| //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Collect the sequence of machine instructions for a basic block. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/Support/DataTypes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "codegen" |
| |
| static cl::opt<bool> PrintSlotIndexes( |
| "print-slotindexes", |
| cl::desc("When printing machine IR, annotate instructions and blocks with " |
| "SlotIndexes when available"), |
| cl::init(true), cl::Hidden); |
| |
| MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) |
| : BB(B), Number(-1), xParent(&MF) { |
| Insts.Parent = this; |
| if (B) |
| IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); |
| } |
| |
| MachineBasicBlock::~MachineBasicBlock() { |
| } |
| |
| /// Return the MCSymbol for this basic block. |
| MCSymbol *MachineBasicBlock::getSymbol() const { |
| if (!CachedMCSymbol) { |
| const MachineFunction *MF = getParent(); |
| MCContext &Ctx = MF->getContext(); |
| auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); |
| assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); |
| CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + |
| Twine(MF->getFunctionNumber()) + |
| "_" + Twine(getNumber())); |
| } |
| |
| return CachedMCSymbol; |
| } |
| |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { |
| MBB.print(OS); |
| return OS; |
| } |
| |
| Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { |
| return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); |
| } |
| |
| /// When an MBB is added to an MF, we need to update the parent pointer of the |
| /// MBB, the MBB numbering, and any instructions in the MBB to be on the right |
| /// operand list for registers. |
| /// |
| /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it |
| /// gets the next available unique MBB number. If it is removed from a |
| /// MachineFunction, it goes back to being #-1. |
| void ilist_callback_traits<MachineBasicBlock>::addNodeToList( |
| MachineBasicBlock *N) { |
| MachineFunction &MF = *N->getParent(); |
| N->Number = MF.addToMBBNumbering(N); |
| |
| // Make sure the instructions have their operands in the reginfo lists. |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| for (MachineBasicBlock::instr_iterator |
| I = N->instr_begin(), E = N->instr_end(); I != E; ++I) |
| I->AddRegOperandsToUseLists(RegInfo); |
| } |
| |
| void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( |
| MachineBasicBlock *N) { |
| N->getParent()->removeFromMBBNumbering(N->Number); |
| N->Number = -1; |
| } |
| |
| /// When we add an instruction to a basic block list, we update its parent |
| /// pointer and add its operands from reg use/def lists if appropriate. |
| void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { |
| assert(!N->getParent() && "machine instruction already in a basic block"); |
| N->setParent(Parent); |
| |
| // Add the instruction's register operands to their corresponding |
| // use/def lists. |
| MachineFunction *MF = Parent->getParent(); |
| N->AddRegOperandsToUseLists(MF->getRegInfo()); |
| MF->handleInsertion(*N); |
| } |
| |
| /// When we remove an instruction from a basic block list, we update its parent |
| /// pointer and remove its operands from reg use/def lists if appropriate. |
| void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { |
| assert(N->getParent() && "machine instruction not in a basic block"); |
| |
| // Remove from the use/def lists. |
| if (MachineFunction *MF = N->getMF()) { |
| MF->handleRemoval(*N); |
| N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); |
| } |
| |
| N->setParent(nullptr); |
| } |
| |
| /// When moving a range of instructions from one MBB list to another, we need to |
| /// update the parent pointers and the use/def lists. |
| void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, |
| instr_iterator First, |
| instr_iterator Last) { |
| assert(Parent->getParent() == FromList.Parent->getParent() && |
| "cannot transfer MachineInstrs between MachineFunctions"); |
| |
| // If it's within the same BB, there's nothing to do. |
| if (this == &FromList) |
| return; |
| |
| assert(Parent != FromList.Parent && "Two lists have the same parent?"); |
| |
| // If splicing between two blocks within the same function, just update the |
| // parent pointers. |
| for (; First != Last; ++First) |
| First->setParent(Parent); |
| } |
| |
| void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { |
| assert(!MI->getParent() && "MI is still in a block!"); |
| Parent->getParent()->DeleteMachineInstr(MI); |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { |
| instr_iterator I = instr_begin(), E = instr_end(); |
| while (I != E && I->isPHI()) |
| ++I; |
| assert((I == E || !I->isInsideBundle()) && |
| "First non-phi MI cannot be inside a bundle!"); |
| return I; |
| } |
| |
| MachineBasicBlock::iterator |
| MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { |
| const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); |
| |
| iterator E = end(); |
| while (I != E && (I->isPHI() || I->isPosition() || |
| TII->isBasicBlockPrologue(*I))) |
| ++I; |
| // FIXME: This needs to change if we wish to bundle labels |
| // inside the bundle. |
| assert((I == E || !I->isInsideBundle()) && |
| "First non-phi / non-label instruction is inside a bundle!"); |
| return I; |
| } |
| |
| MachineBasicBlock::iterator |
| MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { |
| const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); |
| |
| iterator E = end(); |
| while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || |
| TII->isBasicBlockPrologue(*I))) |
| ++I; |
| // FIXME: This needs to change if we wish to bundle labels / dbg_values |
| // inside the bundle. |
| assert((I == E || !I->isInsideBundle()) && |
| "First non-phi / non-label / non-debug " |
| "instruction is inside a bundle!"); |
| return I; |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { |
| iterator B = begin(), E = end(), I = E; |
| while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) |
| ; /*noop */ |
| while (I != E && !I->isTerminator()) |
| ++I; |
| return I; |
| } |
| |
| MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { |
| instr_iterator B = instr_begin(), E = instr_end(), I = E; |
| while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) |
| ; /*noop */ |
| while (I != E && !I->isTerminator()) |
| ++I; |
| return I; |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { |
| // Skip over begin-of-block dbg_value instructions. |
| return skipDebugInstructionsForward(begin(), end()); |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { |
| // Skip over end-of-block dbg_value instructions. |
| instr_iterator B = instr_begin(), I = instr_end(); |
| while (I != B) { |
| --I; |
| // Return instruction that starts a bundle. |
| if (I->isDebugInstr() || I->isInsideBundle()) |
| continue; |
| return I; |
| } |
| // The block is all debug values. |
| return end(); |
| } |
| |
| bool MachineBasicBlock::hasEHPadSuccessor() const { |
| for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) |
| if ((*I)->isEHPad()) |
| return true; |
| return false; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { |
| print(dbgs()); |
| } |
| #endif |
| |
| bool MachineBasicBlock::isLegalToHoistInto() const { |
| if (isReturnBlock() || hasEHPadSuccessor()) |
| return false; |
| return true; |
| } |
| |
| StringRef MachineBasicBlock::getName() const { |
| if (const BasicBlock *LBB = getBasicBlock()) |
| return LBB->getName(); |
| else |
| return StringRef("", 0); |
| } |
| |
| /// Return a hopefully unique identifier for this block. |
| std::string MachineBasicBlock::getFullName() const { |
| std::string Name; |
| if (getParent()) |
| Name = (getParent()->getName() + ":").str(); |
| if (getBasicBlock()) |
| Name += getBasicBlock()->getName(); |
| else |
| Name += ("BB" + Twine(getNumber())).str(); |
| return Name; |
| } |
| |
| void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, |
| bool IsStandalone) const { |
| const MachineFunction *MF = getParent(); |
| if (!MF) { |
| OS << "Can't print out MachineBasicBlock because parent MachineFunction" |
| << " is null\n"; |
| return; |
| } |
| const Function &F = MF->getFunction(); |
| const Module *M = F.getParent(); |
| ModuleSlotTracker MST(M); |
| MST.incorporateFunction(F); |
| print(OS, MST, Indexes, IsStandalone); |
| } |
| |
| void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, |
| const SlotIndexes *Indexes, |
| bool IsStandalone) const { |
| const MachineFunction *MF = getParent(); |
| if (!MF) { |
| OS << "Can't print out MachineBasicBlock because parent MachineFunction" |
| << " is null\n"; |
| return; |
| } |
| |
| if (Indexes && PrintSlotIndexes) |
| OS << Indexes->getMBBStartIdx(this) << '\t'; |
| |
| OS << "bb." << getNumber(); |
| bool HasAttributes = false; |
| if (const auto *BB = getBasicBlock()) { |
| if (BB->hasName()) { |
| OS << "." << BB->getName(); |
| } else { |
| HasAttributes = true; |
| OS << " ("; |
| int Slot = MST.getLocalSlot(BB); |
| if (Slot == -1) |
| OS << "<ir-block badref>"; |
| else |
| OS << (Twine("%ir-block.") + Twine(Slot)).str(); |
| } |
| } |
| |
| if (hasAddressTaken()) { |
| OS << (HasAttributes ? ", " : " ("); |
| OS << "address-taken"; |
| HasAttributes = true; |
| } |
| if (isEHPad()) { |
| OS << (HasAttributes ? ", " : " ("); |
| OS << "landing-pad"; |
| HasAttributes = true; |
| } |
| if (getAlignment() != Align::None()) { |
| OS << (HasAttributes ? ", " : " ("); |
| OS << "align " << Log2(getAlignment()); |
| HasAttributes = true; |
| } |
| if (HasAttributes) |
| OS << ")"; |
| OS << ":\n"; |
| |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); |
| bool HasLineAttributes = false; |
| |
| // Print the preds of this block according to the CFG. |
| if (!pred_empty() && IsStandalone) { |
| if (Indexes) OS << '\t'; |
| // Don't indent(2), align with previous line attributes. |
| OS << "; predecessors: "; |
| for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { |
| if (I != pred_begin()) |
| OS << ", "; |
| OS << printMBBReference(**I); |
| } |
| OS << '\n'; |
| HasLineAttributes = true; |
| } |
| |
| if (!succ_empty()) { |
| if (Indexes) OS << '\t'; |
| // Print the successors |
| OS.indent(2) << "successors: "; |
| for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { |
| if (I != succ_begin()) |
| OS << ", "; |
| OS << printMBBReference(**I); |
| if (!Probs.empty()) |
| OS << '(' |
| << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) |
| << ')'; |
| } |
| if (!Probs.empty() && IsStandalone) { |
| // Print human readable probabilities as comments. |
| OS << "; "; |
| for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { |
| const BranchProbability &BP = getSuccProbability(I); |
| if (I != succ_begin()) |
| OS << ", "; |
| OS << printMBBReference(**I) << '(' |
| << format("%.2f%%", |
| rint(((double)BP.getNumerator() / BP.getDenominator()) * |
| 100.0 * 100.0) / |
| 100.0) |
| << ')'; |
| } |
| } |
| |
| OS << '\n'; |
| HasLineAttributes = true; |
| } |
| |
| if (!livein_empty() && MRI.tracksLiveness()) { |
| if (Indexes) OS << '\t'; |
| OS.indent(2) << "liveins: "; |
| |
| bool First = true; |
| for (const auto &LI : liveins()) { |
| if (!First) |
| OS << ", "; |
| First = false; |
| OS << printReg(LI.PhysReg, TRI); |
| if (!LI.LaneMask.all()) |
| OS << ":0x" << PrintLaneMask(LI.LaneMask); |
| } |
| HasLineAttributes = true; |
| } |
| |
| if (HasLineAttributes) |
| OS << '\n'; |
| |
| bool IsInBundle = false; |
| for (const MachineInstr &MI : instrs()) { |
| if (Indexes && PrintSlotIndexes) { |
| if (Indexes->hasIndex(MI)) |
| OS << Indexes->getInstructionIndex(MI); |
| OS << '\t'; |
| } |
| |
| if (IsInBundle && !MI.isInsideBundle()) { |
| OS.indent(2) << "}\n"; |
| IsInBundle = false; |
| } |
| |
| OS.indent(IsInBundle ? 4 : 2); |
| MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, |
| /*AddNewLine=*/false, &TII); |
| |
| if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { |
| OS << " {"; |
| IsInBundle = true; |
| } |
| OS << '\n'; |
| } |
| |
| if (IsInBundle) |
| OS.indent(2) << "}\n"; |
| |
| if (IrrLoopHeaderWeight && IsStandalone) { |
| if (Indexes) OS << '\t'; |
| OS.indent(2) << "; Irreducible loop header weight: " |
| << IrrLoopHeaderWeight.getValue() << '\n'; |
| } |
| } |
| |
| void MachineBasicBlock::printAsOperand(raw_ostream &OS, |
| bool /*PrintType*/) const { |
| OS << "%bb." << getNumber(); |
| } |
| |
| void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { |
| LiveInVector::iterator I = find_if( |
| LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); |
| if (I == LiveIns.end()) |
| return; |
| |
| I->LaneMask &= ~LaneMask; |
| if (I->LaneMask.none()) |
| LiveIns.erase(I); |
| } |
| |
| MachineBasicBlock::livein_iterator |
| MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { |
| // Get non-const version of iterator. |
| LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); |
| return LiveIns.erase(LI); |
| } |
| |
| bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { |
| livein_iterator I = find_if( |
| LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); |
| return I != livein_end() && (I->LaneMask & LaneMask).any(); |
| } |
| |
| void MachineBasicBlock::sortUniqueLiveIns() { |
| llvm::sort(LiveIns, |
| [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { |
| return LI0.PhysReg < LI1.PhysReg; |
| }); |
| // Liveins are sorted by physreg now we can merge their lanemasks. |
| LiveInVector::const_iterator I = LiveIns.begin(); |
| LiveInVector::const_iterator J; |
| LiveInVector::iterator Out = LiveIns.begin(); |
| for (; I != LiveIns.end(); ++Out, I = J) { |
| unsigned PhysReg = I->PhysReg; |
| LaneBitmask LaneMask = I->LaneMask; |
| for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) |
| LaneMask |= J->LaneMask; |
| Out->PhysReg = PhysReg; |
| Out->LaneMask = LaneMask; |
| } |
| LiveIns.erase(Out, LiveIns.end()); |
| } |
| |
| unsigned |
| MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { |
| assert(getParent() && "MBB must be inserted in function"); |
| assert(PhysReg.isPhysical() && "Expected physreg"); |
| assert(RC && "Register class is required"); |
| assert((isEHPad() || this == &getParent()->front()) && |
| "Only the entry block and landing pads can have physreg live ins"); |
| |
| bool LiveIn = isLiveIn(PhysReg); |
| iterator I = SkipPHIsAndLabels(begin()), E = end(); |
| MachineRegisterInfo &MRI = getParent()->getRegInfo(); |
| const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); |
| |
| // Look for an existing copy. |
| if (LiveIn) |
| for (;I != E && I->isCopy(); ++I) |
| if (I->getOperand(1).getReg() == PhysReg) { |
| Register VirtReg = I->getOperand(0).getReg(); |
| if (!MRI.constrainRegClass(VirtReg, RC)) |
| llvm_unreachable("Incompatible live-in register class."); |
| return VirtReg; |
| } |
| |
| // No luck, create a virtual register. |
| Register VirtReg = MRI.createVirtualRegister(RC); |
| BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) |
| .addReg(PhysReg, RegState::Kill); |
| if (!LiveIn) |
| addLiveIn(PhysReg); |
| return VirtReg; |
| } |
| |
| void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { |
| getParent()->splice(NewAfter->getIterator(), getIterator()); |
| } |
| |
| void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { |
| getParent()->splice(++NewBefore->getIterator(), getIterator()); |
| } |
| |
| void MachineBasicBlock::updateTerminator() { |
| const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); |
| // A block with no successors has no concerns with fall-through edges. |
| if (this->succ_empty()) |
| return; |
| |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| DebugLoc DL = findBranchDebugLoc(); |
| bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); |
| (void) B; |
| assert(!B && "UpdateTerminators requires analyzable predecessors!"); |
| if (Cond.empty()) { |
| if (TBB) { |
| // The block has an unconditional branch. If its successor is now its |
| // layout successor, delete the branch. |
| if (isLayoutSuccessor(TBB)) |
| TII->removeBranch(*this); |
| } else { |
| // The block has an unconditional fallthrough. If its successor is not its |
| // layout successor, insert a branch. First we have to locate the only |
| // non-landing-pad successor, as that is the fallthrough block. |
| for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { |
| if ((*SI)->isEHPad()) |
| continue; |
| assert(!TBB && "Found more than one non-landing-pad successor!"); |
| TBB = *SI; |
| } |
| |
| // If there is no non-landing-pad successor, the block has no fall-through |
| // edges to be concerned with. |
| if (!TBB) |
| return; |
| |
| // Finally update the unconditional successor to be reached via a branch |
| // if it would not be reached by fallthrough. |
| if (!isLayoutSuccessor(TBB)) |
| TII->insertBranch(*this, TBB, nullptr, Cond, DL); |
| } |
| return; |
| } |
| |
| if (FBB) { |
| // The block has a non-fallthrough conditional branch. If one of its |
| // successors is its layout successor, rewrite it to a fallthrough |
| // conditional branch. |
| if (isLayoutSuccessor(TBB)) { |
| if (TII->reverseBranchCondition(Cond)) |
| return; |
| TII->removeBranch(*this); |
| TII->insertBranch(*this, FBB, nullptr, Cond, DL); |
| } else if (isLayoutSuccessor(FBB)) { |
| TII->removeBranch(*this); |
| TII->insertBranch(*this, TBB, nullptr, Cond, DL); |
| } |
| return; |
| } |
| |
| // Walk through the successors and find the successor which is not a landing |
| // pad and is not the conditional branch destination (in TBB) as the |
| // fallthrough successor. |
| MachineBasicBlock *FallthroughBB = nullptr; |
| for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { |
| if ((*SI)->isEHPad() || *SI == TBB) |
| continue; |
| assert(!FallthroughBB && "Found more than one fallthrough successor."); |
| FallthroughBB = *SI; |
| } |
| |
| if (!FallthroughBB) { |
| if (canFallThrough()) { |
| // We fallthrough to the same basic block as the conditional jump targets. |
| // Remove the conditional jump, leaving unconditional fallthrough. |
| // FIXME: This does not seem like a reasonable pattern to support, but it |
| // has been seen in the wild coming out of degenerate ARM test cases. |
| TII->removeBranch(*this); |
| |
| // Finally update the unconditional successor to be reached via a branch if |
| // it would not be reached by fallthrough. |
| if (!isLayoutSuccessor(TBB)) |
| TII->insertBranch(*this, TBB, nullptr, Cond, DL); |
| return; |
| } |
| |
| // We enter here iff exactly one successor is TBB which cannot fallthrough |
| // and the rest successors if any are EHPads. In this case, we need to |
| // change the conditional branch into unconditional branch. |
| TII->removeBranch(*this); |
| Cond.clear(); |
| TII->insertBranch(*this, TBB, nullptr, Cond, DL); |
| return; |
| } |
| |
| // The block has a fallthrough conditional branch. |
| if (isLayoutSuccessor(TBB)) { |
| if (TII->reverseBranchCondition(Cond)) { |
| // We can't reverse the condition, add an unconditional branch. |
| Cond.clear(); |
| TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); |
| return; |
| } |
| TII->removeBranch(*this); |
| TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); |
| } else if (!isLayoutSuccessor(FallthroughBB)) { |
| TII->removeBranch(*this); |
| TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); |
| } |
| } |
| |
| void MachineBasicBlock::validateSuccProbs() const { |
| #ifndef NDEBUG |
| int64_t Sum = 0; |
| for (auto Prob : Probs) |
| Sum += Prob.getNumerator(); |
| // Due to precision issue, we assume that the sum of probabilities is one if |
| // the difference between the sum of their numerators and the denominator is |
| // no greater than the number of successors. |
| assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= |
| Probs.size() && |
| "The sum of successors's probabilities exceeds one."); |
| #endif // NDEBUG |
| } |
| |
| void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, |
| BranchProbability Prob) { |
| // Probability list is either empty (if successor list isn't empty, this means |
| // disabled optimization) or has the same size as successor list. |
| if (!(Probs.empty() && !Successors.empty())) |
| Probs.push_back(Prob); |
| Successors.push_back(Succ); |
| Succ->addPredecessor(this); |
| } |
| |
| void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { |
| // We need to make sure probability list is either empty or has the same size |
| // of successor list. When this function is called, we can safely delete all |
| // probability in the list. |
| Probs.clear(); |
| Successors.push_back(Succ); |
| Succ->addPredecessor(this); |
| } |
| |
| void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, |
| MachineBasicBlock *New, |
| bool NormalizeSuccProbs) { |
| succ_iterator OldI = llvm::find(successors(), Old); |
| assert(OldI != succ_end() && "Old is not a successor of this block!"); |
| assert(llvm::find(successors(), New) == succ_end() && |
| "New is already a successor of this block!"); |
| |
| // Add a new successor with equal probability as the original one. Note |
| // that we directly copy the probability using the iterator rather than |
| // getting a potentially synthetic probability computed when unknown. This |
| // preserves the probabilities as-is and then we can renormalize them and |
| // query them effectively afterward. |
| addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() |
| : *getProbabilityIterator(OldI)); |
| if (NormalizeSuccProbs) |
| normalizeSuccProbs(); |
| } |
| |
| void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, |
| bool NormalizeSuccProbs) { |
| succ_iterator I = find(Successors, Succ); |
| removeSuccessor(I, NormalizeSuccProbs); |
| } |
| |
| MachineBasicBlock::succ_iterator |
| MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { |
| assert(I != Successors.end() && "Not a current successor!"); |
| |
| // If probability list is empty it means we don't use it (disabled |
| // optimization). |
| if (!Probs.empty()) { |
| probability_iterator WI = getProbabilityIterator(I); |
| Probs.erase(WI); |
| if (NormalizeSuccProbs) |
| normalizeSuccProbs(); |
| } |
| |
| (*I)->removePredecessor(this); |
| return Successors.erase(I); |
| } |
| |
| void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| if (Old == New) |
| return; |
| |
| succ_iterator E = succ_end(); |
| succ_iterator NewI = E; |
| succ_iterator OldI = E; |
| for (succ_iterator I = succ_begin(); I != E; ++I) { |
| if (*I == Old) { |
| OldI = I; |
| if (NewI != E) |
| break; |
| } |
| if (*I == New) { |
| NewI = I; |
| if (OldI != E) |
| break; |
| } |
| } |
| assert(OldI != E && "Old is not a successor of this block"); |
| |
| // If New isn't already a successor, let it take Old's place. |
| if (NewI == E) { |
| Old->removePredecessor(this); |
| New->addPredecessor(this); |
| *OldI = New; |
| return; |
| } |
| |
| // New is already a successor. |
| // Update its probability instead of adding a duplicate edge. |
| if (!Probs.empty()) { |
| auto ProbIter = getProbabilityIterator(NewI); |
| if (!ProbIter->isUnknown()) |
| *ProbIter += *getProbabilityIterator(OldI); |
| } |
| removeSuccessor(OldI); |
| } |
| |
| void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, |
| succ_iterator I) { |
| if (Orig->Probs.empty()) |
| addSuccessor(*I, Orig->getSuccProbability(I)); |
| else |
| addSuccessorWithoutProb(*I); |
| } |
| |
| void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { |
| Predecessors.push_back(Pred); |
| } |
| |
| void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { |
| pred_iterator I = find(Predecessors, Pred); |
| assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); |
| Predecessors.erase(I); |
| } |
| |
| void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { |
| if (this == FromMBB) |
| return; |
| |
| while (!FromMBB->succ_empty()) { |
| MachineBasicBlock *Succ = *FromMBB->succ_begin(); |
| |
| // If probability list is empty it means we don't use it (disabled |
| // optimization). |
| if (!FromMBB->Probs.empty()) { |
| auto Prob = *FromMBB->Probs.begin(); |
| addSuccessor(Succ, Prob); |
| } else |
| addSuccessorWithoutProb(Succ); |
| |
| FromMBB->removeSuccessor(Succ); |
| } |
| } |
| |
| void |
| MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { |
| if (this == FromMBB) |
| return; |
| |
| while (!FromMBB->succ_empty()) { |
| MachineBasicBlock *Succ = *FromMBB->succ_begin(); |
| if (!FromMBB->Probs.empty()) { |
| auto Prob = *FromMBB->Probs.begin(); |
| addSuccessor(Succ, Prob); |
| } else |
| addSuccessorWithoutProb(Succ); |
| FromMBB->removeSuccessor(Succ); |
| |
| // Fix up any PHI nodes in the successor. |
| Succ->replacePhiUsesWith(FromMBB, this); |
| } |
| normalizeSuccProbs(); |
| } |
| |
| bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { |
| return is_contained(predecessors(), MBB); |
| } |
| |
| bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { |
| return is_contained(successors(), MBB); |
| } |
| |
| bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { |
| MachineFunction::const_iterator I(this); |
| return std::next(I) == MachineFunction::const_iterator(MBB); |
| } |
| |
| MachineBasicBlock *MachineBasicBlock::getFallThrough() { |
| MachineFunction::iterator Fallthrough = getIterator(); |
| ++Fallthrough; |
| // If FallthroughBlock is off the end of the function, it can't fall through. |
| if (Fallthrough == getParent()->end()) |
| return nullptr; |
| |
| // If FallthroughBlock isn't a successor, no fallthrough is possible. |
| if (!isSuccessor(&*Fallthrough)) |
| return nullptr; |
| |
| // Analyze the branches, if any, at the end of the block. |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); |
| if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { |
| // If we couldn't analyze the branch, examine the last instruction. |
| // If the block doesn't end in a known control barrier, assume fallthrough |
| // is possible. The isPredicated check is needed because this code can be |
| // called during IfConversion, where an instruction which is normally a |
| // Barrier is predicated and thus no longer an actual control barrier. |
| return (empty() || !back().isBarrier() || TII->isPredicated(back())) |
| ? &*Fallthrough |
| : nullptr; |
| } |
| |
| // If there is no branch, control always falls through. |
| if (!TBB) return &*Fallthrough; |
| |
| // If there is some explicit branch to the fallthrough block, it can obviously |
| // reach, even though the branch should get folded to fall through implicitly. |
| if (MachineFunction::iterator(TBB) == Fallthrough || |
| MachineFunction::iterator(FBB) == Fallthrough) |
| return &*Fallthrough; |
| |
| // If it's an unconditional branch to some block not the fall through, it |
| // doesn't fall through. |
| if (Cond.empty()) return nullptr; |
| |
| // Otherwise, if it is conditional and has no explicit false block, it falls |
| // through. |
| return (FBB == nullptr) ? &*Fallthrough : nullptr; |
| } |
| |
| bool MachineBasicBlock::canFallThrough() { |
| return getFallThrough() != nullptr; |
| } |
| |
| MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, |
| Pass &P) { |
| if (!canSplitCriticalEdge(Succ)) |
| return nullptr; |
| |
| MachineFunction *MF = getParent(); |
| DebugLoc DL; // FIXME: this is nowhere |
| |
| MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); |
| MF->insert(std::next(MachineFunction::iterator(this)), NMBB); |
| LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) |
| << " -- " << printMBBReference(*NMBB) << " -- " |
| << printMBBReference(*Succ) << '\n'); |
| |
| LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); |
| SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); |
| if (LIS) |
| LIS->insertMBBInMaps(NMBB); |
| else if (Indexes) |
| Indexes->insertMBBInMaps(NMBB); |
| |
| // On some targets like Mips, branches may kill virtual registers. Make sure |
| // that LiveVariables is properly updated after updateTerminator replaces the |
| // terminators. |
| LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); |
| |
| // Collect a list of virtual registers killed by the terminators. |
| SmallVector<unsigned, 4> KilledRegs; |
| if (LV) |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) { |
| MachineInstr *MI = &*I; |
| for (MachineInstr::mop_iterator OI = MI->operands_begin(), |
| OE = MI->operands_end(); OI != OE; ++OI) { |
| if (!OI->isReg() || OI->getReg() == 0 || |
| !OI->isUse() || !OI->isKill() || OI->isUndef()) |
| continue; |
| Register Reg = OI->getReg(); |
| if (Register::isPhysicalRegister(Reg) || |
| LV->getVarInfo(Reg).removeKill(*MI)) { |
| KilledRegs.push_back(Reg); |
| LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); |
| OI->setIsKill(false); |
| } |
| } |
| } |
| |
| SmallVector<unsigned, 4> UsedRegs; |
| if (LIS) { |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) { |
| MachineInstr *MI = &*I; |
| |
| for (MachineInstr::mop_iterator OI = MI->operands_begin(), |
| OE = MI->operands_end(); OI != OE; ++OI) { |
| if (!OI->isReg() || OI->getReg() == 0) |
| continue; |
| |
| Register Reg = OI->getReg(); |
| if (!is_contained(UsedRegs, Reg)) |
| UsedRegs.push_back(Reg); |
| } |
| } |
| } |
| |
| ReplaceUsesOfBlockWith(Succ, NMBB); |
| |
| // If updateTerminator() removes instructions, we need to remove them from |
| // SlotIndexes. |
| SmallVector<MachineInstr*, 4> Terminators; |
| if (Indexes) { |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) |
| Terminators.push_back(&*I); |
| } |
| |
| updateTerminator(); |
| |
| if (Indexes) { |
| SmallVector<MachineInstr*, 4> NewTerminators; |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) |
| NewTerminators.push_back(&*I); |
| |
| for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), |
| E = Terminators.end(); I != E; ++I) { |
| if (!is_contained(NewTerminators, *I)) |
| Indexes->removeMachineInstrFromMaps(**I); |
| } |
| } |
| |
| // Insert unconditional "jump Succ" instruction in NMBB if necessary. |
| NMBB->addSuccessor(Succ); |
| if (!NMBB->isLayoutSuccessor(Succ)) { |
| SmallVector<MachineOperand, 4> Cond; |
| const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); |
| TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); |
| |
| if (Indexes) { |
| for (MachineInstr &MI : NMBB->instrs()) { |
| // Some instructions may have been moved to NMBB by updateTerminator(), |
| // so we first remove any instruction that already has an index. |
| if (Indexes->hasIndex(MI)) |
| Indexes->removeMachineInstrFromMaps(MI); |
| Indexes->insertMachineInstrInMaps(MI); |
| } |
| } |
| } |
| |
| // Fix PHI nodes in Succ so they refer to NMBB instead of this. |
| Succ->replacePhiUsesWith(this, NMBB); |
| |
| // Inherit live-ins from the successor |
| for (const auto &LI : Succ->liveins()) |
| NMBB->addLiveIn(LI); |
| |
| // Update LiveVariables. |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| if (LV) { |
| // Restore kills of virtual registers that were killed by the terminators. |
| while (!KilledRegs.empty()) { |
| unsigned Reg = KilledRegs.pop_back_val(); |
| for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { |
| if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) |
| continue; |
| if (Register::isVirtualRegister(Reg)) |
| LV->getVarInfo(Reg).Kills.push_back(&*I); |
| LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); |
| break; |
| } |
| } |
| // Update relevant live-through information. |
| LV->addNewBlock(NMBB, this, Succ); |
| } |
| |
| if (LIS) { |
| // After splitting the edge and updating SlotIndexes, live intervals may be |
| // in one of two situations, depending on whether this block was the last in |
| // the function. If the original block was the last in the function, all |
| // live intervals will end prior to the beginning of the new split block. If |
| // the original block was not at the end of the function, all live intervals |
| // will extend to the end of the new split block. |
| |
| bool isLastMBB = |
| std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); |
| |
| SlotIndex StartIndex = Indexes->getMBBEndIdx(this); |
| SlotIndex PrevIndex = StartIndex.getPrevSlot(); |
| SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); |
| |
| // Find the registers used from NMBB in PHIs in Succ. |
| SmallSet<unsigned, 8> PHISrcRegs; |
| for (MachineBasicBlock::instr_iterator |
| I = Succ->instr_begin(), E = Succ->instr_end(); |
| I != E && I->isPHI(); ++I) { |
| for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { |
| if (I->getOperand(ni+1).getMBB() == NMBB) { |
| MachineOperand &MO = I->getOperand(ni); |
| Register Reg = MO.getReg(); |
| PHISrcRegs.insert(Reg); |
| if (MO.isUndef()) |
| continue; |
| |
| LiveInterval &LI = LIS->getInterval(Reg); |
| VNInfo *VNI = LI.getVNInfoAt(PrevIndex); |
| assert(VNI && |
| "PHI sources should be live out of their predecessors."); |
| LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); |
| } |
| } |
| } |
| |
| MachineRegisterInfo *MRI = &getParent()->getRegInfo(); |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = Register::index2VirtReg(i); |
| if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) |
| continue; |
| |
| LiveInterval &LI = LIS->getInterval(Reg); |
| if (!LI.liveAt(PrevIndex)) |
| continue; |
| |
| bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); |
| if (isLiveOut && isLastMBB) { |
| VNInfo *VNI = LI.getVNInfoAt(PrevIndex); |
| assert(VNI && "LiveInterval should have VNInfo where it is live."); |
| LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); |
| } else if (!isLiveOut && !isLastMBB) { |
| LI.removeSegment(StartIndex, EndIndex); |
| } |
| } |
| |
| // Update all intervals for registers whose uses may have been modified by |
| // updateTerminator(). |
| LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); |
| } |
| |
| if (MachineDominatorTree *MDT = |
| P.getAnalysisIfAvailable<MachineDominatorTree>()) |
| MDT->recordSplitCriticalEdge(this, Succ, NMBB); |
| |
| if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) |
| if (MachineLoop *TIL = MLI->getLoopFor(this)) { |
| // If one or the other blocks were not in a loop, the new block is not |
| // either, and thus LI doesn't need to be updated. |
| if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { |
| if (TIL == DestLoop) { |
| // Both in the same loop, the NMBB joins loop. |
| DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } else if (TIL->contains(DestLoop)) { |
| // Edge from an outer loop to an inner loop. Add to the outer loop. |
| TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } else if (DestLoop->contains(TIL)) { |
| // Edge from an inner loop to an outer loop. Add to the outer loop. |
| DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } else { |
| // Edge from two loops with no containment relation. Because these |
| // are natural loops, we know that the destination block must be the |
| // header of its loop (adding a branch into a loop elsewhere would |
| // create an irreducible loop). |
| assert(DestLoop->getHeader() == Succ && |
| "Should not create irreducible loops!"); |
| if (MachineLoop *P = DestLoop->getParentLoop()) |
| P->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } |
| } |
| } |
| |
| return NMBB; |
| } |
| |
| bool MachineBasicBlock::canSplitCriticalEdge( |
| const MachineBasicBlock *Succ) const { |
| // Splitting the critical edge to a landing pad block is non-trivial. Don't do |
| // it in this generic function. |
| if (Succ->isEHPad()) |
| return false; |
| |
| const MachineFunction *MF = getParent(); |
| |
| // Performance might be harmed on HW that implements branching using exec mask |
| // where both sides of the branches are always executed. |
| if (MF->getTarget().requiresStructuredCFG()) |
| return false; |
| |
| // We may need to update this's terminator, but we can't do that if |
| // AnalyzeBranch fails. If this uses a jump table, we won't touch it. |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| // AnalyzeBanch should modify this, since we did not allow modification. |
| if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, |
| /*AllowModify*/ false)) |
| return false; |
| |
| // Avoid bugpoint weirdness: A block may end with a conditional branch but |
| // jumps to the same MBB is either case. We have duplicate CFG edges in that |
| // case that we can't handle. Since this never happens in properly optimized |
| // code, just skip those edges. |
| if (TBB && TBB == FBB) { |
| LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " |
| << printMBBReference(*this) << '\n'); |
| return false; |
| } |
| return true; |
| } |
| |
| /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's |
| /// neighboring instructions so the bundle won't be broken by removing MI. |
| static void unbundleSingleMI(MachineInstr *MI) { |
| // Removing the first instruction in a bundle. |
| if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) |
| MI->unbundleFromSucc(); |
| // Removing the last instruction in a bundle. |
| if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) |
| MI->unbundleFromPred(); |
| // If MI is not bundled, or if it is internal to a bundle, the neighbor flags |
| // are already fine. |
| } |
| |
| MachineBasicBlock::instr_iterator |
| MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { |
| unbundleSingleMI(&*I); |
| return Insts.erase(I); |
| } |
| |
| MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { |
| unbundleSingleMI(MI); |
| MI->clearFlag(MachineInstr::BundledPred); |
| MI->clearFlag(MachineInstr::BundledSucc); |
| return Insts.remove(MI); |
| } |
| |
| MachineBasicBlock::instr_iterator |
| MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { |
| assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && |
| "Cannot insert instruction with bundle flags"); |
| // Set the bundle flags when inserting inside a bundle. |
| if (I != instr_end() && I->isBundledWithPred()) { |
| MI->setFlag(MachineInstr::BundledPred); |
| MI->setFlag(MachineInstr::BundledSucc); |
| } |
| return Insts.insert(I, MI); |
| } |
| |
| /// This method unlinks 'this' from the containing function, and returns it, but |
| /// does not delete it. |
| MachineBasicBlock *MachineBasicBlock::removeFromParent() { |
| assert(getParent() && "Not embedded in a function!"); |
| getParent()->remove(this); |
| return this; |
| } |
| |
| /// This method unlinks 'this' from the containing function, and deletes it. |
| void MachineBasicBlock::eraseFromParent() { |
| assert(getParent() && "Not embedded in a function!"); |
| getParent()->erase(this); |
| } |
| |
| /// Given a machine basic block that branched to 'Old', change the code and CFG |
| /// so that it branches to 'New' instead. |
| void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| assert(Old != New && "Cannot replace self with self!"); |
| |
| MachineBasicBlock::instr_iterator I = instr_end(); |
| while (I != instr_begin()) { |
| --I; |
| if (!I->isTerminator()) break; |
| |
| // Scan the operands of this machine instruction, replacing any uses of Old |
| // with New. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (I->getOperand(i).isMBB() && |
| I->getOperand(i).getMBB() == Old) |
| I->getOperand(i).setMBB(New); |
| } |
| |
| // Update the successor information. |
| replaceSuccessor(Old, New); |
| } |
| |
| void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| for (MachineInstr &MI : phis()) |
| for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (MO.getMBB() == Old) |
| MO.setMBB(New); |
| } |
| } |
| |
| /// Various pieces of code can cause excess edges in the CFG to be inserted. If |
| /// we have proven that MBB can only branch to DestA and DestB, remove any other |
| /// MBB successors from the CFG. DestA and DestB can be null. |
| /// |
| /// Besides DestA and DestB, retain other edges leading to LandingPads |
| /// (currently there can be only one; we don't check or require that here). |
| /// Note it is possible that DestA and/or DestB are LandingPads. |
| bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, |
| MachineBasicBlock *DestB, |
| bool IsCond) { |
| // The values of DestA and DestB frequently come from a call to the |
| // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial |
| // values from there. |
| // |
| // 1. If both DestA and DestB are null, then the block ends with no branches |
| // (it falls through to its successor). |
| // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends |
| // with only an unconditional branch. |
| // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends |
| // with a conditional branch that falls through to a successor (DestB). |
| // 4. If DestA and DestB is set and IsCond is true, then the block ends with a |
| // conditional branch followed by an unconditional branch. DestA is the |
| // 'true' destination and DestB is the 'false' destination. |
| |
| bool Changed = false; |
| |
| MachineBasicBlock *FallThru = getNextNode(); |
| |
| if (!DestA && !DestB) { |
| // Block falls through to successor. |
| DestA = FallThru; |
| DestB = FallThru; |
| } else if (DestA && !DestB) { |
| if (IsCond) |
| // Block ends in conditional jump that falls through to successor. |
| DestB = FallThru; |
| } else { |
| assert(DestA && DestB && IsCond && |
| "CFG in a bad state. Cannot correct CFG edges"); |
| } |
| |
| // Remove superfluous edges. I.e., those which aren't destinations of this |
| // basic block, duplicate edges, or landing pads. |
| SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; |
| MachineBasicBlock::succ_iterator SI = succ_begin(); |
| while (SI != succ_end()) { |
| const MachineBasicBlock *MBB = *SI; |
| if (!SeenMBBs.insert(MBB).second || |
| (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { |
| // This is a superfluous edge, remove it. |
| SI = removeSuccessor(SI); |
| Changed = true; |
| } else { |
| ++SI; |
| } |
| } |
| |
| if (Changed) |
| normalizeSuccProbs(); |
| return Changed; |
| } |
| |
| /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE |
| /// instructions. Return UnknownLoc if there is none. |
| DebugLoc |
| MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { |
| // Skip debug declarations, we don't want a DebugLoc from them. |
| MBBI = skipDebugInstructionsForward(MBBI, instr_end()); |
| if (MBBI != instr_end()) |
| return MBBI->getDebugLoc(); |
| return {}; |
| } |
| |
| /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE |
| /// instructions. Return UnknownLoc if there is none. |
| DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { |
| if (MBBI == instr_begin()) return {}; |
| // Skip debug declarations, we don't want a DebugLoc from them. |
| MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); |
| if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); |
| return {}; |
| } |
| |
| /// Find and return the merged DebugLoc of the branch instructions of the block. |
| /// Return UnknownLoc if there is none. |
| DebugLoc |
| MachineBasicBlock::findBranchDebugLoc() { |
| DebugLoc DL; |
| auto TI = getFirstTerminator(); |
| while (TI != end() && !TI->isBranch()) |
| ++TI; |
| |
| if (TI != end()) { |
| DL = TI->getDebugLoc(); |
| for (++TI ; TI != end() ; ++TI) |
| if (TI->isBranch()) |
| DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); |
| } |
| return DL; |
| } |
| |
| /// Return probability of the edge from this block to MBB. |
| BranchProbability |
| MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { |
| if (Probs.empty()) |
| return BranchProbability(1, succ_size()); |
| |
| const auto &Prob = *getProbabilityIterator(Succ); |
| if (Prob.isUnknown()) { |
| // For unknown probabilities, collect the sum of all known ones, and evenly |
| // ditribute the complemental of the sum to each unknown probability. |
| unsigned KnownProbNum = 0; |
| auto Sum = BranchProbability::getZero(); |
| for (auto &P : Probs) { |
| if (!P.isUnknown()) { |
| Sum += P; |
| KnownProbNum++; |
| } |
| } |
| return Sum.getCompl() / (Probs.size() - KnownProbNum); |
| } else |
| return Prob; |
| } |
| |
| /// Set successor probability of a given iterator. |
| void MachineBasicBlock::setSuccProbability(succ_iterator I, |
| BranchProbability Prob) { |
| assert(!Prob.isUnknown()); |
| if (Probs.empty()) |
| return; |
| *getProbabilityIterator(I) = Prob; |
| } |
| |
| /// Return probability iterator corresonding to the I successor iterator |
| MachineBasicBlock::const_probability_iterator |
| MachineBasicBlock::getProbabilityIterator( |
| MachineBasicBlock::const_succ_iterator I) const { |
| assert(Probs.size() == Successors.size() && "Async probability list!"); |
| const size_t index = std::distance(Successors.begin(), I); |
| assert(index < Probs.size() && "Not a current successor!"); |
| return Probs.begin() + index; |
| } |
| |
| /// Return probability iterator corresonding to the I successor iterator. |
| MachineBasicBlock::probability_iterator |
| MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { |
| assert(Probs.size() == Successors.size() && "Async probability list!"); |
| const size_t index = std::distance(Successors.begin(), I); |
| assert(index < Probs.size() && "Not a current successor!"); |
| return Probs.begin() + index; |
| } |
| |
| /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed |
| /// as of just before "MI". |
| /// |
| /// Search is localised to a neighborhood of |
| /// Neighborhood instructions before (searching for defs or kills) and N |
| /// instructions after (searching just for defs) MI. |
| MachineBasicBlock::LivenessQueryResult |
| MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, |
| unsigned Reg, const_iterator Before, |
| unsigned Neighborhood) const { |
| unsigned N = Neighborhood; |
| |
| // Try searching forwards from Before, looking for reads or defs. |
| const_iterator I(Before); |
| for (; I != end() && N > 0; ++I) { |
| if (I->isDebugInstr()) |
| continue; |
| |
| --N; |
| |
| PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); |
| |
| // Register is live when we read it here. |
| if (Info.Read) |
| return LQR_Live; |
| // Register is dead if we can fully overwrite or clobber it here. |
| if (Info.FullyDefined || Info.Clobbered) |
| return LQR_Dead; |
| } |
| |
| // If we reached the end, it is safe to clobber Reg at the end of a block of |
| // no successor has it live in. |
| if (I == end()) { |
| for (MachineBasicBlock *S : successors()) { |
| for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { |
| if (TRI->regsOverlap(LI.PhysReg, Reg)) |
| return LQR_Live; |
| } |
| } |
| |
| return LQR_Dead; |
| } |
| |
| |
| N = Neighborhood; |
| |
| // Start by searching backwards from Before, looking for kills, reads or defs. |
| I = const_iterator(Before); |
| // If this is the first insn in the block, don't search backwards. |
| if (I != begin()) { |
| do { |
| --I; |
| |
| if (I->isDebugInstr()) |
| continue; |
| |
| --N; |
| |
| PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); |
| |
| // Defs happen after uses so they take precedence if both are present. |
| |
| // Register is dead after a dead def of the full register. |
| if (Info.DeadDef) |
| return LQR_Dead; |
| // Register is (at least partially) live after a def. |
| if (Info.Defined) { |
| if (!Info.PartialDeadDef) |
| return LQR_Live; |
| // As soon as we saw a partial definition (dead or not), |
| // we cannot tell if the value is partial live without |
| // tracking the lanemasks. We are not going to do this, |
| // so fall back on the remaining of the analysis. |
| break; |
| } |
| // Register is dead after a full kill or clobber and no def. |
| if (Info.Killed || Info.Clobbered) |
| return LQR_Dead; |
| // Register must be live if we read it. |
| if (Info.Read) |
| return LQR_Live; |
| |
| } while (I != begin() && N > 0); |
| } |
| |
| // If all the instructions before this in the block are debug instructions, |
| // skip over them. |
| while (I != begin() && std::prev(I)->isDebugInstr()) |
| --I; |
| |
| // Did we get to the start of the block? |
| if (I == begin()) { |
| // If so, the register's state is definitely defined by the live-in state. |
| for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) |
| if (TRI->regsOverlap(LI.PhysReg, Reg)) |
| return LQR_Live; |
| |
| return LQR_Dead; |
| } |
| |
| // At this point we have no idea of the liveness of the register. |
| return LQR_Unknown; |
| } |
| |
| const uint32_t * |
| MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { |
| // EH funclet entry does not preserve any registers. |
| return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; |
| } |
| |
| const uint32_t * |
| MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { |
| // If we see a return block with successors, this must be a funclet return, |
| // which does not preserve any registers. If there are no successors, we don't |
| // care what kind of return it is, putting a mask after it is a no-op. |
| return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; |
| } |
| |
| void MachineBasicBlock::clearLiveIns() { |
| LiveIns.clear(); |
| } |
| |
| MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { |
| assert(getParent()->getProperties().hasProperty( |
| MachineFunctionProperties::Property::TracksLiveness) && |
| "Liveness information is accurate"); |
| return LiveIns.begin(); |
| } |