|  | //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_ARRAYREF_H | 
|  | #define LLVM_ADT_ARRAYREF_H | 
|  |  | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include <array> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  | /// ArrayRef - Represent a constant reference to an array (0 or more elements | 
|  | /// consecutively in memory), i.e. a start pointer and a length.  It allows | 
|  | /// various APIs to take consecutive elements easily and conveniently. | 
|  | /// | 
|  | /// This class does not own the underlying data, it is expected to be used in | 
|  | /// situations where the data resides in some other buffer, whose lifetime | 
|  | /// extends past that of the ArrayRef. For this reason, it is not in general | 
|  | /// safe to store an ArrayRef. | 
|  | /// | 
|  | /// This is intended to be trivially copyable, so it should be passed by | 
|  | /// value. | 
|  | template<typename T> | 
|  | class LLVM_NODISCARD ArrayRef { | 
|  | public: | 
|  | typedef const T *iterator; | 
|  | typedef const T *const_iterator; | 
|  | typedef size_t size_type; | 
|  |  | 
|  | typedef std::reverse_iterator<iterator> reverse_iterator; | 
|  |  | 
|  | private: | 
|  | /// The start of the array, in an external buffer. | 
|  | const T *Data; | 
|  |  | 
|  | /// The number of elements. | 
|  | size_type Length; | 
|  |  | 
|  | public: | 
|  | /// @name Constructors | 
|  | /// @{ | 
|  |  | 
|  | /// Construct an empty ArrayRef. | 
|  | /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {} | 
|  |  | 
|  | /// Construct an empty ArrayRef from None. | 
|  | /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a single element. | 
|  | /*implicit*/ ArrayRef(const T &OneElt) | 
|  | : Data(&OneElt), Length(1) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a pointer and length. | 
|  | /*implicit*/ ArrayRef(const T *data, size_t length) | 
|  | : Data(data), Length(length) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a range. | 
|  | ArrayRef(const T *begin, const T *end) | 
|  | : Data(begin), Length(end - begin) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a SmallVector. This is templated in order to | 
|  | /// avoid instantiating SmallVectorTemplateCommon<T> whenever we | 
|  | /// copy-construct an ArrayRef. | 
|  | template<typename U> | 
|  | /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) | 
|  | : Data(Vec.data()), Length(Vec.size()) { | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a std::vector. | 
|  | template<typename A> | 
|  | /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) | 
|  | : Data(Vec.data()), Length(Vec.size()) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a std::array | 
|  | template <size_t N> | 
|  | /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) | 
|  | : Data(Arr.data()), Length(N) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a C array. | 
|  | template <size_t N> | 
|  | /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a std::initializer_list. | 
|  | /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) | 
|  | : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), | 
|  | Length(Vec.size()) {} | 
|  |  | 
|  | /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to | 
|  | /// ensure that only ArrayRefs of pointers can be converted. | 
|  | template <typename U> | 
|  | ArrayRef( | 
|  | const ArrayRef<U *> &A, | 
|  | typename std::enable_if< | 
|  | std::is_convertible<U *const *, T const *>::value>::type * = nullptr) | 
|  | : Data(A.data()), Length(A.size()) {} | 
|  |  | 
|  | /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is | 
|  | /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> | 
|  | /// whenever we copy-construct an ArrayRef. | 
|  | template<typename U, typename DummyT> | 
|  | /*implicit*/ ArrayRef( | 
|  | const SmallVectorTemplateCommon<U *, DummyT> &Vec, | 
|  | typename std::enable_if< | 
|  | std::is_convertible<U *const *, T const *>::value>::type * = nullptr) | 
|  | : Data(Vec.data()), Length(Vec.size()) { | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE | 
|  | /// to ensure that only vectors of pointers can be converted. | 
|  | template<typename U, typename A> | 
|  | ArrayRef(const std::vector<U *, A> &Vec, | 
|  | typename std::enable_if< | 
|  | std::is_convertible<U *const *, T const *>::value>::type* = 0) | 
|  | : Data(Vec.data()), Length(Vec.size()) {} | 
|  |  | 
|  | /// @} | 
|  | /// @name Simple Operations | 
|  | /// @{ | 
|  |  | 
|  | iterator begin() const { return Data; } | 
|  | iterator end() const { return Data + Length; } | 
|  |  | 
|  | reverse_iterator rbegin() const { return reverse_iterator(end()); } | 
|  | reverse_iterator rend() const { return reverse_iterator(begin()); } | 
|  |  | 
|  | /// empty - Check if the array is empty. | 
|  | bool empty() const { return Length == 0; } | 
|  |  | 
|  | const T *data() const { return Data; } | 
|  |  | 
|  | /// size - Get the array size. | 
|  | size_t size() const { return Length; } | 
|  |  | 
|  | /// front - Get the first element. | 
|  | const T &front() const { | 
|  | assert(!empty()); | 
|  | return Data[0]; | 
|  | } | 
|  |  | 
|  | /// back - Get the last element. | 
|  | const T &back() const { | 
|  | assert(!empty()); | 
|  | return Data[Length-1]; | 
|  | } | 
|  |  | 
|  | // copy - Allocate copy in Allocator and return ArrayRef<T> to it. | 
|  | template <typename Allocator> ArrayRef<T> copy(Allocator &A) { | 
|  | T *Buff = A.template Allocate<T>(Length); | 
|  | std::uninitialized_copy(begin(), end(), Buff); | 
|  | return ArrayRef<T>(Buff, Length); | 
|  | } | 
|  |  | 
|  | /// equals - Check for element-wise equality. | 
|  | bool equals(ArrayRef RHS) const { | 
|  | if (Length != RHS.Length) | 
|  | return false; | 
|  | return std::equal(begin(), end(), RHS.begin()); | 
|  | } | 
|  |  | 
|  | /// slice(n, m) - Chop off the first N elements of the array, and keep M | 
|  | /// elements in the array. | 
|  | ArrayRef<T> slice(size_t N, size_t M) const { | 
|  | assert(N+M <= size() && "Invalid specifier"); | 
|  | return ArrayRef<T>(data()+N, M); | 
|  | } | 
|  |  | 
|  | /// slice(n) - Chop off the first N elements of the array. | 
|  | ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } | 
|  |  | 
|  | /// \brief Drop the first \p N elements of the array. | 
|  | ArrayRef<T> drop_front(size_t N = 1) const { | 
|  | assert(size() >= N && "Dropping more elements than exist"); | 
|  | return slice(N, size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Drop the last \p N elements of the array. | 
|  | ArrayRef<T> drop_back(size_t N = 1) const { | 
|  | assert(size() >= N && "Dropping more elements than exist"); | 
|  | return slice(0, size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with the first N elements satisfying the | 
|  | /// given predicate removed. | 
|  | template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { | 
|  | return ArrayRef<T>(find_if_not(*this, Pred), end()); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with the first N elements not satisfying | 
|  | /// the given predicate removed. | 
|  | template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { | 
|  | return ArrayRef<T>(find_if(*this, Pred), end()); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with only the first \p N elements. | 
|  | ArrayRef<T> take_front(size_t N = 1) const { | 
|  | if (N >= size()) | 
|  | return *this; | 
|  | return drop_back(size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with only the last \p N elements. | 
|  | ArrayRef<T> take_back(size_t N = 1) const { | 
|  | if (N >= size()) | 
|  | return *this; | 
|  | return drop_front(size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Return the first N elements of this Array that satisfy the given | 
|  | /// predicate. | 
|  | template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { | 
|  | return ArrayRef<T>(begin(), find_if_not(*this, Pred)); | 
|  | } | 
|  |  | 
|  | /// \brief Return the first N elements of this Array that don't satisfy the | 
|  | /// given predicate. | 
|  | template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { | 
|  | return ArrayRef<T>(begin(), find_if(*this, Pred)); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | /// @name Operator Overloads | 
|  | /// @{ | 
|  | const T &operator[](size_t Index) const { | 
|  | assert(Index < Length && "Invalid index!"); | 
|  | return Data[Index]; | 
|  | } | 
|  |  | 
|  | /// Disallow accidental assignment from a temporary. | 
|  | /// | 
|  | /// The declaration here is extra complicated so that "arrayRef = {}" | 
|  | /// continues to select the move assignment operator. | 
|  | template <typename U> | 
|  | typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & | 
|  | operator=(U &&Temporary) = delete; | 
|  |  | 
|  | /// Disallow accidental assignment from a temporary. | 
|  | /// | 
|  | /// The declaration here is extra complicated so that "arrayRef = {}" | 
|  | /// continues to select the move assignment operator. | 
|  | template <typename U> | 
|  | typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & | 
|  | operator=(std::initializer_list<U>) = delete; | 
|  |  | 
|  | /// @} | 
|  | /// @name Expensive Operations | 
|  | /// @{ | 
|  | std::vector<T> vec() const { | 
|  | return std::vector<T>(Data, Data+Length); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | /// @name Conversion operators | 
|  | /// @{ | 
|  | operator std::vector<T>() const { | 
|  | return std::vector<T>(Data, Data+Length); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | }; | 
|  |  | 
|  | /// MutableArrayRef - Represent a mutable reference to an array (0 or more | 
|  | /// elements consecutively in memory), i.e. a start pointer and a length.  It | 
|  | /// allows various APIs to take and modify consecutive elements easily and | 
|  | /// conveniently. | 
|  | /// | 
|  | /// This class does not own the underlying data, it is expected to be used in | 
|  | /// situations where the data resides in some other buffer, whose lifetime | 
|  | /// extends past that of the MutableArrayRef. For this reason, it is not in | 
|  | /// general safe to store a MutableArrayRef. | 
|  | /// | 
|  | /// This is intended to be trivially copyable, so it should be passed by | 
|  | /// value. | 
|  | template<typename T> | 
|  | class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { | 
|  | public: | 
|  | typedef T *iterator; | 
|  |  | 
|  | typedef std::reverse_iterator<iterator> reverse_iterator; | 
|  |  | 
|  | /// Construct an empty MutableArrayRef. | 
|  | /*implicit*/ MutableArrayRef() : ArrayRef<T>() {} | 
|  |  | 
|  | /// Construct an empty MutableArrayRef from None. | 
|  | /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} | 
|  |  | 
|  | /// Construct an MutableArrayRef from a single element. | 
|  | /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} | 
|  |  | 
|  | /// Construct an MutableArrayRef from a pointer and length. | 
|  | /*implicit*/ MutableArrayRef(T *data, size_t length) | 
|  | : ArrayRef<T>(data, length) {} | 
|  |  | 
|  | /// Construct an MutableArrayRef from a range. | 
|  | MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} | 
|  |  | 
|  | /// Construct an MutableArrayRef from a SmallVector. | 
|  | /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) | 
|  | : ArrayRef<T>(Vec) {} | 
|  |  | 
|  | /// Construct a MutableArrayRef from a std::vector. | 
|  | /*implicit*/ MutableArrayRef(std::vector<T> &Vec) | 
|  | : ArrayRef<T>(Vec) {} | 
|  |  | 
|  | /// Construct an ArrayRef from a std::array | 
|  | template <size_t N> | 
|  | /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) | 
|  | : ArrayRef<T>(Arr) {} | 
|  |  | 
|  | /// Construct an MutableArrayRef from a C array. | 
|  | template <size_t N> | 
|  | /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} | 
|  |  | 
|  | T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } | 
|  |  | 
|  | iterator begin() const { return data(); } | 
|  | iterator end() const { return data() + this->size(); } | 
|  |  | 
|  | reverse_iterator rbegin() const { return reverse_iterator(end()); } | 
|  | reverse_iterator rend() const { return reverse_iterator(begin()); } | 
|  |  | 
|  | /// front - Get the first element. | 
|  | T &front() const { | 
|  | assert(!this->empty()); | 
|  | return data()[0]; | 
|  | } | 
|  |  | 
|  | /// back - Get the last element. | 
|  | T &back() const { | 
|  | assert(!this->empty()); | 
|  | return data()[this->size()-1]; | 
|  | } | 
|  |  | 
|  | /// slice(n, m) - Chop off the first N elements of the array, and keep M | 
|  | /// elements in the array. | 
|  | MutableArrayRef<T> slice(size_t N, size_t M) const { | 
|  | assert(N + M <= this->size() && "Invalid specifier"); | 
|  | return MutableArrayRef<T>(this->data() + N, M); | 
|  | } | 
|  |  | 
|  | /// slice(n) - Chop off the first N elements of the array. | 
|  | MutableArrayRef<T> slice(size_t N) const { | 
|  | return slice(N, this->size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Drop the first \p N elements of the array. | 
|  | MutableArrayRef<T> drop_front(size_t N = 1) const { | 
|  | assert(this->size() >= N && "Dropping more elements than exist"); | 
|  | return slice(N, this->size() - N); | 
|  | } | 
|  |  | 
|  | MutableArrayRef<T> drop_back(size_t N = 1) const { | 
|  | assert(this->size() >= N && "Dropping more elements than exist"); | 
|  | return slice(0, this->size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with the first N elements satisfying the | 
|  | /// given predicate removed. | 
|  | template <class PredicateT> | 
|  | MutableArrayRef<T> drop_while(PredicateT Pred) const { | 
|  | return MutableArrayRef<T>(find_if_not(*this, Pred), end()); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with the first N elements not satisfying | 
|  | /// the given predicate removed. | 
|  | template <class PredicateT> | 
|  | MutableArrayRef<T> drop_until(PredicateT Pred) const { | 
|  | return MutableArrayRef<T>(find_if(*this, Pred), end()); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with only the first \p N elements. | 
|  | MutableArrayRef<T> take_front(size_t N = 1) const { | 
|  | if (N >= this->size()) | 
|  | return *this; | 
|  | return drop_back(this->size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Return a copy of *this with only the last \p N elements. | 
|  | MutableArrayRef<T> take_back(size_t N = 1) const { | 
|  | if (N >= this->size()) | 
|  | return *this; | 
|  | return drop_front(this->size() - N); | 
|  | } | 
|  |  | 
|  | /// \brief Return the first N elements of this Array that satisfy the given | 
|  | /// predicate. | 
|  | template <class PredicateT> | 
|  | MutableArrayRef<T> take_while(PredicateT Pred) const { | 
|  | return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); | 
|  | } | 
|  |  | 
|  | /// \brief Return the first N elements of this Array that don't satisfy the | 
|  | /// given predicate. | 
|  | template <class PredicateT> | 
|  | MutableArrayRef<T> take_until(PredicateT Pred) const { | 
|  | return MutableArrayRef<T>(begin(), find_if(*this, Pred)); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | /// @name Operator Overloads | 
|  | /// @{ | 
|  | T &operator[](size_t Index) const { | 
|  | assert(Index < this->size() && "Invalid index!"); | 
|  | return data()[Index]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// This is a MutableArrayRef that owns its array. | 
|  | template <typename T> class OwningArrayRef : public MutableArrayRef<T> { | 
|  | public: | 
|  | OwningArrayRef() {} | 
|  | OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} | 
|  | OwningArrayRef(ArrayRef<T> Data) | 
|  | : MutableArrayRef<T>(new T[Data.size()], Data.size()) { | 
|  | std::copy(Data.begin(), Data.end(), this->begin()); | 
|  | } | 
|  | OwningArrayRef(OwningArrayRef &&Other) { *this = Other; } | 
|  | OwningArrayRef &operator=(OwningArrayRef &&Other) { | 
|  | delete[] this->data(); | 
|  | this->MutableArrayRef<T>::operator=(Other); | 
|  | Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); | 
|  | return *this; | 
|  | } | 
|  | ~OwningArrayRef() { delete[] this->data(); } | 
|  | }; | 
|  |  | 
|  | /// @name ArrayRef Convenience constructors | 
|  | /// @{ | 
|  |  | 
|  | /// Construct an ArrayRef from a single element. | 
|  | template<typename T> | 
|  | ArrayRef<T> makeArrayRef(const T &OneElt) { | 
|  | return OneElt; | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a pointer and length. | 
|  | template<typename T> | 
|  | ArrayRef<T> makeArrayRef(const T *data, size_t length) { | 
|  | return ArrayRef<T>(data, length); | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a range. | 
|  | template<typename T> | 
|  | ArrayRef<T> makeArrayRef(const T *begin, const T *end) { | 
|  | return ArrayRef<T>(begin, end); | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a SmallVector. | 
|  | template <typename T> | 
|  | ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a SmallVector. | 
|  | template <typename T, unsigned N> | 
|  | ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a std::vector. | 
|  | template<typename T> | 
|  | ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from an ArrayRef (no-op) (const) | 
|  | template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from an ArrayRef (no-op) | 
|  | template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | /// Construct an ArrayRef from a C array. | 
|  | template<typename T, size_t N> | 
|  | ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { | 
|  | return ArrayRef<T>(Arr); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | /// @name ArrayRef Comparison Operators | 
|  | /// @{ | 
|  |  | 
|  | template<typename T> | 
|  | inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { | 
|  | return LHS.equals(RHS); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { | 
|  | return !(LHS == RHS); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  |  | 
|  | // ArrayRefs can be treated like a POD type. | 
|  | template <typename T> struct isPodLike; | 
|  | template <typename T> struct isPodLike<ArrayRef<T> > { | 
|  | static const bool value = true; | 
|  | }; | 
|  |  | 
|  | template <typename T> hash_code hash_value(ArrayRef<T> S) { | 
|  | return hash_combine_range(S.begin(), S.end()); | 
|  | } | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_ADT_ARRAYREF_H |