|  | //===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the SparseBitVector class.  See the doxygen comment for | 
|  | // SparseBitVector for more details on the algorithm used. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_SPARSEBITVECTOR_H | 
|  | #define LLVM_ADT_SPARSEBITVECTOR_H | 
|  |  | 
|  | #include "llvm/ADT/ilist.h" | 
|  | #include "llvm/ADT/ilist_node.h" | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstring> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// SparseBitVector is an implementation of a bitvector that is sparse by only | 
|  | /// storing the elements that have non-zero bits set.  In order to make this | 
|  | /// fast for the most common cases, SparseBitVector is implemented as a linked | 
|  | /// list of SparseBitVectorElements.  We maintain a pointer to the last | 
|  | /// SparseBitVectorElement accessed (in the form of a list iterator), in order | 
|  | /// to make multiple in-order test/set constant time after the first one is | 
|  | /// executed.  Note that using vectors to store SparseBitVectorElement's does | 
|  | /// not work out very well because it causes insertion in the middle to take | 
|  | /// enormous amounts of time with a large amount of bits.  Other structures that | 
|  | /// have better worst cases for insertion in the middle (various balanced trees, | 
|  | /// etc) do not perform as well in practice as a linked list with this iterator | 
|  | /// kept up to date.  They are also significantly more memory intensive. | 
|  |  | 
|  |  | 
|  | template <unsigned ElementSize = 128> | 
|  | struct SparseBitVectorElement | 
|  | : public ilist_node<SparseBitVectorElement<ElementSize> > { | 
|  | public: | 
|  | typedef unsigned long BitWord; | 
|  | enum { | 
|  | BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT, | 
|  | BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, | 
|  | BITS_PER_ELEMENT = ElementSize | 
|  | }; | 
|  |  | 
|  | private: | 
|  | // Index of Element in terms of where first bit starts. | 
|  | unsigned ElementIndex; | 
|  | BitWord Bits[BITWORDS_PER_ELEMENT]; | 
|  | // Needed for sentinels | 
|  | friend struct ilist_sentinel_traits<SparseBitVectorElement>; | 
|  | SparseBitVectorElement() { | 
|  | ElementIndex = ~0U; | 
|  | memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); | 
|  | } | 
|  |  | 
|  | public: | 
|  | explicit SparseBitVectorElement(unsigned Idx) { | 
|  | ElementIndex = Idx; | 
|  | memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); | 
|  | } | 
|  |  | 
|  | // Comparison. | 
|  | bool operator==(const SparseBitVectorElement &RHS) const { | 
|  | if (ElementIndex != RHS.ElementIndex) | 
|  | return false; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) | 
|  | if (Bits[i] != RHS.Bits[i]) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool operator!=(const SparseBitVectorElement &RHS) const { | 
|  | return !(*this == RHS); | 
|  | } | 
|  |  | 
|  | // Return the bits that make up word Idx in our element. | 
|  | BitWord word(unsigned Idx) const { | 
|  | assert (Idx < BITWORDS_PER_ELEMENT); | 
|  | return Bits[Idx]; | 
|  | } | 
|  |  | 
|  | unsigned index() const { | 
|  | return ElementIndex; | 
|  | } | 
|  |  | 
|  | bool empty() const { | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) | 
|  | if (Bits[i]) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void set(unsigned Idx) { | 
|  | Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); | 
|  | } | 
|  |  | 
|  | bool test_and_set (unsigned Idx) { | 
|  | bool old = test(Idx); | 
|  | if (!old) { | 
|  | set(Idx); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void reset(unsigned Idx) { | 
|  | Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); | 
|  | } | 
|  |  | 
|  | bool test(unsigned Idx) const { | 
|  | return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); | 
|  | } | 
|  |  | 
|  | unsigned count() const { | 
|  | unsigned NumBits = 0; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) | 
|  | if (sizeof(BitWord) == 4) | 
|  | NumBits += CountPopulation_32(Bits[i]); | 
|  | else if (sizeof(BitWord) == 8) | 
|  | NumBits += CountPopulation_64(Bits[i]); | 
|  | else | 
|  | assert(0 && "Unsupported!"); | 
|  | return NumBits; | 
|  | } | 
|  |  | 
|  | /// find_first - Returns the index of the first set bit. | 
|  | int find_first() const { | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) | 
|  | if (Bits[i] != 0) { | 
|  | if (sizeof(BitWord) == 4) | 
|  | return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]); | 
|  | else if (sizeof(BitWord) == 8) | 
|  | return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); | 
|  | else | 
|  | assert(0 && "Unsupported!"); | 
|  | } | 
|  | assert(0 && "Illegal empty element"); | 
|  | return 0; // Not reached | 
|  | } | 
|  |  | 
|  | /// find_next - Returns the index of the next set bit starting from the | 
|  | /// "Curr" bit. Returns -1 if the next set bit is not found. | 
|  | int find_next(unsigned Curr) const { | 
|  | if (Curr >= BITS_PER_ELEMENT) | 
|  | return -1; | 
|  |  | 
|  | unsigned WordPos = Curr / BITWORD_SIZE; | 
|  | unsigned BitPos = Curr % BITWORD_SIZE; | 
|  | BitWord Copy = Bits[WordPos]; | 
|  | assert (WordPos <= BITWORDS_PER_ELEMENT | 
|  | && "Word Position outside of element"); | 
|  |  | 
|  | // Mask off previous bits. | 
|  | Copy &= ~0L << BitPos; | 
|  |  | 
|  | if (Copy != 0) { | 
|  | if (sizeof(BitWord) == 4) | 
|  | return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy); | 
|  | else if (sizeof(BitWord) == 8) | 
|  | return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy); | 
|  | else | 
|  | assert(0 && "Unsupported!"); | 
|  | } | 
|  |  | 
|  | // Check subsequent words. | 
|  | for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) | 
|  | if (Bits[i] != 0) { | 
|  | if (sizeof(BitWord) == 4) | 
|  | return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]); | 
|  | else if (sizeof(BitWord) == 8) | 
|  | return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); | 
|  | else | 
|  | assert(0 && "Unsupported!"); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Union this element with RHS and return true if this one changed. | 
|  | bool unionWith(const SparseBitVectorElement &RHS) { | 
|  | bool changed = false; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { | 
|  | BitWord old = changed ? 0 : Bits[i]; | 
|  |  | 
|  | Bits[i] |= RHS.Bits[i]; | 
|  | if (!changed && old != Bits[i]) | 
|  | changed = true; | 
|  | } | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | // Return true if we have any bits in common with RHS | 
|  | bool intersects(const SparseBitVectorElement &RHS) const { | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { | 
|  | if (RHS.Bits[i] & Bits[i]) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Intersect this Element with RHS and return true if this one changed. | 
|  | // BecameZero is set to true if this element became all-zero bits. | 
|  | bool intersectWith(const SparseBitVectorElement &RHS, | 
|  | bool &BecameZero) { | 
|  | bool changed = false; | 
|  | bool allzero = true; | 
|  |  | 
|  | BecameZero = false; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { | 
|  | BitWord old = changed ? 0 : Bits[i]; | 
|  |  | 
|  | Bits[i] &= RHS.Bits[i]; | 
|  | if (Bits[i] != 0) | 
|  | allzero = false; | 
|  |  | 
|  | if (!changed && old != Bits[i]) | 
|  | changed = true; | 
|  | } | 
|  | BecameZero = allzero; | 
|  | return changed; | 
|  | } | 
|  | // Intersect this Element with the complement of RHS and return true if this | 
|  | // one changed.  BecameZero is set to true if this element became all-zero | 
|  | // bits. | 
|  | bool intersectWithComplement(const SparseBitVectorElement &RHS, | 
|  | bool &BecameZero) { | 
|  | bool changed = false; | 
|  | bool allzero = true; | 
|  |  | 
|  | BecameZero = false; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { | 
|  | BitWord old = changed ? 0 : Bits[i]; | 
|  |  | 
|  | Bits[i] &= ~RHS.Bits[i]; | 
|  | if (Bits[i] != 0) | 
|  | allzero = false; | 
|  |  | 
|  | if (!changed && old != Bits[i]) | 
|  | changed = true; | 
|  | } | 
|  | BecameZero = allzero; | 
|  | return changed; | 
|  | } | 
|  | // Three argument version of intersectWithComplement that intersects | 
|  | // RHS1 & ~RHS2 into this element | 
|  | void intersectWithComplement(const SparseBitVectorElement &RHS1, | 
|  | const SparseBitVectorElement &RHS2, | 
|  | bool &BecameZero) { | 
|  | bool allzero = true; | 
|  |  | 
|  | BecameZero = false; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { | 
|  | Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i]; | 
|  | if (Bits[i] != 0) | 
|  | allzero = false; | 
|  | } | 
|  | BecameZero = allzero; | 
|  | } | 
|  |  | 
|  | // Get a hash value for this element; | 
|  | uint64_t getHashValue() const { | 
|  | uint64_t HashVal = 0; | 
|  | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { | 
|  | HashVal ^= Bits[i]; | 
|  | } | 
|  | return HashVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <unsigned ElementSize = 128> | 
|  | class SparseBitVector { | 
|  | typedef ilist<SparseBitVectorElement<ElementSize> > ElementList; | 
|  | typedef typename ElementList::iterator ElementListIter; | 
|  | typedef typename ElementList::const_iterator ElementListConstIter; | 
|  | enum { | 
|  | BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE | 
|  | }; | 
|  |  | 
|  | // Pointer to our current Element. | 
|  | ElementListIter CurrElementIter; | 
|  | ElementList Elements; | 
|  |  | 
|  | // This is like std::lower_bound, except we do linear searching from the | 
|  | // current position. | 
|  | ElementListIter FindLowerBound(unsigned ElementIndex) { | 
|  |  | 
|  | if (Elements.empty()) { | 
|  | CurrElementIter = Elements.begin(); | 
|  | return Elements.begin(); | 
|  | } | 
|  |  | 
|  | // Make sure our current iterator is valid. | 
|  | if (CurrElementIter == Elements.end()) | 
|  | --CurrElementIter; | 
|  |  | 
|  | // Search from our current iterator, either backwards or forwards, | 
|  | // depending on what element we are looking for. | 
|  | ElementListIter ElementIter = CurrElementIter; | 
|  | if (CurrElementIter->index() == ElementIndex) { | 
|  | return ElementIter; | 
|  | } else if (CurrElementIter->index() > ElementIndex) { | 
|  | while (ElementIter != Elements.begin() | 
|  | && ElementIter->index() > ElementIndex) | 
|  | --ElementIter; | 
|  | } else { | 
|  | while (ElementIter != Elements.end() && | 
|  | ElementIter->index() < ElementIndex) | 
|  | ++ElementIter; | 
|  | } | 
|  | CurrElementIter = ElementIter; | 
|  | return ElementIter; | 
|  | } | 
|  |  | 
|  | // Iterator to walk set bits in the bitmap.  This iterator is a lot uglier | 
|  | // than it would be, in order to be efficient. | 
|  | class SparseBitVectorIterator { | 
|  | private: | 
|  | bool AtEnd; | 
|  |  | 
|  | const SparseBitVector<ElementSize> *BitVector; | 
|  |  | 
|  | // Current element inside of bitmap. | 
|  | ElementListConstIter Iter; | 
|  |  | 
|  | // Current bit number inside of our bitmap. | 
|  | unsigned BitNumber; | 
|  |  | 
|  | // Current word number inside of our element. | 
|  | unsigned WordNumber; | 
|  |  | 
|  | // Current bits from the element. | 
|  | typename SparseBitVectorElement<ElementSize>::BitWord Bits; | 
|  |  | 
|  | // Move our iterator to the first non-zero bit in the bitmap. | 
|  | void AdvanceToFirstNonZero() { | 
|  | if (AtEnd) | 
|  | return; | 
|  | if (BitVector->Elements.empty()) { | 
|  | AtEnd = true; | 
|  | return; | 
|  | } | 
|  | Iter = BitVector->Elements.begin(); | 
|  | BitNumber = Iter->index() * ElementSize; | 
|  | unsigned BitPos = Iter->find_first(); | 
|  | BitNumber += BitPos; | 
|  | WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; | 
|  | Bits = Iter->word(WordNumber); | 
|  | Bits >>= BitPos % BITWORD_SIZE; | 
|  | } | 
|  |  | 
|  | // Move our iterator to the next non-zero bit. | 
|  | void AdvanceToNextNonZero() { | 
|  | if (AtEnd) | 
|  | return; | 
|  |  | 
|  | while (Bits && !(Bits & 1)) { | 
|  | Bits >>= 1; | 
|  | BitNumber += 1; | 
|  | } | 
|  |  | 
|  | // See if we ran out of Bits in this word. | 
|  | if (!Bits) { | 
|  | int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ; | 
|  | // If we ran out of set bits in this element, move to next element. | 
|  | if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { | 
|  | ++Iter; | 
|  | WordNumber = 0; | 
|  |  | 
|  | // We may run out of elements in the bitmap. | 
|  | if (Iter == BitVector->Elements.end()) { | 
|  | AtEnd = true; | 
|  | return; | 
|  | } | 
|  | // Set up for next non zero word in bitmap. | 
|  | BitNumber = Iter->index() * ElementSize; | 
|  | NextSetBitNumber = Iter->find_first(); | 
|  | BitNumber += NextSetBitNumber; | 
|  | WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; | 
|  | Bits = Iter->word(WordNumber); | 
|  | Bits >>= NextSetBitNumber % BITWORD_SIZE; | 
|  | } else { | 
|  | WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; | 
|  | Bits = Iter->word(WordNumber); | 
|  | Bits >>= NextSetBitNumber % BITWORD_SIZE; | 
|  | BitNumber = Iter->index() * ElementSize; | 
|  | BitNumber += NextSetBitNumber; | 
|  | } | 
|  | } | 
|  | } | 
|  | public: | 
|  | // Preincrement. | 
|  | inline SparseBitVectorIterator& operator++() { | 
|  | ++BitNumber; | 
|  | Bits >>= 1; | 
|  | AdvanceToNextNonZero(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Postincrement. | 
|  | inline SparseBitVectorIterator operator++(int) { | 
|  | SparseBitVectorIterator tmp = *this; | 
|  | ++*this; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | // Return the current set bit number. | 
|  | unsigned operator*() const { | 
|  | return BitNumber; | 
|  | } | 
|  |  | 
|  | bool operator==(const SparseBitVectorIterator &RHS) const { | 
|  | // If they are both at the end, ignore the rest of the fields. | 
|  | if (AtEnd && RHS.AtEnd) | 
|  | return true; | 
|  | // Otherwise they are the same if they have the same bit number and | 
|  | // bitmap. | 
|  | return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; | 
|  | } | 
|  | bool operator!=(const SparseBitVectorIterator &RHS) const { | 
|  | return !(*this == RHS); | 
|  | } | 
|  | SparseBitVectorIterator(): BitVector(NULL) { | 
|  | } | 
|  |  | 
|  |  | 
|  | SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS, | 
|  | bool end = false):BitVector(RHS) { | 
|  | Iter = BitVector->Elements.begin(); | 
|  | BitNumber = 0; | 
|  | Bits = 0; | 
|  | WordNumber = ~0; | 
|  | AtEnd = end; | 
|  | AdvanceToFirstNonZero(); | 
|  | } | 
|  | }; | 
|  | public: | 
|  | typedef SparseBitVectorIterator iterator; | 
|  |  | 
|  | SparseBitVector () { | 
|  | CurrElementIter = Elements.begin (); | 
|  | } | 
|  |  | 
|  | ~SparseBitVector() { | 
|  | } | 
|  |  | 
|  | // SparseBitVector copy ctor. | 
|  | SparseBitVector(const SparseBitVector &RHS) { | 
|  | ElementListConstIter ElementIter = RHS.Elements.begin(); | 
|  | while (ElementIter != RHS.Elements.end()) { | 
|  | Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter)); | 
|  | ++ElementIter; | 
|  | } | 
|  |  | 
|  | CurrElementIter = Elements.begin (); | 
|  | } | 
|  |  | 
|  | // Clear. | 
|  | void clear() { | 
|  | Elements.clear(); | 
|  | } | 
|  |  | 
|  | // Assignment | 
|  | SparseBitVector& operator=(const SparseBitVector& RHS) { | 
|  | Elements.clear(); | 
|  |  | 
|  | ElementListConstIter ElementIter = RHS.Elements.begin(); | 
|  | while (ElementIter != RHS.Elements.end()) { | 
|  | Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter)); | 
|  | ++ElementIter; | 
|  | } | 
|  |  | 
|  | CurrElementIter = Elements.begin (); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Test, Reset, and Set a bit in the bitmap. | 
|  | bool test(unsigned Idx) { | 
|  | if (Elements.empty()) | 
|  | return false; | 
|  |  | 
|  | unsigned ElementIndex = Idx / ElementSize; | 
|  | ElementListIter ElementIter = FindLowerBound(ElementIndex); | 
|  |  | 
|  | // If we can't find an element that is supposed to contain this bit, there | 
|  | // is nothing more to do. | 
|  | if (ElementIter == Elements.end() || | 
|  | ElementIter->index() != ElementIndex) | 
|  | return false; | 
|  | return ElementIter->test(Idx % ElementSize); | 
|  | } | 
|  |  | 
|  | void reset(unsigned Idx) { | 
|  | if (Elements.empty()) | 
|  | return; | 
|  |  | 
|  | unsigned ElementIndex = Idx / ElementSize; | 
|  | ElementListIter ElementIter = FindLowerBound(ElementIndex); | 
|  |  | 
|  | // If we can't find an element that is supposed to contain this bit, there | 
|  | // is nothing more to do. | 
|  | if (ElementIter == Elements.end() || | 
|  | ElementIter->index() != ElementIndex) | 
|  | return; | 
|  | ElementIter->reset(Idx % ElementSize); | 
|  |  | 
|  | // When the element is zeroed out, delete it. | 
|  | if (ElementIter->empty()) { | 
|  | ++CurrElementIter; | 
|  | Elements.erase(ElementIter); | 
|  | } | 
|  | } | 
|  |  | 
|  | void set(unsigned Idx) { | 
|  | unsigned ElementIndex = Idx / ElementSize; | 
|  | SparseBitVectorElement<ElementSize> *Element; | 
|  | ElementListIter ElementIter; | 
|  | if (Elements.empty()) { | 
|  | Element = new SparseBitVectorElement<ElementSize>(ElementIndex); | 
|  | ElementIter = Elements.insert(Elements.end(), Element); | 
|  |  | 
|  | } else { | 
|  | ElementIter = FindLowerBound(ElementIndex); | 
|  |  | 
|  | if (ElementIter == Elements.end() || | 
|  | ElementIter->index() != ElementIndex) { | 
|  | Element = new SparseBitVectorElement<ElementSize>(ElementIndex); | 
|  | // We may have hit the beginning of our SparseBitVector, in which case, | 
|  | // we may need to insert right after this element, which requires moving | 
|  | // the current iterator forward one, because insert does insert before. | 
|  | if (ElementIter != Elements.end() && | 
|  | ElementIter->index() < ElementIndex) | 
|  | ElementIter = Elements.insert(++ElementIter, Element); | 
|  | else | 
|  | ElementIter = Elements.insert(ElementIter, Element); | 
|  | } | 
|  | } | 
|  | CurrElementIter = ElementIter; | 
|  |  | 
|  | ElementIter->set(Idx % ElementSize); | 
|  | } | 
|  |  | 
|  | bool test_and_set (unsigned Idx) { | 
|  | bool old = test(Idx); | 
|  | if (!old) { | 
|  | set(Idx); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool operator!=(const SparseBitVector &RHS) const { | 
|  | return !(*this == RHS); | 
|  | } | 
|  |  | 
|  | bool operator==(const SparseBitVector &RHS) const { | 
|  | ElementListConstIter Iter1 = Elements.begin(); | 
|  | ElementListConstIter Iter2 = RHS.Elements.begin(); | 
|  |  | 
|  | for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end(); | 
|  | ++Iter1, ++Iter2) { | 
|  | if (*Iter1 != *Iter2) | 
|  | return false; | 
|  | } | 
|  | return Iter1 == Elements.end() && Iter2 == RHS.Elements.end(); | 
|  | } | 
|  |  | 
|  | // Union our bitmap with the RHS and return true if we changed. | 
|  | bool operator|=(const SparseBitVector &RHS) { | 
|  | bool changed = false; | 
|  | ElementListIter Iter1 = Elements.begin(); | 
|  | ElementListConstIter Iter2 = RHS.Elements.begin(); | 
|  |  | 
|  | // If RHS is empty, we are done | 
|  | if (RHS.Elements.empty()) | 
|  | return false; | 
|  |  | 
|  | while (Iter2 != RHS.Elements.end()) { | 
|  | if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) { | 
|  | Elements.insert(Iter1, | 
|  | new SparseBitVectorElement<ElementSize>(*Iter2)); | 
|  | ++Iter2; | 
|  | changed = true; | 
|  | } else if (Iter1->index() == Iter2->index()) { | 
|  | changed |= Iter1->unionWith(*Iter2); | 
|  | ++Iter1; | 
|  | ++Iter2; | 
|  | } else { | 
|  | ++Iter1; | 
|  | } | 
|  | } | 
|  | CurrElementIter = Elements.begin(); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | // Intersect our bitmap with the RHS and return true if ours changed. | 
|  | bool operator&=(const SparseBitVector &RHS) { | 
|  | bool changed = false; | 
|  | ElementListIter Iter1 = Elements.begin(); | 
|  | ElementListConstIter Iter2 = RHS.Elements.begin(); | 
|  |  | 
|  | // Check if both bitmaps are empty. | 
|  | if (Elements.empty() && RHS.Elements.empty()) | 
|  | return false; | 
|  |  | 
|  | // Loop through, intersecting as we go, erasing elements when necessary. | 
|  | while (Iter2 != RHS.Elements.end()) { | 
|  | if (Iter1 == Elements.end()) { | 
|  | CurrElementIter = Elements.begin(); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | if (Iter1->index() > Iter2->index()) { | 
|  | ++Iter2; | 
|  | } else if (Iter1->index() == Iter2->index()) { | 
|  | bool BecameZero; | 
|  | changed |= Iter1->intersectWith(*Iter2, BecameZero); | 
|  | if (BecameZero) { | 
|  | ElementListIter IterTmp = Iter1; | 
|  | ++Iter1; | 
|  | Elements.erase(IterTmp); | 
|  | } else { | 
|  | ++Iter1; | 
|  | } | 
|  | ++Iter2; | 
|  | } else { | 
|  | ElementListIter IterTmp = Iter1; | 
|  | ++Iter1; | 
|  | Elements.erase(IterTmp); | 
|  | } | 
|  | } | 
|  | Elements.erase(Iter1, Elements.end()); | 
|  | CurrElementIter = Elements.begin(); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | // Intersect our bitmap with the complement of the RHS and return true | 
|  | // if ours changed. | 
|  | bool intersectWithComplement(const SparseBitVector &RHS) { | 
|  | bool changed = false; | 
|  | ElementListIter Iter1 = Elements.begin(); | 
|  | ElementListConstIter Iter2 = RHS.Elements.begin(); | 
|  |  | 
|  | // If either our bitmap or RHS is empty, we are done | 
|  | if (Elements.empty() || RHS.Elements.empty()) | 
|  | return false; | 
|  |  | 
|  | // Loop through, intersecting as we go, erasing elements when necessary. | 
|  | while (Iter2 != RHS.Elements.end()) { | 
|  | if (Iter1 == Elements.end()) { | 
|  | CurrElementIter = Elements.begin(); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | if (Iter1->index() > Iter2->index()) { | 
|  | ++Iter2; | 
|  | } else if (Iter1->index() == Iter2->index()) { | 
|  | bool BecameZero; | 
|  | changed |= Iter1->intersectWithComplement(*Iter2, BecameZero); | 
|  | if (BecameZero) { | 
|  | ElementListIter IterTmp = Iter1; | 
|  | ++Iter1; | 
|  | Elements.erase(IterTmp); | 
|  | } else { | 
|  | ++Iter1; | 
|  | } | 
|  | ++Iter2; | 
|  | } else { | 
|  | ++Iter1; | 
|  | } | 
|  | } | 
|  | CurrElementIter = Elements.begin(); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const { | 
|  | return intersectWithComplement(*RHS); | 
|  | } | 
|  |  | 
|  |  | 
|  | //  Three argument version of intersectWithComplement. | 
|  | //  Result of RHS1 & ~RHS2 is stored into this bitmap. | 
|  | void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1, | 
|  | const SparseBitVector<ElementSize> &RHS2) | 
|  | { | 
|  | Elements.clear(); | 
|  | CurrElementIter = Elements.begin(); | 
|  | ElementListConstIter Iter1 = RHS1.Elements.begin(); | 
|  | ElementListConstIter Iter2 = RHS2.Elements.begin(); | 
|  |  | 
|  | // If RHS1 is empty, we are done | 
|  | // If RHS2 is empty, we still have to copy RHS1 | 
|  | if (RHS1.Elements.empty()) | 
|  | return; | 
|  |  | 
|  | // Loop through, intersecting as we go, erasing elements when necessary. | 
|  | while (Iter2 != RHS2.Elements.end()) { | 
|  | if (Iter1 == RHS1.Elements.end()) | 
|  | return; | 
|  |  | 
|  | if (Iter1->index() > Iter2->index()) { | 
|  | ++Iter2; | 
|  | } else if (Iter1->index() == Iter2->index()) { | 
|  | bool BecameZero = false; | 
|  | SparseBitVectorElement<ElementSize> *NewElement = | 
|  | new SparseBitVectorElement<ElementSize>(Iter1->index()); | 
|  | NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero); | 
|  | if (!BecameZero) { | 
|  | Elements.push_back(NewElement); | 
|  | } | 
|  | else | 
|  | delete NewElement; | 
|  | ++Iter1; | 
|  | ++Iter2; | 
|  | } else { | 
|  | SparseBitVectorElement<ElementSize> *NewElement = | 
|  | new SparseBitVectorElement<ElementSize>(*Iter1); | 
|  | Elements.push_back(NewElement); | 
|  | ++Iter1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // copy the remaining elements | 
|  | while (Iter1 != RHS1.Elements.end()) { | 
|  | SparseBitVectorElement<ElementSize> *NewElement = | 
|  | new SparseBitVectorElement<ElementSize>(*Iter1); | 
|  | Elements.push_back(NewElement); | 
|  | ++Iter1; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1, | 
|  | const SparseBitVector<ElementSize> *RHS2) { | 
|  | intersectWithComplement(*RHS1, *RHS2); | 
|  | } | 
|  |  | 
|  | bool intersects(const SparseBitVector<ElementSize> *RHS) const { | 
|  | return intersects(*RHS); | 
|  | } | 
|  |  | 
|  | // Return true if we share any bits in common with RHS | 
|  | bool intersects(const SparseBitVector<ElementSize> &RHS) const { | 
|  | ElementListConstIter Iter1 = Elements.begin(); | 
|  | ElementListConstIter Iter2 = RHS.Elements.begin(); | 
|  |  | 
|  | // Check if both bitmaps are empty. | 
|  | if (Elements.empty() && RHS.Elements.empty()) | 
|  | return false; | 
|  |  | 
|  | // Loop through, intersecting stopping when we hit bits in common. | 
|  | while (Iter2 != RHS.Elements.end()) { | 
|  | if (Iter1 == Elements.end()) | 
|  | return false; | 
|  |  | 
|  | if (Iter1->index() > Iter2->index()) { | 
|  | ++Iter2; | 
|  | } else if (Iter1->index() == Iter2->index()) { | 
|  | if (Iter1->intersects(*Iter2)) | 
|  | return true; | 
|  | ++Iter1; | 
|  | ++Iter2; | 
|  | } else { | 
|  | ++Iter1; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true iff all bits set in this SparseBitVector are | 
|  | // also set in RHS. | 
|  | bool contains(const SparseBitVector<ElementSize> &RHS) const { | 
|  | SparseBitVector<ElementSize> Result(*this); | 
|  | Result &= RHS; | 
|  | return (Result == RHS); | 
|  | } | 
|  |  | 
|  | // Return the first set bit in the bitmap.  Return -1 if no bits are set. | 
|  | int find_first() const { | 
|  | if (Elements.empty()) | 
|  | return -1; | 
|  | const SparseBitVectorElement<ElementSize> &First = *(Elements.begin()); | 
|  | return (First.index() * ElementSize) + First.find_first(); | 
|  | } | 
|  |  | 
|  | // Return true if the SparseBitVector is empty | 
|  | bool empty() const { | 
|  | return Elements.empty(); | 
|  | } | 
|  |  | 
|  | unsigned count() const { | 
|  | unsigned BitCount = 0; | 
|  | for (ElementListConstIter Iter = Elements.begin(); | 
|  | Iter != Elements.end(); | 
|  | ++Iter) | 
|  | BitCount += Iter->count(); | 
|  |  | 
|  | return BitCount; | 
|  | } | 
|  | iterator begin() const { | 
|  | return iterator(this); | 
|  | } | 
|  |  | 
|  | iterator end() const { | 
|  | return iterator(this, true); | 
|  | } | 
|  |  | 
|  | // Get a hash value for this bitmap. | 
|  | uint64_t getHashValue() const { | 
|  | uint64_t HashVal = 0; | 
|  | for (ElementListConstIter Iter = Elements.begin(); | 
|  | Iter != Elements.end(); | 
|  | ++Iter) { | 
|  | HashVal ^= Iter->index(); | 
|  | HashVal ^= Iter->getHashValue(); | 
|  | } | 
|  | return HashVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Convenience functions to allow Or and And without dereferencing in the user | 
|  | // code. | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline bool operator |=(SparseBitVector<ElementSize> &LHS, | 
|  | const SparseBitVector<ElementSize> *RHS) { | 
|  | return LHS |= *RHS; | 
|  | } | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline bool operator |=(SparseBitVector<ElementSize> *LHS, | 
|  | const SparseBitVector<ElementSize> &RHS) { | 
|  | return LHS->operator|=(RHS); | 
|  | } | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline bool operator &=(SparseBitVector<ElementSize> *LHS, | 
|  | const SparseBitVector<ElementSize> &RHS) { | 
|  | return LHS->operator&=(RHS); | 
|  | } | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline bool operator &=(SparseBitVector<ElementSize> &LHS, | 
|  | const SparseBitVector<ElementSize> *RHS) { | 
|  | return LHS &= *RHS; | 
|  | } | 
|  |  | 
|  | // Convenience functions for infix union, intersection, difference operators. | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline SparseBitVector<ElementSize> | 
|  | operator|(const SparseBitVector<ElementSize> &LHS, | 
|  | const SparseBitVector<ElementSize> &RHS) { | 
|  | SparseBitVector<ElementSize> Result(LHS); | 
|  | Result |= RHS; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline SparseBitVector<ElementSize> | 
|  | operator&(const SparseBitVector<ElementSize> &LHS, | 
|  | const SparseBitVector<ElementSize> &RHS) { | 
|  | SparseBitVector<ElementSize> Result(LHS); | 
|  | Result &= RHS; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | template <unsigned ElementSize> | 
|  | inline SparseBitVector<ElementSize> | 
|  | operator-(const SparseBitVector<ElementSize> &LHS, | 
|  | const SparseBitVector<ElementSize> &RHS) { | 
|  | SparseBitVector<ElementSize> Result; | 
|  | Result.intersectWithComplement(LHS, RHS); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | // Dump a SparseBitVector to a stream | 
|  | template <unsigned ElementSize> | 
|  | void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) { | 
|  | out << "["; | 
|  |  | 
|  | typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(), | 
|  | be = LHS.end(); | 
|  | if (bi != be) { | 
|  | out << *bi; | 
|  | for (++bi; bi != be; ++bi) { | 
|  | out << " " << *bi; | 
|  | } | 
|  | } | 
|  | out << "]\n"; | 
|  | } | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif |