| // Copyright (c) 2018 Google LLC. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "source/opt/scalar_analysis.h" |
| |
| #include <functional> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| // Simplifies scalar analysis DAGs. |
| // |
| // 1. Given a node passed to SimplifyExpression we first simplify the graph by |
| // calling SimplifyPolynomial. This groups like nodes following basic arithmetic |
| // rules, so multiple adds of the same load instruction could be grouped into a |
| // single multiply of that instruction. SimplifyPolynomial will traverse the DAG |
| // and build up an accumulator buffer for each class of instruction it finds. |
| // For example take the loop: |
| // for (i=0, i<N; i++) { i+B+23+4+B+C; } |
| // In this example the expression "i+B+23+4+B+C" has four classes of |
| // instruction, induction variable i, the two value unknowns B and C, and the |
| // constants. The accumulator buffer is then used to rebuild the graph using |
| // the accumulation of each type. This example would then be folded into |
| // i+2*B+C+27. |
| // |
| // This new graph contains a single add node (or if only one type found then |
| // just that node) with each of the like terms (or multiplication node) as a |
| // child. |
| // |
| // 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take |
| // RecurrentAddExpressions which are with respect to the same loop and fold them |
| // into a single new RecurrentAddExpression with respect to that same loop. An |
| // expression can have multiple RecurrentAddExpression's with respect to |
| // different loops in the case of nested loops. These expressions cannot be |
| // folded further. For example: |
| // |
| // for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k) |
| // |
| // The 'j' and 'k' are RecurrentAddExpression with respect to the second loop |
| // and 'i' to the first. If 'j' and 'k' are used in an expression together then |
| // they will be folded into a new RecurrentAddExpression with respect to the |
| // second loop in that expression. |
| // |
| // |
| // 3. If the DAG now only contains a single RecurrentAddExpression we can now |
| // perform a final optimization SimplifyRecurrentAddExpression. This will |
| // transform the entire DAG into a RecurrentAddExpression. Additions to the |
| // RecurrentAddExpression are added to the offset field and multiplications to |
| // the coefficient. |
| // |
| |
| namespace spvtools { |
| namespace opt { |
| |
| // Implementation of the functions which are used to simplify the graph. Graphs |
| // of unknowns, multiplies, additions, and constants can be turned into a linear |
| // add node with each term as a child. For instance a large graph built from, X |
| // + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the |
| // children X*3, -Y*2, and the constant 3. Graphs containing a recurrent |
| // expression will be simplified to represent the entire graph around a single |
| // recurrent expression. So for an induction variable (i=0, i++) if you add 1 to |
| // i in an expression we can rewrite the graph of that expression to be a single |
| // recurrent expression of (i=1,i++). |
| class SENodeSimplifyImpl { |
| public: |
| SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis, |
| SENode* node_to_simplify) |
| : analysis_(*analysis), |
| node_(node_to_simplify), |
| constant_accumulator_(0) {} |
| |
| // Return the result of the simplification. |
| SENode* Simplify(); |
| |
| private: |
| // Recursively descend through the graph to build up the accumulator objects |
| // which are used to flatten the graph. |child| is the node currenty being |
| // traversed and the |negation| flag is used to signify that this operation |
| // was preceded by a unary negative operation and as such the result should be |
| // negated. |
| void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child, |
| bool negation); |
| |
| // Given a |multiply| node add to the accumulators for the term type within |
| // the |multiply| expression. Will return true if the accumulators could be |
| // calculated successfully. If the |multiply| is in any form other than |
| // unknown*constant then we return false. |negation| signifies that the |
| // operation was preceded by a unary negative. |
| bool AccumulatorsFromMultiply(SENode* multiply, bool negation); |
| |
| SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, |
| int64_t coefficient_update) const; |
| |
| // If the graph contains a recurrent expression, ie, an expression with the |
| // loop iterations as a term in the expression, then the whole expression |
| // can be rewritten to be a recurrent expression. |
| SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node); |
| |
| // Simplify the whole graph by linking like terms together in a single flat |
| // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a |
| // ValueUnknown node (i.e, a load) or a recurrent expression. |
| SENode* SimplifyPolynomial(); |
| |
| // Each recurrent expression is an expression with respect to a specific loop. |
| // If we have two different recurrent terms with respect to the same loop in a |
| // single expression then we can fold those terms into a single new term. |
| // For instance: |
| // |
| // induction i = 0, i++ |
| // temp = i*10 |
| // array[i+temp] |
| // |
| // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can |
| // become Rec(0,11). |
| SENode* FoldRecurrentAddExpressions(SENode*); |
| |
| // We can eliminate recurrent expressions which have a coefficient of zero by |
| // replacing them with their offset value. We are able to do this because a |
| // recurrent expression represents the equation coefficient*iterations + |
| // offset. |
| SENode* EliminateZeroCoefficientRecurrents(SENode* node); |
| |
| // A reference the the analysis which requested the simplification. |
| ScalarEvolutionAnalysis& analysis_; |
| |
| // The node being simplified. |
| SENode* node_; |
| |
| // An accumulator of the net result of all the constant operations performed |
| // in a graph. |
| int64_t constant_accumulator_; |
| |
| // An accumulator for each of the non constant terms in the graph. |
| std::map<SENode*, int64_t> accumulators_; |
| }; |
| |
| // From a |multiply| build up the accumulator objects. |
| bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply, |
| bool negation) { |
| if (multiply->GetChildren().size() != 2 || |
| multiply->GetType() != SENode::Multiply) |
| return false; |
| |
| SENode* operand_1 = multiply->GetChild(0); |
| SENode* operand_2 = multiply->GetChild(1); |
| |
| SENode* value_unknown = nullptr; |
| SENode* constant = nullptr; |
| |
| // Work out which operand is the unknown value. |
| if (operand_1->GetType() == SENode::ValueUnknown || |
| operand_1->GetType() == SENode::RecurrentAddExpr) |
| value_unknown = operand_1; |
| else if (operand_2->GetType() == SENode::ValueUnknown || |
| operand_2->GetType() == SENode::RecurrentAddExpr) |
| value_unknown = operand_2; |
| |
| // Work out which operand is the constant coefficient. |
| if (operand_1->GetType() == SENode::Constant) |
| constant = operand_1; |
| else if (operand_2->GetType() == SENode::Constant) |
| constant = operand_2; |
| |
| // If the expression is not a variable multiplied by a constant coefficient, |
| // exit out. |
| if (!(value_unknown && constant)) { |
| return false; |
| } |
| |
| int64_t sign = negation ? -1 : 1; |
| |
| auto iterator = accumulators_.find(value_unknown); |
| int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign; |
| // Add the result of the multiplication to the accumulators. |
| if (iterator != accumulators_.end()) { |
| (*iterator).second += new_value; |
| } else { |
| accumulators_.insert({value_unknown, new_value}); |
| } |
| |
| return true; |
| } |
| |
| SENode* SENodeSimplifyImpl::Simplify() { |
| // We only handle graphs with an addition, multiplication, or negation, at the |
| // root. |
| if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply && |
| node_->GetType() != SENode::Negative) |
| return node_; |
| |
| SENode* simplified_polynomial = SimplifyPolynomial(); |
| |
| SERecurrentNode* recurrent_expr = nullptr; |
| node_ = simplified_polynomial; |
| |
| // Fold recurrent expressions which are with respect to the same loop into a |
| // single recurrent expression. |
| simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial); |
| |
| simplified_polynomial = |
| EliminateZeroCoefficientRecurrents(simplified_polynomial); |
| |
| // Traverse the immediate children of the new node to find the recurrent |
| // expression. If there is more than one there is nothing further we can do. |
| for (SENode* child : simplified_polynomial->GetChildren()) { |
| if (child->GetType() == SENode::RecurrentAddExpr) { |
| recurrent_expr = child->AsSERecurrentNode(); |
| } |
| } |
| |
| // We need to count the number of unique recurrent expressions in the DAG to |
| // ensure there is only one. |
| for (auto child_iterator = simplified_polynomial->graph_begin(); |
| child_iterator != simplified_polynomial->graph_end(); ++child_iterator) { |
| if (child_iterator->GetType() == SENode::RecurrentAddExpr && |
| recurrent_expr != child_iterator->AsSERecurrentNode()) { |
| return simplified_polynomial; |
| } |
| } |
| |
| if (recurrent_expr) { |
| return SimplifyRecurrentAddExpression(recurrent_expr); |
| } |
| |
| return simplified_polynomial; |
| } |
| |
| // Traverse the graph to build up the accumulator objects. |
| void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node, |
| SENode* child, |
| bool negation) { |
| int32_t sign = negation ? -1 : 1; |
| |
| if (child->GetType() == SENode::Constant) { |
| // Collect all the constants and add them together. |
| constant_accumulator_ += |
| child->AsSEConstantNode()->FoldToSingleValue() * sign; |
| |
| } else if (child->GetType() == SENode::ValueUnknown || |
| child->GetType() == SENode::RecurrentAddExpr) { |
| // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X |
| // and create a new node of count*X after. X can either be a ValueUnknown or |
| // a RecurrentAddExpr. The count for each X is stored in the accumulators_ |
| // map. |
| |
| auto iterator = accumulators_.find(child); |
| // If we've encountered this term before add to the accumulator for it. |
| if (iterator == accumulators_.end()) |
| accumulators_.insert({child, sign}); |
| else |
| iterator->second += sign; |
| |
| } else if (child->GetType() == SENode::Multiply) { |
| if (!AccumulatorsFromMultiply(child, negation)) { |
| new_node->AddChild(child); |
| } |
| |
| } else if (child->GetType() == SENode::Add) { |
| for (SENode* next_child : *child) { |
| GatherAccumulatorsFromChildNodes(new_node, next_child, negation); |
| } |
| |
| } else if (child->GetType() == SENode::Negative) { |
| SENode* negated_node = child->GetChild(0); |
| GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation); |
| } else { |
| // If we can't work out how to fold the expression just add it back into |
| // the graph. |
| new_node->AddChild(child); |
| } |
| } |
| |
| SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient( |
| SERecurrentNode* recurrent, int64_t coefficient_update) const { |
| std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode( |
| recurrent->GetParentAnalysis(), recurrent->GetLoop())}; |
| |
| SENode* new_coefficient = analysis_.CreateMultiplyNode( |
| recurrent->GetCoefficient(), |
| analysis_.CreateConstant(coefficient_update)); |
| |
| // See if the node can be simplified. |
| SENode* simplified = analysis_.SimplifyExpression(new_coefficient); |
| if (simplified->GetType() != SENode::CanNotCompute) |
| new_coefficient = simplified; |
| |
| if (coefficient_update < 0) { |
| new_recurrent_node->AddOffset( |
| analysis_.CreateNegation(recurrent->GetOffset())); |
| } else { |
| new_recurrent_node->AddOffset(recurrent->GetOffset()); |
| } |
| |
| new_recurrent_node->AddCoefficient(new_coefficient); |
| |
| return analysis_.GetCachedOrAdd(std::move(new_recurrent_node)) |
| ->AsSERecurrentNode(); |
| } |
| |
| // Simplify all the terms in the polynomial function. |
| SENode* SENodeSimplifyImpl::SimplifyPolynomial() { |
| std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; |
| |
| // Traverse the graph and gather the accumulators from it. |
| GatherAccumulatorsFromChildNodes(new_add.get(), node_, false); |
| |
| // Fold all the constants into a single constant node. |
| if (constant_accumulator_ != 0) { |
| new_add->AddChild(analysis_.CreateConstant(constant_accumulator_)); |
| } |
| |
| for (auto& pair : accumulators_) { |
| SENode* term = pair.first; |
| int64_t count = pair.second; |
| |
| // We can eliminate the term completely. |
| if (count == 0) continue; |
| |
| if (count == 1) { |
| new_add->AddChild(term); |
| } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) { |
| // If the count is -1 we can just add a negative version of that node, |
| // unless it is a recurrent expression as we would rather the negative |
| // goes on the recurrent expressions children. This makes it easier to |
| // work with in other places. |
| new_add->AddChild(analysis_.CreateNegation(term)); |
| } else { |
| // Output value unknown terms as count*term and output recurrent |
| // expression terms as rec(offset, coefficient + count) offset and |
| // coefficient are the same as in the original expression. |
| if (term->GetType() == SENode::ValueUnknown) { |
| SENode* count_as_constant = analysis_.CreateConstant(count); |
| new_add->AddChild( |
| analysis_.CreateMultiplyNode(count_as_constant, term)); |
| } else { |
| assert(term->GetType() == SENode::RecurrentAddExpr && |
| "We only handle value unknowns or recurrent expressions"); |
| |
| // Create a new recurrent expression by adding the count to the |
| // coefficient of the old one. |
| new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count)); |
| } |
| } |
| } |
| |
| // If there is only one term in the addition left just return that term. |
| if (new_add->GetChildren().size() == 1) { |
| return new_add->GetChild(0); |
| } |
| |
| // If there are no terms left in the addition just return 0. |
| if (new_add->GetChildren().size() == 0) { |
| return analysis_.CreateConstant(0); |
| } |
| |
| return analysis_.GetCachedOrAdd(std::move(new_add)); |
| } |
| |
| SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) { |
| std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)}; |
| |
| // A mapping of loops to the list of recurrent expressions which are with |
| // respect to those loops. |
| std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>> |
| loops_to_recurrent{}; |
| |
| bool has_multiple_same_loop_recurrent_terms = false; |
| |
| for (SENode* child : *root) { |
| bool negation = false; |
| |
| if (child->GetType() == SENode::Negative) { |
| child = child->GetChild(0); |
| negation = true; |
| } |
| |
| if (child->GetType() == SENode::RecurrentAddExpr) { |
| const Loop* loop = child->AsSERecurrentNode()->GetLoop(); |
| |
| SERecurrentNode* rec = child->AsSERecurrentNode(); |
| if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) { |
| loops_to_recurrent[loop] = {std::make_pair(rec, negation)}; |
| } else { |
| loops_to_recurrent[loop].push_back(std::make_pair(rec, negation)); |
| has_multiple_same_loop_recurrent_terms = true; |
| } |
| } else { |
| new_node->AddChild(child); |
| } |
| } |
| |
| if (!has_multiple_same_loop_recurrent_terms) return root; |
| |
| for (auto pair : loops_to_recurrent) { |
| std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions = |
| pair.second; |
| const Loop* loop = pair.first; |
| |
| std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)}; |
| std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)}; |
| |
| for (auto node_pair : recurrent_expressions) { |
| SERecurrentNode* node = node_pair.first; |
| bool negative = node_pair.second; |
| |
| if (!negative) { |
| new_coefficient->AddChild(node->GetCoefficient()); |
| new_offset->AddChild(node->GetOffset()); |
| } else { |
| new_coefficient->AddChild( |
| analysis_.CreateNegation(node->GetCoefficient())); |
| new_offset->AddChild(analysis_.CreateNegation(node->GetOffset())); |
| } |
| } |
| |
| std::unique_ptr<SERecurrentNode> new_recurrent{ |
| new SERecurrentNode(&analysis_, loop)}; |
| |
| SENode* new_coefficient_simplified = |
| analysis_.SimplifyExpression(new_coefficient.get()); |
| |
| SENode* new_offset_simplified = |
| analysis_.SimplifyExpression(new_offset.get()); |
| |
| if (new_coefficient_simplified->GetType() == SENode::Constant && |
| new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() == |
| 0) { |
| return new_offset_simplified; |
| } |
| |
| new_recurrent->AddCoefficient(new_coefficient_simplified); |
| new_recurrent->AddOffset(new_offset_simplified); |
| |
| new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent))); |
| } |
| |
| // If we only have one child in the add just return that. |
| if (new_node->GetChildren().size() == 1) { |
| return new_node->GetChild(0); |
| } |
| |
| return analysis_.GetCachedOrAdd(std::move(new_node)); |
| } |
| |
| SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) { |
| if (node->GetType() != SENode::Add) return node; |
| |
| bool has_change = false; |
| |
| std::vector<SENode*> new_children{}; |
| for (SENode* child : *node) { |
| if (child->GetType() == SENode::RecurrentAddExpr) { |
| SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient(); |
| // If coefficient is zero then we can eliminate the recurrent expression |
| // entirely and just return the offset as the recurrent expression is |
| // representing the equation coefficient*iterations + offset. |
| if (coefficient->GetType() == SENode::Constant && |
| coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) { |
| new_children.push_back(child->AsSERecurrentNode()->GetOffset()); |
| has_change = true; |
| } else { |
| new_children.push_back(child); |
| } |
| } else { |
| new_children.push_back(child); |
| } |
| } |
| |
| if (!has_change) return node; |
| |
| std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; |
| |
| for (SENode* child : new_children) { |
| new_add->AddChild(child); |
| } |
| |
| return analysis_.GetCachedOrAdd(std::move(new_add)); |
| } |
| |
| SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression( |
| SERecurrentNode* recurrent_expr) { |
| const std::vector<SENode*>& children = node_->GetChildren(); |
| |
| std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode( |
| recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())}; |
| |
| // Create and simplify the new offset node. |
| std::unique_ptr<SENode> new_offset{ |
| new SEAddNode(recurrent_expr->GetParentAnalysis())}; |
| new_offset->AddChild(recurrent_expr->GetOffset()); |
| |
| for (SENode* child : children) { |
| if (child->GetType() != SENode::RecurrentAddExpr) { |
| new_offset->AddChild(child); |
| } |
| } |
| |
| // Simplify the new offset. |
| SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get()); |
| |
| // If the child can be simplified, add the simplified form otherwise, add it |
| // via the usual caching mechanism. |
| if (simplified_child->GetType() != SENode::CanNotCompute) { |
| recurrent_node->AddOffset(simplified_child); |
| } else { |
| recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset))); |
| } |
| |
| recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient()); |
| |
| return analysis_.GetCachedOrAdd(std::move(recurrent_node)); |
| } |
| |
| /* |
| * Scalar Analysis simplification public methods. |
| */ |
| |
| SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) { |
| SENodeSimplifyImpl impl{this, node}; |
| |
| return impl.Simplify(); |
| } |
| |
| } // namespace opt |
| } // namespace spvtools |