| // Copyright 2019 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "SpirvShader.hpp" |
| |
| #include "System/Types.hpp" |
| |
| #include "Vulkan/VkDescriptorSetLayout.hpp" |
| #include "Vulkan/VkPipelineLayout.hpp" |
| |
| #include <spirv/unified1/spirv.hpp> |
| |
| namespace sw { |
| |
| static vk::Format SpirvFormatToVulkanFormat(spv::ImageFormat format) |
| { |
| switch(format) |
| { |
| case spv::ImageFormatUnknown: return VK_FORMAT_UNDEFINED; |
| case spv::ImageFormatRgba32f: return VK_FORMAT_R32G32B32A32_SFLOAT; |
| case spv::ImageFormatRgba16f: return VK_FORMAT_R16G16B16A16_SFLOAT; |
| case spv::ImageFormatR32f: return VK_FORMAT_R32_SFLOAT; |
| case spv::ImageFormatRgba8: return VK_FORMAT_R8G8B8A8_UNORM; |
| case spv::ImageFormatRgba8Snorm: return VK_FORMAT_R8G8B8A8_SNORM; |
| case spv::ImageFormatRg32f: return VK_FORMAT_R32G32_SFLOAT; |
| case spv::ImageFormatRg16f: return VK_FORMAT_R16G16_SFLOAT; |
| case spv::ImageFormatR11fG11fB10f: return VK_FORMAT_B10G11R11_UFLOAT_PACK32; |
| case spv::ImageFormatR16f: return VK_FORMAT_R16_SFLOAT; |
| case spv::ImageFormatRgba16: return VK_FORMAT_R16G16B16A16_UNORM; |
| case spv::ImageFormatRgb10A2: return VK_FORMAT_A2B10G10R10_UNORM_PACK32; |
| case spv::ImageFormatRg16: return VK_FORMAT_R16G16_UNORM; |
| case spv::ImageFormatRg8: return VK_FORMAT_R8G8_UNORM; |
| case spv::ImageFormatR16: return VK_FORMAT_R16_UNORM; |
| case spv::ImageFormatR8: return VK_FORMAT_R8_UNORM; |
| case spv::ImageFormatRgba16Snorm: return VK_FORMAT_R16G16B16A16_SNORM; |
| case spv::ImageFormatRg16Snorm: return VK_FORMAT_R16G16_SNORM; |
| case spv::ImageFormatRg8Snorm: return VK_FORMAT_R8G8_SNORM; |
| case spv::ImageFormatR16Snorm: return VK_FORMAT_R16_SNORM; |
| case spv::ImageFormatR8Snorm: return VK_FORMAT_R8_SNORM; |
| case spv::ImageFormatRgba32i: return VK_FORMAT_R32G32B32A32_SINT; |
| case spv::ImageFormatRgba16i: return VK_FORMAT_R16G16B16A16_SINT; |
| case spv::ImageFormatRgba8i: return VK_FORMAT_R8G8B8A8_SINT; |
| case spv::ImageFormatR32i: return VK_FORMAT_R32_SINT; |
| case spv::ImageFormatRg32i: return VK_FORMAT_R32G32_SINT; |
| case spv::ImageFormatRg16i: return VK_FORMAT_R16G16_SINT; |
| case spv::ImageFormatRg8i: return VK_FORMAT_R8G8_SINT; |
| case spv::ImageFormatR16i: return VK_FORMAT_R16_SINT; |
| case spv::ImageFormatR8i: return VK_FORMAT_R8_SINT; |
| case spv::ImageFormatRgba32ui: return VK_FORMAT_R32G32B32A32_UINT; |
| case spv::ImageFormatRgba16ui: return VK_FORMAT_R16G16B16A16_UINT; |
| case spv::ImageFormatRgba8ui: return VK_FORMAT_R8G8B8A8_UINT; |
| case spv::ImageFormatR32ui: return VK_FORMAT_R32_UINT; |
| case spv::ImageFormatRgb10a2ui: return VK_FORMAT_A2B10G10R10_UINT_PACK32; |
| case spv::ImageFormatRg32ui: return VK_FORMAT_R32G32_UINT; |
| case spv::ImageFormatRg16ui: return VK_FORMAT_R16G16_UINT; |
| case spv::ImageFormatRg8ui: return VK_FORMAT_R8G8_UINT; |
| case spv::ImageFormatR16ui: return VK_FORMAT_R16_UINT; |
| case spv::ImageFormatR8ui: return VK_FORMAT_R8_UINT; |
| |
| default: |
| UNSUPPORTED("SPIR-V ImageFormat %u", format); |
| return VK_FORMAT_UNDEFINED; |
| } |
| } |
| |
| SpirvEmitter::ImageInstruction::ImageInstruction(InsnIterator insn, const Spirv &shader, const SpirvEmitter &state) |
| : ImageInstructionSignature(parseVariantAndMethod(insn)) |
| , position(insn.distanceFrom(shader.begin())) |
| { |
| if(samplerMethod == Write) |
| { |
| imageId = insn.word(1); |
| coordinateId = insn.word(2); |
| texelId = insn.word(3); |
| } |
| else |
| { |
| resultTypeId = insn.resultTypeId(); // word(1) |
| resultId = insn.resultId(); // word(2) |
| |
| if(samplerMethod == Fetch || samplerMethod == Read || samplerMethod == TexelPointer) // Samplerless |
| { |
| imageId = insn.word(3); |
| } |
| else |
| { |
| // sampledImageId is either the result of an OpSampledImage instruction or |
| // an externally combined sampler and image. |
| Object::ID sampledImageId = insn.word(3); |
| |
| if(state.isSampledImage(sampledImageId)) // Result of an OpSampledImage instruction |
| { |
| const SampledImagePointer &sampledImage = state.getSampledImage(sampledImageId); |
| imageId = shader.getObject(sampledImageId).definition.word(3); |
| samplerId = sampledImage.samplerId; |
| } |
| else // Combined image/sampler |
| { |
| imageId = sampledImageId; |
| samplerId = sampledImageId; |
| } |
| } |
| |
| coordinateId = insn.word(4); |
| } |
| |
| // `imageId` can represent either a Sampled Image, a samplerless Image, or a pointer to an Image. |
| // To get to the OpTypeImage operands, traverse the OpTypeSampledImage or OpTypePointer. |
| const Type &imageObjectType = shader.getObjectType(imageId); |
| const Type &imageReferenceType = (imageObjectType.opcode() == spv::OpTypeSampledImage) |
| ? shader.getType(imageObjectType.definition.word(2)) |
| : imageObjectType; |
| const Type &imageType = ((imageReferenceType.opcode() == spv::OpTypePointer) |
| ? shader.getType(imageReferenceType.element) |
| : imageReferenceType); |
| |
| ASSERT(imageType.opcode() == spv::OpTypeImage); |
| dim = imageType.definition.word(3); |
| arrayed = imageType.definition.word(5); |
| imageFormat = imageType.definition.word(8); |
| |
| const Object &coordinateObject = shader.getObject(coordinateId); |
| const Type &coordinateType = shader.getType(coordinateObject); |
| coordinates = coordinateType.componentCount - (isProj() ? 1 : 0); |
| |
| if(samplerMethod == TexelPointer) |
| { |
| sampleId = insn.word(5); |
| sample = !shader.getObject(sampleId).isConstantZero(); |
| } |
| |
| if(isDref()) |
| { |
| drefId = insn.word(5); |
| } |
| |
| if(samplerMethod == Gather) |
| { |
| gatherComponent = !isDref() ? shader.getObject(insn.word(5)).constantValue[0] : 0; |
| } |
| |
| uint32_t operandsIndex = getImageOperandsIndex(insn); |
| uint32_t imageOperands = (operandsIndex != 0) ? insn.word(operandsIndex) : 0; // The mask which indicates which operands are provided. |
| |
| operandsIndex += 1; // Advance to the first actual operand <id> location. |
| |
| if(imageOperands & spv::ImageOperandsBiasMask) |
| { |
| ASSERT(samplerMethod == Bias); |
| lodOrBiasId = insn.word(operandsIndex); |
| operandsIndex += 1; |
| imageOperands &= ~spv::ImageOperandsBiasMask; |
| } |
| |
| if(imageOperands & spv::ImageOperandsLodMask) |
| { |
| ASSERT(samplerMethod == Lod || samplerMethod == Fetch); |
| lodOrBiasId = insn.word(operandsIndex); |
| operandsIndex += 1; |
| imageOperands &= ~spv::ImageOperandsLodMask; |
| } |
| |
| if(imageOperands & spv::ImageOperandsGradMask) |
| { |
| ASSERT(samplerMethod == Grad); |
| gradDxId = insn.word(operandsIndex + 0); |
| gradDyId = insn.word(operandsIndex + 1); |
| operandsIndex += 2; |
| imageOperands &= ~spv::ImageOperandsGradMask; |
| |
| grad = shader.getObjectType(gradDxId).componentCount; |
| } |
| |
| if(imageOperands & spv::ImageOperandsConstOffsetMask) |
| { |
| offsetId = insn.word(operandsIndex); |
| operandsIndex += 1; |
| imageOperands &= ~spv::ImageOperandsConstOffsetMask; |
| |
| offset = shader.getObjectType(offsetId).componentCount; |
| } |
| |
| if(imageOperands & spv::ImageOperandsSampleMask) |
| { |
| ASSERT(samplerMethod == Fetch || samplerMethod == Read || samplerMethod == Write); |
| sampleId = insn.word(operandsIndex); |
| operandsIndex += 1; |
| imageOperands &= ~spv::ImageOperandsSampleMask; |
| |
| sample = !shader.getObject(sampleId).isConstantZero(); |
| } |
| |
| // TODO(b/174475384) |
| if(imageOperands & spv::ImageOperandsZeroExtendMask) |
| { |
| ASSERT(samplerMethod == Read || samplerMethod == Write); |
| imageOperands &= ~spv::ImageOperandsZeroExtendMask; |
| } |
| else if(imageOperands & spv::ImageOperandsSignExtendMask) |
| { |
| ASSERT(samplerMethod == Read || samplerMethod == Write); |
| imageOperands &= ~spv::ImageOperandsSignExtendMask; |
| } |
| |
| [[maybe_unused]] spv::Scope scope = spv::ScopeCrossDevice; // "Whilst the CrossDevice scope is defined in SPIR-V, it is disallowed in Vulkan." |
| |
| if(imageOperands & spv::ImageOperandsMakeTexelAvailableMask) |
| { |
| scope = static_cast<spv::Scope>(insn.word(operandsIndex)); |
| operandsIndex += 1; |
| imageOperands &= ~spv::ImageOperandsMakeTexelAvailableMask; |
| } |
| |
| if(imageOperands & spv::ImageOperandsMakeTexelVisibleMask) |
| { |
| scope = static_cast<spv::Scope>(insn.word(operandsIndex)); |
| operandsIndex += 1; |
| imageOperands &= ~spv::ImageOperandsMakeTexelVisibleMask; |
| } |
| |
| if(imageOperands & spv::ImageOperandsNonPrivateTexelMask) |
| { |
| imageOperands &= ~spv::ImageOperandsNonPrivateTexelMask; |
| } |
| |
| if(imageOperands & spv::ImageOperandsVolatileTexelMask) |
| { |
| UNIMPLEMENTED("b/176819536"); |
| imageOperands &= ~spv::ImageOperandsVolatileTexelMask; |
| } |
| |
| if(imageOperands & spv::ImageOperandsNontemporalMask) |
| { |
| // Hints that the accessed texels are not likely |
| // to be accessed again in the near future. |
| imageOperands &= ~spv::ImageOperandsNontemporalMask; |
| } |
| |
| // There should be no remaining image operands. |
| if(imageOperands != 0) |
| { |
| UNSUPPORTED("Image operands 0x%08X", imageOperands); |
| } |
| } |
| |
| SpirvEmitter::ImageInstructionSignature SpirvEmitter::ImageInstruction::parseVariantAndMethod(InsnIterator insn) |
| { |
| uint32_t imageOperands = getImageOperandsMask(insn); |
| bool bias = imageOperands & spv::ImageOperandsBiasMask; |
| bool grad = imageOperands & spv::ImageOperandsGradMask; |
| |
| switch(insn.opcode()) |
| { |
| case spv::OpImageSampleImplicitLod: return { None, bias ? Bias : Implicit }; |
| case spv::OpImageSampleExplicitLod: return { None, grad ? Grad : Lod }; |
| case spv::OpImageSampleDrefImplicitLod: return { Dref, bias ? Bias : Implicit }; |
| case spv::OpImageSampleDrefExplicitLod: return { Dref, grad ? Grad : Lod }; |
| case spv::OpImageSampleProjImplicitLod: return { Proj, bias ? Bias : Implicit }; |
| case spv::OpImageSampleProjExplicitLod: return { Proj, grad ? Grad : Lod }; |
| case spv::OpImageSampleProjDrefImplicitLod: return { ProjDref, bias ? Bias : Implicit }; |
| case spv::OpImageSampleProjDrefExplicitLod: return { ProjDref, grad ? Grad : Lod }; |
| case spv::OpImageGather: return { None, Gather }; |
| case spv::OpImageDrefGather: return { Dref, Gather }; |
| case spv::OpImageFetch: return { None, Fetch }; |
| case spv::OpImageQueryLod: return { None, Query }; |
| case spv::OpImageRead: return { None, Read }; |
| case spv::OpImageWrite: return { None, Write }; |
| case spv::OpImageTexelPointer: return { None, TexelPointer }; |
| |
| default: |
| ASSERT(false); |
| return { None, Implicit }; |
| } |
| } |
| |
| // Returns the instruction word index at which the Image Operands mask is located, or 0 if not present. |
| uint32_t SpirvEmitter::ImageInstruction::getImageOperandsIndex(InsnIterator insn) |
| { |
| switch(insn.opcode()) |
| { |
| case spv::OpImageSampleImplicitLod: |
| case spv::OpImageSampleProjImplicitLod: |
| return insn.wordCount() > 5 ? 5 : 0; // Optional |
| case spv::OpImageSampleExplicitLod: |
| case spv::OpImageSampleProjExplicitLod: |
| return 5; // "Either Lod or Grad image operands must be present." |
| case spv::OpImageSampleDrefImplicitLod: |
| case spv::OpImageSampleProjDrefImplicitLod: |
| return insn.wordCount() > 6 ? 6 : 0; // Optional |
| case spv::OpImageSampleDrefExplicitLod: |
| case spv::OpImageSampleProjDrefExplicitLod: |
| return 6; // "Either Lod or Grad image operands must be present." |
| case spv::OpImageGather: |
| case spv::OpImageDrefGather: |
| return insn.wordCount() > 6 ? 6 : 0; // Optional |
| case spv::OpImageFetch: |
| return insn.wordCount() > 5 ? 5 : 0; // Optional |
| case spv::OpImageQueryLod: |
| ASSERT(insn.wordCount() == 5); |
| return 0; // No image operands. |
| case spv::OpImageRead: |
| return insn.wordCount() > 5 ? 5 : 0; // Optional |
| case spv::OpImageWrite: |
| return insn.wordCount() > 4 ? 4 : 0; // Optional |
| case spv::OpImageTexelPointer: |
| ASSERT(insn.wordCount() == 6); |
| return 0; // No image operands. |
| |
| default: |
| ASSERT(false); |
| return 0; |
| } |
| } |
| |
| uint32_t SpirvEmitter::ImageInstruction::getImageOperandsMask(InsnIterator insn) |
| { |
| uint32_t operandsIndex = getImageOperandsIndex(insn); |
| return (operandsIndex != 0) ? insn.word(operandsIndex) : 0; |
| } |
| |
| void SpirvEmitter::EmitImageSample(const ImageInstruction &instruction) |
| { |
| auto &resultType = shader.getType(instruction.resultTypeId); |
| auto &result = createIntermediate(instruction.resultId, resultType.componentCount); |
| Array<SIMD::Float> out(4); |
| |
| // TODO(b/153380916): When we're in a code path that is always executed, |
| // i.e. post-dominators of the entry block, we don't have to dynamically |
| // check whether any lanes are active, and can elide the jump. |
| If(AnyTrue(activeLaneMask())) |
| { |
| EmitImageSampleUnconditional(out, instruction); |
| } |
| |
| for(auto i = 0u; i < resultType.componentCount; i++) { result.move(i, out[i]); } |
| } |
| |
| void SpirvEmitter::EmitImageSampleUnconditional(Array<SIMD::Float> &out, const ImageInstruction &instruction) const |
| { |
| auto decorations = shader.GetDecorationsForId(instruction.imageId); |
| |
| if(decorations.NonUniform) |
| { |
| SIMD::Int activeLaneMask = this->activeLaneMask(); |
| SIMD::Pointer imagePointer = getImage(instruction.imageId); |
| // PerLane output |
| for(int laneIdx = 0; laneIdx < SIMD::Width; laneIdx++) |
| { |
| Array<SIMD::Float> laneOut(out.getArraySize()); |
| If(Extract(activeLaneMask, laneIdx) != 0) |
| { |
| Pointer<Byte> imageDescriptor = imagePointer.getPointerForLane(laneIdx); // vk::SampledImageDescriptor* |
| Pointer<Byte> samplerDescriptor = getSamplerDescriptor(imageDescriptor, instruction, laneIdx); |
| |
| Pointer<Byte> samplerFunction = lookupSamplerFunction(imageDescriptor, samplerDescriptor, instruction); |
| |
| callSamplerFunction(samplerFunction, laneOut, imageDescriptor, instruction); |
| } |
| |
| for(int outIdx = 0; outIdx < out.getArraySize(); outIdx++) |
| { |
| out[outIdx] = Insert(out[outIdx], Extract(laneOut[outIdx], laneIdx), laneIdx); |
| } |
| } |
| } |
| else |
| { |
| Pointer<Byte> imageDescriptor = getImage(instruction.imageId).getUniformPointer(); // vk::SampledImageDescriptor* |
| Pointer<Byte> samplerDescriptor = getSamplerDescriptor(imageDescriptor, instruction); |
| |
| Pointer<Byte> samplerFunction = lookupSamplerFunction(imageDescriptor, samplerDescriptor, instruction); |
| |
| callSamplerFunction(samplerFunction, out, imageDescriptor, instruction); |
| } |
| } |
| |
| Pointer<Byte> SpirvEmitter::getSamplerDescriptor(Pointer<Byte> imageDescriptor, const ImageInstruction &instruction) const |
| { |
| return ((instruction.samplerId == instruction.imageId) || (instruction.samplerId == 0)) ? imageDescriptor : getImage(instruction.samplerId).getUniformPointer(); |
| } |
| |
| Pointer<Byte> SpirvEmitter::getSamplerDescriptor(Pointer<Byte> imageDescriptor, const ImageInstruction &instruction, int laneIdx) const |
| { |
| return ((instruction.samplerId == instruction.imageId) || (instruction.samplerId == 0)) ? imageDescriptor : getImage(instruction.samplerId).getPointerForLane(laneIdx); |
| } |
| |
| Pointer<Byte> SpirvEmitter::lookupSamplerFunction(Pointer<Byte> imageDescriptor, Pointer<Byte> samplerDescriptor, const ImageInstruction &instruction) const |
| { |
| Int samplerId = (instruction.samplerId != 0) ? *Pointer<rr::Int>(samplerDescriptor + OFFSET(vk::SampledImageDescriptor, samplerId)) : Int(0); |
| |
| auto &cache = routine->samplerCache.at(instruction.position); |
| Bool cacheHit = (cache.imageDescriptor == imageDescriptor) && (cache.samplerId == samplerId); // TODO(b/205566405): Skip sampler ID check for samplerless instructions. |
| |
| If(!cacheHit) |
| { |
| rr::Int imageViewId = *Pointer<rr::Int>(imageDescriptor + OFFSET(vk::ImageDescriptor, imageViewId)); |
| cache.function = Call(getImageSampler, routine->device, instruction.signature, samplerId, imageViewId); |
| cache.imageDescriptor = imageDescriptor; |
| cache.samplerId = samplerId; |
| } |
| |
| return cache.function; |
| } |
| |
| void SpirvEmitter::callSamplerFunction(Pointer<Byte> samplerFunction, Array<SIMD::Float> &out, Pointer<Byte> imageDescriptor, const ImageInstruction &instruction) const |
| { |
| Array<SIMD::Float> in(16); // Maximum 16 input parameter components. |
| |
| auto coordinate = Operand(shader, *this, instruction.coordinateId); |
| |
| uint32_t i = 0; |
| for(; i < instruction.coordinates; i++) |
| { |
| if(instruction.isProj()) |
| { |
| in[i] = coordinate.Float(i) / coordinate.Float(instruction.coordinates); // TODO(b/129523279): Optimize using reciprocal. |
| } |
| else |
| { |
| in[i] = coordinate.Float(i); |
| } |
| } |
| |
| if(instruction.isDref()) |
| { |
| auto drefValue = Operand(shader, *this, instruction.drefId); |
| |
| if(instruction.isProj()) |
| { |
| in[i] = drefValue.Float(0) / coordinate.Float(instruction.coordinates); // TODO(b/129523279): Optimize using reciprocal. |
| } |
| else |
| { |
| in[i] = drefValue.Float(0); |
| } |
| |
| i++; |
| } |
| |
| if(instruction.lodOrBiasId != 0) |
| { |
| auto lodValue = Operand(shader, *this, instruction.lodOrBiasId); |
| in[i] = lodValue.Float(0); |
| i++; |
| } |
| else if(instruction.gradDxId != 0) |
| { |
| auto dxValue = Operand(shader, *this, instruction.gradDxId); |
| auto dyValue = Operand(shader, *this, instruction.gradDyId); |
| ASSERT(dxValue.componentCount == dxValue.componentCount); |
| |
| for(uint32_t j = 0; j < dxValue.componentCount; j++, i++) |
| { |
| in[i] = dxValue.Float(j); |
| } |
| |
| for(uint32_t j = 0; j < dxValue.componentCount; j++, i++) |
| { |
| in[i] = dyValue.Float(j); |
| } |
| } |
| else if(instruction.samplerMethod == Fetch) |
| { |
| // The instruction didn't provide a lod operand, but the sampler's Fetch |
| // function requires one to be present. If no lod is supplied, the default |
| // is zero. |
| in[i] = As<SIMD::Float>(SIMD::Int(0)); |
| i++; |
| } |
| |
| if(instruction.offsetId != 0) |
| { |
| auto offsetValue = Operand(shader, *this, instruction.offsetId); |
| |
| for(uint32_t j = 0; j < offsetValue.componentCount; j++, i++) |
| { |
| in[i] = As<SIMD::Float>(offsetValue.Int(j)); // Integer values, but transfered as float. |
| } |
| } |
| |
| if(instruction.sample) |
| { |
| auto sampleValue = Operand(shader, *this, instruction.sampleId); |
| in[i] = As<SIMD::Float>(sampleValue.Int(0)); |
| } |
| |
| Pointer<Byte> texture = imageDescriptor + OFFSET(vk::SampledImageDescriptor, texture); // sw::Texture* |
| |
| Call<ImageSampler>(samplerFunction, texture, &in, &out, routine->constants); |
| } |
| |
| void SpirvEmitter::EmitImageQuerySizeLod(InsnIterator insn) |
| { |
| auto &resultTy = shader.getType(insn.resultTypeId()); |
| auto imageId = Object::ID(insn.word(3)); |
| auto lodId = Object::ID(insn.word(4)); |
| |
| auto &dst = createIntermediate(insn.resultId(), resultTy.componentCount); |
| GetImageDimensions(resultTy, imageId, lodId, dst); |
| } |
| |
| void SpirvEmitter::EmitImageQuerySize(InsnIterator insn) |
| { |
| auto &resultTy = shader.getType(insn.resultTypeId()); |
| auto imageId = Object::ID(insn.word(3)); |
| auto lodId = Object::ID(0); |
| |
| auto &dst = createIntermediate(insn.resultId(), resultTy.componentCount); |
| GetImageDimensions(resultTy, imageId, lodId, dst); |
| } |
| |
| void SpirvEmitter::GetImageDimensions(const Type &resultTy, Object::ID imageId, Object::ID lodId, Intermediate &dst) const |
| { |
| auto &image = shader.getObject(imageId); |
| auto &imageType = shader.getType(image); |
| |
| ASSERT(imageType.definition.opcode() == spv::OpTypeImage); |
| bool isArrayed = imageType.definition.word(5) != 0; |
| uint32_t dimensions = resultTy.componentCount - (isArrayed ? 1 : 0); |
| |
| const Spirv::DescriptorDecorations &d = shader.descriptorDecorations.at(imageId); |
| auto descriptorType = routine->pipelineLayout->getDescriptorType(d.DescriptorSet, d.Binding); |
| |
| Pointer<Byte> descriptor = getPointer(imageId).getUniformPointer(); |
| |
| Int width; |
| Int height; |
| Int depth; |
| |
| switch(descriptorType) |
| { |
| case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: |
| case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: |
| width = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, width)); |
| height = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, height)); |
| depth = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, depth)); |
| break; |
| case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: |
| case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: |
| case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: |
| width = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, width)); |
| height = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, height)); |
| depth = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, depth)); |
| break; |
| default: |
| UNREACHABLE("Image descriptorType: %d", int(descriptorType)); |
| } |
| |
| if(lodId != 0) |
| { |
| auto lodVal = Operand(shader, *this, lodId); |
| ASSERT(lodVal.componentCount == 1); |
| auto lod = lodVal.Int(0); |
| auto one = SIMD::Int(1); |
| |
| if(dimensions >= 1) dst.move(0, Max(SIMD::Int(width) >> lod, one)); |
| if(dimensions >= 2) dst.move(1, Max(SIMD::Int(height) >> lod, one)); |
| if(dimensions >= 3) dst.move(2, Max(SIMD::Int(depth) >> lod, one)); |
| } |
| else |
| { |
| |
| if(dimensions >= 1) dst.move(0, SIMD::Int(width)); |
| if(dimensions >= 2) dst.move(1, SIMD::Int(height)); |
| if(dimensions >= 3) dst.move(2, SIMD::Int(depth)); |
| } |
| |
| if(isArrayed) |
| { |
| dst.move(dimensions, SIMD::Int(depth)); |
| } |
| } |
| |
| void SpirvEmitter::EmitImageQueryLevels(InsnIterator insn) |
| { |
| auto &resultTy = shader.getType(insn.resultTypeId()); |
| ASSERT(resultTy.componentCount == 1); |
| auto imageId = Object::ID(insn.word(3)); |
| |
| const Spirv::DescriptorDecorations &d = shader.descriptorDecorations.at(imageId); |
| auto descriptorType = routine->pipelineLayout->getDescriptorType(d.DescriptorSet, d.Binding); |
| |
| Pointer<Byte> descriptor = getPointer(imageId).getUniformPointer(); |
| Int mipLevels = 0; |
| switch(descriptorType) |
| { |
| case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: |
| case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: |
| case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: |
| mipLevels = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, mipLevels)); // uint32_t |
| break; |
| default: |
| UNREACHABLE("Image descriptorType: %d", int(descriptorType)); |
| } |
| |
| auto &dst = createIntermediate(insn.resultId(), 1); |
| dst.move(0, SIMD::Int(mipLevels)); |
| } |
| |
| void SpirvEmitter::EmitImageQuerySamples(InsnIterator insn) |
| { |
| auto &resultTy = shader.getType(insn.resultTypeId()); |
| ASSERT(resultTy.componentCount == 1); |
| auto imageId = Object::ID(insn.word(3)); |
| auto imageTy = shader.getObjectType(imageId); |
| ASSERT(imageTy.definition.opcode() == spv::OpTypeImage); |
| ASSERT(imageTy.definition.word(3) == spv::Dim2D); |
| ASSERT(imageTy.definition.word(6 /* MS */) == 1); |
| |
| const Spirv::DescriptorDecorations &d = shader.descriptorDecorations.at(imageId); |
| auto descriptorType = routine->pipelineLayout->getDescriptorType(d.DescriptorSet, d.Binding); |
| |
| Pointer<Byte> descriptor = getPointer(imageId).getUniformPointer(); |
| Int sampleCount = 0; |
| switch(descriptorType) |
| { |
| case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: |
| sampleCount = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, sampleCount)); // uint32_t |
| break; |
| case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: |
| case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: |
| case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: |
| sampleCount = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, sampleCount)); // uint32_t |
| break; |
| default: |
| UNREACHABLE("Image descriptorType: %d", int(descriptorType)); |
| } |
| |
| auto &dst = createIntermediate(insn.resultId(), 1); |
| dst.move(0, SIMD::Int(sampleCount)); |
| } |
| |
| SpirvEmitter::TexelAddressData SpirvEmitter::setupTexelAddressData(SIMD::Int rowPitch, SIMD::Int slicePitch, SIMD::Int samplePitch, ImageInstructionSignature instruction, SIMD::Int coordinate[], SIMD::Int sample, vk::Format imageFormat, const SpirvRoutine *routine) |
| { |
| TexelAddressData data; |
| |
| data.isArrayed = instruction.arrayed; |
| data.dim = static_cast<spv::Dim>(instruction.dim); |
| data.texelSize = imageFormat.bytes(); |
| data.dims = instruction.coordinates - (data.isArrayed ? 1 : 0); |
| |
| data.u = coordinate[0]; |
| data.v = SIMD::Int(0); |
| |
| if(data.dims > 1) |
| { |
| data.v = coordinate[1]; |
| } |
| |
| if(data.dim == spv::DimSubpassData) |
| { |
| data.u += routine->windowSpacePosition[0]; |
| data.v += routine->windowSpacePosition[1]; |
| } |
| |
| data.ptrOffset = data.u * SIMD::Int(data.texelSize); |
| |
| if(data.dims > 1) |
| { |
| data.ptrOffset += data.v * rowPitch; |
| } |
| |
| data.w = 0; |
| if((data.dims > 2) || data.isArrayed) |
| { |
| if(data.dims > 2) |
| { |
| data.w += coordinate[2]; |
| } |
| |
| if(data.isArrayed) |
| { |
| data.w += coordinate[data.dims]; |
| } |
| |
| data.ptrOffset += data.w * slicePitch; |
| } |
| |
| if(data.dim == spv::DimSubpassData) |
| { |
| // Multiview input attachment access is to the layer corresponding to the current view |
| data.ptrOffset += SIMD::Int(routine->layer) * slicePitch; |
| } |
| |
| if(instruction.sample) |
| { |
| data.ptrOffset += sample * samplePitch; |
| } |
| |
| return data; |
| } |
| |
| SIMD::Pointer SpirvEmitter::GetNonUniformTexelAddress(ImageInstructionSignature instruction, SIMD::Pointer descriptor, SIMD::Int coordinate[], SIMD::Int sample, vk::Format imageFormat, OutOfBoundsBehavior outOfBoundsBehavior, SIMD::Int activeLaneMask, const SpirvRoutine *routine) |
| { |
| const bool useStencilAspect = (imageFormat == VK_FORMAT_S8_UINT); |
| auto rowPitch = (descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilRowPitchBytes) |
| : OFFSET(vk::StorageImageDescriptor, rowPitchBytes))) |
| .Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask); |
| auto slicePitch = (descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilSlicePitchBytes) |
| : OFFSET(vk::StorageImageDescriptor, slicePitchBytes))) |
| .Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask); |
| auto samplePitch = (descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilSamplePitchBytes) |
| : OFFSET(vk::StorageImageDescriptor, samplePitchBytes))) |
| .Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask); |
| |
| auto texelData = setupTexelAddressData(rowPitch, slicePitch, samplePitch, instruction, coordinate, sample, imageFormat, routine); |
| |
| // If the out-of-bounds behavior is set to nullify, then each coordinate must be tested individually. |
| // Other out-of-bounds behaviors work properly by just comparing the offset against the total size. |
| if(outOfBoundsBehavior == OutOfBoundsBehavior::Nullify) |
| { |
| SIMD::UInt width = (descriptor + OFFSET(vk::StorageImageDescriptor, width)).Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask); |
| SIMD::Int oobMask = As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(texelData.u), width)); |
| |
| if(texelData.dims > 1) |
| { |
| SIMD::UInt height = As<SIMD::UInt>((descriptor + OFFSET(vk::StorageImageDescriptor, height)).Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask)); |
| oobMask |= As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(texelData.v), height)); |
| } |
| |
| if((texelData.dims > 2) || texelData.isArrayed) |
| { |
| SIMD::UInt depth = As<SIMD::UInt>((descriptor + OFFSET(vk::StorageImageDescriptor, depth)).Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask)); |
| if(texelData.dim == spv::DimCube) { depth *= 6; } |
| oobMask |= As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(texelData.w), depth)); |
| } |
| |
| if(instruction.sample) |
| { |
| SIMD::UInt sampleCount = As<SIMD::UInt>((descriptor + OFFSET(vk::StorageImageDescriptor, sampleCount)).Load<SIMD::Int>(outOfBoundsBehavior, activeLaneMask)); |
| oobMask |= As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(sample), sampleCount)); |
| } |
| |
| constexpr int32_t OOB_OFFSET = 0x7FFFFFFF - 16; // SIMD pointer offsets are signed 32-bit, so this is the largest offset (for 16-byte texels). |
| static_assert(OOB_OFFSET >= vk::MAX_MEMORY_ALLOCATION_SIZE, "the largest offset must be guaranteed to be out-of-bounds"); |
| |
| texelData.ptrOffset = (texelData.ptrOffset & ~oobMask) | (oobMask & SIMD::Int(OOB_OFFSET)); // oob ? OOB_OFFSET : ptrOffset // TODO: IfThenElse() |
| } |
| |
| std::vector<Pointer<Byte>> imageBase(SIMD::Width); |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| imageBase[i] = *Pointer<Pointer<Byte>>(descriptor.getPointerForLane(i) + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilPtr) |
| : OFFSET(vk::StorageImageDescriptor, ptr))); |
| } |
| |
| return SIMD::Pointer(imageBase) + texelData.ptrOffset; |
| } |
| |
| SIMD::Pointer SpirvEmitter::GetTexelAddress(ImageInstructionSignature instruction, Pointer<Byte> descriptor, SIMD::Int coordinate[], SIMD::Int sample, vk::Format imageFormat, OutOfBoundsBehavior outOfBoundsBehavior, const SpirvRoutine *routine) |
| { |
| const bool useStencilAspect = (imageFormat == VK_FORMAT_S8_UINT); |
| auto rowPitch = SIMD::Int(*Pointer<Int>(descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilRowPitchBytes) |
| : OFFSET(vk::StorageImageDescriptor, rowPitchBytes)))); |
| auto slicePitch = SIMD::Int( |
| *Pointer<Int>(descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilSlicePitchBytes) |
| : OFFSET(vk::StorageImageDescriptor, slicePitchBytes)))); |
| auto samplePitch = SIMD::Int( |
| *Pointer<Int>(descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilSamplePitchBytes) |
| : OFFSET(vk::StorageImageDescriptor, samplePitchBytes)))); |
| |
| auto texelData = setupTexelAddressData(rowPitch, slicePitch, samplePitch, instruction, coordinate, sample, imageFormat, routine); |
| |
| // If the out-of-bounds behavior is set to nullify, then each coordinate must be tested individually. |
| // Other out-of-bounds behaviors work properly by just comparing the offset against the total size. |
| if(outOfBoundsBehavior == OutOfBoundsBehavior::Nullify) |
| { |
| SIMD::UInt width = *Pointer<UInt>(descriptor + OFFSET(vk::StorageImageDescriptor, width)); |
| SIMD::Int oobMask = As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(texelData.u), width)); |
| |
| if(texelData.dims > 1) |
| { |
| SIMD::UInt height = *Pointer<UInt>(descriptor + OFFSET(vk::StorageImageDescriptor, height)); |
| oobMask |= As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(texelData.v), height)); |
| } |
| |
| if((texelData.dims > 2) || texelData.isArrayed) |
| { |
| UInt depth = *Pointer<UInt>(descriptor + OFFSET(vk::StorageImageDescriptor, depth)); |
| if(texelData.dim == spv::DimCube) { depth *= 6; } |
| oobMask |= As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(texelData.w), SIMD::UInt(depth))); |
| } |
| |
| if(instruction.sample) |
| { |
| SIMD::UInt sampleCount = *Pointer<UInt>(descriptor + OFFSET(vk::StorageImageDescriptor, sampleCount)); |
| oobMask |= As<SIMD::Int>(CmpNLT(As<SIMD::UInt>(sample), sampleCount)); |
| } |
| |
| constexpr int32_t OOB_OFFSET = 0x7FFFFFFF - 16; // SIMD pointer offsets are signed 32-bit, so this is the largest offset (for 16-byte texels). |
| static_assert(OOB_OFFSET >= vk::MAX_MEMORY_ALLOCATION_SIZE, "the largest offset must be guaranteed to be out-of-bounds"); |
| |
| texelData.ptrOffset = (texelData.ptrOffset & ~oobMask) | (oobMask & SIMD::Int(OOB_OFFSET)); // oob ? OOB_OFFSET : ptrOffset // TODO: IfThenElse() |
| } |
| |
| Pointer<Byte> imageBase = *Pointer<Pointer<Byte>>(descriptor + (useStencilAspect |
| ? OFFSET(vk::StorageImageDescriptor, stencilPtr) |
| : OFFSET(vk::StorageImageDescriptor, ptr))); |
| |
| Int imageSizeInBytes = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, sizeInBytes)); |
| |
| return SIMD::Pointer(imageBase, imageSizeInBytes, texelData.ptrOffset); |
| } |
| |
| void SpirvEmitter::EmitImageRead(const ImageInstruction &instruction) |
| { |
| auto &resultType = shader.getObjectType(instruction.resultId); |
| auto &image = shader.getObject(instruction.imageId); |
| auto &imageType = shader.getType(image); |
| |
| ASSERT(imageType.definition.opcode() == spv::OpTypeImage); |
| auto dim = static_cast<spv::Dim>(instruction.dim); |
| |
| auto coordinate = Operand(shader, *this, instruction.coordinateId); |
| const Spirv::DescriptorDecorations &d = shader.descriptorDecorations.at(instruction.imageId); |
| |
| // For subpass data, format in the instruction is spv::ImageFormatUnknown. Get it from |
| // the renderpass data instead. In all other cases, we can use the format in the instruction. |
| ASSERT(dim != spv::DimSubpassData || attachments != nullptr); |
| vk::Format imageFormat = (dim == spv::DimSubpassData) |
| ? shader.getInputAttachmentFormat(*attachments, d.InputAttachmentIndex) |
| : SpirvFormatToVulkanFormat(static_cast<spv::ImageFormat>(instruction.imageFormat)); |
| |
| // Depth+Stencil image attachments select aspect based on the Sampled Type of the |
| // OpTypeImage. If float, then we want the depth aspect. If int, we want the stencil aspect. |
| bool useStencilAspect = (imageFormat == VK_FORMAT_D32_SFLOAT_S8_UINT && |
| shader.getType(imageType.definition.word(2)).opcode() == spv::OpTypeInt); |
| |
| if(useStencilAspect) |
| { |
| imageFormat = VK_FORMAT_S8_UINT; |
| } |
| |
| auto &dst = createIntermediate(instruction.resultId, resultType.componentCount); |
| SIMD::Pointer ptr = getPointer(instruction.imageId); |
| |
| SIMD::Int uvwa[4]; |
| SIMD::Int sample; |
| const int texelSize = imageFormat.bytes(); |
| // VK_EXT_image_robustness requires replacing out-of-bounds access with zero. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| auto robustness = OutOfBoundsBehavior::Nullify; |
| |
| for(uint32_t i = 0; i < instruction.coordinates; i++) |
| { |
| uvwa[i] = coordinate.Int(i); |
| } |
| if(instruction.sample) |
| { |
| sample = Operand(shader, *this, instruction.sampleId).Int(0); |
| } |
| |
| // Gather packed texel data. Texels larger than 4 bytes occupy multiple SIMD::Int elements. |
| // TODO(b/160531165): Provide gather abstractions for various element sizes. |
| SIMD::Int packed[4]; |
| |
| SIMD::Pointer texelPtr = ptr.isBasePlusOffset |
| ? GetTexelAddress(instruction, ptr.getUniformPointer(), uvwa, sample, imageFormat, robustness, routine) |
| : GetNonUniformTexelAddress(instruction, ptr, uvwa, sample, imageFormat, robustness, activeLaneMask(), routine); |
| if(texelSize == 4 || texelSize == 8 || texelSize == 16) |
| { |
| for(auto i = 0; i < texelSize / 4; i++) |
| { |
| packed[i] = texelPtr.Load<SIMD::Int>(robustness, activeLaneMask()); |
| texelPtr += sizeof(float); |
| } |
| } |
| else if(texelSize == 2) |
| { |
| SIMD::Int mask = activeLaneMask() & texelPtr.isInBounds(2, robustness); |
| |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| If(Extract(mask, i) != 0) |
| { |
| packed[0] = Insert(packed[0], Int(*Pointer<Short>(texelPtr.getPointerForLane(i))), i); |
| } |
| } |
| } |
| else if(texelSize == 1) |
| { |
| SIMD::Int mask = activeLaneMask() & texelPtr.isInBounds(1, robustness); |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| If(Extract(mask, i) != 0) |
| { |
| packed[0] = Insert(packed[0], Int(*Pointer<Byte>(texelPtr.getPointerForLane(i))), i); |
| } |
| } |
| } |
| else |
| UNREACHABLE("texelSize: %d", int(texelSize)); |
| |
| // Format support requirements here come from two sources: |
| // - Minimum required set of formats for loads from storage images |
| // - Any format supported as a color or depth/stencil attachment, for input attachments |
| switch(imageFormat) |
| { |
| case VK_FORMAT_R32G32B32A32_SFLOAT: |
| case VK_FORMAT_R32G32B32A32_SINT: |
| case VK_FORMAT_R32G32B32A32_UINT: |
| dst.move(0, packed[0]); |
| dst.move(1, packed[1]); |
| dst.move(2, packed[2]); |
| dst.move(3, packed[3]); |
| break; |
| case VK_FORMAT_R32_SINT: |
| case VK_FORMAT_R32_UINT: |
| dst.move(0, packed[0]); |
| // Fill remaining channels with 0,0,1 (of the correct type) |
| dst.move(1, SIMD::Int(0)); |
| dst.move(2, SIMD::Int(0)); |
| dst.move(3, SIMD::Int(1)); |
| break; |
| case VK_FORMAT_R32_SFLOAT: |
| case VK_FORMAT_D32_SFLOAT: |
| case VK_FORMAT_D32_SFLOAT_S8_UINT: |
| dst.move(0, packed[0]); |
| // Fill remaining channels with 0,0,1 (of the correct type) |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_D16_UNORM: |
| dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16G16B16A16_UNORM: |
| dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(1, SIMD::Float((packed[0] >> 16) & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(2, SIMD::Float(packed[1] & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(3, SIMD::Float((packed[1] >> 16) & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| break; |
| case VK_FORMAT_R16G16B16A16_SNORM: |
| dst.move(0, Max(SIMD::Float((packed[0] << 16) & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| dst.move(1, Max(SIMD::Float(packed[0] & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| dst.move(2, Max(SIMD::Float((packed[1] << 16) & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| dst.move(3, Max(SIMD::Float(packed[1] & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| break; |
| case VK_FORMAT_R16G16B16A16_SINT: |
| dst.move(0, (packed[0] << 16) >> 16); |
| dst.move(1, packed[0] >> 16); |
| dst.move(2, (packed[1] << 16) >> 16); |
| dst.move(3, packed[1] >> 16); |
| break; |
| case VK_FORMAT_R16G16B16A16_UINT: |
| dst.move(0, packed[0] & SIMD::Int(0xFFFF)); |
| dst.move(1, (packed[0] >> 16) & SIMD::Int(0xFFFF)); |
| dst.move(2, packed[1] & SIMD::Int(0xFFFF)); |
| dst.move(3, (packed[1] >> 16) & SIMD::Int(0xFFFF)); |
| break; |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| dst.move(0, halfToFloatBits(As<SIMD::UInt>(packed[0]) & SIMD::UInt(0x0000FFFF))); |
| dst.move(1, halfToFloatBits((As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFFFF0000)) >> 16)); |
| dst.move(2, halfToFloatBits(As<SIMD::UInt>(packed[1]) & SIMD::UInt(0x0000FFFF))); |
| dst.move(3, halfToFloatBits((As<SIMD::UInt>(packed[1]) & SIMD::UInt(0xFFFF0000)) >> 16)); |
| break; |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| dst.move(0, Max(SIMD::Float((packed[0] << 24) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| dst.move(1, Max(SIMD::Float((packed[0] << 16) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| dst.move(2, Max(SIMD::Float((packed[0] << 8) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| dst.move(3, Max(SIMD::Float((packed[0]) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| break; |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(1, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(2, SIMD::Float((packed[0] >> 16) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(3, SIMD::Float((packed[0] >> 24) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| break; |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_A8B8G8R8_SRGB_PACK32: |
| dst.move(0, sRGBtoLinear(SIMD::Float(packed[0] & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF))); |
| dst.move(1, sRGBtoLinear(SIMD::Float((packed[0] >> 8) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF))); |
| dst.move(2, sRGBtoLinear(SIMD::Float((packed[0] >> 16) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF))); |
| dst.move(3, SIMD::Float((packed[0] >> 24) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| break; |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| dst.move(0, SIMD::Float((packed[0] >> 16) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(1, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(2, SIMD::Float(packed[0] & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(3, SIMD::Float((packed[0] >> 24) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| break; |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| dst.move(0, sRGBtoLinear(SIMD::Float((packed[0] >> 16) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF))); |
| dst.move(1, sRGBtoLinear(SIMD::Float((packed[0] >> 8) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF))); |
| dst.move(2, sRGBtoLinear(SIMD::Float(packed[0] & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF))); |
| dst.move(3, SIMD::Float((packed[0] >> 24) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| break; |
| case VK_FORMAT_R8G8B8A8_UINT: |
| case VK_FORMAT_A8B8G8R8_UINT_PACK32: |
| dst.move(0, As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFF)); |
| dst.move(1, (As<SIMD::UInt>(packed[0]) >> 8) & SIMD::UInt(0xFF)); |
| dst.move(2, (As<SIMD::UInt>(packed[0]) >> 16) & SIMD::UInt(0xFF)); |
| dst.move(3, (As<SIMD::UInt>(packed[0]) >> 24) & SIMD::UInt(0xFF)); |
| break; |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_A8B8G8R8_SINT_PACK32: |
| dst.move(0, (packed[0] << 24) >> 24); |
| dst.move(1, (packed[0] << 16) >> 24); |
| dst.move(2, (packed[0] << 8) >> 24); |
| dst.move(3, packed[0] >> 24); |
| break; |
| case VK_FORMAT_R8_UNORM: |
| dst.move(0, SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R8_SNORM: |
| dst.move(0, Max(SIMD::Float((packed[0] << 24) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R8_UINT: |
| case VK_FORMAT_S8_UINT: |
| dst.move(0, As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFF)); |
| dst.move(1, SIMD::UInt(0)); |
| dst.move(2, SIMD::UInt(0)); |
| dst.move(3, SIMD::UInt(1)); |
| break; |
| case VK_FORMAT_R8_SINT: |
| dst.move(0, (packed[0] << 24) >> 24); |
| dst.move(1, SIMD::Int(0)); |
| dst.move(2, SIMD::Int(0)); |
| dst.move(3, SIMD::Int(1)); |
| break; |
| case VK_FORMAT_R8G8_UNORM: |
| dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(1, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xFF)) * SIMD::Float(1.0f / 0xFF)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R8G8_SNORM: |
| dst.move(0, Max(SIMD::Float((packed[0] << 24) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| dst.move(1, Max(SIMD::Float((packed[0] << 16) & SIMD::Int(0xFF000000)) * SIMD::Float(1.0f / 0x7F000000), SIMD::Float(-1.0f))); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R8G8_UINT: |
| dst.move(0, As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFF)); |
| dst.move(1, (As<SIMD::UInt>(packed[0]) >> 8) & SIMD::UInt(0xFF)); |
| dst.move(2, SIMD::UInt(0)); |
| dst.move(3, SIMD::UInt(1)); |
| break; |
| case VK_FORMAT_R8G8_SINT: |
| dst.move(0, (packed[0] << 24) >> 24); |
| dst.move(1, (packed[0] << 16) >> 24); |
| dst.move(2, SIMD::Int(0)); |
| dst.move(3, SIMD::Int(1)); |
| break; |
| case VK_FORMAT_R16_SFLOAT: |
| dst.move(0, halfToFloatBits(As<SIMD::UInt>(packed[0]) & SIMD::UInt(0x0000FFFF))); |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16_UNORM: |
| dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16_SNORM: |
| dst.move(0, Max(SIMD::Float((packed[0] << 16) & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| dst.move(1, SIMD::Float(0.0f)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16_UINT: |
| dst.move(0, packed[0] & SIMD::Int(0xFFFF)); |
| dst.move(1, SIMD::UInt(0)); |
| dst.move(2, SIMD::UInt(0)); |
| dst.move(3, SIMD::UInt(1)); |
| break; |
| case VK_FORMAT_R16_SINT: |
| dst.move(0, (packed[0] << 16) >> 16); |
| dst.move(1, SIMD::Int(0)); |
| dst.move(2, SIMD::Int(0)); |
| dst.move(3, SIMD::Int(1)); |
| break; |
| case VK_FORMAT_R16G16_SFLOAT: |
| dst.move(0, halfToFloatBits(As<SIMD::UInt>(packed[0]) & SIMD::UInt(0x0000FFFF))); |
| dst.move(1, halfToFloatBits((As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFFFF0000)) >> 16)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16G16_UNORM: |
| dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xFFFF)) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(1, SIMD::Float(As<SIMD::UInt>(packed[0]) >> 16) * SIMD::Float(1.0f / 0xFFFF)); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16G16_SNORM: |
| dst.move(0, Max(SIMD::Float((packed[0] << 16) & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| dst.move(1, Max(SIMD::Float(packed[0] & SIMD::Int(0xFFFF0000)) * SIMD::Float(1.0f / 0x7FFF0000), SIMD::Float(-1.0f))); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R16G16_UINT: |
| dst.move(0, packed[0] & SIMD::Int(0xFFFF)); |
| dst.move(1, (packed[0] >> 16) & SIMD::Int(0xFFFF)); |
| dst.move(2, SIMD::UInt(0)); |
| dst.move(3, SIMD::UInt(1)); |
| break; |
| case VK_FORMAT_R16G16_SINT: |
| dst.move(0, (packed[0] << 16) >> 16); |
| dst.move(1, packed[0] >> 16); |
| dst.move(2, SIMD::Int(0)); |
| dst.move(3, SIMD::Int(1)); |
| break; |
| case VK_FORMAT_R32G32_SINT: |
| case VK_FORMAT_R32G32_UINT: |
| dst.move(0, packed[0]); |
| dst.move(1, packed[1]); |
| dst.move(2, SIMD::Int(0)); |
| dst.move(3, SIMD::Int(1)); |
| break; |
| case VK_FORMAT_R32G32_SFLOAT: |
| dst.move(0, packed[0]); |
| dst.move(1, packed[1]); |
| dst.move(2, SIMD::Float(0.0f)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_A2B10G10R10_UINT_PACK32: |
| dst.move(0, packed[0] & SIMD::Int(0x3FF)); |
| dst.move(1, (packed[0] >> 10) & SIMD::Int(0x3FF)); |
| dst.move(2, (packed[0] >> 20) & SIMD::Int(0x3FF)); |
| dst.move(3, (packed[0] >> 30) & SIMD::Int(0x3)); |
| break; |
| case VK_FORMAT_A2R10G10B10_UINT_PACK32: |
| dst.move(2, packed[0] & SIMD::Int(0x3FF)); |
| dst.move(1, (packed[0] >> 10) & SIMD::Int(0x3FF)); |
| dst.move(0, (packed[0] >> 20) & SIMD::Int(0x3FF)); |
| dst.move(3, (packed[0] >> 30) & SIMD::Int(0x3)); |
| break; |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| dst.move(0, SIMD::Float((packed[0]) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); |
| dst.move(1, SIMD::Float((packed[0] >> 10) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); |
| dst.move(2, SIMD::Float((packed[0] >> 20) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); |
| dst.move(3, SIMD::Float((packed[0] >> 30) & SIMD::Int(0x3)) * SIMD::Float(1.0f / 0x3)); |
| break; |
| case VK_FORMAT_A2R10G10B10_UNORM_PACK32: |
| dst.move(2, SIMD::Float((packed[0]) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); |
| dst.move(1, SIMD::Float((packed[0] >> 10) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); |
| dst.move(0, SIMD::Float((packed[0] >> 20) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); |
| dst.move(3, SIMD::Float((packed[0] >> 30) & SIMD::Int(0x3)) * SIMD::Float(1.0f / 0x3)); |
| break; |
| case VK_FORMAT_R4G4B4A4_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 12) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(1, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(2, SIMD::Float((packed[0] >> 4) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(3, SIMD::Float((packed[0]) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| break; |
| case VK_FORMAT_B4G4R4A4_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 4) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(1, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(2, SIMD::Float((packed[0] >> 12) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(3, SIMD::Float((packed[0]) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| break; |
| case VK_FORMAT_A4R4G4B4_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(1, SIMD::Float((packed[0] >> 4) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(2, SIMD::Float((packed[0]) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(3, SIMD::Float((packed[0] >> 12) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| break; |
| case VK_FORMAT_A4B4G4R4_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0]) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(1, SIMD::Float((packed[0] >> 4) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(2, SIMD::Float((packed[0] >> 8) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| dst.move(3, SIMD::Float((packed[0] >> 12) & SIMD::Int(0xF)) * SIMD::Float(1.0f / 0xF)); |
| break; |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 11) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(1, SIMD::Float((packed[0] >> 5) & SIMD::Int(0x3F)) * SIMD::Float(1.0f / 0x3F)); |
| dst.move(2, SIMD::Float((packed[0]) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_B5G6R5_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0]) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(1, SIMD::Float((packed[0] >> 5) & SIMD::Int(0x3F)) * SIMD::Float(1.0f / 0x3F)); |
| dst.move(2, SIMD::Float((packed[0] >> 11) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| case VK_FORMAT_R5G5B5A1_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 11) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(1, SIMD::Float((packed[0] >> 6) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(2, SIMD::Float((packed[0] >> 1) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(3, SIMD::Float((packed[0]) & SIMD::Int(0x1))); |
| break; |
| case VK_FORMAT_B5G5R5A1_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 1) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(1, SIMD::Float((packed[0] >> 6) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(2, SIMD::Float((packed[0] >> 11) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(3, SIMD::Float((packed[0]) & SIMD::Int(0x1))); |
| break; |
| case VK_FORMAT_A1R5G5B5_UNORM_PACK16: |
| dst.move(0, SIMD::Float((packed[0] >> 10) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(1, SIMD::Float((packed[0] >> 5) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(2, SIMD::Float((packed[0]) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); |
| dst.move(3, SIMD::Float((packed[0] >> 15) & SIMD::Int(0x1))); |
| break; |
| case VK_FORMAT_B10G11R11_UFLOAT_PACK32: |
| dst.move(0, halfToFloatBits((packed[0] << 4) & SIMD::Int(0x7FF0))); |
| dst.move(1, halfToFloatBits((packed[0] >> 7) & SIMD::Int(0x7FF0))); |
| dst.move(2, halfToFloatBits((packed[0] >> 17) & SIMD::Int(0x7FE0))); |
| dst.move(3, SIMD::Float(1.0f)); |
| break; |
| default: |
| UNSUPPORTED("VkFormat %d", int(imageFormat)); |
| break; |
| } |
| } |
| |
| void SpirvEmitter::EmitImageWrite(const ImageInstruction &instruction) |
| { |
| auto &image = shader.getObject(instruction.imageId); |
| auto &imageType = shader.getType(image); |
| |
| ASSERT(imageType.definition.opcode() == spv::OpTypeImage); |
| ASSERT(static_cast<spv::Dim>(instruction.dim) != spv::DimSubpassData); // "Its Dim operand must not be SubpassData." |
| |
| auto coordinate = Operand(shader, *this, instruction.coordinateId); |
| auto texel = Operand(shader, *this, instruction.texelId); |
| |
| Array<SIMD::Int> coord(5); // uvwa & sample |
| |
| uint32_t i = 0; |
| for(; i < instruction.coordinates; i++) |
| { |
| coord[i] = coordinate.Int(i); |
| } |
| |
| if(instruction.sample) |
| { |
| coord[i] = Operand(shader, *this, instruction.sampleId).Int(0); |
| } |
| |
| Array<SIMD::Int> texelAndMask(5); |
| for(uint32_t i = 0; i < texel.componentCount; ++i) |
| { |
| texelAndMask[i] = texel.Int(i); |
| } |
| for(uint32_t i = texel.componentCount; i < 4; ++i) |
| { |
| texelAndMask[i] = SIMD::Int(0); |
| } |
| texelAndMask[4] = activeStoresAndAtomicsMask(); |
| |
| vk::Format imageFormat = SpirvFormatToVulkanFormat(static_cast<spv::ImageFormat>(instruction.imageFormat)); |
| |
| SIMD::Pointer ptr = getPointer(instruction.imageId); |
| if(ptr.isBasePlusOffset) |
| { |
| Pointer<Byte> imageDescriptor = ptr.getUniformPointer(); // vk::StorageImageDescriptor* or vk::SampledImageDescriptor* |
| Pointer<Byte> samplerDescriptor = getSamplerDescriptor(imageDescriptor, instruction); |
| |
| if(imageFormat == VK_FORMAT_UNDEFINED) // spv::ImageFormatUnknown |
| { |
| Pointer<Byte> samplerFunction = lookupSamplerFunction(imageDescriptor, samplerDescriptor, instruction); |
| |
| Call<ImageSampler>(samplerFunction, imageDescriptor, &coord, &texelAndMask, routine->constants); |
| } |
| else |
| { |
| WriteImage(instruction, imageDescriptor, &coord, &texelAndMask, imageFormat); |
| } |
| } |
| else |
| { |
| for(int j = 0; j < SIMD::Width; j++) |
| { |
| SIMD::Int singleLaneMask = 0; |
| singleLaneMask = Insert(singleLaneMask, 0xffffffff, j); |
| texelAndMask[4] = activeStoresAndAtomicsMask() & singleLaneMask; |
| Pointer<Byte> imageDescriptor = ptr.getPointerForLane(j); |
| Pointer<Byte> samplerDescriptor = getSamplerDescriptor(imageDescriptor, instruction, j); |
| |
| if(imageFormat == VK_FORMAT_UNDEFINED) // spv::ImageFormatUnknown |
| { |
| Pointer<Byte> samplerFunction = lookupSamplerFunction(imageDescriptor, samplerDescriptor, instruction); |
| |
| Call<ImageSampler>(samplerFunction, imageDescriptor, &coord, &texelAndMask, routine->constants); |
| } |
| else |
| { |
| WriteImage(instruction, imageDescriptor, &coord, &texelAndMask, imageFormat); |
| } |
| } |
| } |
| } |
| |
| void SpirvEmitter::WriteImage(ImageInstructionSignature instruction, Pointer<Byte> descriptor, const Pointer<SIMD::Int> &coord, const Pointer<SIMD::Int> &texelAndMask, vk::Format imageFormat) |
| { |
| SIMD::Int texel[4]; |
| texel[0] = texelAndMask[0]; |
| texel[1] = texelAndMask[1]; |
| texel[2] = texelAndMask[2]; |
| texel[3] = texelAndMask[3]; |
| SIMD::Int mask = texelAndMask[4]; |
| |
| SIMD::Int packed[4]; |
| switch(imageFormat) |
| { |
| case VK_FORMAT_R32G32B32A32_SFLOAT: |
| case VK_FORMAT_R32G32B32A32_SINT: |
| case VK_FORMAT_R32G32B32A32_UINT: |
| packed[0] = texel[0]; |
| packed[1] = texel[1]; |
| packed[2] = texel[2]; |
| packed[3] = texel[3]; |
| break; |
| case VK_FORMAT_R32_SFLOAT: |
| case VK_FORMAT_R32_SINT: |
| case VK_FORMAT_R32_UINT: |
| packed[0] = texel[0]; |
| break; |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| packed[0] = (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 8) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[2]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 16) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 24); |
| break; |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| packed[0] = (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[2]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 8) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 16) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 24); |
| break; |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| packed[0] = (SIMD::UInt(Round(Min(Max(linearToSRGB(As<SIMD::Float>(texel[2])), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) | |
| ((SIMD::UInt(Round(Min(Max(linearToSRGB(As<SIMD::Float>(texel[1])), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 8) | |
| ((SIMD::UInt(Round(Min(Max(linearToSRGB(As<SIMD::Float>(texel[0])), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 16) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 24); |
| break; |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| packed[0] = (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & |
| SIMD::Int(0xFF)) | |
| ((SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & |
| SIMD::Int(0xFF)) |
| << 8) | |
| ((SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[2]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & |
| SIMD::Int(0xFF)) |
| << 16) | |
| ((SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & |
| SIMD::Int(0xFF)) |
| << 24); |
| break; |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_R8G8B8A8_UINT: |
| case VK_FORMAT_A8B8G8R8_SINT_PACK32: |
| case VK_FORMAT_A8B8G8R8_UINT_PACK32: |
| packed[0] = (SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0xff))) | |
| (SIMD::UInt(As<SIMD::UInt>(texel[1]) & SIMD::UInt(0xff)) << 8) | |
| (SIMD::UInt(As<SIMD::UInt>(texel[2]) & SIMD::UInt(0xff)) << 16) | |
| (SIMD::UInt(As<SIMD::UInt>(texel[3]) & SIMD::UInt(0xff)) << 24); |
| break; |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| packed[0] = floatToHalfBits(As<SIMD::UInt>(texel[0]), false) | floatToHalfBits(As<SIMD::UInt>(texel[1]), true); |
| packed[1] = floatToHalfBits(As<SIMD::UInt>(texel[2]), false) | floatToHalfBits(As<SIMD::UInt>(texel[3]), true); |
| break; |
| case VK_FORMAT_R16G16B16A16_SINT: |
| case VK_FORMAT_R16G16B16A16_UINT: |
| packed[0] = SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0xFFFF)) | (SIMD::UInt(As<SIMD::UInt>(texel[1]) & SIMD::UInt(0xFFFF)) << 16); |
| packed[1] = SIMD::UInt(As<SIMD::UInt>(texel[2]) & SIMD::UInt(0xFFFF)) | (SIMD::UInt(As<SIMD::UInt>(texel[3]) & SIMD::UInt(0xFFFF)) << 16); |
| break; |
| case VK_FORMAT_R32G32_SFLOAT: |
| case VK_FORMAT_R32G32_SINT: |
| case VK_FORMAT_R32G32_UINT: |
| packed[0] = texel[0]; |
| packed[1] = texel[1]; |
| break; |
| case VK_FORMAT_R16G16_SFLOAT: |
| packed[0] = floatToHalfBits(As<SIMD::UInt>(texel[0]), false) | floatToHalfBits(As<SIMD::UInt>(texel[1]), true); |
| break; |
| case VK_FORMAT_R16G16_SINT: |
| case VK_FORMAT_R16G16_UINT: |
| packed[0] = SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0xFFFF)) | (SIMD::UInt(As<SIMD::UInt>(texel[1]) & SIMD::UInt(0xFFFF)) << 16); |
| break; |
| case VK_FORMAT_B10G11R11_UFLOAT_PACK32: |
| // Truncates instead of rounding. See b/147900455 |
| packed[0] = ((floatToHalfBits(As<SIMD::UInt>(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f))), false) & SIMD::UInt(0x7FF0)) >> 4) | |
| ((floatToHalfBits(As<SIMD::UInt>(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f))), false) & SIMD::UInt(0x7FF0)) << 7) | |
| ((floatToHalfBits(As<SIMD::UInt>(Max(As<SIMD::Float>(texel[2]), SIMD::Float(0.0f))), false) & SIMD::UInt(0x7FE0)) << 17); |
| break; |
| case VK_FORMAT_R16_SFLOAT: |
| packed[0] = floatToHalfBits(As<SIMD::UInt>(texel[0]), false); |
| break; |
| case VK_FORMAT_R16G16B16A16_UNORM: |
| packed[0] = SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))) | |
| (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))) << 16); |
| packed[1] = SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[2]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))) | |
| (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))) << 16); |
| break; |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| packed[0] = (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x3FF)))) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x3FF)))) << 10) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[2]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x3FF)))) << 20) | |
| ((SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x3)))) << 30); |
| break; |
| case VK_FORMAT_R16G16_UNORM: |
| packed[0] = SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))) | |
| (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))) << 16); |
| break; |
| case VK_FORMAT_R8G8_UNORM: |
| packed[0] = SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFF))) | |
| (SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFF))) << 8); |
| break; |
| case VK_FORMAT_R16_UNORM: |
| packed[0] = SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFFFF))); |
| break; |
| case VK_FORMAT_R8_UNORM: |
| packed[0] = SIMD::UInt(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(0xFF))); |
| break; |
| case VK_FORMAT_R16G16B16A16_SNORM: |
| packed[0] = (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))) & SIMD::Int(0xFFFF)) | |
| (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))) << 16); |
| packed[1] = (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[2]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))) & SIMD::Int(0xFFFF)) | |
| (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[3]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))) << 16); |
| break; |
| case VK_FORMAT_R16G16_SNORM: |
| packed[0] = (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))) & SIMD::Int(0xFFFF)) | |
| (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))) << 16); |
| break; |
| case VK_FORMAT_R8G8_SNORM: |
| packed[0] = (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7F))) & SIMD::Int(0xFF)) | |
| (SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[1]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7F))) << 8); |
| break; |
| case VK_FORMAT_R16_SNORM: |
| packed[0] = SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7FFF))); |
| break; |
| case VK_FORMAT_R8_SNORM: |
| packed[0] = SIMD::Int(Round(Min(Max(As<SIMD::Float>(texel[0]), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(0x7F))); |
| break; |
| case VK_FORMAT_R8G8_SINT: |
| case VK_FORMAT_R8G8_UINT: |
| packed[0] = SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0xFF)) | (SIMD::UInt(As<SIMD::UInt>(texel[1]) & SIMD::UInt(0xFF)) << 8); |
| break; |
| case VK_FORMAT_R16_SINT: |
| case VK_FORMAT_R16_UINT: |
| packed[0] = SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0xFFFF)); |
| break; |
| case VK_FORMAT_R8_SINT: |
| case VK_FORMAT_R8_UINT: |
| packed[0] = SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0xFF)); |
| break; |
| case VK_FORMAT_A2B10G10R10_UINT_PACK32: |
| packed[0] = (SIMD::UInt(As<SIMD::UInt>(texel[0]) & SIMD::UInt(0x3FF))) | |
| (SIMD::UInt(As<SIMD::UInt>(texel[1]) & SIMD::UInt(0x3FF)) << 10) | |
| (SIMD::UInt(As<SIMD::UInt>(texel[2]) & SIMD::UInt(0x3FF)) << 20) | |
| (SIMD::UInt(As<SIMD::UInt>(texel[3]) & SIMD::UInt(0x3)) << 30); |
| break; |
| default: |
| UNSUPPORTED("VkFormat %d", int(imageFormat)); |
| break; |
| } |
| |
| // "The integer texel coordinates are validated according to the same rules as for texel input coordinate |
| // validation. If the texel fails integer texel coordinate validation, then the write has no effect." |
| // - https://www.khronos.org/registry/vulkan/specs/1.2/html/chap16.html#textures-output-coordinate-validation |
| auto robustness = OutOfBoundsBehavior::Nullify; |
| // GetTexelAddress() only needs the SpirvRoutine* for SubpassData accesses (i.e. input attachments). |
| const SpirvRoutine *routine = nullptr; |
| |
| SIMD::Int uvwa[4]; |
| SIMD::Int sample; |
| |
| uint32_t i = 0; |
| for(; i < instruction.coordinates; i++) |
| { |
| uvwa[i] = As<SIMD::Int>(coord[i]); |
| } |
| |
| if(instruction.sample) |
| { |
| sample = As<SIMD::Int>(coord[i]); |
| } |
| |
| auto texelPtr = GetTexelAddress(instruction, descriptor, uvwa, sample, imageFormat, robustness, routine); |
| |
| const int texelSize = imageFormat.bytes(); |
| |
| // Scatter packed texel data. |
| // TODO(b/160531165): Provide scatter abstractions for various element sizes. |
| if(texelSize == 4 || texelSize == 8 || texelSize == 16) |
| { |
| for(auto i = 0; i < texelSize / 4; i++) |
| { |
| texelPtr.Store(packed[i], robustness, mask); |
| texelPtr += sizeof(float); |
| } |
| } |
| else if(texelSize == 2) |
| { |
| mask = mask & texelPtr.isInBounds(2, robustness); |
| |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| If(Extract(mask, i) != 0) |
| { |
| *Pointer<Short>(texelPtr.getPointerForLane(i)) = Short(Extract(packed[0], i)); |
| } |
| } |
| } |
| else if(texelSize == 1) |
| { |
| mask = mask & texelPtr.isInBounds(1, robustness); |
| |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| If(Extract(mask, i) != 0) |
| { |
| *Pointer<Byte>(texelPtr.getPointerForLane(i)) = Byte(Extract(packed[0], i)); |
| } |
| } |
| } |
| else |
| UNREACHABLE("texelSize: %d", int(texelSize)); |
| } |
| |
| void SpirvEmitter::EmitImageTexelPointer(const ImageInstruction &instruction) |
| { |
| auto coordinate = Operand(shader, *this, instruction.coordinateId); |
| |
| SIMD::Pointer ptr = getPointer(instruction.imageId); |
| |
| // VK_EXT_image_robustness requires checking for out-of-bounds accesses. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| auto robustness = OutOfBoundsBehavior::Nullify; |
| vk::Format imageFormat = SpirvFormatToVulkanFormat(static_cast<spv::ImageFormat>(instruction.imageFormat)); |
| |
| SIMD::Int uvwa[4]; |
| |
| for(uint32_t i = 0; i < instruction.coordinates; i++) |
| { |
| uvwa[i] = coordinate.Int(i); |
| } |
| |
| SIMD::Int sample = Operand(shader, *this, instruction.sampleId).Int(0); |
| |
| auto texelPtr = ptr.isBasePlusOffset |
| ? GetTexelAddress(instruction, ptr.getUniformPointer(), uvwa, sample, imageFormat, robustness, routine) |
| : GetNonUniformTexelAddress(instruction, ptr, uvwa, sample, imageFormat, robustness, activeLaneMask(), routine); |
| |
| createPointer(instruction.resultId, texelPtr); |
| } |
| |
| void SpirvEmitter::EmitSampledImage(InsnIterator insn) |
| { |
| Object::ID resultId = insn.word(2); |
| Object::ID imageId = insn.word(3); |
| Object::ID samplerId = insn.word(4); |
| |
| // Create a sampled image, containing both a sampler and an image |
| createSampledImage(resultId, { getPointer(imageId), samplerId }); |
| } |
| |
| void SpirvEmitter::EmitImage(InsnIterator insn) |
| { |
| Object::ID resultId = insn.word(2); |
| Object::ID imageId = insn.word(3); |
| |
| // Extract the image from a sampled image. |
| createPointer(resultId, getImage(imageId)); |
| } |
| |
| } // namespace sw |