| //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Perform peephole optimizations on the machine code: |
| // |
| // - Optimize Extensions |
| // |
| // Optimization of sign / zero extension instructions. It may be extended to |
| // handle other instructions with similar properties. |
| // |
| // On some targets, some instructions, e.g. X86 sign / zero extension, may |
| // leave the source value in the lower part of the result. This optimization |
| // will replace some uses of the pre-extension value with uses of the |
| // sub-register of the results. |
| // |
| // - Optimize Comparisons |
| // |
| // Optimization of comparison instructions. For instance, in this code: |
| // |
| // sub r1, 1 |
| // cmp r1, 0 |
| // bz L1 |
| // |
| // If the "sub" instruction all ready sets (or could be modified to set) the |
| // same flag that the "cmp" instruction sets and that "bz" uses, then we can |
| // eliminate the "cmp" instruction. |
| // |
| // Another instance, in this code: |
| // |
| // sub r1, r3 | sub r1, imm |
| // cmp r3, r1 or cmp r1, r3 | cmp r1, imm |
| // bge L1 |
| // |
| // If the branch instruction can use flag from "sub", then we can replace |
| // "sub" with "subs" and eliminate the "cmp" instruction. |
| // |
| // - Optimize Loads: |
| // |
| // Loads that can be folded into a later instruction. A load is foldable |
| // if it loads to virtual registers and the virtual register defined has |
| // a single use. |
| // |
| // - Optimize Copies and Bitcast (more generally, target specific copies): |
| // |
| // Rewrite copies and bitcasts to avoid cross register bank copies |
| // when possible. |
| // E.g., Consider the following example, where capital and lower |
| // letters denote different register file: |
| // b = copy A <-- cross-bank copy |
| // C = copy b <-- cross-bank copy |
| // => |
| // b = copy A <-- cross-bank copy |
| // C = copy A <-- same-bank copy |
| // |
| // E.g., for bitcast: |
| // b = bitcast A <-- cross-bank copy |
| // C = bitcast b <-- cross-bank copy |
| // => |
| // b = bitcast A <-- cross-bank copy |
| // C = copy A <-- same-bank copy |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <utility> |
| |
| using namespace llvm; |
| using RegSubRegPair = TargetInstrInfo::RegSubRegPair; |
| using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; |
| |
| #define DEBUG_TYPE "peephole-opt" |
| |
| // Optimize Extensions |
| static cl::opt<bool> |
| Aggressive("aggressive-ext-opt", cl::Hidden, |
| cl::desc("Aggressive extension optimization")); |
| |
| static cl::opt<bool> |
| DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), |
| cl::desc("Disable the peephole optimizer")); |
| |
| /// Specifiy whether or not the value tracking looks through |
| /// complex instructions. When this is true, the value tracker |
| /// bails on everything that is not a copy or a bitcast. |
| static cl::opt<bool> |
| DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), |
| cl::desc("Disable advanced copy optimization")); |
| |
| static cl::opt<bool> DisableNAPhysCopyOpt( |
| "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), |
| cl::desc("Disable non-allocatable physical register copy optimization")); |
| |
| // Limit the number of PHI instructions to process |
| // in PeepholeOptimizer::getNextSource. |
| static cl::opt<unsigned> RewritePHILimit( |
| "rewrite-phi-limit", cl::Hidden, cl::init(10), |
| cl::desc("Limit the length of PHI chains to lookup")); |
| |
| // Limit the length of recurrence chain when evaluating the benefit of |
| // commuting operands. |
| static cl::opt<unsigned> MaxRecurrenceChain( |
| "recurrence-chain-limit", cl::Hidden, cl::init(3), |
| cl::desc("Maximum length of recurrence chain when evaluating the benefit " |
| "of commuting operands")); |
| |
| |
| STATISTIC(NumReuse, "Number of extension results reused"); |
| STATISTIC(NumCmps, "Number of compares eliminated"); |
| STATISTIC(NumImmFold, "Number of move immediate folded"); |
| STATISTIC(NumLoadFold, "Number of loads folded"); |
| STATISTIC(NumSelects, "Number of selects optimized"); |
| STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); |
| STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); |
| STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); |
| |
| namespace { |
| |
| class ValueTrackerResult; |
| class RecurrenceInstr; |
| |
| class PeepholeOptimizer : public MachineFunctionPass { |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| MachineRegisterInfo *MRI; |
| MachineDominatorTree *DT; // Machine dominator tree |
| MachineLoopInfo *MLI; |
| |
| public: |
| static char ID; // Pass identification |
| |
| PeepholeOptimizer() : MachineFunctionPass(ID) { |
| initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| if (Aggressive) { |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| } |
| } |
| |
| /// Track Def -> Use info used for rewriting copies. |
| using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; |
| |
| /// Sequence of instructions that formulate recurrence cycle. |
| using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; |
| |
| private: |
| bool optimizeCmpInstr(MachineInstr &MI); |
| bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, |
| SmallPtrSetImpl<MachineInstr*> &LocalMIs); |
| bool optimizeSelect(MachineInstr &MI, |
| SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
| bool optimizeCondBranch(MachineInstr &MI); |
| bool optimizeCoalescableCopy(MachineInstr &MI); |
| bool optimizeUncoalescableCopy(MachineInstr &MI, |
| SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
| bool optimizeRecurrence(MachineInstr &PHI); |
| bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); |
| bool isMoveImmediate(MachineInstr &MI, |
| SmallSet<unsigned, 4> &ImmDefRegs, |
| DenseMap<unsigned, MachineInstr*> &ImmDefMIs); |
| bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, |
| DenseMap<unsigned, MachineInstr*> &ImmDefMIs); |
| |
| /// Finds recurrence cycles, but only ones that formulated around |
| /// a def operand and a use operand that are tied. If there is a use |
| /// operand commutable with the tied use operand, find recurrence cycle |
| /// along that operand as well. |
| bool findTargetRecurrence(unsigned Reg, |
| const SmallSet<unsigned, 2> &TargetReg, |
| RecurrenceCycle &RC); |
| |
| /// If copy instruction \p MI is a virtual register copy, track it in |
| /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was |
| /// previously seen as a copy, replace the uses of this copy with the |
| /// previously seen copy's destination register. |
| bool foldRedundantCopy(MachineInstr &MI, |
| SmallSet<unsigned, 4> &CopySrcRegs, |
| DenseMap<unsigned, MachineInstr *> &CopyMIs); |
| |
| /// Is the register \p Reg a non-allocatable physical register? |
| bool isNAPhysCopy(unsigned Reg); |
| |
| /// If copy instruction \p MI is a non-allocatable virtual<->physical |
| /// register copy, track it in the \p NAPhysToVirtMIs map. If this |
| /// non-allocatable physical register was previously copied to a virtual |
| /// registered and hasn't been clobbered, the virt->phys copy can be |
| /// deleted. |
| bool foldRedundantNAPhysCopy(MachineInstr &MI, |
| DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); |
| |
| bool isLoadFoldable(MachineInstr &MI, |
| SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); |
| |
| /// Check whether \p MI is understood by the register coalescer |
| /// but may require some rewriting. |
| bool isCoalescableCopy(const MachineInstr &MI) { |
| // SubregToRegs are not interesting, because they are already register |
| // coalescer friendly. |
| return MI.isCopy() || (!DisableAdvCopyOpt && |
| (MI.isRegSequence() || MI.isInsertSubreg() || |
| MI.isExtractSubreg())); |
| } |
| |
| /// Check whether \p MI is a copy like instruction that is |
| /// not recognized by the register coalescer. |
| bool isUncoalescableCopy(const MachineInstr &MI) { |
| return MI.isBitcast() || |
| (!DisableAdvCopyOpt && |
| (MI.isRegSequenceLike() || MI.isInsertSubregLike() || |
| MI.isExtractSubregLike())); |
| } |
| |
| MachineInstr &rewriteSource(MachineInstr &CopyLike, |
| RegSubRegPair Def, RewriteMapTy &RewriteMap); |
| }; |
| |
| /// Helper class to hold instructions that are inside recurrence cycles. |
| /// The recurrence cycle is formulated around 1) a def operand and its |
| /// tied use operand, or 2) a def operand and a use operand that is commutable |
| /// with another use operand which is tied to the def operand. In the latter |
| /// case, index of the tied use operand and the commutable use operand are |
| /// maintained with CommutePair. |
| class RecurrenceInstr { |
| public: |
| using IndexPair = std::pair<unsigned, unsigned>; |
| |
| RecurrenceInstr(MachineInstr *MI) : MI(MI) {} |
| RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) |
| : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} |
| |
| MachineInstr *getMI() const { return MI; } |
| Optional<IndexPair> getCommutePair() const { return CommutePair; } |
| |
| private: |
| MachineInstr *MI; |
| Optional<IndexPair> CommutePair; |
| }; |
| |
| /// Helper class to hold a reply for ValueTracker queries. |
| /// Contains the returned sources for a given search and the instructions |
| /// where the sources were tracked from. |
| class ValueTrackerResult { |
| private: |
| /// Track all sources found by one ValueTracker query. |
| SmallVector<RegSubRegPair, 2> RegSrcs; |
| |
| /// Instruction using the sources in 'RegSrcs'. |
| const MachineInstr *Inst = nullptr; |
| |
| public: |
| ValueTrackerResult() = default; |
| |
| ValueTrackerResult(unsigned Reg, unsigned SubReg) { |
| addSource(Reg, SubReg); |
| } |
| |
| bool isValid() const { return getNumSources() > 0; } |
| |
| void setInst(const MachineInstr *I) { Inst = I; } |
| const MachineInstr *getInst() const { return Inst; } |
| |
| void clear() { |
| RegSrcs.clear(); |
| Inst = nullptr; |
| } |
| |
| void addSource(unsigned SrcReg, unsigned SrcSubReg) { |
| RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); |
| } |
| |
| void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { |
| assert(Idx < getNumSources() && "Reg pair source out of index"); |
| RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); |
| } |
| |
| int getNumSources() const { return RegSrcs.size(); } |
| |
| RegSubRegPair getSrc(int Idx) const { |
| return RegSrcs[Idx]; |
| } |
| |
| unsigned getSrcReg(int Idx) const { |
| assert(Idx < getNumSources() && "Reg source out of index"); |
| return RegSrcs[Idx].Reg; |
| } |
| |
| unsigned getSrcSubReg(int Idx) const { |
| assert(Idx < getNumSources() && "SubReg source out of index"); |
| return RegSrcs[Idx].SubReg; |
| } |
| |
| bool operator==(const ValueTrackerResult &Other) { |
| if (Other.getInst() != getInst()) |
| return false; |
| |
| if (Other.getNumSources() != getNumSources()) |
| return false; |
| |
| for (int i = 0, e = Other.getNumSources(); i != e; ++i) |
| if (Other.getSrcReg(i) != getSrcReg(i) || |
| Other.getSrcSubReg(i) != getSrcSubReg(i)) |
| return false; |
| return true; |
| } |
| }; |
| |
| /// Helper class to track the possible sources of a value defined by |
| /// a (chain of) copy related instructions. |
| /// Given a definition (instruction and definition index), this class |
| /// follows the use-def chain to find successive suitable sources. |
| /// The given source can be used to rewrite the definition into |
| /// def = COPY src. |
| /// |
| /// For instance, let us consider the following snippet: |
| /// v0 = |
| /// v2 = INSERT_SUBREG v1, v0, sub0 |
| /// def = COPY v2.sub0 |
| /// |
| /// Using a ValueTracker for def = COPY v2.sub0 will give the following |
| /// suitable sources: |
| /// v2.sub0 and v0. |
| /// Then, def can be rewritten into def = COPY v0. |
| class ValueTracker { |
| private: |
| /// The current point into the use-def chain. |
| const MachineInstr *Def = nullptr; |
| |
| /// The index of the definition in Def. |
| unsigned DefIdx = 0; |
| |
| /// The sub register index of the definition. |
| unsigned DefSubReg; |
| |
| /// The register where the value can be found. |
| unsigned Reg; |
| |
| /// MachineRegisterInfo used to perform tracking. |
| const MachineRegisterInfo &MRI; |
| |
| /// Optional TargetInstrInfo used to perform some complex tracking. |
| const TargetInstrInfo *TII; |
| |
| /// Dispatcher to the right underlying implementation of getNextSource. |
| ValueTrackerResult getNextSourceImpl(); |
| |
| /// Specialized version of getNextSource for Copy instructions. |
| ValueTrackerResult getNextSourceFromCopy(); |
| |
| /// Specialized version of getNextSource for Bitcast instructions. |
| ValueTrackerResult getNextSourceFromBitcast(); |
| |
| /// Specialized version of getNextSource for RegSequence instructions. |
| ValueTrackerResult getNextSourceFromRegSequence(); |
| |
| /// Specialized version of getNextSource for InsertSubreg instructions. |
| ValueTrackerResult getNextSourceFromInsertSubreg(); |
| |
| /// Specialized version of getNextSource for ExtractSubreg instructions. |
| ValueTrackerResult getNextSourceFromExtractSubreg(); |
| |
| /// Specialized version of getNextSource for SubregToReg instructions. |
| ValueTrackerResult getNextSourceFromSubregToReg(); |
| |
| /// Specialized version of getNextSource for PHI instructions. |
| ValueTrackerResult getNextSourceFromPHI(); |
| |
| public: |
| /// Create a ValueTracker instance for the value defined by \p Reg. |
| /// \p DefSubReg represents the sub register index the value tracker will |
| /// track. It does not need to match the sub register index used in the |
| /// definition of \p Reg. |
| /// If \p Reg is a physical register, a value tracker constructed with |
| /// this constructor will not find any alternative source. |
| /// Indeed, when \p Reg is a physical register that constructor does not |
| /// know which definition of \p Reg it should track. |
| /// Use the next constructor to track a physical register. |
| ValueTracker(unsigned Reg, unsigned DefSubReg, |
| const MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII = nullptr) |
| : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| Def = MRI.getVRegDef(Reg); |
| DefIdx = MRI.def_begin(Reg).getOperandNo(); |
| } |
| } |
| |
| /// Following the use-def chain, get the next available source |
| /// for the tracked value. |
| /// \return A ValueTrackerResult containing a set of registers |
| /// and sub registers with tracked values. A ValueTrackerResult with |
| /// an empty set of registers means no source was found. |
| ValueTrackerResult getNextSource(); |
| }; |
| |
| } // end anonymous namespace |
| |
| char PeepholeOptimizer::ID = 0; |
| |
| char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; |
| |
| INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, |
| "Peephole Optimizations", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, |
| "Peephole Optimizations", false, false) |
| |
| /// If instruction is a copy-like instruction, i.e. it reads a single register |
| /// and writes a single register and it does not modify the source, and if the |
| /// source value is preserved as a sub-register of the result, then replace all |
| /// reachable uses of the source with the subreg of the result. |
| /// |
| /// Do not generate an EXTRACT that is used only in a debug use, as this changes |
| /// the code. Since this code does not currently share EXTRACTs, just ignore all |
| /// debug uses. |
| bool PeepholeOptimizer:: |
| optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, |
| SmallPtrSetImpl<MachineInstr*> &LocalMIs) { |
| unsigned SrcReg, DstReg, SubIdx; |
| if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) |
| return false; |
| |
| if (TargetRegisterInfo::isPhysicalRegister(DstReg) || |
| TargetRegisterInfo::isPhysicalRegister(SrcReg)) |
| return false; |
| |
| if (MRI->hasOneNonDBGUse(SrcReg)) |
| // No other uses. |
| return false; |
| |
| // Ensure DstReg can get a register class that actually supports |
| // sub-registers. Don't change the class until we commit. |
| const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); |
| DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); |
| if (!DstRC) |
| return false; |
| |
| // The ext instr may be operating on a sub-register of SrcReg as well. |
| // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit |
| // register. |
| // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of |
| // SrcReg:SubIdx should be replaced. |
| bool UseSrcSubIdx = |
| TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; |
| |
| // The source has other uses. See if we can replace the other uses with use of |
| // the result of the extension. |
| SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; |
| for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) |
| ReachedBBs.insert(UI.getParent()); |
| |
| // Uses that are in the same BB of uses of the result of the instruction. |
| SmallVector<MachineOperand*, 8> Uses; |
| |
| // Uses that the result of the instruction can reach. |
| SmallVector<MachineOperand*, 8> ExtendedUses; |
| |
| bool ExtendLife = true; |
| for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { |
| MachineInstr *UseMI = UseMO.getParent(); |
| if (UseMI == &MI) |
| continue; |
| |
| if (UseMI->isPHI()) { |
| ExtendLife = false; |
| continue; |
| } |
| |
| // Only accept uses of SrcReg:SubIdx. |
| if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) |
| continue; |
| |
| // It's an error to translate this: |
| // |
| // %reg1025 = <sext> %reg1024 |
| // ... |
| // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 |
| // |
| // into this: |
| // |
| // %reg1025 = <sext> %reg1024 |
| // ... |
| // %reg1027 = COPY %reg1025:4 |
| // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 |
| // |
| // The problem here is that SUBREG_TO_REG is there to assert that an |
| // implicit zext occurs. It doesn't insert a zext instruction. If we allow |
| // the COPY here, it will give us the value after the <sext>, not the |
| // original value of %reg1024 before <sext>. |
| if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) |
| continue; |
| |
| MachineBasicBlock *UseMBB = UseMI->getParent(); |
| if (UseMBB == &MBB) { |
| // Local uses that come after the extension. |
| if (!LocalMIs.count(UseMI)) |
| Uses.push_back(&UseMO); |
| } else if (ReachedBBs.count(UseMBB)) { |
| // Non-local uses where the result of the extension is used. Always |
| // replace these unless it's a PHI. |
| Uses.push_back(&UseMO); |
| } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { |
| // We may want to extend the live range of the extension result in order |
| // to replace these uses. |
| ExtendedUses.push_back(&UseMO); |
| } else { |
| // Both will be live out of the def MBB anyway. Don't extend live range of |
| // the extension result. |
| ExtendLife = false; |
| break; |
| } |
| } |
| |
| if (ExtendLife && !ExtendedUses.empty()) |
| // Extend the liveness of the extension result. |
| Uses.append(ExtendedUses.begin(), ExtendedUses.end()); |
| |
| // Now replace all uses. |
| bool Changed = false; |
| if (!Uses.empty()) { |
| SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; |
| |
| // Look for PHI uses of the extended result, we don't want to extend the |
| // liveness of a PHI input. It breaks all kinds of assumptions down |
| // stream. A PHI use is expected to be the kill of its source values. |
| for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) |
| if (UI.isPHI()) |
| PHIBBs.insert(UI.getParent()); |
| |
| const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); |
| for (unsigned i = 0, e = Uses.size(); i != e; ++i) { |
| MachineOperand *UseMO = Uses[i]; |
| MachineInstr *UseMI = UseMO->getParent(); |
| MachineBasicBlock *UseMBB = UseMI->getParent(); |
| if (PHIBBs.count(UseMBB)) |
| continue; |
| |
| // About to add uses of DstReg, clear DstReg's kill flags. |
| if (!Changed) { |
| MRI->clearKillFlags(DstReg); |
| MRI->constrainRegClass(DstReg, DstRC); |
| } |
| |
| unsigned NewVR = MRI->createVirtualRegister(RC); |
| MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), NewVR) |
| .addReg(DstReg, 0, SubIdx); |
| // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. |
| if (UseSrcSubIdx) { |
| Copy->getOperand(0).setSubReg(SubIdx); |
| Copy->getOperand(0).setIsUndef(); |
| } |
| UseMO->setReg(NewVR); |
| ++NumReuse; |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// If the instruction is a compare and the previous instruction it's comparing |
| /// against already sets (or could be modified to set) the same flag as the |
| /// compare, then we can remove the comparison and use the flag from the |
| /// previous instruction. |
| bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { |
| // If this instruction is a comparison against zero and isn't comparing a |
| // physical register, we can try to optimize it. |
| unsigned SrcReg, SrcReg2; |
| int CmpMask, CmpValue; |
| if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || |
| TargetRegisterInfo::isPhysicalRegister(SrcReg) || |
| (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) |
| return false; |
| |
| // Attempt to optimize the comparison instruction. |
| if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { |
| ++NumCmps; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Optimize a select instruction. |
| bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, |
| SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
| unsigned TrueOp = 0; |
| unsigned FalseOp = 0; |
| bool Optimizable = false; |
| SmallVector<MachineOperand, 4> Cond; |
| if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) |
| return false; |
| if (!Optimizable) |
| return false; |
| if (!TII->optimizeSelect(MI, LocalMIs)) |
| return false; |
| MI.eraseFromParent(); |
| ++NumSelects; |
| return true; |
| } |
| |
| /// Check if a simpler conditional branch can be generated. |
| bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { |
| return TII->optimizeCondBranch(MI); |
| } |
| |
| /// Try to find the next source that share the same register file |
| /// for the value defined by \p Reg and \p SubReg. |
| /// When true is returned, the \p RewriteMap can be used by the client to |
| /// retrieve all Def -> Use along the way up to the next source. Any found |
| /// Use that is not itself a key for another entry, is the next source to |
| /// use. During the search for the next source, multiple sources can be found |
| /// given multiple incoming sources of a PHI instruction. In this case, we |
| /// look in each PHI source for the next source; all found next sources must |
| /// share the same register file as \p Reg and \p SubReg. The client should |
| /// then be capable to rewrite all intermediate PHIs to get the next source. |
| /// \return False if no alternative sources are available. True otherwise. |
| bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, |
| RewriteMapTy &RewriteMap) { |
| // Do not try to find a new source for a physical register. |
| // So far we do not have any motivating example for doing that. |
| // Thus, instead of maintaining untested code, we will revisit that if |
| // that changes at some point. |
| unsigned Reg = RegSubReg.Reg; |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return false; |
| const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); |
| |
| SmallVector<RegSubRegPair, 4> SrcToLook; |
| RegSubRegPair CurSrcPair = RegSubReg; |
| SrcToLook.push_back(CurSrcPair); |
| |
| unsigned PHICount = 0; |
| do { |
| CurSrcPair = SrcToLook.pop_back_val(); |
| // As explained above, do not handle physical registers |
| if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) |
| return false; |
| |
| ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); |
| |
| // Follow the chain of copies until we find a more suitable source, a phi |
| // or have to abort. |
| while (true) { |
| ValueTrackerResult Res = ValTracker.getNextSource(); |
| // Abort at the end of a chain (without finding a suitable source). |
| if (!Res.isValid()) |
| return false; |
| |
| // Insert the Def -> Use entry for the recently found source. |
| ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); |
| if (CurSrcRes.isValid()) { |
| assert(CurSrcRes == Res && "ValueTrackerResult found must match"); |
| // An existent entry with multiple sources is a PHI cycle we must avoid. |
| // Otherwise it's an entry with a valid next source we already found. |
| if (CurSrcRes.getNumSources() > 1) { |
| LLVM_DEBUG(dbgs() |
| << "findNextSource: found PHI cycle, aborting...\n"); |
| return false; |
| } |
| break; |
| } |
| RewriteMap.insert(std::make_pair(CurSrcPair, Res)); |
| |
| // ValueTrackerResult usually have one source unless it's the result from |
| // a PHI instruction. Add the found PHI edges to be looked up further. |
| unsigned NumSrcs = Res.getNumSources(); |
| if (NumSrcs > 1) { |
| PHICount++; |
| if (PHICount >= RewritePHILimit) { |
| LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); |
| return false; |
| } |
| |
| for (unsigned i = 0; i < NumSrcs; ++i) |
| SrcToLook.push_back(Res.getSrc(i)); |
| break; |
| } |
| |
| CurSrcPair = Res.getSrc(0); |
| // Do not extend the live-ranges of physical registers as they add |
| // constraints to the register allocator. Moreover, if we want to extend |
| // the live-range of a physical register, unlike SSA virtual register, |
| // we will have to check that they aren't redefine before the related use. |
| if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) |
| return false; |
| |
| // Keep following the chain if the value isn't any better yet. |
| const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); |
| if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, |
| CurSrcPair.SubReg)) |
| continue; |
| |
| // We currently cannot deal with subreg operands on PHI instructions |
| // (see insertPHI()). |
| if (PHICount > 0 && CurSrcPair.SubReg != 0) |
| continue; |
| |
| // We found a suitable source, and are done with this chain. |
| break; |
| } |
| } while (!SrcToLook.empty()); |
| |
| // If we did not find a more suitable source, there is nothing to optimize. |
| return CurSrcPair.Reg != Reg; |
| } |
| |
| /// Insert a PHI instruction with incoming edges \p SrcRegs that are |
| /// guaranteed to have the same register class. This is necessary whenever we |
| /// successfully traverse a PHI instruction and find suitable sources coming |
| /// from its edges. By inserting a new PHI, we provide a rewritten PHI def |
| /// suitable to be used in a new COPY instruction. |
| static MachineInstr & |
| insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, |
| const SmallVectorImpl<RegSubRegPair> &SrcRegs, |
| MachineInstr &OrigPHI) { |
| assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); |
| |
| const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); |
| // NewRC is only correct if no subregisters are involved. findNextSource() |
| // should have rejected those cases already. |
| assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); |
| unsigned NewVR = MRI.createVirtualRegister(NewRC); |
| MachineBasicBlock *MBB = OrigPHI.getParent(); |
| MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), |
| TII.get(TargetOpcode::PHI), NewVR); |
| |
| unsigned MBBOpIdx = 2; |
| for (const RegSubRegPair &RegPair : SrcRegs) { |
| MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); |
| MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); |
| // Since we're extended the lifetime of RegPair.Reg, clear the |
| // kill flags to account for that and make RegPair.Reg reaches |
| // the new PHI. |
| MRI.clearKillFlags(RegPair.Reg); |
| MBBOpIdx += 2; |
| } |
| |
| return *MIB; |
| } |
| |
| namespace { |
| |
| /// Interface to query instructions amenable to copy rewriting. |
| class Rewriter { |
| protected: |
| MachineInstr &CopyLike; |
| unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. |
| public: |
| Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} |
| virtual ~Rewriter() {} |
| |
| /// Get the next rewritable source (SrcReg, SrcSubReg) and |
| /// the related value that it affects (DstReg, DstSubReg). |
| /// A source is considered rewritable if its register class and the |
| /// register class of the related DstReg may not be register |
| /// coalescer friendly. In other words, given a copy-like instruction |
| /// not all the arguments may be returned at rewritable source, since |
| /// some arguments are none to be register coalescer friendly. |
| /// |
| /// Each call of this method moves the current source to the next |
| /// rewritable source. |
| /// For instance, let CopyLike be the instruction to rewrite. |
| /// CopyLike has one definition and one source: |
| /// dst.dstSubIdx = CopyLike src.srcSubIdx. |
| /// |
| /// The first call will give the first rewritable source, i.e., |
| /// the only source this instruction has: |
| /// (SrcReg, SrcSubReg) = (src, srcSubIdx). |
| /// This source defines the whole definition, i.e., |
| /// (DstReg, DstSubReg) = (dst, dstSubIdx). |
| /// |
| /// The second and subsequent calls will return false, as there is only one |
| /// rewritable source. |
| /// |
| /// \return True if a rewritable source has been found, false otherwise. |
| /// The output arguments are valid if and only if true is returned. |
| virtual bool getNextRewritableSource(RegSubRegPair &Src, |
| RegSubRegPair &Dst) = 0; |
| |
| /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. |
| /// \return True if the rewriting was possible, false otherwise. |
| virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0; |
| }; |
| |
| /// Rewriter for COPY instructions. |
| class CopyRewriter : public Rewriter { |
| public: |
| CopyRewriter(MachineInstr &MI) : Rewriter(MI) { |
| assert(MI.isCopy() && "Expected copy instruction"); |
| } |
| virtual ~CopyRewriter() = default; |
| |
| bool getNextRewritableSource(RegSubRegPair &Src, |
| RegSubRegPair &Dst) override { |
| // CurrentSrcIdx > 0 means this function has already been called. |
| if (CurrentSrcIdx > 0) |
| return false; |
| // This is the first call to getNextRewritableSource. |
| // Move the CurrentSrcIdx to remember that we made that call. |
| CurrentSrcIdx = 1; |
| // The rewritable source is the argument. |
| const MachineOperand &MOSrc = CopyLike.getOperand(1); |
| Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); |
| // What we track are the alternative sources of the definition. |
| const MachineOperand &MODef = CopyLike.getOperand(0); |
| Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| return true; |
| } |
| |
| bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { |
| if (CurrentSrcIdx != 1) |
| return false; |
| MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); |
| MOSrc.setReg(NewReg); |
| MOSrc.setSubReg(NewSubReg); |
| return true; |
| } |
| }; |
| |
| /// Helper class to rewrite uncoalescable copy like instructions |
| /// into new COPY (coalescable friendly) instructions. |
| class UncoalescableRewriter : public Rewriter { |
| unsigned NumDefs; ///< Number of defs in the bitcast. |
| |
| public: |
| UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { |
| NumDefs = MI.getDesc().getNumDefs(); |
| } |
| |
| /// \see See Rewriter::getNextRewritableSource() |
| /// All such sources need to be considered rewritable in order to |
| /// rewrite a uncoalescable copy-like instruction. This method return |
| /// each definition that must be checked if rewritable. |
| bool getNextRewritableSource(RegSubRegPair &Src, |
| RegSubRegPair &Dst) override { |
| // Find the next non-dead definition and continue from there. |
| if (CurrentSrcIdx == NumDefs) |
| return false; |
| |
| while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { |
| ++CurrentSrcIdx; |
| if (CurrentSrcIdx == NumDefs) |
| return false; |
| } |
| |
| // What we track are the alternative sources of the definition. |
| Src = RegSubRegPair(0, 0); |
| const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); |
| Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| |
| CurrentSrcIdx++; |
| return true; |
| } |
| |
| bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { |
| return false; |
| } |
| }; |
| |
| /// Specialized rewriter for INSERT_SUBREG instruction. |
| class InsertSubregRewriter : public Rewriter { |
| public: |
| InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { |
| assert(MI.isInsertSubreg() && "Invalid instruction"); |
| } |
| |
| /// \see See Rewriter::getNextRewritableSource() |
| /// Here CopyLike has the following form: |
| /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. |
| /// Src1 has the same register class has dst, hence, there is |
| /// nothing to rewrite. |
| /// Src2.src2SubIdx, may not be register coalescer friendly. |
| /// Therefore, the first call to this method returns: |
| /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). |
| /// (DstReg, DstSubReg) = (dst, subIdx). |
| /// |
| /// Subsequence calls will return false. |
| bool getNextRewritableSource(RegSubRegPair &Src, |
| RegSubRegPair &Dst) override { |
| // If we already get the only source we can rewrite, return false. |
| if (CurrentSrcIdx == 2) |
| return false; |
| // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. |
| CurrentSrcIdx = 2; |
| const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); |
| Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); |
| const MachineOperand &MODef = CopyLike.getOperand(0); |
| |
| // We want to track something that is compatible with the |
| // partial definition. |
| if (MODef.getSubReg()) |
| // Bail if we have to compose sub-register indices. |
| return false; |
| Dst = RegSubRegPair(MODef.getReg(), |
| (unsigned)CopyLike.getOperand(3).getImm()); |
| return true; |
| } |
| |
| bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { |
| if (CurrentSrcIdx != 2) |
| return false; |
| // We are rewriting the inserted reg. |
| MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); |
| MO.setReg(NewReg); |
| MO.setSubReg(NewSubReg); |
| return true; |
| } |
| }; |
| |
| /// Specialized rewriter for EXTRACT_SUBREG instruction. |
| class ExtractSubregRewriter : public Rewriter { |
| const TargetInstrInfo &TII; |
| |
| public: |
| ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) |
| : Rewriter(MI), TII(TII) { |
| assert(MI.isExtractSubreg() && "Invalid instruction"); |
| } |
| |
| /// \see Rewriter::getNextRewritableSource() |
| /// Here CopyLike has the following form: |
| /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. |
| /// There is only one rewritable source: Src.subIdx, |
| /// which defines dst.dstSubIdx. |
| bool getNextRewritableSource(RegSubRegPair &Src, |
| RegSubRegPair &Dst) override { |
| // If we already get the only source we can rewrite, return false. |
| if (CurrentSrcIdx == 1) |
| return false; |
| // We are looking at v1 = EXTRACT_SUBREG v0, sub0. |
| CurrentSrcIdx = 1; |
| const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); |
| // If we have to compose sub-register indices, bail out. |
| if (MOExtractedReg.getSubReg()) |
| return false; |
| |
| Src = RegSubRegPair(MOExtractedReg.getReg(), |
| CopyLike.getOperand(2).getImm()); |
| |
| // We want to track something that is compatible with the definition. |
| const MachineOperand &MODef = CopyLike.getOperand(0); |
| Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| return true; |
| } |
| |
| bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { |
| // The only source we can rewrite is the input register. |
| if (CurrentSrcIdx != 1) |
| return false; |
| |
| CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); |
| |
| // If we find a source that does not require to extract something, |
| // rewrite the operation with a copy. |
| if (!NewSubReg) { |
| // Move the current index to an invalid position. |
| // We do not want another call to this method to be able |
| // to do any change. |
| CurrentSrcIdx = -1; |
| // Rewrite the operation as a COPY. |
| // Get rid of the sub-register index. |
| CopyLike.RemoveOperand(2); |
| // Morph the operation into a COPY. |
| CopyLike.setDesc(TII.get(TargetOpcode::COPY)); |
| return true; |
| } |
| CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); |
| return true; |
| } |
| }; |
| |
| /// Specialized rewriter for REG_SEQUENCE instruction. |
| class RegSequenceRewriter : public Rewriter { |
| public: |
| RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { |
| assert(MI.isRegSequence() && "Invalid instruction"); |
| } |
| |
| /// \see Rewriter::getNextRewritableSource() |
| /// Here CopyLike has the following form: |
| /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. |
| /// Each call will return a different source, walking all the available |
| /// source. |
| /// |
| /// The first call returns: |
| /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). |
| /// (DstReg, DstSubReg) = (dst, subIdx1). |
| /// |
| /// The second call returns: |
| /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). |
| /// (DstReg, DstSubReg) = (dst, subIdx2). |
| /// |
| /// And so on, until all the sources have been traversed, then |
| /// it returns false. |
| bool getNextRewritableSource(RegSubRegPair &Src, |
| RegSubRegPair &Dst) override { |
| // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. |
| |
| // If this is the first call, move to the first argument. |
| if (CurrentSrcIdx == 0) { |
| CurrentSrcIdx = 1; |
| } else { |
| // Otherwise, move to the next argument and check that it is valid. |
| CurrentSrcIdx += 2; |
| if (CurrentSrcIdx >= CopyLike.getNumOperands()) |
| return false; |
| } |
| const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); |
| Src.Reg = MOInsertedReg.getReg(); |
| // If we have to compose sub-register indices, bail out. |
| if ((Src.SubReg = MOInsertedReg.getSubReg())) |
| return false; |
| |
| // We want to track something that is compatible with the related |
| // partial definition. |
| Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); |
| |
| const MachineOperand &MODef = CopyLike.getOperand(0); |
| Dst.Reg = MODef.getReg(); |
| // If we have to compose sub-registers, bail. |
| return MODef.getSubReg() == 0; |
| } |
| |
| bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { |
| // We cannot rewrite out of bound operands. |
| // Moreover, rewritable sources are at odd positions. |
| if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) |
| return false; |
| |
| MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); |
| MO.setReg(NewReg); |
| MO.setSubReg(NewSubReg); |
| return true; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Get the appropriated Rewriter for \p MI. |
| /// \return A pointer to a dynamically allocated Rewriter or nullptr if no |
| /// rewriter works for \p MI. |
| static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { |
| // Handle uncoalescable copy-like instructions. |
| if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || |
| MI.isExtractSubregLike()) |
| return new UncoalescableRewriter(MI); |
| |
| switch (MI.getOpcode()) { |
| default: |
| return nullptr; |
| case TargetOpcode::COPY: |
| return new CopyRewriter(MI); |
| case TargetOpcode::INSERT_SUBREG: |
| return new InsertSubregRewriter(MI); |
| case TargetOpcode::EXTRACT_SUBREG: |
| return new ExtractSubregRewriter(MI, TII); |
| case TargetOpcode::REG_SEQUENCE: |
| return new RegSequenceRewriter(MI); |
| } |
| } |
| |
| /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find |
| /// the new source to use for rewrite. If \p HandleMultipleSources is true and |
| /// multiple sources for a given \p Def are found along the way, we found a |
| /// PHI instructions that needs to be rewritten. |
| /// TODO: HandleMultipleSources should be removed once we test PHI handling |
| /// with coalescable copies. |
| static RegSubRegPair |
| getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, |
| RegSubRegPair Def, |
| const PeepholeOptimizer::RewriteMapTy &RewriteMap, |
| bool HandleMultipleSources = true) { |
| RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); |
| while (true) { |
| ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); |
| // If there are no entries on the map, LookupSrc is the new source. |
| if (!Res.isValid()) |
| return LookupSrc; |
| |
| // There's only one source for this definition, keep searching... |
| unsigned NumSrcs = Res.getNumSources(); |
| if (NumSrcs == 1) { |
| LookupSrc.Reg = Res.getSrcReg(0); |
| LookupSrc.SubReg = Res.getSrcSubReg(0); |
| continue; |
| } |
| |
| // TODO: Remove once multiple srcs w/ coalescable copies are supported. |
| if (!HandleMultipleSources) |
| break; |
| |
| // Multiple sources, recurse into each source to find a new source |
| // for it. Then, rewrite the PHI accordingly to its new edges. |
| SmallVector<RegSubRegPair, 4> NewPHISrcs; |
| for (unsigned i = 0; i < NumSrcs; ++i) { |
| RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); |
| NewPHISrcs.push_back( |
| getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); |
| } |
| |
| // Build the new PHI node and return its def register as the new source. |
| MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); |
| MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); |
| LLVM_DEBUG(dbgs() << "-- getNewSource\n"); |
| LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); |
| LLVM_DEBUG(dbgs() << " With: " << NewPHI); |
| const MachineOperand &MODef = NewPHI.getOperand(0); |
| return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| } |
| |
| return RegSubRegPair(0, 0); |
| } |
| |
| /// Optimize generic copy instructions to avoid cross register bank copy. |
| /// The optimization looks through a chain of copies and tries to find a source |
| /// that has a compatible register class. |
| /// Two register classes are considered to be compatible if they share the same |
| /// register bank. |
| /// New copies issued by this optimization are register allocator |
| /// friendly. This optimization does not remove any copy as it may |
| /// overconstrain the register allocator, but replaces some operands |
| /// when possible. |
| /// \pre isCoalescableCopy(*MI) is true. |
| /// \return True, when \p MI has been rewritten. False otherwise. |
| bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { |
| assert(isCoalescableCopy(MI) && "Invalid argument"); |
| assert(MI.getDesc().getNumDefs() == 1 && |
| "Coalescer can understand multiple defs?!"); |
| const MachineOperand &MODef = MI.getOperand(0); |
| // Do not rewrite physical definitions. |
| if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) |
| return false; |
| |
| bool Changed = false; |
| // Get the right rewriter for the current copy. |
| std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); |
| // If none exists, bail out. |
| if (!CpyRewriter) |
| return false; |
| // Rewrite each rewritable source. |
| RegSubRegPair Src; |
| RegSubRegPair TrackPair; |
| while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { |
| // Keep track of PHI nodes and its incoming edges when looking for sources. |
| RewriteMapTy RewriteMap; |
| // Try to find a more suitable source. If we failed to do so, or get the |
| // actual source, move to the next source. |
| if (!findNextSource(TrackPair, RewriteMap)) |
| continue; |
| |
| // Get the new source to rewrite. TODO: Only enable handling of multiple |
| // sources (PHIs) once we have a motivating example and testcases for it. |
| RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, |
| /*HandleMultipleSources=*/false); |
| if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) |
| continue; |
| |
| // Rewrite source. |
| if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { |
| // We may have extended the live-range of NewSrc, account for that. |
| MRI->clearKillFlags(NewSrc.Reg); |
| Changed = true; |
| } |
| } |
| // TODO: We could have a clean-up method to tidy the instruction. |
| // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 |
| // => v0 = COPY v1 |
| // Currently we haven't seen motivating example for that and we |
| // want to avoid untested code. |
| NumRewrittenCopies += Changed; |
| return Changed; |
| } |
| |
| /// Rewrite the source found through \p Def, by using the \p RewriteMap |
| /// and create a new COPY instruction. More info about RewriteMap in |
| /// PeepholeOptimizer::findNextSource. Right now this is only used to handle |
| /// Uncoalescable copies, since they are copy like instructions that aren't |
| /// recognized by the register allocator. |
| MachineInstr & |
| PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, |
| RegSubRegPair Def, RewriteMapTy &RewriteMap) { |
| assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && |
| "We do not rewrite physical registers"); |
| |
| // Find the new source to use in the COPY rewrite. |
| RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); |
| |
| // Insert the COPY. |
| const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); |
| unsigned NewVReg = MRI->createVirtualRegister(DefRC); |
| |
| MachineInstr *NewCopy = |
| BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), |
| TII->get(TargetOpcode::COPY), NewVReg) |
| .addReg(NewSrc.Reg, 0, NewSrc.SubReg); |
| |
| if (Def.SubReg) { |
| NewCopy->getOperand(0).setSubReg(Def.SubReg); |
| NewCopy->getOperand(0).setIsUndef(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); |
| LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); |
| LLVM_DEBUG(dbgs() << " With: " << *NewCopy); |
| MRI->replaceRegWith(Def.Reg, NewVReg); |
| MRI->clearKillFlags(NewVReg); |
| |
| // We extended the lifetime of NewSrc.Reg, clear the kill flags to |
| // account for that. |
| MRI->clearKillFlags(NewSrc.Reg); |
| |
| return *NewCopy; |
| } |
| |
| /// Optimize copy-like instructions to create |
| /// register coalescer friendly instruction. |
| /// The optimization tries to kill-off the \p MI by looking |
| /// through a chain of copies to find a source that has a compatible |
| /// register class. |
| /// If such a source is found, it replace \p MI by a generic COPY |
| /// operation. |
| /// \pre isUncoalescableCopy(*MI) is true. |
| /// \return True, when \p MI has been optimized. In that case, \p MI has |
| /// been removed from its parent. |
| /// All COPY instructions created, are inserted in \p LocalMIs. |
| bool PeepholeOptimizer::optimizeUncoalescableCopy( |
| MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
| assert(isUncoalescableCopy(MI) && "Invalid argument"); |
| UncoalescableRewriter CpyRewriter(MI); |
| |
| // Rewrite each rewritable source by generating new COPYs. This works |
| // differently from optimizeCoalescableCopy since it first makes sure that all |
| // definitions can be rewritten. |
| RewriteMapTy RewriteMap; |
| RegSubRegPair Src; |
| RegSubRegPair Def; |
| SmallVector<RegSubRegPair, 4> RewritePairs; |
| while (CpyRewriter.getNextRewritableSource(Src, Def)) { |
| // If a physical register is here, this is probably for a good reason. |
| // Do not rewrite that. |
| if (TargetRegisterInfo::isPhysicalRegister(Def.Reg)) |
| return false; |
| |
| // If we do not know how to rewrite this definition, there is no point |
| // in trying to kill this instruction. |
| if (!findNextSource(Def, RewriteMap)) |
| return false; |
| |
| RewritePairs.push_back(Def); |
| } |
| |
| // The change is possible for all defs, do it. |
| for (const RegSubRegPair &Def : RewritePairs) { |
| // Rewrite the "copy" in a way the register coalescer understands. |
| MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); |
| LocalMIs.insert(&NewCopy); |
| } |
| |
| // MI is now dead. |
| MI.eraseFromParent(); |
| ++NumUncoalescableCopies; |
| return true; |
| } |
| |
| /// Check whether MI is a candidate for folding into a later instruction. |
| /// We only fold loads to virtual registers and the virtual register defined |
| /// has a single use. |
| bool PeepholeOptimizer::isLoadFoldable( |
| MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { |
| if (!MI.canFoldAsLoad() || !MI.mayLoad()) |
| return false; |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (MCID.getNumDefs() != 1) |
| return false; |
| |
| unsigned Reg = MI.getOperand(0).getReg(); |
| // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting |
| // loads. It should be checked when processing uses of the load, since |
| // uses can be removed during peephole. |
| if (!MI.getOperand(0).getSubReg() && |
| TargetRegisterInfo::isVirtualRegister(Reg) && |
| MRI->hasOneNonDBGUse(Reg)) { |
| FoldAsLoadDefCandidates.insert(Reg); |
| return true; |
| } |
| return false; |
| } |
| |
| bool PeepholeOptimizer::isMoveImmediate( |
| MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, |
| DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (!MI.isMoveImmediate()) |
| return false; |
| if (MCID.getNumDefs() != 1) |
| return false; |
| unsigned Reg = MI.getOperand(0).getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| ImmDefMIs.insert(std::make_pair(Reg, &MI)); |
| ImmDefRegs.insert(Reg); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Try folding register operands that are defined by move immediate |
| /// instructions, i.e. a trivial constant folding optimization, if |
| /// and only if the def and use are in the same BB. |
| bool PeepholeOptimizer::foldImmediate(MachineInstr &MI, |
| SmallSet<unsigned, 4> &ImmDefRegs, |
| DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { |
| for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.isDef()) |
| continue; |
| // Ignore dead implicit defs. |
| if (MO.isImplicit() && MO.isDead()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| if (ImmDefRegs.count(Reg) == 0) |
| continue; |
| DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); |
| assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); |
| if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { |
| ++NumImmFold; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // FIXME: This is very simple and misses some cases which should be handled when |
| // motivating examples are found. |
| // |
| // The copy rewriting logic should look at uses as well as defs and be able to |
| // eliminate copies across blocks. |
| // |
| // Later copies that are subregister extracts will also not be eliminated since |
| // only the first copy is considered. |
| // |
| // e.g. |
| // %1 = COPY %0 |
| // %2 = COPY %0:sub1 |
| // |
| // Should replace %2 uses with %1:sub1 |
| bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI, |
| SmallSet<unsigned, 4> &CopySrcRegs, |
| DenseMap<unsigned, MachineInstr *> &CopyMIs) { |
| assert(MI.isCopy() && "expected a COPY machine instruction"); |
| |
| unsigned SrcReg = MI.getOperand(1).getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) |
| return false; |
| |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DstReg)) |
| return false; |
| |
| if (CopySrcRegs.insert(SrcReg).second) { |
| // First copy of this reg seen. |
| CopyMIs.insert(std::make_pair(SrcReg, &MI)); |
| return false; |
| } |
| |
| MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; |
| |
| unsigned SrcSubReg = MI.getOperand(1).getSubReg(); |
| unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); |
| |
| // Can't replace different subregister extracts. |
| if (SrcSubReg != PrevSrcSubReg) |
| return false; |
| |
| unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); |
| |
| // Only replace if the copy register class is the same. |
| // |
| // TODO: If we have multiple copies to different register classes, we may want |
| // to track multiple copies of the same source register. |
| if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) |
| return false; |
| |
| MRI->replaceRegWith(DstReg, PrevDstReg); |
| |
| // Lifetime of the previous copy has been extended. |
| MRI->clearKillFlags(PrevDstReg); |
| return true; |
| } |
| |
| bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { |
| return TargetRegisterInfo::isPhysicalRegister(Reg) && |
| !MRI->isAllocatable(Reg); |
| } |
| |
| bool PeepholeOptimizer::foldRedundantNAPhysCopy( |
| MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { |
| assert(MI.isCopy() && "expected a COPY machine instruction"); |
| |
| if (DisableNAPhysCopyOpt) |
| return false; |
| |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| unsigned SrcReg = MI.getOperand(1).getReg(); |
| if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { |
| // %vreg = COPY %physreg |
| // Avoid using a datastructure which can track multiple live non-allocatable |
| // phys->virt copies since LLVM doesn't seem to do this. |
| NAPhysToVirtMIs.insert({SrcReg, &MI}); |
| return false; |
| } |
| |
| if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) |
| return false; |
| |
| // %physreg = COPY %vreg |
| auto PrevCopy = NAPhysToVirtMIs.find(DstReg); |
| if (PrevCopy == NAPhysToVirtMIs.end()) { |
| // We can't remove the copy: there was an intervening clobber of the |
| // non-allocatable physical register after the copy to virtual. |
| LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " |
| << MI); |
| return false; |
| } |
| |
| unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg(); |
| if (PrevDstReg == SrcReg) { |
| // Remove the virt->phys copy: we saw the virtual register definition, and |
| // the non-allocatable physical register's state hasn't changed since then. |
| LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); |
| ++NumNAPhysCopies; |
| return true; |
| } |
| |
| // Potential missed optimization opportunity: we saw a different virtual |
| // register get a copy of the non-allocatable physical register, and we only |
| // track one such copy. Avoid getting confused by this new non-allocatable |
| // physical register definition, and remove it from the tracked copies. |
| LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); |
| NAPhysToVirtMIs.erase(PrevCopy); |
| return false; |
| } |
| |
| /// \bried Returns true if \p MO is a virtual register operand. |
| static bool isVirtualRegisterOperand(MachineOperand &MO) { |
| if (!MO.isReg()) |
| return false; |
| return TargetRegisterInfo::isVirtualRegister(MO.getReg()); |
| } |
| |
| bool PeepholeOptimizer::findTargetRecurrence( |
| unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs, |
| RecurrenceCycle &RC) { |
| // Recurrence found if Reg is in TargetRegs. |
| if (TargetRegs.count(Reg)) |
| return true; |
| |
| // TODO: Curerntly, we only allow the last instruction of the recurrence |
| // cycle (the instruction that feeds the PHI instruction) to have more than |
| // one uses to guarantee that commuting operands does not tie registers |
| // with overlapping live range. Once we have actual live range info of |
| // each register, this constraint can be relaxed. |
| if (!MRI->hasOneNonDBGUse(Reg)) |
| return false; |
| |
| // Give up if the reccurrence chain length is longer than the limit. |
| if (RC.size() >= MaxRecurrenceChain) |
| return false; |
| |
| MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); |
| unsigned Idx = MI.findRegisterUseOperandIdx(Reg); |
| |
| // Only interested in recurrences whose instructions have only one def, which |
| // is a virtual register. |
| if (MI.getDesc().getNumDefs() != 1) |
| return false; |
| |
| MachineOperand &DefOp = MI.getOperand(0); |
| if (!isVirtualRegisterOperand(DefOp)) |
| return false; |
| |
| // Check if def operand of MI is tied to any use operand. We are only |
| // interested in the case that all the instructions in the recurrence chain |
| // have there def operand tied with one of the use operand. |
| unsigned TiedUseIdx; |
| if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) |
| return false; |
| |
| if (Idx == TiedUseIdx) { |
| RC.push_back(RecurrenceInstr(&MI)); |
| return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); |
| } else { |
| // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. |
| unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; |
| if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { |
| RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); |
| return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Phi instructions will eventually be lowered to copy instructions. |
| /// If phi is in a loop header, a recurrence may formulated around the source |
| /// and destination of the phi. For such case commuting operands of the |
| /// instructions in the recurrence may enable coalescing of the copy instruction |
| /// generated from the phi. For example, if there is a recurrence of |
| /// |
| /// LoopHeader: |
| /// %1 = phi(%0, %100) |
| /// LoopLatch: |
| /// %0<def, tied1> = ADD %2<def, tied0>, %1 |
| /// |
| /// , the fact that %0 and %2 are in the same tied operands set makes |
| /// the coalescing of copy instruction generated from the phi in |
| /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and |
| /// %2 have overlapping live range. This introduces additional move |
| /// instruction to the final assembly. However, if we commute %2 and |
| /// %1 of ADD instruction, the redundant move instruction can be |
| /// avoided. |
| bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { |
| SmallSet<unsigned, 2> TargetRegs; |
| for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { |
| MachineOperand &MO = PHI.getOperand(Idx); |
| assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); |
| TargetRegs.insert(MO.getReg()); |
| } |
| |
| bool Changed = false; |
| RecurrenceCycle RC; |
| if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { |
| // Commutes operands of instructions in RC if necessary so that the copy to |
| // be generated from PHI can be coalesced. |
| LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); |
| for (auto &RI : RC) { |
| LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); |
| auto CP = RI.getCommutePair(); |
| if (CP) { |
| Changed = true; |
| TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, |
| (*CP).second); |
| LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); |
| LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); |
| |
| if (DisablePeephole) |
| return false; |
| |
| TII = MF.getSubtarget().getInstrInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| |
| bool Changed = false; |
| |
| for (MachineBasicBlock &MBB : MF) { |
| bool SeenMoveImm = false; |
| |
| // During this forward scan, at some point it needs to answer the question |
| // "given a pointer to an MI in the current BB, is it located before or |
| // after the current instruction". |
| // To perform this, the following set keeps track of the MIs already seen |
| // during the scan, if a MI is not in the set, it is assumed to be located |
| // after. Newly created MIs have to be inserted in the set as well. |
| SmallPtrSet<MachineInstr*, 16> LocalMIs; |
| SmallSet<unsigned, 4> ImmDefRegs; |
| DenseMap<unsigned, MachineInstr*> ImmDefMIs; |
| SmallSet<unsigned, 16> FoldAsLoadDefCandidates; |
| |
| // Track when a non-allocatable physical register is copied to a virtual |
| // register so that useless moves can be removed. |
| // |
| // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg` |
| // without any intervening re-definition of %physreg. |
| DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; |
| |
| // Set of virtual registers that are copied from. |
| SmallSet<unsigned, 4> CopySrcRegs; |
| DenseMap<unsigned, MachineInstr *> CopySrcMIs; |
| |
| bool IsLoopHeader = MLI->isLoopHeader(&MBB); |
| |
| for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); |
| MII != MIE; ) { |
| MachineInstr *MI = &*MII; |
| // We may be erasing MI below, increment MII now. |
| ++MII; |
| LocalMIs.insert(MI); |
| |
| // Skip debug instructions. They should not affect this peephole optimization. |
| if (MI->isDebugInstr()) |
| continue; |
| |
| if (MI->isPosition()) |
| continue; |
| |
| if (IsLoopHeader && MI->isPHI()) { |
| if (optimizeRecurrence(*MI)) { |
| Changed = true; |
| continue; |
| } |
| } |
| |
| if (!MI->isCopy()) { |
| for (const MachineOperand &MO : MI->operands()) { |
| // Visit all operands: definitions can be implicit or explicit. |
| if (MO.isReg()) { |
| unsigned Reg = MO.getReg(); |
| if (MO.isDef() && isNAPhysCopy(Reg)) { |
| const auto &Def = NAPhysToVirtMIs.find(Reg); |
| if (Def != NAPhysToVirtMIs.end()) { |
| // A new definition of the non-allocatable physical register |
| // invalidates previous copies. |
| LLVM_DEBUG(dbgs() |
| << "NAPhysCopy: invalidating because of " << *MI); |
| NAPhysToVirtMIs.erase(Def); |
| } |
| } |
| } else if (MO.isRegMask()) { |
| const uint32_t *RegMask = MO.getRegMask(); |
| for (auto &RegMI : NAPhysToVirtMIs) { |
| unsigned Def = RegMI.first; |
| if (MachineOperand::clobbersPhysReg(RegMask, Def)) { |
| LLVM_DEBUG(dbgs() |
| << "NAPhysCopy: invalidating because of " << *MI); |
| NAPhysToVirtMIs.erase(Def); |
| } |
| } |
| } |
| } |
| } |
| |
| if (MI->isImplicitDef() || MI->isKill()) |
| continue; |
| |
| if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { |
| // Blow away all non-allocatable physical registers knowledge since we |
| // don't know what's correct anymore. |
| // |
| // FIXME: handle explicit asm clobbers. |
| LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " |
| << *MI); |
| NAPhysToVirtMIs.clear(); |
| } |
| |
| if ((isUncoalescableCopy(*MI) && |
| optimizeUncoalescableCopy(*MI, LocalMIs)) || |
| (MI->isCompare() && optimizeCmpInstr(*MI)) || |
| (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { |
| // MI is deleted. |
| LocalMIs.erase(MI); |
| Changed = true; |
| continue; |
| } |
| |
| if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { |
| Changed = true; |
| continue; |
| } |
| |
| if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { |
| // MI is just rewritten. |
| Changed = true; |
| continue; |
| } |
| |
| if (MI->isCopy() && |
| (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) || |
| foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { |
| LocalMIs.erase(MI); |
| MI->eraseFromParent(); |
| Changed = true; |
| continue; |
| } |
| |
| if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { |
| SeenMoveImm = true; |
| } else { |
| Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); |
| // optimizeExtInstr might have created new instructions after MI |
| // and before the already incremented MII. Adjust MII so that the |
| // next iteration sees the new instructions. |
| MII = MI; |
| ++MII; |
| if (SeenMoveImm) |
| Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); |
| } |
| |
| // Check whether MI is a load candidate for folding into a later |
| // instruction. If MI is not a candidate, check whether we can fold an |
| // earlier load into MI. |
| if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && |
| !FoldAsLoadDefCandidates.empty()) { |
| |
| // We visit each operand even after successfully folding a previous |
| // one. This allows us to fold multiple loads into a single |
| // instruction. We do assume that optimizeLoadInstr doesn't insert |
| // foldable uses earlier in the argument list. Since we don't restart |
| // iteration, we'd miss such cases. |
| const MCInstrDesc &MIDesc = MI->getDesc(); |
| for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); |
| ++i) { |
| const MachineOperand &MOp = MI->getOperand(i); |
| if (!MOp.isReg()) |
| continue; |
| unsigned FoldAsLoadDefReg = MOp.getReg(); |
| if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { |
| // We need to fold load after optimizeCmpInstr, since |
| // optimizeCmpInstr can enable folding by converting SUB to CMP. |
| // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and |
| // we need it for markUsesInDebugValueAsUndef(). |
| unsigned FoldedReg = FoldAsLoadDefReg; |
| MachineInstr *DefMI = nullptr; |
| if (MachineInstr *FoldMI = |
| TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { |
| // Update LocalMIs since we replaced MI with FoldMI and deleted |
| // DefMI. |
| LLVM_DEBUG(dbgs() << "Replacing: " << *MI); |
| LLVM_DEBUG(dbgs() << " With: " << *FoldMI); |
| LocalMIs.erase(MI); |
| LocalMIs.erase(DefMI); |
| LocalMIs.insert(FoldMI); |
| MI->eraseFromParent(); |
| DefMI->eraseFromParent(); |
| MRI->markUsesInDebugValueAsUndef(FoldedReg); |
| FoldAsLoadDefCandidates.erase(FoldedReg); |
| ++NumLoadFold; |
| |
| // MI is replaced with FoldMI so we can continue trying to fold |
| Changed = true; |
| MI = FoldMI; |
| } |
| } |
| } |
| } |
| |
| // If we run into an instruction we can't fold across, discard |
| // the load candidates. Note: We might be able to fold *into* this |
| // instruction, so this needs to be after the folding logic. |
| if (MI->isLoadFoldBarrier()) { |
| LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); |
| FoldAsLoadDefCandidates.clear(); |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceFromCopy() { |
| assert(Def->isCopy() && "Invalid definition"); |
| // Copy instruction are supposed to be: Def = Src. |
| // If someone breaks this assumption, bad things will happen everywhere. |
| assert(Def->getNumOperands() == 2 && "Invalid number of operands"); |
| |
| if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) |
| // If we look for a different subreg, it means we want a subreg of src. |
| // Bails as we do not support composing subregs yet. |
| return ValueTrackerResult(); |
| // Otherwise, we want the whole source. |
| const MachineOperand &Src = Def->getOperand(1); |
| if (Src.isUndef()) |
| return ValueTrackerResult(); |
| return ValueTrackerResult(Src.getReg(), Src.getSubReg()); |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { |
| assert(Def->isBitcast() && "Invalid definition"); |
| |
| // Bail if there are effects that a plain copy will not expose. |
| if (Def->hasUnmodeledSideEffects()) |
| return ValueTrackerResult(); |
| |
| // Bitcasts with more than one def are not supported. |
| if (Def->getDesc().getNumDefs() != 1) |
| return ValueTrackerResult(); |
| const MachineOperand DefOp = Def->getOperand(DefIdx); |
| if (DefOp.getSubReg() != DefSubReg) |
| // If we look for a different subreg, it means we want a subreg of the src. |
| // Bails as we do not support composing subregs yet. |
| return ValueTrackerResult(); |
| |
| unsigned SrcIdx = Def->getNumOperands(); |
| for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; |
| ++OpIdx) { |
| const MachineOperand &MO = Def->getOperand(OpIdx); |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| // Ignore dead implicit defs. |
| if (MO.isImplicit() && MO.isDead()) |
| continue; |
| assert(!MO.isDef() && "We should have skipped all the definitions by now"); |
| if (SrcIdx != EndOpIdx) |
| // Multiple sources? |
| return ValueTrackerResult(); |
| SrcIdx = OpIdx; |
| } |
| |
| // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY |
| // will break the assumed guarantees for the upper bits. |
| for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { |
| if (UseMI.isSubregToReg()) |
| return ValueTrackerResult(); |
| } |
| |
| const MachineOperand &Src = Def->getOperand(SrcIdx); |
| if (Src.isUndef()) |
| return ValueTrackerResult(); |
| return ValueTrackerResult(Src.getReg(), Src.getSubReg()); |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { |
| assert((Def->isRegSequence() || Def->isRegSequenceLike()) && |
| "Invalid definition"); |
| |
| if (Def->getOperand(DefIdx).getSubReg()) |
| // If we are composing subregs, bail out. |
| // The case we are checking is Def.<subreg> = REG_SEQUENCE. |
| // This should almost never happen as the SSA property is tracked at |
| // the register level (as opposed to the subreg level). |
| // I.e., |
| // Def.sub0 = |
| // Def.sub1 = |
| // is a valid SSA representation for Def.sub0 and Def.sub1, but not for |
| // Def. Thus, it must not be generated. |
| // However, some code could theoretically generates a single |
| // Def.sub0 (i.e, not defining the other subregs) and we would |
| // have this case. |
| // If we can ascertain (or force) that this never happens, we could |
| // turn that into an assertion. |
| return ValueTrackerResult(); |
| |
| if (!TII) |
| // We could handle the REG_SEQUENCE here, but we do not want to |
| // duplicate the code from the generic TII. |
| return ValueTrackerResult(); |
| |
| SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; |
| if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) |
| return ValueTrackerResult(); |
| |
| // We are looking at: |
| // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... |
| // Check if one of the operand defines the subreg we are interested in. |
| for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { |
| if (RegSeqInput.SubIdx == DefSubReg) { |
| if (RegSeqInput.SubReg) |
| // Bail if we have to compose sub registers. |
| return ValueTrackerResult(); |
| |
| return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); |
| } |
| } |
| |
| // If the subreg we are tracking is super-defined by another subreg, |
| // we could follow this value. However, this would require to compose |
| // the subreg and we do not do that for now. |
| return ValueTrackerResult(); |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { |
| assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && |
| "Invalid definition"); |
| |
| if (Def->getOperand(DefIdx).getSubReg()) |
| // If we are composing subreg, bail out. |
| // Same remark as getNextSourceFromRegSequence. |
| // I.e., this may be turned into an assert. |
| return ValueTrackerResult(); |
| |
| if (!TII) |
| // We could handle the REG_SEQUENCE here, but we do not want to |
| // duplicate the code from the generic TII. |
| return ValueTrackerResult(); |
| |
| RegSubRegPair BaseReg; |
| RegSubRegPairAndIdx InsertedReg; |
| if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) |
| return ValueTrackerResult(); |
| |
| // We are looking at: |
| // Def = INSERT_SUBREG v0, v1, sub1 |
| // There are two cases: |
| // 1. DefSubReg == sub1, get v1. |
| // 2. DefSubReg != sub1, the value may be available through v0. |
| |
| // #1 Check if the inserted register matches the required sub index. |
| if (InsertedReg.SubIdx == DefSubReg) { |
| return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); |
| } |
| // #2 Otherwise, if the sub register we are looking for is not partial |
| // defined by the inserted element, we can look through the main |
| // register (v0). |
| const MachineOperand &MODef = Def->getOperand(DefIdx); |
| // If the result register (Def) and the base register (v0) do not |
| // have the same register class or if we have to compose |
| // subregisters, bail out. |
| if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || |
| BaseReg.SubReg) |
| return ValueTrackerResult(); |
| |
| // Get the TRI and check if the inserted sub-register overlaps with the |
| // sub-register we are tracking. |
| const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| if (!TRI || |
| !(TRI->getSubRegIndexLaneMask(DefSubReg) & |
| TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) |
| return ValueTrackerResult(); |
| // At this point, the value is available in v0 via the same subreg |
| // we used for Def. |
| return ValueTrackerResult(BaseReg.Reg, DefSubReg); |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { |
| assert((Def->isExtractSubreg() || |
| Def->isExtractSubregLike()) && "Invalid definition"); |
| // We are looking at: |
| // Def = EXTRACT_SUBREG v0, sub0 |
| |
| // Bail if we have to compose sub registers. |
| // Indeed, if DefSubReg != 0, we would have to compose it with sub0. |
| if (DefSubReg) |
| return ValueTrackerResult(); |
| |
| if (!TII) |
| // We could handle the EXTRACT_SUBREG here, but we do not want to |
| // duplicate the code from the generic TII. |
| return ValueTrackerResult(); |
| |
| RegSubRegPairAndIdx ExtractSubregInputReg; |
| if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) |
| return ValueTrackerResult(); |
| |
| // Bail if we have to compose sub registers. |
| // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. |
| if (ExtractSubregInputReg.SubReg) |
| return ValueTrackerResult(); |
| // Otherwise, the value is available in the v0.sub0. |
| return ValueTrackerResult(ExtractSubregInputReg.Reg, |
| ExtractSubregInputReg.SubIdx); |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { |
| assert(Def->isSubregToReg() && "Invalid definition"); |
| // We are looking at: |
| // Def = SUBREG_TO_REG Imm, v0, sub0 |
| |
| // Bail if we have to compose sub registers. |
| // If DefSubReg != sub0, we would have to check that all the bits |
| // we track are included in sub0 and if yes, we would have to |
| // determine the right subreg in v0. |
| if (DefSubReg != Def->getOperand(3).getImm()) |
| return ValueTrackerResult(); |
| // Bail if we have to compose sub registers. |
| // Likewise, if v0.subreg != 0, we would have to compose it with sub0. |
| if (Def->getOperand(2).getSubReg()) |
| return ValueTrackerResult(); |
| |
| return ValueTrackerResult(Def->getOperand(2).getReg(), |
| Def->getOperand(3).getImm()); |
| } |
| |
| /// Explore each PHI incoming operand and return its sources. |
| ValueTrackerResult ValueTracker::getNextSourceFromPHI() { |
| assert(Def->isPHI() && "Invalid definition"); |
| ValueTrackerResult Res; |
| |
| // If we look for a different subreg, bail as we do not support composing |
| // subregs yet. |
| if (Def->getOperand(0).getSubReg() != DefSubReg) |
| return ValueTrackerResult(); |
| |
| // Return all register sources for PHI instructions. |
| for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { |
| const MachineOperand &MO = Def->getOperand(i); |
| assert(MO.isReg() && "Invalid PHI instruction"); |
| // We have no code to deal with undef operands. They shouldn't happen in |
| // normal programs anyway. |
| if (MO.isUndef()) |
| return ValueTrackerResult(); |
| Res.addSource(MO.getReg(), MO.getSubReg()); |
| } |
| |
| return Res; |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSourceImpl() { |
| assert(Def && "This method needs a valid definition"); |
| |
| assert(((Def->getOperand(DefIdx).isDef() && |
| (DefIdx < Def->getDesc().getNumDefs() || |
| Def->getDesc().isVariadic())) || |
| Def->getOperand(DefIdx).isImplicit()) && |
| "Invalid DefIdx"); |
| if (Def->isCopy()) |
| return getNextSourceFromCopy(); |
| if (Def->isBitcast()) |
| return getNextSourceFromBitcast(); |
| // All the remaining cases involve "complex" instructions. |
| // Bail if we did not ask for the advanced tracking. |
| if (DisableAdvCopyOpt) |
| return ValueTrackerResult(); |
| if (Def->isRegSequence() || Def->isRegSequenceLike()) |
| return getNextSourceFromRegSequence(); |
| if (Def->isInsertSubreg() || Def->isInsertSubregLike()) |
| return getNextSourceFromInsertSubreg(); |
| if (Def->isExtractSubreg() || Def->isExtractSubregLike()) |
| return getNextSourceFromExtractSubreg(); |
| if (Def->isSubregToReg()) |
| return getNextSourceFromSubregToReg(); |
| if (Def->isPHI()) |
| return getNextSourceFromPHI(); |
| return ValueTrackerResult(); |
| } |
| |
| ValueTrackerResult ValueTracker::getNextSource() { |
| // If we reach a point where we cannot move up in the use-def chain, |
| // there is nothing we can get. |
| if (!Def) |
| return ValueTrackerResult(); |
| |
| ValueTrackerResult Res = getNextSourceImpl(); |
| if (Res.isValid()) { |
| // Update definition, definition index, and subregister for the |
| // next call of getNextSource. |
| // Update the current register. |
| bool OneRegSrc = Res.getNumSources() == 1; |
| if (OneRegSrc) |
| Reg = Res.getSrcReg(0); |
| // Update the result before moving up in the use-def chain |
| // with the instruction containing the last found sources. |
| Res.setInst(Def); |
| |
| // If we can still move up in the use-def chain, move to the next |
| // definition. |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { |
| MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); |
| if (DI != MRI.def_end()) { |
| Def = DI->getParent(); |
| DefIdx = DI.getOperandNo(); |
| DefSubReg = Res.getSrcSubReg(0); |
| } else { |
| Def = nullptr; |
| } |
| return Res; |
| } |
| } |
| // If we end up here, this means we will not be able to find another source |
| // for the next iteration. Make sure any new call to getNextSource bails out |
| // early by cutting the use-def chain. |
| Def = nullptr; |
| return Res; |
| } |