<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | |
"http://www.w3.org/TR/html4/strict.dtd"> | |
<html> | |
<head> | |
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | |
<title>Writing an LLVM Compiler Backend</title> | |
<link rel="stylesheet" href="llvm.css" type="text/css"> | |
</head> | |
<body> | |
<h1> | |
Writing an LLVM Compiler Backend | |
</h1> | |
<ol> | |
<li><a href="#intro">Introduction</a> | |
<ul> | |
<li><a href="#Audience">Audience</a></li> | |
<li><a href="#Prerequisite">Prerequisite Reading</a></li> | |
<li><a href="#Basic">Basic Steps</a></li> | |
<li><a href="#Preliminaries">Preliminaries</a></li> | |
</ul> | |
<li><a href="#TargetMachine">Target Machine</a></li> | |
<li><a href="#TargetRegistration">Target Registration</a></li> | |
<li><a href="#RegisterSet">Register Set and Register Classes</a> | |
<ul> | |
<li><a href="#RegisterDef">Defining a Register</a></li> | |
<li><a href="#RegisterClassDef">Defining a Register Class</a></li> | |
<li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li> | |
</ul></li> | |
<li><a href="#InstructionSet">Instruction Set</a> | |
<ul> | |
<li><a href="#operandMapping">Instruction Operand Mapping</a></li> | |
<li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li> | |
<li><a href="#branchFolding">Branch Folding and If Conversion</a></li> | |
</ul></li> | |
<li><a href="#InstructionSelector">Instruction Selector</a> | |
<ul> | |
<li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a> | |
<ul> | |
<li><a href="#promote">Promote</a></li> | |
<li><a href="#expand">Expand</a></li> | |
<li><a href="#custom">Custom</a></li> | |
<li><a href="#legal">Legal</a></li> | |
</ul></li> | |
<li><a href="#callingConventions">Calling Conventions</a></li> | |
</ul></li> | |
<li><a href="#assemblyPrinter">Assembly Printer</a></li> | |
<li><a href="#subtargetSupport">Subtarget Support</a></li> | |
<li><a href="#jitSupport">JIT Support</a> | |
<ul> | |
<li><a href="#mce">Machine Code Emitter</a></li> | |
<li><a href="#targetJITInfo">Target JIT Info</a></li> | |
</ul></li> | |
</ol> | |
<div class="doc_author"> | |
<p>Written by <a href="http://www.woo.com">Mason Woo</a> and | |
<a href="http://misha.brukman.net">Misha Brukman</a></p> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="intro">Introduction</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
This document describes techniques for writing compiler backends that convert | |
the LLVM Intermediate Representation (IR) to code for a specified machine or | |
other languages. Code intended for a specific machine can take the form of | |
either assembly code or binary code (usable for a JIT compiler). | |
</p> | |
<p> | |
The backend of LLVM features a target-independent code generator that may create | |
output for several types of target CPUs — including X86, PowerPC, Alpha, | |
and SPARC. The backend may also be used to generate code targeted at SPUs of the | |
Cell processor or GPUs to support the execution of compute kernels. | |
</p> | |
<p> | |
The document focuses on existing examples found in subdirectories | |
of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this | |
document focuses on the example of creating a static compiler (one that emits | |
text assembly) for a SPARC target, because SPARC has fairly standard | |
characteristics, such as a RISC instruction set and straightforward calling | |
conventions. | |
</p> | |
<h3> | |
<a name="Audience">Audience</a> | |
</h3> | |
<div> | |
<p> | |
The audience for this document is anyone who needs to write an LLVM backend to | |
generate code for a specific hardware or software target. | |
</p> | |
</div> | |
<h3> | |
<a name="Prerequisite">Prerequisite Reading</a> | |
</h3> | |
<div> | |
<p> | |
These essential documents must be read before reading this document: | |
</p> | |
<ul> | |
<li><i><a href="LangRef.html">LLVM Language Reference | |
Manual</a></i> — a reference manual for the LLVM assembly language.</li> | |
<li><i><a href="CodeGenerator.html">The LLVM | |
Target-Independent Code Generator</a></i> — a guide to the components | |
(classes and code generation algorithms) for translating the LLVM internal | |
representation into machine code for a specified target. Pay particular | |
attention to the descriptions of code generation stages: Instruction | |
Selection, Scheduling and Formation, SSA-based Optimization, Register | |
Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations, | |
and Code Emission.</li> | |
<li><i><a href="TableGenFundamentals.html">TableGen | |
Fundamentals</a></i> —a document that describes the TableGen | |
(<tt>tblgen</tt>) application that manages domain-specific information to | |
support LLVM code generation. TableGen processes input from a target | |
description file (<tt>.td</tt> suffix) and generates C++ code that can be | |
used for code generation.</li> | |
<li><i><a href="WritingAnLLVMPass.html">Writing an LLVM | |
Pass</a></i> — The assembly printer is a <tt>FunctionPass</tt>, as are | |
several SelectionDAG processing steps.</li> | |
</ul> | |
<p> | |
To follow the SPARC examples in this document, have a copy of | |
<i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture | |
Manual, Version 8</a></i> for reference. For details about the ARM instruction | |
set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture | |
Reference Manual</a></i>. For more about the GNU Assembler format | |
(<tt>GAS</tt>), see | |
<i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>, | |
especially for the assembly printer. <i>Using As</i> contains a list of target | |
machine dependent features. | |
</p> | |
</div> | |
<h3> | |
<a name="Basic">Basic Steps</a> | |
</h3> | |
<div> | |
<p> | |
To write a compiler backend for LLVM that converts the LLVM IR to code for a | |
specified target (machine or other language), follow these steps: | |
</p> | |
<ul> | |
<li>Create a subclass of the TargetMachine class that describes characteristics | |
of your target machine. Copy existing examples of specific TargetMachine | |
class and header files; for example, start with | |
<tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but | |
change the file names for your target. Similarly, change code that | |
references "Sparc" to reference your target. </li> | |
<li>Describe the register set of the target. Use TableGen to generate code for | |
register definition, register aliases, and register classes from a | |
target-specific <tt>RegisterInfo.td</tt> input file. You should also write | |
additional code for a subclass of the TargetRegisterInfo class that | |
represents the class register file data used for register allocation and | |
also describes the interactions between registers.</li> | |
<li>Describe the instruction set of the target. Use TableGen to generate code | |
for target-specific instructions from target-specific versions of | |
<tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should | |
write additional code for a subclass of the TargetInstrInfo class to | |
represent machine instructions supported by the target machine. </li> | |
<li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic | |
Graph (DAG) representation of instructions to native target-specific | |
instructions. Use TableGen to generate code that matches patterns and | |
selects instructions based on additional information in a target-specific | |
version of <tt>TargetInstrInfo.td</tt>. Write code | |
for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target, | |
to perform pattern matching and DAG-to-DAG instruction selection. Also write | |
code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and | |
data types that are not supported natively in a SelectionDAG. </li> | |
<li>Write code for an assembly printer that converts LLVM IR to a GAS format for | |
your target machine. You should add assembly strings to the instructions | |
defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You | |
should also write code for a subclass of AsmPrinter that performs the | |
LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li> | |
<li>Optionally, add support for subtargets (i.e., variants with different | |
capabilities). You should also write code for a subclass of the | |
TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt> | |
and <tt>-mattr=</tt> command-line options.</li> | |
<li>Optionally, add JIT support and create a machine code emitter (subclass of | |
TargetJITInfo) that is used to emit binary code directly into memory. </li> | |
</ul> | |
<p> | |
In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and | |
then implement them later. Initially, you may not know which private members | |
that the class will need and which components will need to be subclassed. | |
</p> | |
</div> | |
<h3> | |
<a name="Preliminaries">Preliminaries</a> | |
</h3> | |
<div> | |
<p> | |
To actually create your compiler backend, you need to create and modify a few | |
files. The absolute minimum is discussed here. But to actually use the LLVM | |
target-independent code generator, you must perform the steps described in | |
the <a href="CodeGenerator.html">LLVM | |
Target-Independent Code Generator</a> document. | |
</p> | |
<p> | |
First, you should create a subdirectory under <tt>lib/Target</tt> to hold all | |
the files related to your target. If your target is called "Dummy," create the | |
directory <tt>lib/Target/Dummy</tt>. | |
</p> | |
<p> | |
In this new | |
directory, create a <tt>Makefile</tt>. It is easiest to copy a | |
<tt>Makefile</tt> of another target and modify it. It should at least contain | |
the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then | |
include <tt>$(LEVEL)/Makefile.common</tt>. The library can be | |
named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you | |
can split the library into <tt>LLVMDummyCodeGen</tt> | |
and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a | |
subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC | |
target). | |
</p> | |
<p> | |
Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>. | |
Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a | |
lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>. | |
</p> | |
<p> | |
To make your target actually do something, you need to implement a subclass of | |
<tt>TargetMachine</tt>. This implementation should typically be in the file | |
<tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in | |
the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's | |
target independent code generator, you should do what all current machine | |
backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a | |
target from scratch, create a subclass of <tt>TargetMachine</tt>.) | |
</p> | |
<p> | |
To get LLVM to actually build and link your target, you need to add it to | |
the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure | |
script to know about your target when parsing the <tt>--enable-targets</tt> | |
option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your | |
target to the lists there (some creativity required), and then | |
reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and | |
regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>. | |
</p> | |
</div> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="TargetMachine">Target Machine</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
<tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented | |
with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt> | |
class should be specialized by a concrete target class that implements the | |
various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of | |
<tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The | |
<tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also | |
processes numerous command-line options. | |
</p> | |
<p> | |
To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>, | |
start by copying an existing <tt>TargetMachine</tt> class and header. You | |
should name the files that you create to reflect your specific target. For | |
instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and | |
<tt>SparcTargetMachine.cpp</tt>. | |
</p> | |
<p> | |
For a target machine <tt>XXX</tt>, the implementation of | |
<tt>XXXTargetMachine</tt> must have access methods to obtain objects that | |
represent target components. These methods are named <tt>get*Info</tt>, and are | |
intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set | |
(<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and | |
similar information. <tt>XXXTargetMachine</tt> must also implement the | |
<tt>getTargetData</tt> method to access an object with target-specific data | |
characteristics, such as data type size and alignment requirements. | |
</p> | |
<p> | |
For instance, for the SPARC target, the header file | |
<tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt> | |
and <tt>getTargetData</tt> methods that simply return a class member. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
namespace llvm { | |
class Module; | |
class SparcTargetMachine : public LLVMTargetMachine { | |
const TargetData DataLayout; // Calculates type size & alignment | |
SparcSubtarget Subtarget; | |
SparcInstrInfo InstrInfo; | |
TargetFrameInfo FrameInfo; | |
protected: | |
virtual const TargetAsmInfo *createTargetAsmInfo() const; | |
public: | |
SparcTargetMachine(const Module &M, const std::string &FS); | |
virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } | |
virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } | |
virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } | |
virtual const TargetRegisterInfo *getRegisterInfo() const { | |
return &InstrInfo.getRegisterInfo(); | |
} | |
virtual const TargetData *getTargetData() const { return &DataLayout; } | |
static unsigned getModuleMatchQuality(const Module &M); | |
// Pass Pipeline Configuration | |
virtual bool addInstSelector(PassManagerBase &PM, bool Fast); | |
virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); | |
}; | |
} // end namespace llvm | |
</pre> | |
</div> | |
<ul> | |
<li><tt>getInstrInfo()</tt></li> | |
<li><tt>getRegisterInfo()</tt></li> | |
<li><tt>getFrameInfo()</tt></li> | |
<li><tt>getTargetData()</tt></li> | |
<li><tt>getSubtargetImpl()</tt></li> | |
</ul> | |
<p>For some targets, you also need to support the following methods:</p> | |
<ul> | |
<li><tt>getTargetLowering()</tt></li> | |
<li><tt>getJITInfo()</tt></li> | |
</ul> | |
<p> | |
In addition, the <tt>XXXTargetMachine</tt> constructor should specify a | |
<tt>TargetDescription</tt> string that determines the data layout for the target | |
machine, including characteristics such as pointer size, alignment, and | |
endianness. For example, the constructor for SparcTargetMachine contains the | |
following: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) | |
: DataLayout("E-p:32:32-f128:128:128"), | |
Subtarget(M, FS), InstrInfo(Subtarget), | |
FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { | |
} | |
</pre> | |
</div> | |
<p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p> | |
<ul> | |
<li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data | |
model. a lower-case "<tt>e</tt>" indicates little-endian.</li> | |
<li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and | |
preferred alignment. If only two figures follow "<tt>p:</tt>", then the | |
first value is pointer size, and the second value is both ABI and preferred | |
alignment.</li> | |
<li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>", | |
"<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point, | |
vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are | |
followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed | |
by three values: the first indicates the size of a long double, then ABI | |
alignment, and then ABI preferred alignment.</li> | |
</ul> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="TargetRegistration">Target Registration</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
You must also register your target with the <tt>TargetRegistry</tt>, which is | |
what other LLVM tools use to be able to lookup and use your target at | |
runtime. The <tt>TargetRegistry</tt> can be used directly, but for most targets | |
there are helper templates which should take care of the work for you.</p> | |
<p> | |
All targets should declare a global <tt>Target</tt> object which is used to | |
represent the target during registration. Then, in the target's TargetInfo | |
library, the target should define that object and use | |
the <tt>RegisterTarget</tt> template to register the target. For example, the Sparc registration code looks like this: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
Target llvm::TheSparcTarget; | |
extern "C" void LLVMInitializeSparcTargetInfo() { | |
RegisterTarget<Triple::sparc, /*HasJIT=*/false> | |
X(TheSparcTarget, "sparc", "Sparc"); | |
} | |
</pre> | |
</div> | |
<p> | |
This allows the <tt>TargetRegistry</tt> to look up the target by name or by | |
target triple. In addition, most targets will also register additional features | |
which are available in separate libraries. These registration steps are | |
separate, because some clients may wish to only link in some parts of the target | |
-- the JIT code generator does not require the use of the assembler printer, for | |
example. Here is an example of registering the Sparc assembly printer: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
extern "C" void LLVMInitializeSparcAsmPrinter() { | |
RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget); | |
} | |
</pre> | |
</div> | |
<p> | |
For more information, see | |
"<a href="/doxygen/TargetRegistry_8h-source.html">llvm/Target/TargetRegistry.h</a>". | |
</p> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="RegisterSet">Register Set and Register Classes</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
You should describe a concrete target-specific class that represents the | |
register file of a target machine. This class is called <tt>XXXRegisterInfo</tt> | |
(where <tt>XXX</tt> identifies the target) and represents the class register | |
file data that is used for register allocation. It also describes the | |
interactions between registers. | |
</p> | |
<p> | |
You also need to define register classes to categorize related registers. A | |
register class should be added for groups of registers that are all treated the | |
same way for some instruction. Typical examples are register classes for | |
integer, floating-point, or vector registers. A register allocator allows an | |
instruction to use any register in a specified register class to perform the | |
instruction in a similar manner. Register classes allocate virtual registers to | |
instructions from these sets, and register classes let the target-independent | |
register allocator automatically choose the actual registers. | |
</p> | |
<p> | |
Much of the code for registers, including register definition, register aliases, | |
and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt> | |
input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and | |
<tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the | |
implementation of <tt>XXXRegisterInfo</tt> requires hand-coding. | |
</p> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="RegisterDef">Defining a Register</a> | |
</h3> | |
<div> | |
<p> | |
The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions | |
for a target machine. The <tt>Register</tt> class (specified | |
in <tt>Target.td</tt>) is used to define an object for each register. The | |
specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The | |
basic <tt>Register</tt> object does not have any subregisters and does not | |
specify any aliases. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class Register<string n> { | |
string Namespace = ""; | |
string AsmName = n; | |
string Name = n; | |
int SpillSize = 0; | |
int SpillAlignment = 0; | |
list<Register> Aliases = []; | |
list<Register> SubRegs = []; | |
list<int> DwarfNumbers = []; | |
} | |
</pre> | |
</div> | |
<p> | |
For example, in the <tt>X86RegisterInfo.td</tt> file, there are register | |
definitions that utilize the Register class, such as: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; | |
</pre> | |
</div> | |
<p> | |
This defines the register <tt>AL</tt> and assigns it values (with | |
<tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug | |
information writer to identify a register. For register | |
<tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3 | |
different modes: the first element is for X86-64, the second for exception | |
handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number | |
that indicates the gcc number is undefined, and -2 indicates the register number | |
is invalid for this mode. | |
</p> | |
<p> | |
From the previously described line in the <tt>X86RegisterInfo.td</tt> file, | |
TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
static const unsigned GR8[] = { X86::AL, ... }; | |
const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; | |
const TargetRegisterDesc RegisterDescriptors[] = { | |
... | |
{ "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... | |
</pre> | |
</div> | |
<p> | |
From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt> | |
object for each register. <tt>TargetRegisterDesc</tt> is defined in | |
<tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
struct TargetRegisterDesc { | |
const char *AsmName; // Assembly language name for the register | |
const char *Name; // Printable name for the reg (for debugging) | |
const unsigned *AliasSet; // Register Alias Set | |
const unsigned *SubRegs; // Sub-register set | |
const unsigned *ImmSubRegs; // Immediate sub-register set | |
const unsigned *SuperRegs; // Super-register set | |
};</pre> | |
</div> | |
<p> | |
TableGen uses the entire target description file (<tt>.td</tt>) to determine | |
text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of | |
<tt>TargetRegisterDesc</tt>) and the relationships of other registers to the | |
defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this | |
example, other definitions establish the registers "<tt>AX</tt>", | |
"<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen | |
generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias | |
set. | |
</p> | |
<p> | |
The <tt>Register</tt> class is commonly used as a base class for more complex | |
classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the | |
<tt>RegisterWithSubRegs</tt> class that is used to define registers that need to | |
specify subregisters in the <tt>SubRegs</tt> list, as shown here: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class RegisterWithSubRegs<string n, | |
list<Register> subregs> : Register<n> { | |
let SubRegs = subregs; | |
} | |
</pre> | |
</div> | |
<p> | |
In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for | |
SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>, | |
<tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID | |
numbers, which is a feature common to these subclasses. Note the use of | |
'<tt>let</tt>' expressions to override values that are initially defined in a | |
superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class). | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class SparcReg<string n> : Register<n> { | |
field bits<5> Num; | |
let Namespace = "SP"; | |
} | |
// Ri - 32-bit integer registers | |
class Ri<bits<5> num, string n> : | |
SparcReg<n> { | |
let Num = num; | |
} | |
// Rf - 32-bit floating-point registers | |
class Rf<bits<5> num, string n> : | |
SparcReg<n> { | |
let Num = num; | |
} | |
// Rd - Slots in the FP register file for 64-bit | |
floating-point values. | |
class Rd<bits<5> num, string n, | |
list<Register> subregs> : SparcReg<n> { | |
let Num = num; | |
let SubRegs = subregs; | |
} | |
</pre> | |
</div> | |
<p> | |
In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that | |
utilize these subclasses of <tt>Register</tt>, such as: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def G0 : Ri< 0, "G0">, | |
DwarfRegNum<[0]>; | |
def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; | |
... | |
def F0 : Rf< 0, "F0">, | |
DwarfRegNum<[32]>; | |
def F1 : Rf< 1, "F1">, | |
DwarfRegNum<[33]>; | |
... | |
def D0 : Rd< 0, "F0", [F0, F1]>, | |
DwarfRegNum<[32]>; | |
def D1 : Rd< 2, "F2", [F2, F3]>, | |
DwarfRegNum<[34]>; | |
</pre> | |
</div> | |
<p> | |
The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are | |
double-precision floating-point registers that are aliases for pairs of | |
single-precision floating-point sub-registers. In addition to aliases, the | |
sub-register and super-register relationships of the defined register are in | |
fields of a register's TargetRegisterDesc. | |
</p> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="RegisterClassDef">Defining a Register Class</a> | |
</h3> | |
<div> | |
<p> | |
The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to | |
define an object that represents a group of related registers and also defines | |
the default allocation order of the registers. A target description file | |
<tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register | |
classes using the following class: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class RegisterClass<string namespace, | |
list<ValueType> regTypes, int alignment, dag regList> { | |
string Namespace = namespace; | |
list<ValueType> RegTypes = regTypes; | |
int Size = 0; // spill size, in bits; zero lets tblgen pick the size | |
int Alignment = alignment; | |
// CopyCost is the cost of copying a value between two registers | |
// default value 1 means a single instruction | |
// A negative value means copying is extremely expensive or impossible | |
int CopyCost = 1; | |
dag MemberList = regList; | |
// for register classes that are subregisters of this class | |
list<RegisterClass> SubRegClassList = []; | |
code MethodProtos = [{}]; // to insert arbitrary code | |
code MethodBodies = [{}]; | |
} | |
</pre> | |
</div> | |
<p>To define a RegisterClass, use the following 4 arguments:</p> | |
<ul> | |
<li>The first argument of the definition is the name of the namespace.</li> | |
<li>The second argument is a list of <tt>ValueType</tt> register type values | |
that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined | |
values include integer types (such as <tt>i16</tt>, <tt>i32</tt>, | |
and <tt>i1</tt> for Boolean), floating-point types | |
(<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt> | |
for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt> | |
must have the same <tt>ValueType</tt>, but some registers may store vector | |
data in different configurations. For example a register that can process a | |
128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit | |
integers, 4 32-bit integers, and so on. </li> | |
<li>The third argument of the <tt>RegisterClass</tt> definition specifies the | |
alignment required of the registers when they are stored or loaded to | |
memory.</li> | |
<li>The final argument, <tt>regList</tt>, specifies which registers are in this | |
class. If an alternative allocation order method is not specified, then | |
<tt>regList</tt> also defines the order of allocation used by the register | |
allocator. Besides simply listing registers with <tt>(add R0, R1, ...)</tt>, | |
more advanced set operators are available. See | |
<tt>include/llvm/Target/Target.td</tt> for more information.</li> | |
</ul> | |
<p> | |
In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined: | |
<tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register | |
classes, the first argument defines the namespace with the string | |
'<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision | |
floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines | |
a group of 16 double-precision registers | |
(<tt>D0-D15</tt>). | |
</p> | |
<div class="doc_code"> | |
<pre> | |
// F0, F1, F2, ..., F31 | |
def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; | |
def DFPRegs : RegisterClass<"SP", [f64], 64, | |
(add D0, D1, D2, D3, D4, D5, D6, D7, D8, | |
D9, D10, D11, D12, D13, D14, D15)>; | |
| |
def IntRegs : RegisterClass<"SP", [i32], 32, | |
(add L0, L1, L2, L3, L4, L5, L6, L7, | |
I0, I1, I2, I3, I4, I5, | |
O0, O1, O2, O3, O4, O5, O7, | |
G1, | |
// Non-allocatable regs: | |
G2, G3, G4, | |
O6, // stack ptr | |
I6, // frame ptr | |
I7, // return address | |
G0, // constant zero | |
G5, G6, G7 // reserved for kernel | |
)>; | |
</pre> | |
</div> | |
<p> | |
Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files | |
that are intended for inclusion in other source code that you write. | |
<tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>, | |
which should be included in the header file for the implementation of the SPARC | |
register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In | |
<tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called | |
<tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its | |
base. It also specifies types, based upon the defined register | |
classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>. | |
</p> | |
<p> | |
<tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>, | |
which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC | |
register implementation. The code below shows only the generated integer | |
registers and associated register classes. The order of registers | |
in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in | |
the target description file. | |
</p> | |
<div class="doc_code"> | |
<pre> // IntRegs Register Class... | |
static const unsigned IntRegs[] = { | |
SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, | |
SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, | |
SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, | |
SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, | |
SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, | |
SP::G6, SP::G7, | |
}; | |
// IntRegsVTs Register Class Value Types... | |
static const MVT::ValueType IntRegsVTs[] = { | |
MVT::i32, MVT::Other | |
}; | |
namespace SP { // Register class instances | |
DFPRegsClass DFPRegsRegClass; | |
FPRegsClass FPRegsRegClass; | |
IntRegsClass IntRegsRegClass; | |
... | |
// IntRegs Sub-register Classess... | |
static const TargetRegisterClass* const IntRegsSubRegClasses [] = { | |
NULL | |
}; | |
... | |
// IntRegs Super-register Classess... | |
static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { | |
NULL | |
}; | |
... | |
// IntRegs Register Class sub-classes... | |
static const TargetRegisterClass* const IntRegsSubclasses [] = { | |
NULL | |
}; | |
... | |
// IntRegs Register Class super-classes... | |
static const TargetRegisterClass* const IntRegsSuperclasses [] = { | |
NULL | |
}; | |
IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, | |
IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, | |
IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} | |
} | |
</pre> | |
</div> | |
<p> | |
The register allocators will avoid using reserved registers, and callee saved | |
registers are not used until all the volatile registers have been used. That | |
is usually good enough, but in some cases it may be necessary to provide custom | |
allocation orders. | |
</p> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="implementRegister">Implement a subclass of</a> | |
<a href="CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a> | |
</h3> | |
<div> | |
<p> | |
The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which | |
implements the interface described in <tt>TargetRegisterInfo.h</tt>. These | |
functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless | |
overridden. Here is a list of functions that are overridden for the SPARC | |
implementation in <tt>SparcRegisterInfo.cpp</tt>: | |
</p> | |
<ul> | |
<li><tt>getCalleeSavedRegs</tt> — Returns a list of callee-saved registers | |
in the order of the desired callee-save stack frame offset.</li> | |
<li><tt>getReservedRegs</tt> — Returns a bitset indexed by physical | |
register numbers, indicating if a particular register is unavailable.</li> | |
<li><tt>hasFP</tt> — Return a Boolean indicating if a function should have | |
a dedicated frame pointer register.</li> | |
<li><tt>eliminateCallFramePseudoInstr</tt> — If call frame setup or | |
destroy pseudo instructions are used, this can be called to eliminate | |
them.</li> | |
<li><tt>eliminateFrameIndex</tt> — Eliminate abstract frame indices from | |
instructions that may use them.</li> | |
<li><tt>emitPrologue</tt> — Insert prologue code into the function.</li> | |
<li><tt>emitEpilogue</tt> — Insert epilogue code into the function.</li> | |
</ul> | |
</div> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="InstructionSet">Instruction Set</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
During the early stages of code generation, the LLVM IR code is converted to a | |
<tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class | |
containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type | |
requirements, and operation properties. For example, is an operation | |
commutative, does an operation load from memory. The various operation node | |
types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> | |
file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace). | |
</p> | |
<p> | |
TableGen uses the following target description (<tt>.td</tt>) input files to | |
generate much of the code for instruction definition: | |
</p> | |
<ul> | |
<li><tt>Target.td</tt> — Where the <tt>Instruction</tt>, <tt>Operand</tt>, | |
<tt>InstrInfo</tt>, and other fundamental classes are defined.</li> | |
<li><tt>TargetSelectionDAG.td</tt>— Used by <tt>SelectionDAG</tt> | |
instruction selection generators, contains <tt>SDTC*</tt> classes (selection | |
DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as | |
<tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>, | |
<tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>, | |
<tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li> | |
<li><tt>XXXInstrFormats.td</tt> — Patterns for definitions of | |
target-specific instructions.</li> | |
<li><tt>XXXInstrInfo.td</tt> — Target-specific definitions of instruction | |
templates, condition codes, and instructions of an instruction set. For | |
architecture modifications, a different file name may be used. For example, | |
for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and | |
for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li> | |
</ul> | |
<p> | |
There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the | |
name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt> | |
input files, but its contents are only directly important for subtargets. | |
</p> | |
<p> | |
You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that | |
represents machine instructions supported by a target machine. | |
<tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects, | |
each of which describes one instruction. An instruction descriptor defines:</p> | |
<ul> | |
<li>Opcode mnemonic</li> | |
<li>Number of operands</li> | |
<li>List of implicit register definitions and uses</li> | |
<li>Target-independent properties (such as memory access, is commutable)</li> | |
<li>Target-specific flags </li> | |
</ul> | |
<p> | |
The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base | |
for more complex instruction classes. | |
</p> | |
<div class="doc_code"> | |
<pre>class Instruction { | |
string Namespace = ""; | |
dag OutOperandList; // An dag containing the MI def operand list. | |
dag InOperandList; // An dag containing the MI use operand list. | |
string AsmString = ""; // The .s format to print the instruction with. | |
list<dag> Pattern; // Set to the DAG pattern for this instruction | |
list<Register> Uses = []; | |
list<Register> Defs = []; | |
list<Predicate> Predicates = []; // predicates turned into isel match code | |
... remainder not shown for space ... | |
} | |
</pre> | |
</div> | |
<p> | |
A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object | |
representing a target-specific instruction that is defined | |
in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent | |
instructions from the architecture manual of the target machine (such as the | |
SPARC Architecture Manual for the SPARC target). | |
</p> | |
<p> | |
A single instruction from the architecture manual is often modeled as multiple | |
target instructions, depending upon its operands. For example, a manual might | |
describe an add instruction that takes a register or an immediate operand. An | |
LLVM target could model this with two instructions named <tt>ADDri</tt> and | |
<tt>ADDrr</tt>. | |
</p> | |
<p> | |
You should define a class for each instruction category and define each opcode | |
as a subclass of the category with appropriate parameters such as the fixed | |
binary encoding of opcodes and extended opcodes. You should map the register | |
bits to the bits of the instruction in which they are encoded (for the | |
JIT). Also you should specify how the instruction should be printed when the | |
automatic assembly printer is used. | |
</p> | |
<p> | |
As is described in the SPARC Architecture Manual, Version 8, there are three | |
major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt> | |
instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set | |
high bits of a register) instructions. Format 3 is for other instructions. | |
</p> | |
<p> | |
Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>. | |
<tt>InstSP</tt> is a base class for other instruction classes. Additional base | |
classes are specified for more precise formats: for example | |
in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>, | |
and <tt>F2_2</tt> is for branches. There are three other base | |
classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for | |
register/immediate operations, and <tt>F3_3</tt> for floating-point | |
operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for | |
synthetic SPARC instructions. | |
</p> | |
<p> | |
<tt>SparcInstrInfo.td</tt> largely consists of operand and instruction | |
definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following | |
target description file entry, <tt>LDrr</tt>, defines the Load Integer | |
instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a | |
register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the | |
operation value for this category of operation. The second parameter | |
(<tt>000000<sub>2</sub></tt>) is the specific operation value | |
for <tt>LD</tt>/Load Word. The third parameter is the output destination, which | |
is a register operand and defined in the <tt>Register</tt> target description | |
file (<tt>IntRegs</tt>). | |
</p> | |
<div class="doc_code"> | |
<pre>def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), | |
"ld [$addr], $dst", | |
[(set IntRegs:$dst, (load ADDRrr:$addr))]>; | |
</pre> | |
</div> | |
<p> | |
The fourth parameter is the input source, which uses the address | |
operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>: | |
</p> | |
<div class="doc_code"> | |
<pre>def MEMrr : Operand<i32> { | |
let PrintMethod = "printMemOperand"; | |
let MIOperandInfo = (ops IntRegs, IntRegs); | |
} | |
</pre> | |
</div> | |
<p> | |
The fifth parameter is a string that is used by the assembly printer and can be | |
left as an empty string until the assembly printer interface is implemented. The | |
sixth and final parameter is the pattern used to match the instruction during | |
the SelectionDAG Select Phase described in | |
(<a href="CodeGenerator.html">The LLVM | |
Target-Independent Code Generator</a>). This parameter is detailed in the next | |
section, <a href="#InstructionSelector">Instruction Selector</a>. | |
</p> | |
<p> | |
Instruction class definitions are not overloaded for different operand types, so | |
separate versions of instructions are needed for register, memory, or immediate | |
value operands. For example, to perform a Load Integer instruction for a Word | |
from an immediate operand to a register, the following instruction class is | |
defined: | |
</p> | |
<div class="doc_code"> | |
<pre>def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), | |
"ld [$addr], $dst", | |
[(set IntRegs:$dst, (load ADDRri:$addr))]>; | |
</pre> | |
</div> | |
<p> | |
Writing these definitions for so many similar instructions can involve a lot of | |
cut and paste. In td files, the <tt>multiclass</tt> directive enables the | |
creation of templates to define several instruction classes at once (using | |
the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the | |
<tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction | |
classes each time <tt>F3_12</tt> is invoked: | |
</p> | |
<div class="doc_code"> | |
<pre>multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { | |
def rr : F3_1 <2, Op3Val, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
!strconcat(OpcStr, " $b, $c, $dst"), | |
[(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; | |
def ri : F3_2 <2, Op3Val, | |
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | |
!strconcat(OpcStr, " $b, $c, $dst"), | |
[(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; | |
} | |
</pre> | |
</div> | |
<p> | |
So when the <tt>defm</tt> directive is used for the <tt>XOR</tt> | |
and <tt>ADD</tt> instructions, as seen below, it creates four instruction | |
objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
defm XOR : F3_12<"xor", 0b000011, xor>; | |
defm ADD : F3_12<"add", 0b000000, add>; | |
</pre> | |
</div> | |
<p> | |
<tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that | |
are referenced by branch instructions. The following definitions | |
in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition | |
code. For example, the 10<sup>th</sup> bit represents the 'greater than' | |
condition for integers, and the 22<sup>nd</sup> bit represents the 'greater | |
than' condition for floats. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def ICC_NE : ICC_VAL< 9>; // Not Equal | |
def ICC_E : ICC_VAL< 1>; // Equal | |
def ICC_G : ICC_VAL<10>; // Greater | |
... | |
def FCC_U : FCC_VAL<23>; // Unordered | |
def FCC_G : FCC_VAL<22>; // Greater | |
def FCC_UG : FCC_VAL<21>; // Unordered or Greater | |
... | |
</pre> | |
</div> | |
<p> | |
(Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC | |
condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt> | |
correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e., | |
<tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.) | |
</p> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="operandMapping">Instruction Operand Mapping</a> | |
</h3> | |
<div> | |
<p> | |
The code generator backend maps instruction operands to fields in the | |
instruction. Operands are assigned to unbound fields in the instruction in the | |
order they are defined. Fields are bound when they are assigned a value. For | |
example, the Sparc target defines the <tt>XNORrr</tt> instruction as | |
a <tt>F3_1</tt> format instruction having three operands. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def XNORrr : F3_1<2, 0b000111, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
"xnor $b, $c, $dst", | |
[(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; | |
</pre> | |
</div> | |
<p> | |
The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class | |
for <tt>F3_1</tt> is <tt>InstSP</tt>. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { | |
field bits<32> Inst; | |
let Namespace = "SP"; | |
bits<2> op; | |
let Inst{31-30} = op; | |
dag OutOperandList = outs; | |
dag InOperandList = ins; | |
let AsmString = asmstr; | |
let Pattern = pattern; | |
} | |
</pre> | |
</div> | |
<p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p> | |
<div class="doc_code"> | |
<pre> | |
class F3<dag outs, dag ins, string asmstr, list<dag> pattern> | |
: InstSP<outs, ins, asmstr, pattern> { | |
bits<5> rd; | |
bits<6> op3; | |
bits<5> rs1; | |
let op{1} = 1; // Op = 2 or 3 | |
let Inst{29-25} = rd; | |
let Inst{24-19} = op3; | |
let Inst{18-14} = rs1; | |
} | |
</pre> | |
</div> | |
<p> | |
<tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>, | |
<tt>op3</tt>, and <tt>rs1</tt> fields. <tt>F3</tt> format instructions will | |
bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, | |
string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { | |
bits<8> asi = 0; // asi not currently used | |
bits<5> rs2; | |
let op = opVal; | |
let op3 = op3val; | |
let Inst{13} = 0; // i field = 0 | |
let Inst{12-5} = asi; // address space identifier | |
let Inst{4-0} = rs2; | |
} | |
</pre> | |
</div> | |
<p> | |
<tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt> | |
fields. <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>, | |
<tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt> | |
instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to | |
the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively. | |
</p> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="implementInstr">Implement a subclass of </a> | |
<a href="CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a> | |
</h3> | |
<div> | |
<p> | |
The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which | |
implements the interface described in <tt>TargetInstrInfo.h</tt>. These | |
functions return <tt>0</tt> or a Boolean or they assert, unless | |
overridden. Here's a list of functions that are overridden for the SPARC | |
implementation in <tt>SparcInstrInfo.cpp</tt>: | |
</p> | |
<ul> | |
<li><tt>isLoadFromStackSlot</tt> — If the specified machine instruction is | |
a direct load from a stack slot, return the register number of the | |
destination and the <tt>FrameIndex</tt> of the stack slot.</li> | |
<li><tt>isStoreToStackSlot</tt> — If the specified machine instruction is | |
a direct store to a stack slot, return the register number of the | |
destination and the <tt>FrameIndex</tt> of the stack slot.</li> | |
<li><tt>copyPhysReg</tt> — Copy values between a pair of physical | |
registers.</li> | |
<li><tt>storeRegToStackSlot</tt> — Store a register value to a stack | |
slot.</li> | |
<li><tt>loadRegFromStackSlot</tt> — Load a register value from a stack | |
slot.</li> | |
<li><tt>storeRegToAddr</tt> — Store a register value to memory.</li> | |
<li><tt>loadRegFromAddr</tt> — Load a register value from memory.</li> | |
<li><tt>foldMemoryOperand</tt> — Attempt to combine instructions of any | |
load or store instruction for the specified operand(s).</li> | |
</ul> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="branchFolding">Branch Folding and If Conversion</a> | |
</h3> | |
<div> | |
<p> | |
Performance can be improved by combining instructions or by eliminating | |
instructions that are never reached. The <tt>AnalyzeBranch</tt> method | |
in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions | |
and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of | |
a machine basic block (MBB) for opportunities for improvement, such as branch | |
folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt> | |
machine function passes (see the source files <tt>BranchFolding.cpp</tt> and | |
<tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call | |
<tt>AnalyzeBranch</tt> to improve the control flow graph that represents the | |
instructions. | |
</p> | |
<p> | |
Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can | |
be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since | |
SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target | |
implementation is shown below. | |
</p> | |
<p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p> | |
<ul> | |
<li><tt>MachineBasicBlock &MBB</tt> — The incoming block to be | |
examined.</li> | |
<li><tt>MachineBasicBlock *&TBB</tt> — A destination block that is | |
returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is | |
the destination.</li> | |
<li><tt>MachineBasicBlock *&FBB</tt> — For a conditional branch that | |
evaluates to false, <tt>FBB</tt> is returned as the destination.</li> | |
<li><tt>std::vector<MachineOperand> &Cond</tt> — List of | |
operands to evaluate a condition for a conditional branch.</li> | |
</ul> | |
<p> | |
In the simplest case, if a block ends without a branch, then it falls through to | |
the successor block. No destination blocks are specified for either <tt>TBB</tt> | |
or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of | |
the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the | |
function parameters and the code for the simplest case. | |
</p> | |
<div class="doc_code"> | |
<pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | |
MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, | |
std::vector<MachineOperand> &Cond) const | |
{ | |
MachineBasicBlock::iterator I = MBB.end(); | |
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) | |
return false; | |
</pre> | |
</div> | |
<p> | |
If a block ends with a single unconditional branch instruction, then | |
<tt>AnalyzeBranch</tt> (shown below) should return the destination of that | |
branch in the <tt>TBB</tt> parameter. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
if (LastOpc == ARM::B || LastOpc == ARM::tB) { | |
TBB = LastInst->getOperand(0).getMBB(); | |
return false; | |
} | |
</pre> | |
</div> | |
<p> | |
If a block ends with two unconditional branches, then the second branch is never | |
reached. In that situation, as shown below, remove the last branch instruction | |
and return the penultimate branch in the <tt>TBB</tt> parameter. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) && | |
(LastOpc == ARM::B || LastOpc == ARM::tB)) { | |
TBB = SecondLastInst->getOperand(0).getMBB(); | |
I = LastInst; | |
I->eraseFromParent(); | |
return false; | |
} | |
</pre> | |
</div> | |
<p> | |
A block may end with a single conditional branch instruction that falls through | |
to successor block if the condition evaluates to false. In that case, | |
<tt>AnalyzeBranch</tt> (shown below) should return the destination of that | |
conditional branch in the <tt>TBB</tt> parameter and a list of operands in | |
the <tt>Cond</tt> parameter to evaluate the condition. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { | |
// Block ends with fall-through condbranch. | |
TBB = LastInst->getOperand(0).getMBB(); | |
Cond.push_back(LastInst->getOperand(1)); | |
Cond.push_back(LastInst->getOperand(2)); | |
return false; | |
} | |
</pre> | |
</div> | |
<p> | |
If a block ends with both a conditional branch and an ensuing unconditional | |
branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional | |
branch destination (assuming it corresponds to a conditional evaluation of | |
'<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch | |
destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of | |
'<tt>false</tt>'). A list of operands to evaluate the condition should be | |
returned in the <tt>Cond</tt> parameter. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
unsigned SecondLastOpc = SecondLastInst->getOpcode(); | |
if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || | |
(SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { | |
TBB = SecondLastInst->getOperand(0).getMBB(); | |
Cond.push_back(SecondLastInst->getOperand(1)); | |
Cond.push_back(SecondLastInst->getOperand(2)); | |
FBB = LastInst->getOperand(0).getMBB(); | |
return false; | |
} | |
</pre> | |
</div> | |
<p> | |
For the last two cases (ending with a single conditional branch or ending with | |
one conditional and one unconditional branch), the operands returned in | |
the <tt>Cond</tt> parameter can be passed to methods of other instructions to | |
create new branches or perform other operations. An implementation | |
of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt> | |
and <tt>InsertBranch</tt> to manage subsequent operations. | |
</p> | |
<p> | |
<tt>AnalyzeBranch</tt> should return false indicating success in most circumstances. | |
<tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to | |
do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may | |
return true if it encounters a terminator it cannot handle, such as an indirect | |
branch. | |
</p> | |
</div> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="InstructionSelector">Instruction Selector</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes | |
of the <tt>SelectionDAG</tt> ideally represent native target | |
instructions. During code generation, instruction selection passes are performed | |
to convert non-native DAG instructions into native target-specific | |
instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to | |
match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass | |
may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG | |
operations for branch instructions. Later, the code in | |
<tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not | |
supported natively (legalizes) in a <tt>SelectionDAG</tt>. | |
</p> | |
<p> | |
TableGen generates code for instruction selection using the following target | |
description input files: | |
</p> | |
<ul> | |
<li><tt>XXXInstrInfo.td</tt> — Contains definitions of instructions in a | |
target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which | |
is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li> | |
<li><tt>XXXCallingConv.td</tt> — Contains the calling and return value | |
conventions for the target architecture, and it generates | |
<tt>XXXGenCallingConv.inc</tt>, which is included in | |
<tt>XXXISelLowering.cpp</tt>.</li> | |
</ul> | |
<p> | |
The implementation of an instruction selection pass must include a header that | |
declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In | |
<tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction | |
selection pass into the queue of passes to run. | |
</p> | |
<p> | |
The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the | |
contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific | |
processing phases, use the command line options for <tt>llc</tt>, described | |
at <a href="CodeGenerator.html#selectiondag_process"> | |
SelectionDAG Instruction Selection Process</a>. | |
</p> | |
<p> | |
To describe instruction selector behavior, you should add patterns for lowering | |
LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction | |
definitions in <tt>XXXInstrInfo.td</tt>. For example, in | |
<tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and | |
the last parameter describes a pattern with the store DAG operator. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), | |
"st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>; | |
</pre> | |
</div> | |
<p> | |
<tt>ADDRrr</tt> is a memory mode that is also defined in | |
<tt>SparcInstrInfo.td</tt>: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; | |
</pre> | |
</div> | |
<p> | |
The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a | |
function defined in an implementation of the Instructor Selector (such | |
as <tt>SparcISelDAGToDAG.cpp</tt>). | |
</p> | |
<p> | |
In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is | |
defined below: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def store : PatFrag<(ops node:$val, node:$ptr), | |
(st node:$val, node:$ptr), [{ | |
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) | |
return !ST->isTruncatingStore() && | |
ST->getAddressingMode() == ISD::UNINDEXED; | |
return false; | |
}]>; | |
</pre> | |
</div> | |
<p> | |
<tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the | |
<tt>SelectCode</tt> method that is used to call the appropriate processing | |
method for an instruction. In this example, <tt>SelectCode</tt> | |
calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
SDNode *SelectCode(SDValue N) { | |
... | |
MVT::ValueType NVT = N.getNode()->getValueType(0); | |
switch (N.getOpcode()) { | |
case ISD::STORE: { | |
switch (NVT) { | |
default: | |
return Select_ISD_STORE(N); | |
break; | |
} | |
break; | |
} | |
... | |
</pre> | |
</div> | |
<p> | |
The pattern for <tt>STrr</tt> is matched, so elsewhere in | |
<tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for | |
<tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated | |
in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this | |
instruction. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
SDNode *Select_ISD_STORE(const SDValue &N) { | |
SDValue Chain = N.getOperand(0); | |
if (Predicate_store(N.getNode())) { | |
SDValue N1 = N.getOperand(1); | |
SDValue N2 = N.getOperand(2); | |
SDValue CPTmp0; | |
SDValue CPTmp1; | |
// Pattern: (st:void IntRegs:i32:$src, | |
// ADDRrr:i32:$addr)<<P:Predicate_store>> | |
// Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) | |
// Pattern complexity = 13 cost = 1 size = 0 | |
if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && | |
N1.getNode()->getValueType(0) == MVT::i32 && | |
N2.getNode()->getValueType(0) == MVT::i32) { | |
return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); | |
} | |
... | |
</pre> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="LegalizePhase">The SelectionDAG Legalize Phase</a> | |
</h3> | |
<div> | |
<p> | |
The Legalize phase converts a DAG to use types and operations that are natively | |
supported by the target. For natively unsupported types and operations, you need | |
to add code to the target-specific XXXTargetLowering implementation to convert | |
unsupported types and operations to supported ones. | |
</p> | |
<p> | |
In the constructor for the <tt>XXXTargetLowering</tt> class, first use the | |
<tt>addRegisterClass</tt> method to specify which types are supports and which | |
register classes are associated with them. The code for the register classes are | |
generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed | |
in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the | |
constructor for the SparcTargetLowering class (in | |
<tt>SparcISelLowering.cpp</tt>) starts with the following code: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); | |
addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); | |
addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); | |
</pre> | |
</div> | |
<p> | |
You should examine the node types in the <tt>ISD</tt> namespace | |
(<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which | |
operations the target natively supports. For operations that do <b>not</b> have | |
native support, add a callback to the constructor for the XXXTargetLowering | |
class, so the instruction selection process knows what to do. The TargetLowering | |
class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are: | |
</p> | |
<ul> | |
<li><tt>setOperationAction</tt> — General operation.</li> | |
<li><tt>setLoadExtAction</tt> — Load with extension.</li> | |
<li><tt>setTruncStoreAction</tt> — Truncating store.</li> | |
<li><tt>setIndexedLoadAction</tt> — Indexed load.</li> | |
<li><tt>setIndexedStoreAction</tt> — Indexed store.</li> | |
<li><tt>setConvertAction</tt> — Type conversion.</li> | |
<li><tt>setCondCodeAction</tt> — Support for a given condition code.</li> | |
</ul> | |
<p> | |
Note: on older releases, <tt>setLoadXAction</tt> is used instead | |
of <tt>setLoadExtAction</tt>. Also, on older releases, | |
<tt>setCondCodeAction</tt> may not be supported. Examine your release | |
to see what methods are specifically supported. | |
</p> | |
<p> | |
These callbacks are used to determine that an operation does or does not work | |
with a specified type (or types). And in all cases, the third parameter is | |
a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>, | |
<tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt> | |
contains examples of all four <tt>LegalAction</tt> values. | |
</p> | |
<!-- _______________________________________________________________________ --> | |
<h4> | |
<a name="promote">Promote</a> | |
</h4> | |
<div> | |
<p> | |
For an operation without native support for a given type, the specified type may | |
be promoted to a larger type that is supported. For example, SPARC does not | |
support a sign-extending load for Boolean values (<tt>i1</tt> type), so | |
in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>, | |
changes <tt>i1</tt> type values to a large type before loading. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | |
</pre> | |
</div> | |
</div> | |
<!-- _______________________________________________________________________ --> | |
<h4> | |
<a name="expand">Expand</a> | |
</h4> | |
<div> | |
<p> | |
For a type without native support, a value may need to be broken down further, | |
rather than promoted. For an operation without native support, a combination of | |
other operations may be used to similar effect. In SPARC, the floating-point | |
sine and cosine trig operations are supported by expansion to other operations, | |
as indicated by the third parameter, <tt>Expand</tt>, to | |
<tt>setOperationAction</tt>: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
setOperationAction(ISD::FSIN, MVT::f32, Expand); | |
setOperationAction(ISD::FCOS, MVT::f32, Expand); | |
</pre> | |
</div> | |
</div> | |
<!-- _______________________________________________________________________ --> | |
<h4> | |
<a name="custom">Custom</a> | |
</h4> | |
<div> | |
<p> | |
For some operations, simple type promotion or operation expansion may be | |
insufficient. In some cases, a special intrinsic function must be implemented. | |
</p> | |
<p> | |
For example, a constant value may require special treatment, or an operation may | |
require spilling and restoring registers in the stack and working with register | |
allocators. | |
</p> | |
<p> | |
As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type | |
conversion from a floating point value to a signed integer, first the | |
<tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third | |
parameter: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | |
</pre> | |
</div> | |
<p> | |
In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a | |
case statement should be added to indicate what function to call. In the | |
following code, an <tt>FP_TO_SINT</tt> opcode will call | |
the <tt>LowerFP_TO_SINT</tt> method: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { | |
switch (Op.getOpcode()) { | |
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); | |
... | |
} | |
} | |
</pre> | |
</div> | |
<p> | |
Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP | |
register to convert the floating-point value to an integer. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { | |
assert(Op.getValueType() == MVT::i32); | |
Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); | |
return DAG.getNode(ISD::BITCAST, MVT::i32, Op); | |
} | |
</pre> | |
</div> | |
</div> | |
<!-- _______________________________________________________________________ --> | |
<h4> | |
<a name="legal">Legal</a> | |
</h4> | |
<div> | |
<p> | |
The <tt>Legal</tt> LegalizeAction enum value simply indicates that an | |
operation <b>is</b> natively supported. <tt>Legal</tt> represents the default | |
condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action | |
for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is | |
natively supported only for SPARC v9. The following code enables | |
the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
setOperationAction(ISD::CTPOP, MVT::i32, Expand); | |
... | |
if (TM.getSubtarget<SparcSubtarget>().isV9()) | |
setOperationAction(ISD::CTPOP, MVT::i32, Legal); | |
case ISD::SETULT: return SPCC::ICC_CS; | |
case ISD::SETULE: return SPCC::ICC_LEU; | |
case ISD::SETUGT: return SPCC::ICC_GU; | |
case ISD::SETUGE: return SPCC::ICC_CC; | |
} | |
} | |
</pre> | |
</div> | |
</div> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="callingConventions">Calling Conventions</a> | |
</h3> | |
<div> | |
<p> | |
To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt> | |
uses interfaces (such as CCIfType and CCAssignToReg) that are defined in | |
<tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target | |
descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header | |
file <tt>XXXGenCallingConv.inc</tt>, which is typically included | |
in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in | |
<tt>TargetCallingConv.td</tt> to specify: | |
</p> | |
<ul> | |
<li>The order of parameter allocation.</li> | |
<li>Where parameters and return values are placed (that is, on the stack or in | |
registers).</li> | |
<li>Which registers may be used.</li> | |
<li>Whether the caller or callee unwinds the stack.</li> | |
</ul> | |
<p> | |
The following example demonstrates the use of the <tt>CCIfType</tt> and | |
<tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true | |
(that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then | |
the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns | |
the argument value to the first available register: either <tt>R0</tt> | |
or <tt>R1</tt>. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> | |
</pre> | |
</div> | |
<p> | |
<tt>SparcCallingConv.td</tt> contains definitions for a target-specific | |
return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling | |
convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt> | |
(shown below) indicates which registers are used for specified scalar return | |
types. A single-precision float is returned to register <tt>F0</tt>, and a | |
double-precision float goes to register <tt>D0</tt>. A 32-bit integer is | |
returned in register <tt>I0</tt> or <tt>I1</tt>. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def RetCC_Sparc32 : CallingConv<[ | |
CCIfType<[i32], CCAssignToReg<[I0, I1]>>, | |
CCIfType<[f32], CCAssignToReg<[F0]>>, | |
CCIfType<[f64], CCAssignToReg<[D0]>> | |
]>; | |
</pre> | |
</div> | |
<p> | |
The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces | |
<tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the | |
specified size and alignment. In the example below, the first parameter, 4, | |
indicates the size of the slot, and the second parameter, also 4, indicates the | |
stack alignment along 4-byte units. (Special cases: if size is zero, then the | |
ABI size is used; if alignment is zero, then the ABI alignment is used.) | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def CC_Sparc32 : CallingConv<[ | |
// All arguments get passed in integer registers if there is space. | |
CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, | |
CCAssignToStack<4, 4> | |
]>; | |
</pre> | |
</div> | |
<p> | |
<tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a | |
specified sub-calling convention, and, if a match is found, it is invoked. In | |
the following example (in <tt>X86CallingConv.td</tt>), the definition of | |
<tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value | |
is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>, | |
the <tt>RetCC_X86Common</tt> is invoked. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def RetCC_X86_32_C : CallingConv<[ | |
CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, | |
CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, | |
CCDelegateTo<RetCC_X86Common> | |
]>; | |
</pre> | |
</div> | |
<p> | |
<tt>CCIfCC</tt> is an interface that attempts to match the given name to the | |
current calling convention. If the name identifies the current calling | |
convention, then a specified action is invoked. In the following example (in | |
<tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use, | |
then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling | |
convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def RetCC_X86_32 : CallingConv<[ | |
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, | |
CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, | |
CCDelegateTo<RetCC_X86_32_C> | |
]>; | |
</pre> | |
</div> | |
<p>Other calling convention interfaces include:</p> | |
<ul> | |
<li><tt>CCIf <predicate, action></tt> — If the predicate matches, | |
apply the action.</li> | |
<li><tt>CCIfInReg <action></tt> — If the argument is marked with the | |
'<tt>inreg</tt>' attribute, then apply the action.</li> | |
<li><tt>CCIfNest <action></tt> — Inf the argument is marked with the | |
'<tt>nest</tt>' attribute, then apply the action.</li> | |
<li><tt>CCIfNotVarArg <action></tt> — If the current function does | |
not take a variable number of arguments, apply the action.</li> | |
<li><tt>CCAssignToRegWithShadow <registerList, shadowList></tt> — | |
similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li> | |
<li><tt>CCPassByVal <size, align></tt> — Assign value to a stack | |
slot with the minimum specified size and alignment.</li> | |
<li><tt>CCPromoteToType <type></tt> — Promote the current value to | |
the specified type.</li> | |
<li><tt>CallingConv <[actions]></tt> — Define each calling | |
convention that is supported.</li> | |
</ul> | |
</div> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="assemblyPrinter">Assembly Printer</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
During the code emission stage, the code generator may utilize an LLVM pass to | |
produce assembly output. To do this, you want to implement the code for a | |
printer that converts LLVM IR to a GAS-format assembly language for your target | |
machine, using the following steps: | |
</p> | |
<ul> | |
<li>Define all the assembly strings for your target, adding them to the | |
instructions defined in the <tt>XXXInstrInfo.td</tt> file. | |
(See <a href="#InstructionSet">Instruction Set</a>.) TableGen will produce | |
an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of | |
the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li> | |
<li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration | |
of the <tt>XXXTargetAsmInfo</tt> class (a subclass | |
of <tt>TargetAsmInfo</tt>).</li> | |
<li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values | |
for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for | |
methods.</li> | |
<li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> | |
class that performs the LLVM-to-assembly conversion.</li> | |
</ul> | |
<p> | |
The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the | |
<tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>. | |
Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of | |
<tt>XXXTargetAsmInfo</tt> replacement values that override the default values | |
in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { | |
Data16bitsDirective = "\t.half\t"; | |
Data32bitsDirective = "\t.word\t"; | |
Data64bitsDirective = 0; // .xword is only supported by V9. | |
ZeroDirective = "\t.skip\t"; | |
CommentString = "!"; | |
ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; | |
} | |
</pre> | |
</div> | |
<p> | |
The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an | |
example where the target specific <tt>TargetAsmInfo</tt> class uses an | |
overridden methods: <tt>ExpandInlineAsm</tt>. | |
</p> | |
<p> | |
A target-specific implementation of AsmPrinter is written in | |
<tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that | |
converts the LLVM to printable assembly. The implementation must include the | |
following headers that have declarations for the <tt>AsmPrinter</tt> and | |
<tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a | |
subclass of <tt>FunctionPass</tt>. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
#include "llvm/CodeGen/AsmPrinter.h" | |
#include "llvm/CodeGen/MachineFunctionPass.h" | |
</pre> | |
</div> | |
<p> | |
As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first | |
calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In | |
<tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process | |
variable names. | |
</p> | |
<p> | |
In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method | |
(declared in <tt>MachineFunctionPass</tt>) must be implemented | |
for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>, | |
the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>. | |
Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but | |
generally do the following to process each machine function: | |
</p> | |
<ul> | |
<li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li> | |
<li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants | |
which have been spilled to memory.</li> | |
<li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current | |
function.</li> | |
<li>Print out the label for the current function.</li> | |
<li>Print out the code for the function, including basic block labels and the | |
assembly for the instruction (using <tt>printInstruction</tt>)</li> | |
</ul> | |
<p> | |
The <tt>XXXAsmPrinter</tt> implementation must also include the code generated | |
by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code | |
in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the | |
<tt>printInstruction</tt> method that may call these methods: | |
</p> | |
<ul> | |
<li><tt>printOperand</tt></li> | |
<li><tt>printMemOperand</tt></li> | |
<li><tt>printCCOperand (for conditional statements)</tt></li> | |
<li><tt>printDataDirective</tt></li> | |
<li><tt>printDeclare</tt></li> | |
<li><tt>printImplicitDef</tt></li> | |
<li><tt>printInlineAsm</tt></li> | |
</ul> | |
<p> | |
The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>, | |
<tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are | |
generally adequate for printing assembly and do not need to be | |
overridden. | |
</p> | |
<p> | |
The <tt>printOperand</tt> method is implemented with a long switch/case | |
statement for the type of operand: register, immediate, basic block, external | |
symbol, global address, constant pool index, or jump table index. For an | |
instruction with a memory address operand, the <tt>printMemOperand</tt> method | |
should be implemented to generate the proper output. Similarly, | |
<tt>printCCOperand</tt> should be used to print a conditional operand. | |
</p> | |
<p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and | |
it should be called to shut down the assembly printer. During | |
<tt>doFinalization</tt>, global variables and constants are printed to | |
output. | |
</p> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="subtargetSupport">Subtarget Support</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
Subtarget support is used to inform the code generation process of instruction | |
set variations for a given chip set. For example, the LLVM SPARC implementation | |
provided covers three major versions of the SPARC microprocessor architecture: | |
Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit | |
architecture), and the UltraSPARC architecture. V8 has 16 double-precision | |
floating-point registers that are also usable as either 32 single-precision or 8 | |
quad-precision registers. V8 is also purely big-endian. V9 has 32 | |
double-precision floating-point registers that are also usable as 16 | |
quad-precision registers, but cannot be used as single-precision registers. The | |
UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set | |
extensions. | |
</p> | |
<p> | |
If subtarget support is needed, you should implement a target-specific | |
XXXSubtarget class for your architecture. This class should process the | |
command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>. | |
</p> | |
<p> | |
TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files | |
to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown | |
below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string | |
parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an | |
attribute set by the feature, the value of the attribute, and a description of | |
the feature. (The fifth parameter is a list of features whose presence is | |
implied, and its default value is an empty array.) | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class SubtargetFeature<string n, string a, string v, string d, | |
list<SubtargetFeature> i = []> { | |
string Name = n; | |
string Attribute = a; | |
string Value = v; | |
string Desc = d; | |
list<SubtargetFeature> Implies = i; | |
} | |
</pre> | |
</div> | |
<p> | |
In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the | |
following features. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", | |
"Enable SPARC-V9 instructions">; | |
def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", | |
"V8DeprecatedInsts", "true", | |
"Enable deprecated V8 instructions in V9 mode">; | |
def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", | |
"Enable UltraSPARC Visual Instruction Set extensions">; | |
</pre> | |
</div> | |
<p> | |
Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to | |
define particular SPARC processor subtypes that may have the previously | |
described features. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
class Proc<string Name, list<SubtargetFeature> Features> | |
: Processor<Name, NoItineraries, Features>; | |
| |
def : Proc<"generic", []>; | |
def : Proc<"v8", []>; | |
def : Proc<"supersparc", []>; | |
def : Proc<"sparclite", []>; | |
def : Proc<"f934", []>; | |
def : Proc<"hypersparc", []>; | |
def : Proc<"sparclite86x", []>; | |
def : Proc<"sparclet", []>; | |
def : Proc<"tsc701", []>; | |
def : Proc<"v9", [FeatureV9]>; | |
def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; | |
def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; | |
def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; | |
</pre> | |
</div> | |
<p> | |
From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting | |
SparcGenSubtarget.inc specifies enum values to identify the features, arrays of | |
constants to represent the CPU features and CPU subtypes, and the | |
ParseSubtargetFeatures method that parses the features string that sets | |
specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file | |
should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific | |
implementation of the XXXSubtarget method should follow this pseudocode: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { | |
// Set the default features | |
// Determine default and user specified characteristics of the CPU | |
// Call ParseSubtargetFeatures(FS, CPU) to parse the features string | |
// Perform any additional operations | |
} | |
</pre> | |
</div> | |
</div> | |
<!-- *********************************************************************** --> | |
<h2> | |
<a name="jitSupport">JIT Support</a> | |
</h2> | |
<!-- *********************************************************************** --> | |
<div> | |
<p> | |
The implementation of a target machine optionally includes a Just-In-Time (JIT) | |
code generator that emits machine code and auxiliary structures as binary output | |
that can be written directly to memory. To do this, implement JIT code | |
generation by performing the following steps: | |
</p> | |
<ul> | |
<li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function | |
pass that transforms target-machine instructions into relocatable machine | |
code.</li> | |
<li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for | |
target-specific code-generation activities, such as emitting machine code | |
and stubs.</li> | |
<li>Modify <tt>XXXTargetMachine</tt> so that it provides a | |
<tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li> | |
</ul> | |
<p> | |
There are several different approaches to writing the JIT support code. For | |
instance, TableGen and target descriptor files may be used for creating a JIT | |
code generator, but are not mandatory. For the Alpha and PowerPC target | |
machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which | |
contains the binary coding of machine instructions and the | |
<tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT | |
implementations do not. | |
</p> | |
<p> | |
Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the | |
<tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the | |
<tt>MachineCodeEmitter</tt> class containing code for several callback functions | |
that write data (in bytes, words, strings, etc.) to the output stream. | |
</p> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="mce">Machine Code Emitter</a> | |
</h3> | |
<div> | |
<p> | |
In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class | |
is implemented as a function pass (subclass | |
of <tt>MachineFunctionPass</tt>). The target-specific implementation | |
of <tt>runOnMachineFunction</tt> (invoked by | |
<tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the | |
<tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each | |
instruction and emit binary code. <tt>emitInstruction</tt> is largely | |
implemented with case statements on the instruction types defined in | |
<tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>, | |
the <tt>emitInstruction</tt> method is built around the following switch/case | |
statements: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
switch (Desc->TSFlags & X86::FormMask) { | |
case X86II::Pseudo: // for not yet implemented instructions | |
... // or pseudo-instructions | |
break; | |
case X86II::RawFrm: // for instructions with a fixed opcode value | |
... | |
break; | |
case X86II::AddRegFrm: // for instructions that have one register operand | |
... // added to their opcode | |
break; | |
case X86II::MRMDestReg:// for instructions that use the Mod/RM byte | |
... // to specify a destination (register) | |
break; | |
case X86II::MRMDestMem:// for instructions that use the Mod/RM byte | |
... // to specify a destination (memory) | |
break; | |
case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte | |
... // to specify a source (register) | |
break; | |
case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte | |
... // to specify a source (memory) | |
break; | |
case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on | |
case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and | |
case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field | |
case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data | |
... | |
break; | |
case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on | |
case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and | |
case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field | |
case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data | |
... | |
break; | |
case X86II::MRMInitReg: // for instructions whose source and | |
... // destination are the same register | |
break; | |
} | |
</pre> | |
</div> | |
<p> | |
The implementations of these case statements often first emit the opcode and | |
then get the operand(s). Then depending upon the operand, helper methods may be | |
called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>, | |
for the <tt>X86II::AddRegFrm</tt> case, the first data emitted | |
(by <tt>emitByte</tt>) is the opcode added to the register operand. Then an | |
object representing the machine operand, <tt>MO1</tt>, is extracted. The helper | |
methods such as <tt>isImmediate</tt>, | |
<tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and | |
<tt>isJumpTableIndex</tt> determine the operand | |
type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such | |
as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>, | |
<tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>, | |
and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.) | |
</p> | |
<div class="doc_code"> | |
<pre> | |
case X86II::AddRegFrm: | |
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); | |
if (CurOp != NumOps) { | |
const MachineOperand &MO1 = MI.getOperand(CurOp++); | |
unsigned Size = X86InstrInfo::sizeOfImm(Desc); | |
if (MO1.isImmediate()) | |
emitConstant(MO1.getImm(), Size); | |
else { | |
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word | |
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); | |
if (Opcode == X86::MOV64ri) | |
rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? | |
if (MO1.isGlobalAddress()) { | |
bool NeedStub = isa<Function>(MO1.getGlobal()); | |
bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); | |
emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, | |
NeedStub, isLazy); | |
} else if (MO1.isExternalSymbol()) | |
emitExternalSymbolAddress(MO1.getSymbolName(), rt); | |
else if (MO1.isConstantPoolIndex()) | |
emitConstPoolAddress(MO1.getIndex(), rt); | |
else if (MO1.isJumpTableIndex()) | |
emitJumpTableAddress(MO1.getIndex(), rt); | |
} | |
} | |
break; | |
</pre> | |
</div> | |
<p> | |
In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the | |
variable <tt>rt</tt>, which is a RelocationType enum that may be used to | |
relocate addresses (for example, a global address with a PIC base offset). The | |
<tt>RelocationType</tt> enum for that target is defined in the short | |
target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by | |
the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite | |
addresses for referenced global symbols. | |
</p> | |
<p> | |
For example, <tt>X86Relocations.h</tt> specifies the following relocation types | |
for the X86 addresses. In all four cases, the relocated value is added to the | |
value already in memory. For <tt>reloc_pcrel_word</tt> | |
and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment. | |
</p> | |
<div class="doc_code"> | |
<pre> | |
enum RelocationType { | |
reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc | |
reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base | |
reloc_absolute_word = 2, // absolute relocation; no additional adjustment | |
reloc_absolute_dword = 3 // absolute relocation; no additional adjustment | |
}; | |
</pre> | |
</div> | |
</div> | |
<!-- ======================================================================= --> | |
<h3> | |
<a name="targetJITInfo">Target JIT Info</a> | |
</h3> | |
<div> | |
<p> | |
<tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific | |
code-generation activities, such as emitting machine code and stubs. At minimum, | |
a target-specific version of <tt>XXXJITInfo</tt> implements the following: | |
</p> | |
<ul> | |
<li><tt>getLazyResolverFunction</tt> — Initializes the JIT, gives the | |
target a function that is used for compilation.</li> | |
<li><tt>emitFunctionStub</tt> — Returns a native function with a specified | |
address for a callback function.</li> | |
<li><tt>relocate</tt> — Changes the addresses of referenced globals, based | |
on relocation types.</li> | |
<li>Callback function that are wrappers to a function stub that is used when the | |
real target is not initially known.</li> | |
</ul> | |
<p> | |
<tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the | |
incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the | |
callback function that will be used a function wrapper. For the Alpha target | |
(in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt> | |
implementation is simply: | |
</p> | |
<div class="doc_code"> | |
<pre> | |
TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( | |
JITCompilerFn F) { | |
JITCompilerFunction = F; | |
return AlphaCompilationCallback; | |
} | |
</pre> | |
</div> | |
<p> | |
For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a | |
little more complication, because it returns a different callback function for | |
processors with SSE instructions and XMM registers. | |
</p> | |
<p> | |
The callback function initially saves and later restores the callee register | |
values, incoming arguments, and frame and return address. The callback function | |
needs low-level access to the registers or stack, so it is typically implemented | |
with assembler. | |
</p> | |
</div> | |
</div> | |
<!-- *********************************************************************** --> | |
<hr> | |
<address> | |
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img | |
src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> | |
<a href="http://validator.w3.org/check/referer"><img | |
src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> | |
<a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br> | |
<a href="http://llvm.org/">The LLVM Compiler Infrastructure</a> | |
<br> | |
Last modified: $Date: 2011-06-15 19:28:14 -0400 (Wed, 15 Jun 2011) $ | |
</address> | |
</body> | |
</html> |