simplify. |
| if (!NumOperands) { |
| switch (IID) { |
| case Intrinsic::vscale: { |
| // Call may not be inserted into the IR yet at point of calling simplify. |
| if (!Call->getParent() || !Call->getParent()->getParent()) |
| return nullptr; |
| auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); |
| if (!Attr.isValid()) |
| return nullptr; |
| unsigned VScaleMin = Attr.getVScaleRangeMin(); |
| std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); |
| if (VScaleMax && VScaleMin == VScaleMax) |
| return ConstantInt::get(F->getReturnType(), VScaleMin); |
| return nullptr; |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| if (NumOperands == 1) |
| return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); |
| |
| if (NumOperands == 2) |
| return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), |
| Call->getArgOperand(1), Q); |
| |
| // Handle intrinsics with 3 or more arguments. |
| switch (IID) { |
| case Intrinsic::masked_load: |
| case Intrinsic::masked_gather: { |
| Value *MaskArg = Call->getArgOperand(2); |
| Value *PassthruArg = Call->getArgOperand(3); |
| // If the mask is all zeros or undef, the "passthru" argument is the result. |
| if (maskIsAllZeroOrUndef(MaskArg)) |
| return PassthruArg; |
| return nullptr; |
| } |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: { |
| Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), |
| *ShAmtArg = Call->getArgOperand(2); |
| |
| // If both operands are undef, the result is undef. |
| if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) |
| return UndefValue::get(F->getReturnType()); |
| |
| // If shift amount is undef, assume it is zero. |
| if (Q.isUndefValue(ShAmtArg)) |
| return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); |
| |
| const APInt *ShAmtC; |
| if (match(ShAmtArg, m_APInt(ShAmtC))) { |
| // If there's effectively no shift, return the 1st arg or 2nd arg. |
| APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); |
| if (ShAmtC->urem(BitWidth).isZero()) |
| return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); |
| } |
| |
| // Rotating zero by anything is zero. |
| if (match(Op0, m_Zero()) && match(Op1, m_Zero())) |
| return ConstantInt::getNullValue(F->getReturnType()); |
| |
| // Rotating -1 by anything is -1. |
| if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) |
| return ConstantInt::getAllOnesValue(F->getReturnType()); |
| |
| return nullptr; |
| } |
| case Intrinsic::experimental_constrained_fma: { |
| Value *Op0 = Call->getArgOperand(0); |
| Value *Op1 = Call->getArgOperand(1); |
| Value *Op2 = Call->getArgOperand(2); |
| auto *FPI = cast<ConstrainedFPIntrinsic>(Call); |
| if (Value *V = |
| simplifyFPOp({Op0, Op1, Op2}, {}, Q, *FPI->getExceptionBehavior(), |
| *FPI->getRoundingMode())) |
| return V; |
| return nullptr; |
| } |
| case Intrinsic::fma: |
| case Intrinsic::fmuladd: { |
| Value *Op0 = Call->getArgOperand(0); |
| Value *Op1 = Call->getArgOperand(1); |
| Value *Op2 = Call->getArgOperand(2); |
| if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, |
| RoundingMode::NearestTiesToEven)) |
| return V; |
| return nullptr; |
| } |
| case Intrinsic::smul_fix: |
| case Intrinsic::smul_fix_sat: { |
| Value *Op0 = Call->getArgOperand(0); |
| Value *Op1 = Call->getArgOperand(1); |
| Value *Op2 = Call->getArgOperand(2); |
| Type *ReturnType = F->getReturnType(); |
| |
| // Canonicalize constant operand as Op1 (ConstantFolding handles the case |
| // when both Op0 and Op1 are constant so we do not care about that special |
| // case here). |
| if (isa<Constant>(Op0)) |
| std::swap(Op0, Op1); |
| |
| // X * 0 -> 0 |
| if (match(Op1, m_Zero())) |
| return Constant::getNullValue(ReturnType); |
| |
| // X * undef -> 0 |
| if (Q.isUndefValue(Op1)) |
| return Constant::getNullValue(ReturnType); |
| |
| // X * (1 << Scale) -> X |
| APInt ScaledOne = |
| APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), |
| cast<ConstantInt>(Op2)->getZExtValue()); |
| if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) |
| return Op0; |
| |
| return nullptr; |
| } |
| case Intrinsic::vector_insert: { |
| Value *Vec = Call->getArgOperand(0); |
| Value *SubVec = Call->getArgOperand(1); |
| Value *Idx = Call->getArgOperand(2); |
| Type *ReturnType = F->getReturnType(); |
| |
| // (insert_vector Y, (extract_vector X, 0), 0) -> X |
| // where: Y is X, or Y is undef |
| unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); |
| Value *X = nullptr; |
| if (match(SubVec, |
| m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && |
| (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && |
| X->getType() == ReturnType) |
| return X; |
| |
| return nullptr; |
| } |
| case Intrinsic::experimental_constrained_fadd: { |
| auto *FPI = cast<ConstrainedFPIntrinsic>(Call); |
| return simplifyFAddInst( |
| FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), |
| Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); |
| } |
| case Intrinsic::experimental_constrained_fsub: { |
| auto *FPI = cast<ConstrainedFPIntrinsic>(Call); |
| return simplifyFSubInst( |
| FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), |
| Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); |
| } |
| case Intrinsic::experimental_constrained_fmul: { |
| auto *FPI = cast<ConstrainedFPIntrinsic>(Call); |
| return simplifyFMulInst( |
| FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), |
| Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); |
| } |
| case Intrinsic::experimental_constrained_fdiv: { |
| auto *FPI = cast<ConstrainedFPIntrinsic>(Call); |
| return simplifyFDivInst( |
| FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), |
| Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); |
| } |
| case Intrinsic::experimental_constrained_frem: { |
| auto *FPI = cast<ConstrainedFPIntrinsic>(Call); |
| return simplifyFRemInst( |
| FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), |
| Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { |
| auto *F = dyn_cast<Function>(Call->getCalledOperand()); |
| if (!F || !canConstantFoldCallTo(Call, F)) |
| return nullptr; |
| |
| SmallVector<Constant *, 4> ConstantArgs; |
| unsigned NumArgs = Call->arg_size(); |
| ConstantArgs.reserve(NumArgs); |
| for (auto &Arg : Call->args()) { |
| Constant *C = dyn_cast<Constant>(&Arg); |
| if (!C) { |
| if (isa<MetadataAsValue>(Arg.get())) |
| continue; |
| return nullptr; |
| } |
| ConstantArgs.push_back(C); |
| } |
| |
| return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); |
| } |
| |
| Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) { |
| // musttail calls can only be simplified if they are also DCEd. |
| // As we can't guarantee this here, don't simplify them. |
| if (Call->isMustTailCall()) |
| return nullptr; |
| |
| // call undef -> poison |
| // call null -> poison |
| Value *Callee = Call->getCalledOperand(); |
| if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) |
| return PoisonValue::get(Call->getType()); |
| |
| if (Value *V = tryConstantFoldCall(Call, Q)) |
| return V; |
| |
| auto *F = dyn_cast<Function>(Callee); |
| if (F && F->isIntrinsic()) |
| if (Value *Ret = simplifyIntrinsic(Call, Q)) |
| return Ret; |
| |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { |
| assert(isa<ConstrainedFPIntrinsic>(Call)); |
| if (Value *V = tryConstantFoldCall(Call, Q)) |
| return V; |
| if (Value *Ret = simplifyIntrinsic(Call, Q)) |
| return Ret; |
| return nullptr; |
| } |
| |
| /// Given operands for a Freeze, see if we can fold the result. |
| static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { |
| // Use a utility function defined in ValueTracking. |
| if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) |
| return Op0; |
| // We have room for improvement. |
| return nullptr; |
| } |
| |
| Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { |
| return ::simplifyFreezeInst(Op0, Q); |
| } |
| |
| static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp, |
| const SimplifyQuery &Q) { |
| if (LI->isVolatile()) |
| return nullptr; |
| |
| APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); |
| auto *PtrOpC = dyn_cast<Constant>(PtrOp); |
| // Try to convert operand into a constant by stripping offsets while looking |
| // through invariant.group intrinsics. Don't bother if the underlying object |
| // is not constant, as calculating GEP offsets is expensive. |
| if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { |
| PtrOp = PtrOp->stripAndAccumulateConstantOffsets( |
| Q.DL, Offset, /* AllowNonInbounts */ true, |
| /* AllowInvariantGroup */ true); |
| // Index size may have changed due to address space casts. |
| Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); |
| PtrOpC = dyn_cast<Constant>(PtrOp); |
| } |
| |
| if (PtrOpC) |
| return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); |
| return nullptr; |
| } |
| |
| /// See if we can compute a simplified version of this instruction. |
| /// If not, this returns null. |
| |
| static Value *simplifyInstructionWithOperands(Instruction *I, |
| ArrayRef<Value *> NewOps, |
| const SimplifyQuery &SQ, |
| OptimizationRemarkEmitter *ORE) { |
| const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); |
| |
| switch (I->getOpcode()) { |
| default: |
| if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { |
| SmallVector<Constant *, 8> NewConstOps(NewOps.size()); |
| transform(NewOps, NewConstOps.begin(), |
| [](Value *V) { return cast<Constant>(V); }); |
| return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); |
| } |
| return nullptr; |
| case Instruction::FNeg: |
| return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); |
| case Instruction::FAdd: |
| return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); |
| case Instruction::Add: |
| return simplifyAddInst(NewOps[0], NewOps[1], |
| Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), |
| Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); |
| case Instruction::FSub: |
| return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); |
| case Instruction::Sub: |
| return simplifySubInst(NewOps[0], NewOps[1], |
| Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), |
| Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); |
| case Instruction::FMul: |
| return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); |
| case Instruction::Mul: |
| return simplifyMulInst(NewOps[0], NewOps[1], |
| Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), |
| Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); |
| case Instruction::SDiv: |
| return simplifySDivInst(NewOps[0], NewOps[1], |
| Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); |
| case Instruction::UDiv: |
| return simplifyUDivInst(NewOps[0], NewOps[1], |
| Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); |
| case Instruction::FDiv: |
| return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); |
| case Instruction::SRem: |
| return simplifySRemInst(NewOps[0], NewOps[1], Q); |
| case Instruction::URem: |
| return simplifyURemInst(NewOps[0], NewOps[1], Q); |
| case Instruction::FRem: |
| return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); |
| case Instruction::Shl: |
| return simplifyShlInst(NewOps[0], NewOps[1], |
| Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), |
| Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); |
| case Instruction::LShr: |
| return simplifyLShrInst(NewOps[0], NewOps[1], |
| Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); |
| case Instruction::AShr: |
| return simplifyAShrInst(NewOps[0], NewOps[1], |
| Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); |
| case Instruction::And: |
| return simplifyAndInst(NewOps[0], NewOps[1], Q); |
| case Instruction::Or: |
| return simplifyOrInst(NewOps[0], NewOps[1], Q); |
| case Instruction::Xor: |
| return simplifyXorInst(NewOps[0], NewOps[1], Q); |
| case Instruction::ICmp: |
| return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], |
| NewOps[1], Q); |
| case Instruction::FCmp: |
| return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], |
| NewOps[1], I->getFastMathFlags(), Q); |
| case Instruction::Select: |
| return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); |
| break; |
| case Instruction::GetElementPtr: { |
| auto *GEPI = cast<GetElementPtrInst>(I); |
| return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], |
| ArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); |
| } |
| case Instruction::InsertValue: { |
| InsertValueInst *IV = cast<InsertValueInst>(I); |
| return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); |
| } |
| case Instruction::InsertElement: |
| return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); |
| case Instruction::ExtractValue: { |
| auto *EVI = cast<ExtractValueInst>(I); |
| return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); |
| } |
| case Instruction::ExtractElement: |
| return simplifyExtractElementInst(NewOps[0], NewOps[1], Q); |
| case Instruction::ShuffleVector: { |
| auto *SVI = cast<ShuffleVectorInst>(I); |
| return simplifyShuffleVectorInst(NewOps[0], NewOps[1], |
| SVI->getShuffleMask(), SVI->getType(), Q); |
| } |
| case Instruction::PHI: |
| return simplifyPHINode(cast<PHINode>(I), NewOps, Q); |
| case Instruction::Call: |
| // TODO: Use NewOps |
| return simplifyCall(cast<CallInst>(I), Q); |
| case Instruction::Freeze: |
| return llvm::simplifyFreezeInst(NewOps[0], Q); |
| #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: |
| #include "llvm/IR/Instruction.def" |
| #undef HANDLE_CAST_INST |
| return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); |
| case Instruction::Alloca: |
| // No simplifications for Alloca and it can't be constant folded. |
| return nullptr; |
| case Instruction::Load: |
| return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); |
| } |
| } |
| |
| Value *llvm::simplifyInstructionWithOperands(Instruction *I, |
| ArrayRef<Value *> NewOps, |
| const SimplifyQuery &SQ, |
| OptimizationRemarkEmitter *ORE) { |
| assert(NewOps.size() == I->getNumOperands() && |
| "Number of operands should match the instruction!"); |
| return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); |
| } |
| |
| Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ, |
| OptimizationRemarkEmitter *ORE) { |
| SmallVector<Value *, 8> Ops(I->operands()); |
| Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); |
| |
| /// If called on unreachable code, the instruction may simplify to itself. |
| /// Make life easier for users by detecting that case here, and returning a |
| /// safe value instead. |
| return Result == I ? UndefValue::get(I->getType()) : Result; |
| } |
| |
| /// Implementation of recursive simplification through an instruction's |
| /// uses. |
| /// |
| /// This is the common implementation of the recursive simplification routines. |
| /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to |
| /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of |
| /// instructions to process and attempt to simplify it using |
| /// InstructionSimplify. Recursively visited users which could not be |
| /// simplified themselves are to the optional UnsimplifiedUsers set for |
| /// further processing by the caller. |
| /// |
| /// This routine returns 'true' only when *it* simplifies something. The passed |
| /// in simplified value does not count toward this. |
| static bool replaceAndRecursivelySimplifyImpl( |
| Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, |
| const DominatorTree *DT, AssumptionCache *AC, |
| SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { |
| bool Simplified = false; |
| SmallSetVector<Instruction *, 8> Worklist; |
| const DataLayout &DL = I->getModule()->getDataLayout(); |
| |
| // If we have an explicit value to collapse to, do that round of the |
| // simplification loop by hand initially. |
| if (SimpleV) { |
| for (User *U : I->users()) |
| if (U != I) |
| Worklist.insert(cast<Instruction>(U)); |
| |
| // Replace the instruction with its simplified value. |
| I->replaceAllUsesWith(SimpleV); |
| |
| // Gracefully handle edge cases where the instruction is not wired into any |
| // parent block. |
| if (I->getParent() && !I->isEHPad() && !I->isTerminator() && |
| !I->mayHaveSideEffects()) |
| I->eraseFromParent(); |
| } else { |
| Worklist.insert(I); |
| } |
| |
| // Note that we must test the size on each iteration, the worklist can grow. |
| for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { |
| I = Worklist[Idx]; |
| |
| // See if this instruction simplifies. |
| SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); |
| if (!SimpleV) { |
| if (UnsimplifiedUsers) |
| UnsimplifiedUsers->insert(I); |
| continue; |
| } |
| |
| Simplified = true; |
| |
| // Stash away all the uses of the old instruction so we can check them for |
| // recursive simplifications after a RAUW. This is cheaper than checking all |
| // uses of To on the recursive step in most cases. |
| for (User *U : I->users()) |
| Worklist.insert(cast<Instruction>(U)); |
| |
| // Replace the instruction with its simplified value. |
| I->replaceAllUsesWith(SimpleV); |
| |
| // Gracefully handle edge cases where the instruction is not wired into any |
| // parent block. |
| if (I->getParent() && !I->isEHPad() && !I->isTerminator() && |
| !I->mayHaveSideEffects()) |
| I->eraseFromParent(); |
| } |
| return Simplified; |
| } |
| |
| bool llvm::replaceAndRecursivelySimplify( |
| Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, |
| const DominatorTree *DT, AssumptionCache *AC, |
| SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { |
| assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); |
| assert(SimpleV && "Must provide a simplified value."); |
| return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, |
| UnsimplifiedUsers); |
| } |
| |
| namespace llvm { |
| const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { |
| auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
| auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; |
| auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); |
| auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; |
| return {F.getParent()->getDataLayout(), TLI, DT, AC}; |
| } |
| |
| const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, |
| const DataLayout &DL) { |
| return {DL, &AR.TLI, &AR.DT, &AR.AC}; |
| } |
| |
| template <class T, class... TArgs> |
| const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, |
| Function &F) { |
| auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); |
| auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); |
| auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); |
| return {F.getParent()->getDataLayout(), TLI, DT, AC}; |
| } |
| template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, |
| Function &); |
| } // namespace llvm |
| |
| void InstSimplifyFolder::anchor() {} |