| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef sw_Half_hpp |
| #define sw_Half_hpp |
| |
| #include "Math.hpp" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| namespace sw { |
| |
| class half |
| { |
| public: |
| half() = default; |
| explicit half(float f); |
| |
| operator float() const; |
| |
| half &operator=(float f); |
| |
| private: |
| unsigned short fp16i; |
| }; |
| |
| inline half shortAsHalf(short s) |
| { |
| union |
| { |
| half h; |
| short s; |
| } hs; |
| |
| hs.s = s; |
| |
| return hs.h; |
| } |
| |
| class RGB9E5 |
| { |
| unsigned int R : 9; |
| unsigned int G : 9; |
| unsigned int B : 9; |
| unsigned int E : 5; |
| |
| public: |
| RGB9E5(const float rgb[3]) |
| : RGB9E5(rgb[0], rgb[1], rgb[2]) |
| { |
| } |
| |
| RGB9E5(float r, float g, float b) |
| { |
| // Vulkan 1.1.117 section 15.2.1 RGB to Shared Exponent Conversion |
| |
| // B is the exponent bias (15) |
| constexpr int g_sharedexp_bias = 15; |
| |
| // N is the number of mantissa bits per component (9) |
| constexpr int g_sharedexp_mantissabits = 9; |
| |
| // Emax is the maximum allowed biased exponent value (31) |
| constexpr int g_sharedexp_maxexponent = 31; |
| |
| constexpr float g_sharedexp_max = |
| ((static_cast<float>(1 << g_sharedexp_mantissabits) - 1) / |
| static_cast<float>(1 << g_sharedexp_mantissabits)) * |
| static_cast<float>(1 << (g_sharedexp_maxexponent - g_sharedexp_bias)); |
| |
| // Clamp components to valid range. NaN becomes 0. |
| const float red_c = std::min(!(r > 0) ? 0 : r, g_sharedexp_max); |
| const float green_c = std::min(!(g > 0) ? 0 : g, g_sharedexp_max); |
| const float blue_c = std::min(!(b > 0) ? 0 : b, g_sharedexp_max); |
| |
| // We're reducing the mantissa to 9 bits, so we must round up if the next |
| // bit is 1. In other words add 0.5 to the new mantissa's position and |
| // allow overflow into the exponent so we can scale correctly. |
| constexpr int half = 1 << (23 - g_sharedexp_mantissabits); |
| const float red_r = bit_cast<float>(bit_cast<int>(red_c) + half); |
| const float green_r = bit_cast<float>(bit_cast<int>(green_c) + half); |
| const float blue_r = bit_cast<float>(bit_cast<int>(blue_c) + half); |
| |
| // The largest component determines the shared exponent. It can't be lower |
| // than 0 (after bias subtraction) so also limit to the mimimum representable. |
| constexpr float min_s = 0.5f / (1 << g_sharedexp_bias); |
| float max_s = std::max(std::max(red_r, green_r), std::max(blue_r, min_s)); |
| |
| // Obtain the reciprocal of the shared exponent by inverting the bits, |
| // and scale by the new mantissa's size. Note that the IEEE-754 single-precision |
| // format has an implicit leading 1, but this shared component format does not. |
| float scale = bit_cast<float>((bit_cast<int>(max_s) & 0x7F800000) ^ 0x7F800000) * (1 << (g_sharedexp_mantissabits - 2)); |
| |
| R = static_cast<unsigned int>(round(red_c * scale)); |
| G = static_cast<unsigned int>(round(green_c * scale)); |
| B = static_cast<unsigned int>(round(blue_c * scale)); |
| E = (bit_cast<unsigned int>(max_s) >> 23) - 127 + 15 + 1; |
| } |
| |
| operator unsigned int() const |
| { |
| return *reinterpret_cast<const unsigned int *>(this); |
| } |
| |
| void toRGB16F(half rgb[3]) const |
| { |
| constexpr int offset = 24; // Exponent bias (15) + number of mantissa bits per component (9) = 24 |
| |
| const float factor = (1u << E) * (1.0f / (1 << offset)); |
| rgb[0] = half(R * factor); |
| rgb[1] = half(G * factor); |
| rgb[2] = half(B * factor); |
| } |
| }; |
| |
| class R11G11B10F |
| { |
| public: |
| R11G11B10F(const float rgb[3]) |
| { |
| R = float32ToFloat11(rgb[0]); |
| G = float32ToFloat11(rgb[1]); |
| B = float32ToFloat10(rgb[2]); |
| } |
| |
| operator unsigned int() const |
| { |
| return *reinterpret_cast<const unsigned int *>(this); |
| } |
| |
| void toRGB16F(half rgb[3]) const |
| { |
| rgb[0] = float11ToFloat16(R); |
| rgb[1] = float11ToFloat16(G); |
| rgb[2] = float10ToFloat16(B); |
| } |
| |
| static inline half float11ToFloat16(unsigned short fp11) |
| { |
| return shortAsHalf(fp11 << 4); // Sign bit 0 |
| } |
| |
| static inline half float10ToFloat16(unsigned short fp10) |
| { |
| return shortAsHalf(fp10 << 5); // Sign bit 0 |
| } |
| |
| static inline unsigned short float32ToFloat11(float fp32) |
| { |
| const unsigned int float32MantissaMask = 0x7FFFFF; |
| const unsigned int float32ExponentMask = 0x7F800000; |
| const unsigned int float32SignMask = 0x80000000; |
| const unsigned int float32ValueMask = ~float32SignMask; |
| const unsigned int float32ExponentFirstBit = 23; |
| const unsigned int float32ExponentBias = 127; |
| |
| const unsigned short float11Max = 0x7BF; |
| const unsigned short float11MantissaMask = 0x3F; |
| const unsigned short float11ExponentMask = 0x7C0; |
| const unsigned short float11BitMask = 0x7FF; |
| const unsigned int float11ExponentBias = 14; |
| |
| const unsigned int float32Maxfloat11 = 0x477E0000; |
| const unsigned int float32MinNormfloat11 = 0x38800000; |
| const unsigned int float32MinDenormfloat11 = 0x35000080; |
| |
| const unsigned int float32Bits = *reinterpret_cast<unsigned int *>(&fp32); |
| const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; |
| |
| unsigned int float32Val = float32Bits & float32ValueMask; |
| |
| if((float32Val & float32ExponentMask) == float32ExponentMask) |
| { |
| // INF or NAN |
| if((float32Val & float32MantissaMask) != 0) |
| { |
| return float11ExponentMask | |
| (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & |
| float11MantissaMask); |
| } |
| else if(float32Sign) |
| { |
| // -INF is clamped to 0 since float11 is positive only |
| return 0; |
| } |
| else |
| { |
| return float11ExponentMask; |
| } |
| } |
| else if(float32Sign) |
| { |
| // float11 is positive only, so clamp to zero |
| return 0; |
| } |
| else if(float32Val > float32Maxfloat11) |
| { |
| // The number is too large to be represented as a float11, set to max |
| return float11Max; |
| } |
| else if(float32Val < float32MinDenormfloat11) |
| { |
| // The number is too small to be represented as a denormalized float11, set to 0 |
| return 0; |
| } |
| else |
| { |
| if(float32Val < float32MinNormfloat11) |
| { |
| // The number is too small to be represented as a normalized float11 |
| // Convert it to a denormalized value. |
| const unsigned int shift = (float32ExponentBias - float11ExponentBias) - |
| (float32Val >> float32ExponentFirstBit); |
| float32Val = |
| ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; |
| } |
| else |
| { |
| // Rebias the exponent to represent the value as a normalized float11 |
| float32Val += 0xC8000000; |
| } |
| |
| return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; |
| } |
| } |
| |
| static inline unsigned short float32ToFloat10(float fp32) |
| { |
| const unsigned int float32MantissaMask = 0x7FFFFF; |
| const unsigned int float32ExponentMask = 0x7F800000; |
| const unsigned int float32SignMask = 0x80000000; |
| const unsigned int float32ValueMask = ~float32SignMask; |
| const unsigned int float32ExponentFirstBit = 23; |
| const unsigned int float32ExponentBias = 127; |
| |
| const unsigned short float10Max = 0x3DF; |
| const unsigned short float10MantissaMask = 0x1F; |
| const unsigned short float10ExponentMask = 0x3E0; |
| const unsigned short float10BitMask = 0x3FF; |
| const unsigned int float10ExponentBias = 14; |
| |
| const unsigned int float32Maxfloat10 = 0x477C0000; |
| const unsigned int float32MinNormfloat10 = 0x38800000; |
| const unsigned int float32MinDenormfloat10 = 0x35800040; |
| |
| const unsigned int float32Bits = *reinterpret_cast<unsigned int *>(&fp32); |
| const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; |
| |
| unsigned int float32Val = float32Bits & float32ValueMask; |
| |
| if((float32Val & float32ExponentMask) == float32ExponentMask) |
| { |
| // INF or NAN |
| if((float32Val & float32MantissaMask) != 0) |
| { |
| return float10ExponentMask | |
| (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & |
| float10MantissaMask); |
| } |
| else if(float32Sign) |
| { |
| // -INF is clamped to 0 since float10 is positive only |
| return 0; |
| } |
| else |
| { |
| return float10ExponentMask; |
| } |
| } |
| else if(float32Sign) |
| { |
| // float10 is positive only, so clamp to zero |
| return 0; |
| } |
| else if(float32Val > float32Maxfloat10) |
| { |
| // The number is too large to be represented as a float10, set to max |
| return float10Max; |
| } |
| else if(float32Val < float32MinDenormfloat10) |
| { |
| // The number is too small to be represented as a denormalized float10, set to 0 |
| return 0; |
| } |
| else |
| { |
| if(float32Val < float32MinNormfloat10) |
| { |
| // The number is too small to be represented as a normalized float10 |
| // Convert it to a denormalized value. |
| const unsigned int shift = (float32ExponentBias - float10ExponentBias) - |
| (float32Val >> float32ExponentFirstBit); |
| float32Val = |
| ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; |
| } |
| else |
| { |
| // Rebias the exponent to represent the value as a normalized float10 |
| float32Val += 0xC8000000; |
| } |
| |
| return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; |
| } |
| } |
| |
| private: |
| unsigned int R : 11; |
| unsigned int G : 11; |
| unsigned int B : 10; |
| }; |
| |
| } // namespace sw |
| |
| #endif // sw_Half_hpp |