| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass munges the code in the input function to better prepare it for |
| // SelectionDAG-based code generation. This works around limitations in it's |
| // basic-block-at-a-time approach. It should eventually be removed. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/IR/ValueMap.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "codegenprepare" |
| |
| STATISTIC(NumBlocksElim, "Number of blocks eliminated"); |
| STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); |
| STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); |
| STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " |
| "sunken Cmps"); |
| STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " |
| "of sunken Casts"); |
| STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " |
| "computations were sunk"); |
| STATISTIC(NumMemoryInstsPhiCreated, |
| "Number of phis created when address " |
| "computations were sunk to memory instructions"); |
| STATISTIC(NumMemoryInstsSelectCreated, |
| "Number of select created when address " |
| "computations were sunk to memory instructions"); |
| STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); |
| STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); |
| STATISTIC(NumAndsAdded, |
| "Number of and mask instructions added to form ext loads"); |
| STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); |
| STATISTIC(NumRetsDup, "Number of return instructions duplicated"); |
| STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); |
| STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); |
| STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); |
| |
| static cl::opt<bool> DisableBranchOpts( |
| "disable-cgp-branch-opts", cl::Hidden, cl::init(false), |
| cl::desc("Disable branch optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> |
| DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), |
| cl::desc("Disable GC optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> DisableSelectToBranch( |
| "disable-cgp-select2branch", cl::Hidden, cl::init(false), |
| cl::desc("Disable select to branch conversion.")); |
| |
| static cl::opt<bool> AddrSinkUsingGEPs( |
| "addr-sink-using-gep", cl::Hidden, cl::init(true), |
| cl::desc("Address sinking in CGP using GEPs.")); |
| |
| static cl::opt<bool> EnableAndCmpSinking( |
| "enable-andcmp-sinking", cl::Hidden, cl::init(true), |
| cl::desc("Enable sinkinig and/cmp into branches.")); |
| |
| static cl::opt<bool> DisableStoreExtract( |
| "disable-cgp-store-extract", cl::Hidden, cl::init(false), |
| cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> StressStoreExtract( |
| "stress-cgp-store-extract", cl::Hidden, cl::init(false), |
| cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> DisableExtLdPromotion( |
| "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), |
| cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " |
| "CodeGenPrepare")); |
| |
| static cl::opt<bool> StressExtLdPromotion( |
| "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), |
| cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " |
| "optimization in CodeGenPrepare")); |
| |
| static cl::opt<bool> DisablePreheaderProtect( |
| "disable-preheader-prot", cl::Hidden, cl::init(false), |
| cl::desc("Disable protection against removing loop preheaders")); |
| |
| static cl::opt<bool> ProfileGuidedSectionPrefix( |
| "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, |
| cl::desc("Use profile info to add section prefix for hot/cold functions")); |
| |
| static cl::opt<unsigned> FreqRatioToSkipMerge( |
| "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), |
| cl::desc("Skip merging empty blocks if (frequency of empty block) / " |
| "(frequency of destination block) is greater than this ratio")); |
| |
| static cl::opt<bool> ForceSplitStore( |
| "force-split-store", cl::Hidden, cl::init(false), |
| cl::desc("Force store splitting no matter what the target query says.")); |
| |
| static cl::opt<bool> |
| EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, |
| cl::desc("Enable merging of redundant sexts when one is dominating" |
| " the other."), cl::init(true)); |
| |
| static cl::opt<bool> DisableComplexAddrModes( |
| "disable-complex-addr-modes", cl::Hidden, cl::init(false), |
| cl::desc("Disables combining addressing modes with different parts " |
| "in optimizeMemoryInst.")); |
| |
| static cl::opt<bool> |
| AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), |
| cl::desc("Allow creation of Phis in Address sinking.")); |
| |
| static cl::opt<bool> |
| AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), |
| cl::desc("Allow creation of selects in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineBaseReg( |
| "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of BaseReg field in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineBaseGV( |
| "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of BaseGV field in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineBaseOffs( |
| "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of BaseOffs field in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineScaledReg( |
| "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of ScaledReg field in Address sinking.")); |
| |
| static cl::opt<bool> |
| EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, |
| cl::init(true), |
| cl::desc("Enable splitting large offset of GEP.")); |
| |
| static cl::opt<bool> EnableICMP_EQToICMP_ST( |
| "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), |
| cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); |
| |
| namespace { |
| |
| enum ExtType { |
| ZeroExtension, // Zero extension has been seen. |
| SignExtension, // Sign extension has been seen. |
| BothExtension // This extension type is used if we saw sext after |
| // ZeroExtension had been set, or if we saw zext after |
| // SignExtension had been set. It makes the type |
| // information of a promoted instruction invalid. |
| }; |
| |
| using SetOfInstrs = SmallPtrSet<Instruction *, 16>; |
| using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; |
| using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; |
| using SExts = SmallVector<Instruction *, 16>; |
| using ValueToSExts = DenseMap<Value *, SExts>; |
| |
| class TypePromotionTransaction; |
| |
| class CodeGenPrepare : public FunctionPass { |
| const TargetMachine *TM = nullptr; |
| const TargetSubtargetInfo *SubtargetInfo; |
| const TargetLowering *TLI = nullptr; |
| const TargetRegisterInfo *TRI; |
| const TargetTransformInfo *TTI = nullptr; |
| const TargetLibraryInfo *TLInfo; |
| const LoopInfo *LI; |
| std::unique_ptr<BlockFrequencyInfo> BFI; |
| std::unique_ptr<BranchProbabilityInfo> BPI; |
| ProfileSummaryInfo *PSI; |
| |
| /// As we scan instructions optimizing them, this is the next instruction |
| /// to optimize. Transforms that can invalidate this should update it. |
| BasicBlock::iterator CurInstIterator; |
| |
| /// Keeps track of non-local addresses that have been sunk into a block. |
| /// This allows us to avoid inserting duplicate code for blocks with |
| /// multiple load/stores of the same address. The usage of WeakTrackingVH |
| /// enables SunkAddrs to be treated as a cache whose entries can be |
| /// invalidated if a sunken address computation has been erased. |
| ValueMap<Value*, WeakTrackingVH> SunkAddrs; |
| |
| /// Keeps track of all instructions inserted for the current function. |
| SetOfInstrs InsertedInsts; |
| |
| /// Keeps track of the type of the related instruction before their |
| /// promotion for the current function. |
| InstrToOrigTy PromotedInsts; |
| |
| /// Keep track of instructions removed during promotion. |
| SetOfInstrs RemovedInsts; |
| |
| /// Keep track of sext chains based on their initial value. |
| DenseMap<Value *, Instruction *> SeenChainsForSExt; |
| |
| /// Keep track of GEPs accessing the same data structures such as structs or |
| /// arrays that are candidates to be split later because of their large |
| /// size. |
| MapVector< |
| AssertingVH<Value>, |
| SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> |
| LargeOffsetGEPMap; |
| |
| /// Keep track of new GEP base after splitting the GEPs having large offset. |
| SmallSet<AssertingVH<Value>, 2> NewGEPBases; |
| |
| /// Map serial numbers to Large offset GEPs. |
| DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; |
| |
| /// Keep track of SExt promoted. |
| ValueToSExts ValToSExtendedUses; |
| |
| /// True if the function has the OptSize attribute. |
| bool OptSize; |
| |
| /// DataLayout for the Function being processed. |
| const DataLayout *DL = nullptr; |
| |
| /// Building the dominator tree can be expensive, so we only build it |
| /// lazily and update it when required. |
| std::unique_ptr<DominatorTree> DT; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| CodeGenPrepare() : FunctionPass(ID) { |
| initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| StringRef getPassName() const override { return "CodeGen Prepare"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| // FIXME: When we can selectively preserve passes, preserve the domtree. |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| } |
| |
| private: |
| template <typename F> |
| void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { |
| // Substituting can cause recursive simplifications, which can invalidate |
| // our iterator. Use a WeakTrackingVH to hold onto it in case this |
| // happens. |
| Value *CurValue = &*CurInstIterator; |
| WeakTrackingVH IterHandle(CurValue); |
| |
| f(); |
| |
| // If the iterator instruction was recursively deleted, start over at the |
| // start of the block. |
| if (IterHandle != CurValue) { |
| CurInstIterator = BB->begin(); |
| SunkAddrs.clear(); |
| } |
| } |
| |
| // Get the DominatorTree, building if necessary. |
| DominatorTree &getDT(Function &F) { |
| if (!DT) |
| DT = std::make_unique<DominatorTree>(F); |
| return *DT; |
| } |
| |
| bool eliminateFallThrough(Function &F); |
| bool eliminateMostlyEmptyBlocks(Function &F); |
| BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); |
| bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; |
| void eliminateMostlyEmptyBlock(BasicBlock *BB); |
| bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, |
| bool isPreheader); |
| bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); |
| bool optimizeInst(Instruction *I, bool &ModifiedDT); |
| bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, |
| Type *AccessTy, unsigned AddrSpace); |
| bool optimizeInlineAsmInst(CallInst *CS); |
| bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); |
| bool optimizeExt(Instruction *&I); |
| bool optimizeExtUses(Instruction *I); |
| bool optimizeLoadExt(LoadInst *Load); |
| bool optimizeShiftInst(BinaryOperator *BO); |
| bool optimizeSelectInst(SelectInst *SI); |
| bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); |
| bool optimizeSwitchInst(SwitchInst *SI); |
| bool optimizeExtractElementInst(Instruction *Inst); |
| bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); |
| bool fixupDbgValue(Instruction *I); |
| bool placeDbgValues(Function &F); |
| bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, |
| LoadInst *&LI, Instruction *&Inst, bool HasPromoted); |
| bool tryToPromoteExts(TypePromotionTransaction &TPT, |
| const SmallVectorImpl<Instruction *> &Exts, |
| SmallVectorImpl<Instruction *> &ProfitablyMovedExts, |
| unsigned CreatedInstsCost = 0); |
| bool mergeSExts(Function &F); |
| bool splitLargeGEPOffsets(); |
| bool performAddressTypePromotion( |
| Instruction *&Inst, |
| bool AllowPromotionWithoutCommonHeader, |
| bool HasPromoted, TypePromotionTransaction &TPT, |
| SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); |
| bool splitBranchCondition(Function &F, bool &ModifiedDT); |
| bool simplifyOffsetableRelocate(Instruction &I); |
| |
| bool tryToSinkFreeOperands(Instruction *I); |
| bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, |
| Intrinsic::ID IID); |
| bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); |
| bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); |
| bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); |
| }; |
| |
| } // end anonymous namespace |
| |
| char CodeGenPrepare::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, |
| "Optimize for code generation", false, false) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, |
| "Optimize for code generation", false, false) |
| |
| FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } |
| |
| bool CodeGenPrepare::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| DL = &F.getParent()->getDataLayout(); |
| |
| bool EverMadeChange = false; |
| // Clear per function information. |
| InsertedInsts.clear(); |
| PromotedInsts.clear(); |
| |
| if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { |
| TM = &TPC->getTM<TargetMachine>(); |
| SubtargetInfo = TM->getSubtargetImpl(F); |
| TLI = SubtargetInfo->getTargetLowering(); |
| TRI = SubtargetInfo->getRegisterInfo(); |
| } |
| TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| BPI.reset(new BranchProbabilityInfo(F, *LI)); |
| BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); |
| PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| OptSize = F.hasOptSize(); |
| if (ProfileGuidedSectionPrefix) { |
| if (PSI->isFunctionHotInCallGraph(&F, *BFI)) |
| F.setSectionPrefix(".hot"); |
| else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) |
| F.setSectionPrefix(".unlikely"); |
| } |
| |
| /// This optimization identifies DIV instructions that can be |
| /// profitably bypassed and carried out with a shorter, faster divide. |
| if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && |
| TLI->isSlowDivBypassed()) { |
| const DenseMap<unsigned int, unsigned int> &BypassWidths = |
| TLI->getBypassSlowDivWidths(); |
| BasicBlock* BB = &*F.begin(); |
| while (BB != nullptr) { |
| // bypassSlowDivision may create new BBs, but we don't want to reapply the |
| // optimization to those blocks. |
| BasicBlock* Next = BB->getNextNode(); |
| // F.hasOptSize is already checked in the outer if statement. |
| if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) |
| EverMadeChange |= bypassSlowDivision(BB, BypassWidths); |
| BB = Next; |
| } |
| } |
| |
| // Eliminate blocks that contain only PHI nodes and an |
| // unconditional branch. |
| EverMadeChange |= eliminateMostlyEmptyBlocks(F); |
| |
| bool ModifiedDT = false; |
| if (!DisableBranchOpts) |
| EverMadeChange |= splitBranchCondition(F, ModifiedDT); |
| |
| // Split some critical edges where one of the sources is an indirect branch, |
| // to help generate sane code for PHIs involving such edges. |
| EverMadeChange |= SplitIndirectBrCriticalEdges(F); |
| |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| DT.reset(); |
| for (Function::iterator I = F.begin(); I != F.end(); ) { |
| BasicBlock *BB = &*I++; |
| bool ModifiedDTOnIteration = false; |
| MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); |
| |
| // Restart BB iteration if the dominator tree of the Function was changed |
| if (ModifiedDTOnIteration) |
| break; |
| } |
| if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) |
| MadeChange |= mergeSExts(F); |
| if (!LargeOffsetGEPMap.empty()) |
| MadeChange |= splitLargeGEPOffsets(); |
| |
| // Really free removed instructions during promotion. |
| for (Instruction *I : RemovedInsts) |
| I->deleteValue(); |
| |
| EverMadeChange |= MadeChange; |
| SeenChainsForSExt.clear(); |
| ValToSExtendedUses.clear(); |
| RemovedInsts.clear(); |
| LargeOffsetGEPMap.clear(); |
| LargeOffsetGEPID.clear(); |
| } |
| |
| SunkAddrs.clear(); |
| |
| if (!DisableBranchOpts) { |
| MadeChange = false; |
| // Use a set vector to get deterministic iteration order. The order the |
| // blocks are removed may affect whether or not PHI nodes in successors |
| // are removed. |
| SmallSetVector<BasicBlock*, 8> WorkList; |
| for (BasicBlock &BB : F) { |
| SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); |
| MadeChange |= ConstantFoldTerminator(&BB, true); |
| if (!MadeChange) continue; |
| |
| for (SmallVectorImpl<BasicBlock*>::iterator |
| II = Successors.begin(), IE = Successors.end(); II != IE; ++II) |
| if (pred_begin(*II) == pred_end(*II)) |
| WorkList.insert(*II); |
| } |
| |
| // Delete the dead blocks and any of their dead successors. |
| MadeChange |= !WorkList.empty(); |
| while (!WorkList.empty()) { |
| BasicBlock *BB = WorkList.pop_back_val(); |
| SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); |
| |
| DeleteDeadBlock(BB); |
| |
| for (SmallVectorImpl<BasicBlock*>::iterator |
| II = Successors.begin(), IE = Successors.end(); II != IE; ++II) |
| if (pred_begin(*II) == pred_end(*II)) |
| WorkList.insert(*II); |
| } |
| |
| // Merge pairs of basic blocks with unconditional branches, connected by |
| // a single edge. |
| if (EverMadeChange || MadeChange) |
| MadeChange |= eliminateFallThrough(F); |
| |
| EverMadeChange |= MadeChange; |
| } |
| |
| if (!DisableGCOpts) { |
| SmallVector<Instruction *, 2> Statepoints; |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) |
| if (isStatepoint(I)) |
| Statepoints.push_back(&I); |
| for (auto &I : Statepoints) |
| EverMadeChange |= simplifyOffsetableRelocate(*I); |
| } |
| |
| // Do this last to clean up use-before-def scenarios introduced by other |
| // preparatory transforms. |
| EverMadeChange |= placeDbgValues(F); |
| |
| return EverMadeChange; |
| } |
| |
| /// Merge basic blocks which are connected by a single edge, where one of the |
| /// basic blocks has a single successor pointing to the other basic block, |
| /// which has a single predecessor. |
| bool CodeGenPrepare::eliminateFallThrough(Function &F) { |
| bool Changed = false; |
| // Scan all of the blocks in the function, except for the entry block. |
| // Use a temporary array to avoid iterator being invalidated when |
| // deleting blocks. |
| SmallVector<WeakTrackingVH, 16> Blocks; |
| for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) |
| Blocks.push_back(&Block); |
| |
| for (auto &Block : Blocks) { |
| auto *BB = cast_or_null<BasicBlock>(Block); |
| if (!BB) |
| continue; |
| // If the destination block has a single pred, then this is a trivial |
| // edge, just collapse it. |
| BasicBlock *SinglePred = BB->getSinglePredecessor(); |
| |
| // Don't merge if BB's address is taken. |
| if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; |
| |
| BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); |
| if (Term && !Term->isConditional()) { |
| Changed = true; |
| LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); |
| |
| // Merge BB into SinglePred and delete it. |
| MergeBlockIntoPredecessor(BB); |
| } |
| } |
| return Changed; |
| } |
| |
| /// Find a destination block from BB if BB is mergeable empty block. |
| BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { |
| // If this block doesn't end with an uncond branch, ignore it. |
| BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!BI || !BI->isUnconditional()) |
| return nullptr; |
| |
| // If the instruction before the branch (skipping debug info) isn't a phi |
| // node, then other stuff is happening here. |
| BasicBlock::iterator BBI = BI->getIterator(); |
| if (BBI != BB->begin()) { |
| --BBI; |
| while (isa<DbgInfoIntrinsic>(BBI)) { |
| if (BBI == BB->begin()) |
| break; |
| --BBI; |
| } |
| if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) |
| return nullptr; |
| } |
| |
| // Do not break infinite loops. |
| BasicBlock *DestBB = BI->getSuccessor(0); |
| if (DestBB == BB) |
| return nullptr; |
| |
| if (!canMergeBlocks(BB, DestBB)) |
| DestBB = nullptr; |
| |
| return DestBB; |
| } |
| |
| /// Eliminate blocks that contain only PHI nodes, debug info directives, and an |
| /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split |
| /// edges in ways that are non-optimal for isel. Start by eliminating these |
| /// blocks so we can split them the way we want them. |
| bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { |
| SmallPtrSet<BasicBlock *, 16> Preheaders; |
| SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); |
| while (!LoopList.empty()) { |
| Loop *L = LoopList.pop_back_val(); |
| LoopList.insert(LoopList.end(), L->begin(), L->end()); |
| if (BasicBlock *Preheader = L->getLoopPreheader()) |
| Preheaders.insert(Preheader); |
| } |
| |
| bool MadeChange = false; |
| // Copy blocks into a temporary array to avoid iterator invalidation issues |
| // as we remove them. |
| // Note that this intentionally skips the entry block. |
| SmallVector<WeakTrackingVH, 16> Blocks; |
| for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) |
| Blocks.push_back(&Block); |
| |
| for (auto &Block : Blocks) { |
| BasicBlock *BB = cast_or_null<BasicBlock>(Block); |
| if (!BB) |
| continue; |
| BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); |
| if (!DestBB || |
| !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) |
| continue; |
| |
| eliminateMostlyEmptyBlock(BB); |
| MadeChange = true; |
| } |
| return MadeChange; |
| } |
| |
| bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, |
| BasicBlock *DestBB, |
| bool isPreheader) { |
| // Do not delete loop preheaders if doing so would create a critical edge. |
| // Loop preheaders can be good locations to spill registers. If the |
| // preheader is deleted and we create a critical edge, registers may be |
| // spilled in the loop body instead. |
| if (!DisablePreheaderProtect && isPreheader && |
| !(BB->getSinglePredecessor() && |
| BB->getSinglePredecessor()->getSingleSuccessor())) |
| return false; |
| |
| // Skip merging if the block's successor is also a successor to any callbr |
| // that leads to this block. |
| // FIXME: Is this really needed? Is this a correctness issue? |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) |
| for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) |
| if (DestBB == CBI->getSuccessor(i)) |
| return false; |
| } |
| |
| // Try to skip merging if the unique predecessor of BB is terminated by a |
| // switch or indirect branch instruction, and BB is used as an incoming block |
| // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to |
| // add COPY instructions in the predecessor of BB instead of BB (if it is not |
| // merged). Note that the critical edge created by merging such blocks wont be |
| // split in MachineSink because the jump table is not analyzable. By keeping |
| // such empty block (BB), ISel will place COPY instructions in BB, not in the |
| // predecessor of BB. |
| BasicBlock *Pred = BB->getUniquePredecessor(); |
| if (!Pred || |
| !(isa<SwitchInst>(Pred->getTerminator()) || |
| isa<IndirectBrInst>(Pred->getTerminator()))) |
| return true; |
| |
| if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) |
| return true; |
| |
| // We use a simple cost heuristic which determine skipping merging is |
| // profitable if the cost of skipping merging is less than the cost of |
| // merging : Cost(skipping merging) < Cost(merging BB), where the |
| // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and |
| // the Cost(merging BB) is Freq(Pred) * Cost(Copy). |
| // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : |
| // Freq(Pred) / Freq(BB) > 2. |
| // Note that if there are multiple empty blocks sharing the same incoming |
| // value for the PHIs in the DestBB, we consider them together. In such |
| // case, Cost(merging BB) will be the sum of their frequencies. |
| |
| if (!isa<PHINode>(DestBB->begin())) |
| return true; |
| |
| SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; |
| |
| // Find all other incoming blocks from which incoming values of all PHIs in |
| // DestBB are the same as the ones from BB. |
| for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; |
| ++PI) { |
| BasicBlock *DestBBPred = *PI; |
| if (DestBBPred == BB) |
| continue; |
| |
| if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { |
| return DestPN.getIncomingValueForBlock(BB) == |
| DestPN.getIncomingValueForBlock(DestBBPred); |
| })) |
| SameIncomingValueBBs.insert(DestBBPred); |
| } |
| |
| // See if all BB's incoming values are same as the value from Pred. In this |
| // case, no reason to skip merging because COPYs are expected to be place in |
| // Pred already. |
| if (SameIncomingValueBBs.count(Pred)) |
| return true; |
| |
| BlockFrequency PredFreq = BFI->getBlockFreq(Pred); |
| BlockFrequency BBFreq = BFI->getBlockFreq(BB); |
| |
| for (auto SameValueBB : SameIncomingValueBBs) |
| if (SameValueBB->getUniquePredecessor() == Pred && |
| DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) |
| BBFreq += BFI->getBlockFreq(SameValueBB); |
| |
| return PredFreq.getFrequency() <= |
| BBFreq.getFrequency() * FreqRatioToSkipMerge; |
| } |
| |
| /// Return true if we can merge BB into DestBB if there is a single |
| /// unconditional branch between them, and BB contains no other non-phi |
| /// instructions. |
| bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, |
| const BasicBlock *DestBB) const { |
| // We only want to eliminate blocks whose phi nodes are used by phi nodes in |
| // the successor. If there are more complex condition (e.g. preheaders), |
| // don't mess around with them. |
| for (const PHINode &PN : BB->phis()) { |
| for (const User *U : PN.users()) { |
| const Instruction *UI = cast<Instruction>(U); |
| if (UI->getParent() != DestBB || !isa<PHINode>(UI)) |
| return false; |
| // If User is inside DestBB block and it is a PHINode then check |
| // incoming value. If incoming value is not from BB then this is |
| // a complex condition (e.g. preheaders) we want to avoid here. |
| if (UI->getParent() == DestBB) { |
| if (const PHINode *UPN = dyn_cast<PHINode>(UI)) |
| for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { |
| Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); |
| if (Insn && Insn->getParent() == BB && |
| Insn->getParent() != UPN->getIncomingBlock(I)) |
| return false; |
| } |
| } |
| } |
| } |
| |
| // If BB and DestBB contain any common predecessors, then the phi nodes in BB |
| // and DestBB may have conflicting incoming values for the block. If so, we |
| // can't merge the block. |
| const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); |
| if (!DestBBPN) return true; // no conflict. |
| |
| // Collect the preds of BB. |
| SmallPtrSet<const BasicBlock*, 16> BBPreds; |
| if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { |
| // It is faster to get preds from a PHI than with pred_iterator. |
| for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) |
| BBPreds.insert(BBPN->getIncomingBlock(i)); |
| } else { |
| BBPreds.insert(pred_begin(BB), pred_end(BB)); |
| } |
| |
| // Walk the preds of DestBB. |
| for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *Pred = DestBBPN->getIncomingBlock(i); |
| if (BBPreds.count(Pred)) { // Common predecessor? |
| for (const PHINode &PN : DestBB->phis()) { |
| const Value *V1 = PN.getIncomingValueForBlock(Pred); |
| const Value *V2 = PN.getIncomingValueForBlock(BB); |
| |
| // If V2 is a phi node in BB, look up what the mapped value will be. |
| if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) |
| if (V2PN->getParent() == BB) |
| V2 = V2PN->getIncomingValueForBlock(Pred); |
| |
| // If there is a conflict, bail out. |
| if (V1 != V2) return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Eliminate a basic block that has only phi's and an unconditional branch in |
| /// it. |
| void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { |
| BranchInst *BI = cast<BranchInst>(BB->getTerminator()); |
| BasicBlock *DestBB = BI->getSuccessor(0); |
| |
| LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" |
| << *BB << *DestBB); |
| |
| // If the destination block has a single pred, then this is a trivial edge, |
| // just collapse it. |
| if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { |
| if (SinglePred != DestBB) { |
| assert(SinglePred == BB && |
| "Single predecessor not the same as predecessor"); |
| // Merge DestBB into SinglePred/BB and delete it. |
| MergeBlockIntoPredecessor(DestBB); |
| // Note: BB(=SinglePred) will not be deleted on this path. |
| // DestBB(=its single successor) is the one that was deleted. |
| LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); |
| return; |
| } |
| } |
| |
| // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB |
| // to handle the new incoming edges it is about to have. |
| for (PHINode &PN : DestBB->phis()) { |
| // Remove the incoming value for BB, and remember it. |
| Value *InVal = PN.removeIncomingValue(BB, false); |
| |
| // Two options: either the InVal is a phi node defined in BB or it is some |
| // value that dominates BB. |
| PHINode *InValPhi = dyn_cast<PHINode>(InVal); |
| if (InValPhi && InValPhi->getParent() == BB) { |
| // Add all of the input values of the input PHI as inputs of this phi. |
| for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) |
| PN.addIncoming(InValPhi->getIncomingValue(i), |
| InValPhi->getIncomingBlock(i)); |
| } else { |
| // Otherwise, add one instance of the dominating value for each edge that |
| // we will be adding. |
| if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) |
| PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); |
| } else { |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| PN.addIncoming(InVal, *PI); |
| } |
| } |
| } |
| |
| // The PHIs are now updated, change everything that refers to BB to use |
| // DestBB and remove BB. |
| BB->replaceAllUsesWith(DestBB); |
| BB->eraseFromParent(); |
| ++NumBlocksElim; |
| |
| LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); |
| } |
| |
| // Computes a map of base pointer relocation instructions to corresponding |
| // derived pointer relocation instructions given a vector of all relocate calls |
| static void computeBaseDerivedRelocateMap( |
| const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, |
| DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> |
| &RelocateInstMap) { |
| // Collect information in two maps: one primarily for locating the base object |
| // while filling the second map; the second map is the final structure holding |
| // a mapping between Base and corresponding Derived relocate calls |
| DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; |
| for (auto *ThisRelocate : AllRelocateCalls) { |
| auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), |
| ThisRelocate->getDerivedPtrIndex()); |
| RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); |
| } |
| for (auto &Item : RelocateIdxMap) { |
| std::pair<unsigned, unsigned> Key = Item.first; |
| if (Key.first == Key.second) |
| // Base relocation: nothing to insert |
| continue; |
| |
| GCRelocateInst *I = Item.second; |
| auto BaseKey = std::make_pair(Key.first, Key.first); |
| |
| // We're iterating over RelocateIdxMap so we cannot modify it. |
| auto MaybeBase = RelocateIdxMap.find(BaseKey); |
| if (MaybeBase == RelocateIdxMap.end()) |
| // TODO: We might want to insert a new base object relocate and gep off |
| // that, if there are enough derived object relocates. |
| continue; |
| |
| RelocateInstMap[MaybeBase->second].push_back(I); |
| } |
| } |
| |
| // Accepts a GEP and extracts the operands into a vector provided they're all |
| // small integer constants |
| static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, |
| SmallVectorImpl<Value *> &OffsetV) { |
| for (unsigned i = 1; i < GEP->getNumOperands(); i++) { |
| // Only accept small constant integer operands |
| auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
| if (!Op || Op->getZExtValue() > 20) |
| return false; |
| } |
| |
| for (unsigned i = 1; i < GEP->getNumOperands(); i++) |
| OffsetV.push_back(GEP->getOperand(i)); |
| return true; |
| } |
| |
| // Takes a RelocatedBase (base pointer relocation instruction) and Targets to |
| // replace, computes a replacement, and affects it. |
| static bool |
| simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, |
| const SmallVectorImpl<GCRelocateInst *> &Targets) { |
| bool MadeChange = false; |
| // We must ensure the relocation of derived pointer is defined after |
| // relocation of base pointer. If we find a relocation corresponding to base |
| // defined earlier than relocation of base then we move relocation of base |
| // right before found relocation. We consider only relocation in the same |
| // basic block as relocation of base. Relocations from other basic block will |
| // be skipped by optimization and we do not care about them. |
| for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); |
| &*R != RelocatedBase; ++R) |
| if (auto RI = dyn_cast<GCRelocateInst>(R)) |
| if (RI->getStatepoint() == RelocatedBase->getStatepoint()) |
| if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { |
| RelocatedBase->moveBefore(RI); |
| break; |
| } |
| |
| for (GCRelocateInst *ToReplace : Targets) { |
| assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && |
| "Not relocating a derived object of the original base object"); |
| if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { |
| // A duplicate relocate call. TODO: coalesce duplicates. |
| continue; |
| } |
| |
| if (RelocatedBase->getParent() != ToReplace->getParent()) { |
| // Base and derived relocates are in different basic blocks. |
| // In this case transform is only valid when base dominates derived |
| // relocate. However it would be too expensive to check dominance |
| // for each such relocate, so we skip the whole transformation. |
| continue; |
| } |
| |
| Value *Base = ToReplace->getBasePtr(); |
| auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); |
| if (!Derived || Derived->getPointerOperand() != Base) |
| continue; |
| |
| SmallVector<Value *, 2> OffsetV; |
| if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) |
| continue; |
| |
| // Create a Builder and replace the target callsite with a gep |
| assert(RelocatedBase->getNextNode() && |
| "Should always have one since it's not a terminator"); |
| |
| // Insert after RelocatedBase |
| IRBuilder<> Builder(RelocatedBase->getNextNode()); |
| Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); |
| |
| // If gc_relocate does not match the actual type, cast it to the right type. |
| // In theory, there must be a bitcast after gc_relocate if the type does not |
| // match, and we should reuse it to get the derived pointer. But it could be |
| // cases like this: |
| // bb1: |
| // ... |
| // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) |
| // br label %merge |
| // |
| // bb2: |
| // ... |
| // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) |
| // br label %merge |
| // |
| // merge: |
| // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] |
| // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* |
| // |
| // In this case, we can not find the bitcast any more. So we insert a new bitcast |
| // no matter there is already one or not. In this way, we can handle all cases, and |
| // the extra bitcast should be optimized away in later passes. |
| Value *ActualRelocatedBase = RelocatedBase; |
| if (RelocatedBase->getType() != Base->getType()) { |
| ActualRelocatedBase = |
| Builder.CreateBitCast(RelocatedBase, Base->getType()); |
| } |
| Value *Replacement = Builder.CreateGEP( |
| Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); |
| Replacement->takeName(ToReplace); |
| // If the newly generated derived pointer's type does not match the original derived |
| // pointer's type, cast the new derived pointer to match it. Same reasoning as above. |
| Value *ActualReplacement = Replacement; |
| if (Replacement->getType() != ToReplace->getType()) { |
| ActualReplacement = |
| Builder.CreateBitCast(Replacement, ToReplace->getType()); |
| } |
| ToReplace->replaceAllUsesWith(ActualReplacement); |
| ToReplace->eraseFromParent(); |
| |
| MadeChange = true; |
| } |
| return MadeChange; |
| } |
| |
| // Turns this: |
| // |
| // %base = ... |
| // %ptr = gep %base + 15 |
| // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) |
| // %base' = relocate(%tok, i32 4, i32 4) |
| // %ptr' = relocate(%tok, i32 4, i32 5) |
| // %val = load %ptr' |
| // |
| // into this: |
| // |
| // %base = ... |
| // %ptr = gep %base + 15 |
| // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) |
| // %base' = gc.relocate(%tok, i32 4, i32 4) |
| // %ptr' = gep %base' + 15 |
| // %val = load %ptr' |
| bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { |
| bool MadeChange = false; |
| SmallVector<GCRelocateInst *, 2> AllRelocateCalls; |
| |
| for (auto *U : I.users()) |
| if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) |
| // Collect all the relocate calls associated with a statepoint |
| AllRelocateCalls.push_back(Relocate); |
| |
| // We need at least one base pointer relocation + one derived pointer |
| // relocation to mangle |
| if (AllRelocateCalls.size() < 2) |
| return false; |
| |
| // RelocateInstMap is a mapping from the base relocate instruction to the |
| // corresponding derived relocate instructions |
| DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; |
| computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); |
| if (RelocateInstMap.empty()) |
| return false; |
| |
| for (auto &Item : RelocateInstMap) |
| // Item.first is the RelocatedBase to offset against |
| // Item.second is the vector of Targets to replace |
| MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); |
| return MadeChange; |
| } |
| |
| /// Sink the specified cast instruction into its user blocks. |
| static bool SinkCast(CastInst *CI) { |
| BasicBlock *DefBB = CI->getParent(); |
| |
| /// InsertedCasts - Only insert a cast in each block once. |
| DenseMap<BasicBlock*, CastInst*> InsertedCasts; |
| |
| bool MadeChange = false; |
| for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); |
| UI != E; ) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Figure out which BB this cast is used in. For PHI's this is the |
| // appropriate predecessor block. |
| BasicBlock *UserBB = User->getParent(); |
| if (PHINode *PN = dyn_cast<PHINode>(User)) { |
| UserBB = PN->getIncomingBlock(TheUse); |
| } |
| |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| // The first insertion point of a block containing an EH pad is after the |
| // pad. If the pad is the user, we cannot sink the cast past the pad. |
| if (User->isEHPad()) |
| continue; |
| |
| // If the block selected to receive the cast is an EH pad that does not |
| // allow non-PHI instructions before the terminator, we can't sink the |
| // cast. |
| if (UserBB->getTerminator()->isEHPad()) |
| continue; |
| |
| // If this user is in the same block as the cast, don't change the cast. |
| if (UserBB == DefBB) continue; |
| |
| // If we have already inserted a cast into this block, use it. |
| CastInst *&InsertedCast = InsertedCasts[UserBB]; |
| |
| if (!InsertedCast) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), |
| CI->getType(), "", &*InsertPt); |
| InsertedCast->setDebugLoc(CI->getDebugLoc()); |
| } |
| |
| // Replace a use of the cast with a use of the new cast. |
| TheUse = InsertedCast; |
| MadeChange = true; |
| ++NumCastUses; |
| } |
| |
| // If we removed all uses, nuke the cast. |
| if (CI->use_empty()) { |
| salvageDebugInfo(*CI); |
| CI->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// If the specified cast instruction is a noop copy (e.g. it's casting from |
| /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to |
| /// reduce the number of virtual registers that must be created and coalesced. |
| /// |
| /// Return true if any changes are made. |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, |
| const DataLayout &DL) { |
| // Sink only "cheap" (or nop) address-space casts. This is a weaker condition |
| // than sinking only nop casts, but is helpful on some platforms. |
| if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { |
| if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), |
| ASC->getDestAddressSpace())) |
| return false; |
| } |
| |
| // If this is a noop copy, |
| EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(DL, CI->getType()); |
| |
| // This is an fp<->int conversion? |
| if (SrcVT.isInteger() != DstVT.isInteger()) |
| return false; |
| |
| // If this is an extension, it will be a zero or sign extension, which |
| // isn't a noop. |
| if (SrcVT.bitsLT(DstVT)) return false; |
| |
| // If these values will be promoted, find out what they will be promoted |
| // to. This helps us consider truncates on PPC as noop copies when they |
| // are. |
| if (TLI.getTypeAction(CI->getContext(), SrcVT) == |
| TargetLowering::TypePromoteInteger) |
| SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); |
| if (TLI.getTypeAction(CI->getContext(), DstVT) == |
| TargetLowering::TypePromoteInteger) |
| DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); |
| |
| // If, after promotion, these are the same types, this is a noop copy. |
| if (SrcVT != DstVT) |
| return false; |
| |
| return SinkCast(CI); |
| } |
| |
| bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, |
| CmpInst *Cmp, |
| Intrinsic::ID IID) { |
| if (BO->getParent() != Cmp->getParent()) { |
| // We used to use a dominator tree here to allow multi-block optimization. |
| // But that was problematic because: |
| // 1. It could cause a perf regression by hoisting the math op into the |
| // critical path. |
| // 2. It could cause a perf regression by creating a value that was live |
| // across multiple blocks and increasing register pressure. |
| // 3. Use of a dominator tree could cause large compile-time regression. |
| // This is because we recompute the DT on every change in the main CGP |
| // run-loop. The recomputing is probably unnecessary in many cases, so if |
| // that was fixed, using a DT here would be ok. |
| return false; |
| } |
| |
| // We allow matching the canonical IR (add X, C) back to (usubo X, -C). |
| Value *Arg0 = BO->getOperand(0); |
| Value *Arg1 = BO->getOperand(1); |
| if (BO->getOpcode() == Instruction::Add && |
| IID == Intrinsic::usub_with_overflow) { |
| assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); |
| Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); |
| } |
| |
| // Insert at the first instruction of the pair. |
| Instruction *InsertPt = nullptr; |
| for (Instruction &Iter : *Cmp->getParent()) { |
| if (&Iter == BO || &Iter == Cmp) { |
| InsertPt = &Iter; |
| break; |
| } |
| } |
| assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); |
| |
| IRBuilder<> Builder(InsertPt); |
| Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); |
| Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); |
| Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); |
| BO->replaceAllUsesWith(Math); |
| Cmp->replaceAllUsesWith(OV); |
| BO->eraseFromParent(); |
| Cmp->eraseFromParent(); |
| return true; |
| } |
| |
| /// Match special-case patterns that check for unsigned add overflow. |
| static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, |
| BinaryOperator *&Add) { |
| // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) |
| // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) |
| Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); |
| |
| // We are not expecting non-canonical/degenerate code. Just bail out. |
| if (isa<Constant>(A)) |
| return false; |
| |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) |
| B = ConstantInt::get(B->getType(), 1); |
| else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) |
| B = ConstantInt::get(B->getType(), -1); |
| else |
| return false; |
| |
| // Check the users of the variable operand of the compare looking for an add |
| // with the adjusted constant. |
| for (User *U : A->users()) { |
| if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { |
| Add = cast<BinaryOperator>(U); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Try to combine the compare into a call to the llvm.uadd.with.overflow |
| /// intrinsic. Return true if any changes were made. |
| bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, |
| bool &ModifiedDT) { |
| Value *A, *B; |
| BinaryOperator *Add; |
| if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) |
| if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) |
| return false; |
| |
| if (!TLI->shouldFormOverflowOp(ISD::UADDO, |
| TLI->getValueType(*DL, Add->getType()))) |
| return false; |
| |
| // We don't want to move around uses of condition values this late, so we |
| // check if it is legal to create the call to the intrinsic in the basic |
| // block containing the icmp. |
| if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) |
| return false; |
| |
| if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) |
| return false; |
| |
| // Reset callers - do not crash by iterating over a dead instruction. |
| ModifiedDT = true; |
| return true; |
| } |
| |
| bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, |
| bool &ModifiedDT) { |
| // We are not expecting non-canonical/degenerate code. Just bail out. |
| Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); |
| if (isa<Constant>(A) && isa<Constant>(B)) |
| return false; |
| |
| // Convert (A u> B) to (A u< B) to simplify pattern matching. |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (Pred == ICmpInst::ICMP_UGT) { |
| std::swap(A, B); |
| Pred = ICmpInst::ICMP_ULT; |
| } |
| // Convert special-case: (A == 0) is the same as (A u< 1). |
| if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { |
| B = ConstantInt::get(B->getType(), 1); |
| Pred = ICmpInst::ICMP_ULT; |
| } |
| // Convert special-case: (A != 0) is the same as (0 u< A). |
| if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { |
| std::swap(A, B); |
| Pred = ICmpInst::ICMP_ULT; |
| } |
| if (Pred != ICmpInst::ICMP_ULT) |
| return false; |
| |
| // Walk the users of a variable operand of a compare looking for a subtract or |
| // add with that same operand. Also match the 2nd operand of the compare to |
| // the add/sub, but that may be a negated constant operand of an add. |
| Value *CmpVariableOperand = isa<Constant>(A) ? B : A; |
| BinaryOperator *Sub = nullptr; |
| for (User *U : CmpVariableOperand->users()) { |
| // A - B, A u< B --> usubo(A, B) |
| if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { |
| Sub = cast<BinaryOperator>(U); |
| break; |
| } |
| |
| // A + (-C), A u< C (canonicalized form of (sub A, C)) |
| const APInt *CmpC, *AddC; |
| if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && |
| match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { |
| Sub = cast<BinaryOperator>(U); |
| break; |
| } |
| } |
| if (!Sub) |
| return false; |
| |
| if (!TLI->shouldFormOverflowOp(ISD::USUBO, |
| TLI->getValueType(*DL, Sub->getType()))) |
| return false; |
| |
| if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) |
| return false; |
| |
| // Reset callers - do not crash by iterating over a dead instruction. |
| ModifiedDT = true; |
| return true; |
| } |
| |
| /// Sink the given CmpInst into user blocks to reduce the number of virtual |
| /// registers that must be created and coalesced. This is a clear win except on |
| /// targets with multiple condition code registers (PowerPC), where it might |
| /// lose; some adjustment may be wanted there. |
| /// |
| /// Return true if any changes are made. |
| static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { |
| if (TLI.hasMultipleConditionRegisters()) |
| return false; |
| |
| // Avoid sinking soft-FP comparisons, since this can move them into a loop. |
| if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) |
| return false; |
| |
| // Only insert a cmp in each block once. |
| DenseMap<BasicBlock*, CmpInst*> InsertedCmps; |
| |
| bool MadeChange = false; |
| for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); |
| UI != E; ) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| // Don't bother for PHI nodes. |
| if (isa<PHINode>(User)) |
| continue; |
| |
| // Figure out which BB this cmp is used in. |
| BasicBlock *UserBB = User->getParent(); |
| BasicBlock *DefBB = Cmp->getParent(); |
| |
| // If this user is in the same block as the cmp, don't change the cmp. |
| if (UserBB == DefBB) continue; |
| |
| // If we have already inserted a cmp into this block, use it. |
| CmpInst *&InsertedCmp = InsertedCmps[UserBB]; |
| |
| if (!InsertedCmp) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| InsertedCmp = |
| CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), |
| Cmp->getOperand(0), Cmp->getOperand(1), "", |
| &*InsertPt); |
| // Propagate the debug info. |
| InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); |
| } |
| |
| // Replace a use of the cmp with a use of the new cmp. |
| TheUse = InsertedCmp; |
| MadeChange = true; |
| ++NumCmpUses; |
| } |
| |
| // If we removed all uses, nuke the cmp. |
| if (Cmp->use_empty()) { |
| Cmp->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// For pattern like: |
| /// |
| /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) |
| /// ... |
| /// DomBB: |
| /// ... |
| /// br DomCond, TrueBB, CmpBB |
| /// CmpBB: (with DomBB being the single predecessor) |
| /// ... |
| /// Cmp = icmp eq CmpOp0, CmpOp1 |
| /// ... |
| /// |
| /// It would use two comparison on targets that lowering of icmp sgt/slt is |
| /// different from lowering of icmp eq (PowerPC). This function try to convert |
| /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. |
| /// After that, DomCond and Cmp can use the same comparison so reduce one |
| /// comparison. |
| /// |
| /// Return true if any changes are made. |
| static bool foldICmpWithDominatingICmp(CmpInst *Cmp, |
| const TargetLowering &TLI) { |
| if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) |
| return false; |
| |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (Pred != ICmpInst::ICMP_EQ) |
| return false; |
| |
| // If icmp eq has users other than BranchInst and SelectInst, converting it to |
| // icmp slt/sgt would introduce more redundant LLVM IR. |
| for (User *U : Cmp->users()) { |
| if (isa<BranchInst>(U)) |
| continue; |
| if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) |
| continue; |
| return false; |
| } |
| |
| // This is a cheap/incomplete check for dominance - just match a single |
| // predecessor with a conditional branch. |
| BasicBlock *CmpBB = Cmp->getParent(); |
| BasicBlock *DomBB = CmpBB->getSinglePredecessor(); |
| if (!DomBB) |
| return false; |
| |
| // We want to ensure that the only way control gets to the comparison of |
| // interest is that a less/greater than comparison on the same operands is |
| // false. |
| Value *DomCond; |
| BasicBlock *TrueBB, *FalseBB; |
| if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) |
| return false; |
| if (CmpBB != FalseBB) |
| return false; |
| |
| Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); |
| ICmpInst::Predicate DomPred; |
| if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) |
| return false; |
| if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) |
| return false; |
| |
| // Convert the equality comparison to the opposite of the dominating |
| // comparison and swap the direction for all branch/select users. |
| // We have conceptually converted: |
| // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; |
| // to |
| // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; |
| // And similarly for branches. |
| for (User *U : Cmp->users()) { |
| if (auto *BI = dyn_cast<BranchInst>(U)) { |
| assert(BI->isConditional() && "Must be conditional"); |
| BI->swapSuccessors(); |
| continue; |
| } |
| if (auto *SI = dyn_cast<SelectInst>(U)) { |
| // Swap operands |
| SI->swapValues(); |
| SI->swapProfMetadata(); |
| continue; |
| } |
| llvm_unreachable("Must be a branch or a select"); |
| } |
| Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); |
| return true; |
| } |
| |
| bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { |
| if (sinkCmpExpression(Cmp, *TLI)) |
| return true; |
| |
| if (combineToUAddWithOverflow(Cmp, ModifiedDT)) |
| return true; |
| |
| if (combineToUSubWithOverflow(Cmp, ModifiedDT)) |
| return true; |
| |
| if (foldICmpWithDominatingICmp(Cmp, *TLI)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Duplicate and sink the given 'and' instruction into user blocks where it is |
| /// used in a compare to allow isel to generate better code for targets where |
| /// this operation can be combined. |
| /// |
| /// Return true if any changes are made. |
| static bool sinkAndCmp0Expression(Instruction *AndI, |
| const TargetLowering &TLI, |
| SetOfInstrs &InsertedInsts) { |
| // Double-check that we're not trying to optimize an instruction that was |
| // already optimized by some other part of this pass. |
| assert(!InsertedInsts.count(AndI) && |
| "Attempting to optimize already optimized and instruction"); |
| (void) InsertedInsts; |
| |
| // Nothing to do for single use in same basic block. |
| if (AndI->hasOneUse() && |
| AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) |
| return false; |
| |
| // Try to avoid cases where sinking/duplicating is likely to increase register |
| // pressure. |
| if (!isa<ConstantInt>(AndI->getOperand(0)) && |
| !isa<ConstantInt>(AndI->getOperand(1)) && |
| AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) |
| return false; |
| |
| for (auto *U : AndI->users()) { |
| Instruction *User = cast<Instruction>(U); |
| |
| // Only sink 'and' feeding icmp with 0. |
| if (!isa<ICmpInst>(User)) |
| return false; |
| |
| auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); |
| if (!CmpC || !CmpC->isZero()) |
| return false; |
| } |
| |
| if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); |
| LLVM_DEBUG(AndI->getParent()->dump()); |
| |
| // Push the 'and' into the same block as the icmp 0. There should only be |
| // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any |
| // others, so we don't need to keep track of which BBs we insert into. |
| for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); |
| UI != E; ) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); |
| |
| // Keep the 'and' in the same place if the use is already in the same block. |
| Instruction *InsertPt = |
| User->getParent() == AndI->getParent() ? AndI : User; |
| Instruction *InsertedAnd = |
| BinaryOperator::Create(Instruction::And, AndI->getOperand(0), |
| AndI->getOperand(1), "", InsertPt); |
| // Propagate the debug info. |
| InsertedAnd->setDebugLoc(AndI->getDebugLoc()); |
| |
| // Replace a use of the 'and' with a use of the new 'and'. |
| TheUse = InsertedAnd; |
| ++NumAndUses; |
| LLVM_DEBUG(User->getParent()->dump()); |
| } |
| |
| // We removed all uses, nuke the and. |
| AndI->eraseFromParent(); |
| return true; |
| } |
| |
| /// Check if the candidates could be combined with a shift instruction, which |
| /// includes: |
| /// 1. Truncate instruction |
| /// 2. And instruction and the imm is a mask of the low bits: |
| /// imm & (imm+1) == 0 |
| static bool isExtractBitsCandidateUse(Instruction *User) { |
| if (!isa<TruncInst>(User)) { |
| if (User->getOpcode() != Instruction::And || |
| !isa<ConstantInt>(User->getOperand(1))) |
| return false; |
| |
| const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); |
| |
| if ((Cimm & (Cimm + 1)).getBoolValue()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Sink both shift and truncate instruction to the use of truncate's BB. |
| static bool |
| SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, |
| DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, |
| const TargetLowering &TLI, const DataLayout &DL) { |
| BasicBlock *UserBB = User->getParent(); |
| DenseMap<BasicBlock *, CastInst *> InsertedTruncs; |
| auto *TruncI = cast<TruncInst>(User); |
| bool MadeChange = false; |
| |
| for (Value::user_iterator TruncUI = TruncI->user_begin(), |
| TruncE = TruncI->user_end(); |
| TruncUI != TruncE;) { |
| |
| Use &TruncTheUse = TruncUI.getUse(); |
| Instruction *TruncUser = cast<Instruction>(*TruncUI); |
| // Preincrement use iterator so we don't invalidate it. |
| |
| ++TruncUI; |
| |
| int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); |
| if (!ISDOpcode) |
| continue; |
| |
| // If the use is actually a legal node, there will not be an |
| // implicit truncate. |
| // FIXME: always querying the result type is just an |
| // approximation; some nodes' legality is determined by the |
| // operand or other means. There's no good way to find out though. |
| if (TLI.isOperationLegalOrCustom( |
| ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) |
| continue; |
| |
| // Don't bother for PHI nodes. |
| if (isa<PHINode>(TruncUser)) |
| continue; |
| |
| BasicBlock *TruncUserBB = TruncUser->getParent(); |
| |
| if (UserBB == TruncUserBB) |
| continue; |
| |
| BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; |
| CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; |
| |
| if (!InsertedShift && !InsertedTrunc) { |
| BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); |
| assert(InsertPt != TruncUserBB->end()); |
| // Sink the shift |
| if (ShiftI->getOpcode() == Instruction::AShr) |
| InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| else |
| InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); |
| |
| // Sink the trunc |
| BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); |
| TruncInsertPt++; |
| assert(TruncInsertPt != TruncUserBB->end()); |
| |
| InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, |
| TruncI->getType(), "", &*TruncInsertPt); |
| InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); |
| |
| MadeChange = true; |
| |
| TruncTheUse = InsertedTrunc; |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// Sink the shift *right* instruction into user blocks if the uses could |
| /// potentially be combined with this shift instruction and generate BitExtract |
| /// instruction. It will only be applied if the architecture supports BitExtract |
| /// instruction. Here is an example: |
| /// BB1: |
| /// %x.extract.shift = lshr i64 %arg1, 32 |
| /// BB2: |
| /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 |
| /// ==> |
| /// |
| /// BB2: |
| /// %x.extract.shift.1 = lshr i64 %arg1, 32 |
| /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 |
| /// |
| /// CodeGen will recognize the pattern in BB2 and generate BitExtract |
| /// instruction. |
| /// Return true if any changes are made. |
| static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, |
| const TargetLowering &TLI, |
| const DataLayout &DL) { |
| BasicBlock *DefBB = ShiftI->getParent(); |
| |
| /// Only insert instructions in each block once. |
| DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; |
| |
| bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); |
| |
| bool MadeChange = false; |
| for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); |
| UI != E;) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| // Don't bother for PHI nodes. |
| if (isa<PHINode>(User)) |
| continue; |
| |
| if (!isExtractBitsCandidateUse(User)) |
| continue; |
| |
| BasicBlock *UserBB = User->getParent(); |
| |
| if (UserBB == DefBB) { |
| // If the shift and truncate instruction are in the same BB. The use of |
| // the truncate(TruncUse) may still introduce another truncate if not |
| // legal. In this case, we would like to sink both shift and truncate |
| // instruction to the BB of TruncUse. |
| // for example: |
| // BB1: |
| // i64 shift.result = lshr i64 opnd, imm |
| // trunc.result = trunc shift.result to i16 |
| // |
| // BB2: |
| // ----> We will have an implicit truncate here if the architecture does |
| // not have i16 compare. |
| // cmp i16 trunc.result, opnd2 |
| // |
| if (isa<TruncInst>(User) && shiftIsLegal |
| // If the type of the truncate is legal, no truncate will be |
| // introduced in other basic blocks. |
| && |
| (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) |
| MadeChange = |
| SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); |
| |
| continue; |
| } |
| // If we have already inserted a shift into this block, use it. |
| BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; |
| |
| if (!InsertedShift) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| |
| if (ShiftI->getOpcode() == Instruction::AShr) |
| InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| else |
| InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); |
| |
| MadeChange = true; |
| } |
| |
| // Replace a use of the shift with a use of the new shift. |
| TheUse = InsertedShift; |
| } |
| |
| // If we removed all uses, or there are none, nuke the shift. |
| if (ShiftI->use_empty()) { |
| salvageDebugInfo(*ShiftI); |
| ShiftI->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// If counting leading or trailing zeros is an expensive operation and a zero |
| /// input is defined, add a check for zero to avoid calling the intrinsic. |
| /// |
| /// We want to transform: |
| /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) |
| /// |
| /// into: |
| /// entry: |
| /// %cmpz = icmp eq i64 %A, 0 |
| /// br i1 %cmpz, label %cond.end, label %cond.false |
| /// cond.false: |
| /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) |
| /// br label %cond.end |
| /// cond.end: |
| /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] |
| /// |
| /// If the transform is performed, return true and set ModifiedDT to true. |
| static bool despeculateCountZeros(IntrinsicInst *CountZeros, |
| const TargetLowering *TLI, |
| const DataLayout *DL, |
| bool &ModifiedDT) { |
| if (!TLI || !DL) |
| return false; |
| |
| // If a zero input is undefined, it doesn't make sense to despeculate that. |
| if (match(CountZeros->getOperand(1), m_One())) |
| return false; |
| |
| // If it's cheap to speculate, there's nothing to do. |
| auto IntrinsicID = CountZeros->getIntrinsicID(); |
| if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || |
| (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) |
| return false; |
| |
| // Only handle legal scalar cases. Anything else requires too much work. |
| Type *Ty = CountZeros->getType(); |
| unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); |
| if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) |
| return false; |
| |
| // The intrinsic will be sunk behind a compare against zero and branch. |
| BasicBlock *StartBlock = CountZeros->getParent(); |
| BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); |
| |
| // Create another block after the count zero intrinsic. A PHI will be added |
| // in this block to select the result of the intrinsic or the bit-width |
| // constant if the input to the intrinsic is zero. |
| BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); |
| BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); |
| |
| // Set up a builder to create a compare, conditional branch, and PHI. |
| IRBuilder<> Builder(CountZeros->getContext()); |
| Builder.SetInsertPoint(StartBlock->getTerminator()); |
| Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); |
| |
| // Replace the unconditional branch that was created by the first split with |
| // a compare against zero and a conditional branch. |
| Value *Zero = Constant::getNullValue(Ty); |
| Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); |
| Builder.CreateCondBr(Cmp, EndBlock, CallBlock); |
| StartBlock->getTerminator()->eraseFromParent(); |
| |
| // Create a PHI in the end block to select either the output of the intrinsic |
| // or the bit width of the operand. |
| Builder.SetInsertPoint(&EndBlock->front()); |
| PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); |
| CountZeros->replaceAllUsesWith(PN); |
| Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); |
| PN->addIncoming(BitWidth, StartBlock); |
| PN->addIncoming(CountZeros, CallBlock); |
| |
| // We are explicitly handling the zero case, so we can set the intrinsic's |
| // undefined zero argument to 'true'. This will also prevent reprocessing the |
| // intrinsic; we only despeculate when a zero input is defined. |
| CountZeros->setArgOperand(1, Builder.getTrue()); |
| ModifiedDT = true; |
| return true; |
| } |
| |
| bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { |
| BasicBlock *BB = CI->getParent(); |
| |
| // Lower inline assembly if we can. |
| // If we found an inline asm expession, and if the target knows how to |
| // lower it to normal LLVM code, do so now. |
| if (TLI && isa<InlineAsm>(CI->getCalledValue())) { |
| if (TLI->ExpandInlineAsm(CI)) { |
| // Avoid invalidating the iterator. |
| CurInstIterator = BB->begin(); |
| // Avoid processing instructions out of order, which could cause |
| // reuse before a value is defined. |
| SunkAddrs.clear(); |
| return true; |
| } |
| // Sink address computing for memory operands into the block. |
| if (optimizeInlineAsmInst(CI)) |
| return true; |
| } |
| |
| // Align the pointer arguments to this call if the target thinks it's a good |
| // idea |
| unsigned MinSize, PrefAlign; |
| if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { |
| for (auto &Arg : CI->arg_operands()) { |
| // We want to align both objects whose address is used directly and |
| // objects whose address is used in casts and GEPs, though it only makes |
| // sense for GEPs if the offset is a multiple of the desired alignment and |
| // if size - offset meets the size threshold. |
| if (!Arg->getType()->isPointerTy()) |
| continue; |
| APInt Offset(DL->getIndexSizeInBits( |
| cast<PointerType>(Arg->getType())->getAddressSpace()), |
| 0); |
| Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); |
| uint64_t Offset2 = Offset.getLimitedValue(); |
| if ((Offset2 & (PrefAlign-1)) != 0) |
| continue; |
| AllocaInst *AI; |
| if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && |
| DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) |
| AI->setAlignment(MaybeAlign(PrefAlign)); |
| // Global variables can only be aligned if they are defined in this |
| // object (i.e. they are uniquely initialized in this object), and |
| // over-aligning global variables that have an explicit section is |
| // forbidden. |
| GlobalVariable *GV; |
| if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && |
| GV->getPointerAlignment(*DL) < PrefAlign && |
| DL->getTypeAllocSize(GV->getValueType()) >= |
| MinSize + Offset2) |
| GV->setAlignment(MaybeAlign(PrefAlign)); |
| } |
| // If this is a memcpy (or similar) then we may be able to improve the |
| // alignment |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { |
| unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); |
| if (DestAlign > MI->getDestAlignment()) |
| MI->setDestAlignment(DestAlign); |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { |
| unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); |
| if (SrcAlign > MTI->getSourceAlignment()) |
| MTI->setSourceAlignment(SrcAlign); |
| } |
| } |
| } |
| |
| // If we have a cold call site, try to sink addressing computation into the |
| // cold block. This interacts with our handling for loads and stores to |
| // ensure that we can fold all uses of a potential addressing computation |
| // into their uses. TODO: generalize this to work over profiling data |
| bool OptForSize = OptSize || llvm::shouldOptimizeForSize(BB, PSI, BFI.get()); |
| if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) |
| for (auto &Arg : CI->arg_operands()) { |
| if (!Arg->getType()->isPointerTy()) |
| continue; |
| unsigned AS = Arg->getType()->getPointerAddressSpace(); |
| return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); |
| } |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); |
| if (II) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::experimental_widenable_condition: { |
| // Give up on future widening oppurtunties so that we can fold away dead |
| // paths and merge blocks before going into block-local instruction |
| // selection. |
| if (II->use_empty()) { |
| II->eraseFromParent(); |
| return true; |
| } |
| Constant *RetVal = ConstantInt::getTrue(II->getContext()); |
| resetIteratorIfInvalidatedWhileCalling(BB, [&]() { |
| replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); |
| }); |
| return true; |
| } |
| case Intrinsic::objectsize: |
| llvm_unreachable("llvm.objectsize.* should have been lowered already"); |
| case Intrinsic::is_constant: |
| llvm_unreachable("llvm.is.constant.* should have been lowered already"); |
| case Intrinsic::aarch64_stlxr: |
| case Intrinsic::aarch64_stxr: { |
| ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); |
| if (!ExtVal || !ExtVal->hasOneUse() || |
| ExtVal->getParent() == CI->getParent()) |
| return false; |
| // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. |
| ExtVal->moveBefore(CI); |
| // Mark this instruction as "inserted by CGP", so that other |
| // optimizations don't touch it. |
| InsertedInsts.insert(ExtVal); |
| return true; |
| } |
| |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: { |
| Value *ArgVal = II->getArgOperand(0); |
| auto it = LargeOffsetGEPMap.find(II); |
| if (it != LargeOffsetGEPMap.end()) { |
| // Merge entries in LargeOffsetGEPMap to reflect the RAUW. |
| // Make sure not to have to deal with iterator invalidation |
| // after possibly adding ArgVal to LargeOffsetGEPMap. |
| auto GEPs = std::move(it->second); |
| LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); |
| LargeOffsetGEPMap.erase(II); |
| } |
| |
| II->replaceAllUsesWith(ArgVal); |
| II->eraseFromParent(); |
| return true; |
| } |
| case Intrinsic::cttz: |
| case Intrinsic::ctlz: |
| // If counting zeros is expensive, try to avoid it. |
| return despeculateCountZeros(II, TLI, DL, ModifiedDT); |
| case Intrinsic::dbg_value: |
| return fixupDbgValue(II); |
| } |
| |
| if (TLI) { |
| SmallVector<Value*, 2> PtrOps; |
| Type *AccessTy; |
| if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) |
| while (!PtrOps.empty()) { |
| Value *PtrVal = PtrOps.pop_back_val(); |
| unsigned AS = PtrVal->getType()->getPointerAddressSpace(); |
| if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) |
| return true; |
| } |
| } |
| } |
| |
| // From here on out we're working with named functions. |
| if (!CI->getCalledFunction()) return false; |
| |
| // Lower all default uses of _chk calls. This is very similar |
| // to what InstCombineCalls does, but here we are only lowering calls |
| // to fortified library functions (e.g. __memcpy_chk) that have the default |
| // "don't know" as the objectsize. Anything else should be left alone. |
| FortifiedLibCallSimplifier Simplifier(TLInfo, true); |
| if (Value *V = Simplifier.optimizeCall(CI)) { |
| CI->replaceAllUsesWith(V); |
| CI->eraseFromParent(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Look for opportunities to duplicate return instructions to the predecessor |
| /// to enable tail call optimizations. The case it is currently looking for is: |
| /// @code |
| /// bb0: |
| /// %tmp0 = tail call i32 @f0() |
| /// br label %return |
| /// bb1: |
| /// %tmp1 = tail call i32 @f1() |
| /// br label %return |
| /// bb2: |
| /// %tmp2 = tail call i32 @f2() |
| /// br label %return |
| /// return: |
| /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] |
| /// ret i32 %retval |
| /// @endcode |
| /// |
| /// => |
| /// |
| /// @code |
| /// bb0: |
| /// %tmp0 = tail call i32 @f0() |
| /// ret i32 %tmp0 |
| /// bb1: |
| /// %tmp1 = tail call i32 @f1() |
| /// ret i32 %tmp1 |
| /// bb2: |
| /// %tmp2 = tail call i32 @f2() |
| /// ret i32 %tmp2 |
| /// @endcode |
| bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { |
| if (!TLI) |
| return false; |
| |
| ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); |
| if (!RetI) |
| return false; |
| |
| PHINode *PN = nullptr; |
| BitCastInst *BCI = nullptr; |
| Value *V = RetI->getReturnValue(); |
| if (V) { |
| BCI = dyn_cast<BitCastInst>(V); |
| if (BCI) |
| V = BCI->getOperand(0); |
| |
| PN = dyn_cast<PHINode>(V); |
| if (!PN) |
| return false; |
| } |
| |
| if (PN && PN->getParent() != BB) |
| return false; |
| |
| // Make sure there are no instructions between the PHI and return, or that the |
| // return is the first instruction in the block. |
| if (PN) { |
| BasicBlock::iterator BI = BB->begin(); |
| // Skip over debug and the bitcast. |
| do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); |
| if (&*BI != RetI) |
| return false; |
| } else { |
| BasicBlock::iterator BI = BB->begin(); |
| while (isa<DbgInfoIntrinsic>(BI)) ++BI; |
| if (&*BI != RetI) |
| return false; |
| } |
| |
| /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail |
| /// call. |
| const Function *F = BB->getParent(); |
| SmallVector<BasicBlock*, 4> TailCallBBs; |
| if (PN) { |
| for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { |
| // Look through bitcasts. |
| Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); |
| CallInst *CI = dyn_cast<CallInst>(IncomingVal); |
| BasicBlock *PredBB = PN->getIncomingBlock(I); |
| // Make sure the phi value is indeed produced by the tail call. |
| if (CI && CI->hasOneUse() && CI->getParent() == PredBB && |
| TLI->mayBeEmittedAsTailCall(CI) && |
| attributesPermitTailCall(F, CI, RetI, *TLI)) |
| TailCallBBs.push_back(PredBB); |
| } |
| } else { |
| SmallPtrSet<BasicBlock*, 4> VisitedBBs; |
| for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { |
| if (!VisitedBBs.insert(*PI).second) |
| continue; |
| |
| BasicBlock::InstListType &InstList = (*PI)->getInstList(); |
| BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); |
| BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); |
| do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); |
| if (RI == RE) |
| continue; |
| |
| CallInst *CI = dyn_cast<CallInst>(&*RI); |
| if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && |
| attributesPermitTailCall(F, CI, RetI, *TLI)) |
| TailCallBBs.push_back(*PI); |
| } |
| } |
| |
| bool Changed = false; |
| for (auto const &TailCallBB : TailCallBBs) { |
| // Make sure the call instruction is followed by an unconditional branch to |
| // the return block. |
| BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); |
| if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) |
| continue; |
| |
| // Duplicate the return into TailCallBB. |
| (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); |
| ModifiedDT = Changed = true; |
| ++NumRetsDup; |
| } |
| |
| // If we eliminated all predecessors of the block, delete the block now. |
| if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) |
| BB->eraseFromParent(); |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Optimization |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// This is an extended version of TargetLowering::AddrMode |
| /// which holds actual Value*'s for register values. |
| struct ExtAddrMode : public TargetLowering::AddrMode { |
| Value *BaseReg = nullptr; |
| Value *ScaledReg = nullptr; |
| Value *OriginalValue = nullptr; |
| bool InBounds = true; |
| |
| enum FieldName { |
| NoField = 0x00, |
| BaseRegField = 0x01, |
| BaseGVField = 0x02, |
| BaseOffsField = 0x04, |
| ScaledRegField = 0x08, |
| ScaleField = 0x10, |
| MultipleFields = 0xff |
| }; |
| |
| |
| ExtAddrMode() = default; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| FieldName compare(const ExtAddrMode &other) { |
| // First check that the types are the same on each field, as differing types |
| // is something we can't cope with later on. |
| if (BaseReg && other.BaseReg && |
| BaseReg->getType() != other.BaseReg->getType()) |
| return MultipleFields; |
| if (BaseGV && other.BaseGV && |
| BaseGV->getType() != other.BaseGV->getType()) |
| return MultipleFields; |
| if (ScaledReg && other.ScaledReg && |
| ScaledReg->getType() != other.ScaledReg->getType()) |
| return MultipleFields; |
| |
| // Conservatively reject 'inbounds' mismatches. |
| if (InBounds != other.InBounds) |
| return MultipleFields; |
| |
| // Check each field to see if it differs. |
| unsigned Result = NoField; |
| if (BaseReg != other.BaseReg) |
| Result |= BaseRegField; |
| if (BaseGV != other.BaseGV) |
| Result |= BaseGVField; |
| if (BaseOffs != other.BaseOffs) |
| Result |= BaseOffsField; |
| if (ScaledReg != other.ScaledReg) |
| Result |= ScaledRegField; |
| // Don't count 0 as being a different scale, because that actually means |
| // unscaled (which will already be counted by having no ScaledReg). |
| if (Scale && other.Scale && Scale != other.Scale) |
| Result |= ScaleField; |
| |
| if (countPopulation(Result) > 1) |
| return MultipleFields; |
| else |
| return static_cast<FieldName>(Result); |
| } |
| |
| // An AddrMode is trivial if it involves no calculation i.e. it is just a base |
| // with no offset. |
| bool isTrivial() { |
| // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is |
| // trivial if at most one of these terms is nonzero, except that BaseGV and |
| // BaseReg both being zero actually means a null pointer value, which we |
| // consider to be 'non-zero' here. |
| return !BaseOffs && !Scale && !(BaseGV && BaseReg); |
| } |
| |
| Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { |
| switch (Field) { |
| default: |
| return nullptr; |
| case BaseRegField: |
| return BaseReg; |
| case BaseGVField: |
| return BaseGV; |
| case ScaledRegField: |
| return ScaledReg; |
| case BaseOffsField: |
| return ConstantInt::get(IntPtrTy, BaseOffs); |
| } |
| } |
| |
| void SetCombinedField(FieldName Field, Value *V, |
| const SmallVectorImpl<ExtAddrMode> &AddrModes) { |
| switch (Field) { |
| default: |
| llvm_unreachable("Unhandled fields are expected to be rejected earlier"); |
| break; |
| case ExtAddrMode::BaseRegField: |
| BaseReg = V; |
| break; |
| case ExtAddrMode::BaseGVField: |
| // A combined BaseGV is an Instruction, not a GlobalValue, so it goes |
| // in the BaseReg field. |
| assert(BaseReg == nullptr); |
| BaseReg = V; |
| BaseGV = nullptr; |
| break; |
| case ExtAddrMode::ScaledRegField: |
| ScaledReg = V; |
| // If we have a mix of scaled and unscaled addrmodes then we want scale |
| // to be the scale and not zero. |
| if (!Scale) |
| for (const ExtAddrMode &AM : AddrModes) |
| if (AM.Scale) { |
| Scale = AM.Scale; |
| break; |
| } |
| break; |
| case ExtAddrMode::BaseOffsField: |
| // The offset is no longer a constant, so it goes in ScaledReg with a |
| // scale of 1. |
| assert(ScaledReg == nullptr); |
| ScaledReg = V; |
| Scale = 1; |
| BaseOffs = 0; |
| break; |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| #ifndef NDEBUG |
| static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { |
| AM.print(OS); |
| return OS; |
| } |
| #endif |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void ExtAddrMode::print(raw_ostream &OS) const { |
| bool NeedPlus = false; |
| OS << "["; |
| if (InBounds) |
| OS << "inbounds "; |
| if (BaseGV) { |
| OS << (NeedPlus ? " + " : "") |
| << "GV:"; |
| BaseGV->printAsOperand(OS, /*PrintType=*/false); |
| NeedPlus = true; |
| } |
| |
| if (BaseOffs) { |
| OS << (NeedPlus ? " + " : "") |
| << BaseOffs; |
| NeedPlus = true; |
| } |
| |
| if (BaseReg) { |
| OS << (NeedPlus ? " + " : "") |
| << "Base:"; |
| BaseReg->printAsOperand(OS, /*PrintType=*/false); |
| NeedPlus = true; |
| } |
| if (Scale) { |
| OS << (NeedPlus ? " + " : "") |
| << Scale << "*"; |
| ScaledReg->printAsOperand(OS, /*PrintType=*/false); |
| } |
| |
| OS << ']'; |
| } |
| |
| LLVM_DUMP_METHOD void ExtAddrMode::dump() const { |
| print(dbgs()); |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| /// This class provides transaction based operation on the IR. |
| /// Every change made through this class is recorded in the internal state and |
| /// can be undone (rollback) until commit is called. |
| class TypePromotionTransaction { |
| /// This represents the common interface of the individual transaction. |
| /// Each class implements the logic for doing one specific modification on |
| /// the IR via the TypePromotionTransaction. |
| class TypePromotionAction { |
| protected: |
| /// The Instruction modified. |
| Instruction *Inst; |
| |
| public: |
| /// Constructor of the action. |
| /// The constructor performs the related action on the IR. |
| TypePromotionAction(Instruction *Inst) : Inst(Inst) {} |
| |
| virtual ~TypePromotionAction() = default; |
| |
| /// Undo the modification done by this action. |
| /// When this method is called, the IR must be in the same state as it was |
| /// before this action was applied. |
| /// \pre Undoing the action works if and only if the IR is in the exact same |
| /// state as it was directly after this action was applied. |
| virtual void undo() = 0; |
| |
| /// Advocate every change made by this action. |
| /// When the results on the IR of the action are to be kept, it is important |
| /// to call this function, otherwise hidden information may be kept forever. |
| virtual void commit() { |
| // Nothing to be done, this action is not doing anything. |
| } |
| }; |
| |
| /// Utility to remember the position of an instruction. |
| class InsertionHandler { |
| /// Position of an instruction. |
| /// Either an instruction: |
| /// - Is the first in a basic block: BB is used. |
| /// - Has a previous instruction: PrevInst is used. |
| union { |
| Instruction *PrevInst; |
| BasicBlock *BB; |
| } Point; |
| |
| /// Remember whether or not the instruction had a previous instruction. |
| bool HasPrevInstruction; |
| |
| public: |
| /// Record the position of \p Inst. |
| InsertionHandler(Instruction *Inst) { |
| BasicBlock::iterator It = Inst->getIterator(); |
| HasPrevInstruction = (It != (Inst->getParent()->begin())); |
| if (HasPrevInstruction) |
| Point.PrevInst = &*--It; |
| else |
| Point.BB = Inst->getParent(); |
| } |
| |
| /// Insert \p Inst at the recorded position. |
| void insert(Instruction *Inst) { |
| if (HasPrevInstruction) { |
| if (Inst->getParent()) |
| Inst->removeFromParent(); |
| Inst->insertAfter(Point.PrevInst); |
| } else { |
| Instruction *Position = &*Point.BB->getFirstInsertionPt(); |
| if (Inst->getParent()) |
| Inst->moveBefore(Position); |
| else |
| Inst->insertBefore(Position); |
| } |
| } |
| }; |
| |
| /// Move an instruction before another. |
| class InstructionMoveBefore : public TypePromotionAction { |
| /// Original position of the instruction. |
| InsertionHandler Position; |
| |
| public: |
| /// Move \p Inst before \p Before. |
| InstructionMoveBefore(Instruction *Inst, Instruction *Before) |
| : TypePromotionAction(Inst), Position(Inst) { |
| LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before |
| << "\n"); |
| Inst->moveBefore(Before); |
| } |
| |
| /// Move the instruction back to its original position. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); |
| Position.insert(Inst); |
| } |
| }; |
| |
| /// Set the operand of an instruction with a new value. |
| class OperandSetter : public TypePromotionAction { |
| /// Original operand of the instruction. |
| Value *Origin; |
| |
| /// Index of the modified instruction. |
| unsigned Idx; |
| |
| public: |
| /// Set \p Idx operand of \p Inst with \p NewVal. |
| OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) |
| : TypePromotionAction(Inst), Idx(Idx) { |
| LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" |
| << "for:" << *Inst << "\n" |
| << "with:" << *NewVal << "\n"); |
| Origin = Inst->getOperand(Idx); |
| Inst->setOperand(Idx, NewVal); |
| } |
| |
| /// Restore the original value of the instruction. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" |
| << "for: " << *Inst << "\n" |
| << "with: " << *Origin << "\n"); |
| Inst->setOperand(Idx, Origin); |
| } |
| }; |
| |
| /// Hide the operands of an instruction. |
| /// Do as if this instruction was not using any of its operands. |
| class OperandsHider : public TypePromotionAction { |
| /// The list of original operands. |
| SmallVector<Value *, 4> OriginalValues; |
| |
| public: |
| /// Remove \p Inst from the uses of the operands of \p Inst. |
| OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { |
| LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); |
| unsigned NumOpnds = Inst->getNumOperands(); |
| OriginalValues.reserve(NumOpnds); |
| for (unsigned It = 0; It < NumOpnds; ++It) { |
| // Save the current operand. |
| Value *Val = Inst->getOperand(It); |
| OriginalValues.push_back(Val); |
| // Set a dummy one. |
| // We could use OperandSetter here, but that would imply an overhead |
| // that we are not willing to pay. |
| Inst->setOperand(It, UndefValue::get(Val->getType())); |
| } |
| } |
| |
| /// Restore the original list of uses. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); |
| for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) |
| Inst->setOperand(It, OriginalValues[It]); |
| } |
| }; |
| |
| /// Build a truncate instruction. |
| class TruncBuilder : public TypePromotionAction { |
| Value *Val; |
| |
| public: |
| /// Build a truncate instruction of \p Opnd producing a \p Ty |
| /// result. |
| /// trunc Opnd to Ty. |
| TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { |
| IRBuilder<> Builder(Opnd); |
| Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); |
| LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); |
| } |
| |
| /// Get the built value. |
| Value *getBuiltValue() { return Val; } |
| |
| /// Remove the built instruction. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); |
| if (Instruction *IVal = dyn_cast<Instruction>(Val)) |
| IVal->eraseFromParent(); |
| } |
| }; |
| |
| /// Build a sign extension instruction. |
| class SExtBuilder : public TypePromotionAction { |
| Value *Val; |
| |
| public: |
| /// Build a sign extension instruction of \p Opnd producing a \p Ty |
| /// result. |
| /// sext Opnd to Ty. |
| SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) |
| : TypePromotionAction(InsertPt) { |
| IRBuilder<> Builder(InsertPt); |
| Val = Builder.CreateSExt(Opnd, Ty, "promoted"); |
| LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); |
| } |
| |
| /// Get the built value. |
| Value *getBuiltValue() { return Val; } |
| |
| /// Remove the built instruction. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); |
| if (Instruction *IVal = dyn_cast<Instruction>(Val)) |
| IVal->eraseFromParent(); |
| } |
| }; |
| |
| /// Build a zero extension instruction. |
| class ZExtBuilder : public TypePromotionAction { |
| Value *Val; |
| |
| public: |
| /// Build a zero extension instruction of \p Opnd producing a \p Ty |
| /// result. |
| /// zext Opnd to Ty. |
| ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) |
| : TypePromotionAction(InsertPt) { |
| IRBuilder<> Builder(InsertPt); |
| Val = Builder.CreateZExt(Opnd, Ty, "promoted"); |
| LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); |
| } |
| |
| /// Get the built value. |
| Value *getBuiltValue() { return Val; } |
| |
| /// Remove the built instruction. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); |
| if (Instruction *IVal = dyn_cast<Instruction>(Val)) |
| IVal->eraseFromParent(); |
| } |
| }; |
| |
| /// Mutate an instruction to another type. |
| class TypeMutator : public TypePromotionAction { |
| /// Record the original type. |
| Type *OrigTy; |
| |
| public: |
| /// Mutate the type of \p Inst into \p NewTy. |
| TypeMutator(Instruction *Inst, Type *NewTy) |
| : TypePromotionAction(Inst), OrigTy(Inst->getType()) { |
| LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy |
| << "\n"); |
| Inst->mutateType(NewTy); |
| } |
| |
| /// Mutate the instruction back to its original type. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy |
| << "\n"); |
| Inst->mutateType(OrigTy); |
| } |
| }; |
| |
| /// Replace the uses of an instruction by another instruction. |
| class UsesReplacer : public TypePromotionAction { |
| /// Helper structure to keep track of the replaced uses. |
| struct InstructionAndIdx { |
| /// The instruction using the instruction. |
| Instruction *Inst; |
| |
| /// The index where this instruction is used for Inst. |
| unsigned Idx; |
| |
| InstructionAndIdx(Instruction *Inst, unsigned Idx) |
| : Inst(Inst), Idx(Idx) {} |
| }; |
| |
| /// Keep track of the original uses (pair Instruction, Index). |
| SmallVector<InstructionAndIdx, 4> OriginalUses; |
| /// Keep track of the debug users. |
| SmallVector<DbgValueInst *, 1> DbgValues; |
| |
| using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; |
| |
| public: |
| /// Replace all the use of \p Inst by \p New. |
| UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { |
| LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New |
| << "\n"); |
| // Record the original uses. |
| for (Use &U : Inst->uses()) { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); |
| } |
| // Record the debug uses separately. They are not in the instruction's |
| // use list, but they are replaced by RAUW. |
| findDbgValues(DbgValues, Inst); |
| |
| // Now, we can replace the uses. |
| Inst->replaceAllUsesWith(New); |
| } |
| |
| /// Reassign the original uses of Inst to Inst. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); |
| for (use_iterator UseIt = OriginalUses.begin(), |
| EndIt = OriginalUses.end(); |
| UseIt != EndIt; ++UseIt) { |
| UseIt->Inst->setOperand(UseIt->Idx, Inst); |
| } |
| // RAUW has replaced all original uses with references to the new value, |
| // including the debug uses. Since we are undoing the replacements, |
| // the original debug uses must also be reinstated to maintain the |
| // correctness and utility of debug value instructions. |
| for (auto *DVI: DbgValues) { |
| LLVMContext &Ctx = Inst->getType()->getContext(); |
| auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); |
| DVI->setOperand(0, MV); |
| } |
| } |
| }; |
| |
| /// Remove an instruction from the IR. |
| class InstructionRemover : public TypePromotionAction { |
| /// Original position of the instruction. |
| InsertionHandler Inserter; |
| |
| /// Helper structure to hide all the link to the instruction. In other |
| /// words, this helps to do as if the instruction was removed. |
| OperandsHider Hider; |
| |
| /// Keep track of the uses replaced, if any. |
| UsesReplacer *Replacer = nullptr; |
| |
| /// Keep track of instructions removed. |
| SetOfInstrs &RemovedInsts; |
| |
| public: |
| /// Remove all reference of \p Inst and optionally replace all its |
| /// uses with New. |
| /// \p RemovedInsts Keep track of the instructions removed by this Action. |
| /// \pre If !Inst->use_empty(), then New != nullptr |
| InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, |
| Value *New = nullptr) |
| : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), |
| RemovedInsts(RemovedInsts) { |
| if (New) |
| Replacer = new UsesReplacer(Inst, New); |
| LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); |
| RemovedInsts.insert(Inst); |
| /// The instructions removed here will be freed after completing |
| /// optimizeBlock() for all blocks as we need to keep track of the |
| /// removed instructions during promotion. |
| Inst->removeFromParent(); |
| } |
| |
| ~InstructionRemover() override { delete Replacer; } |
| |
| /// Resurrect the instruction and reassign it to the proper uses if |
| /// new value was provided when build this action. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); |
| Inserter.insert(Inst); |
| if (Replacer) |
| Replacer->undo(); |
| Hider.undo(); |
| RemovedInsts.erase(Inst); |
| } |
| }; |
| |
| public: |
| /// Restoration point. |
| /// The restoration point is a pointer to an action instead of an iterator |
| /// because the iterator may be invalidated but not the pointer. |
| using ConstRestorationPt = const TypePromotionAction *; |
| |
| TypePromotionTransaction(SetOfInstrs &RemovedInsts) |
| : RemovedInsts(RemovedInsts) {} |
| |
| /// Advocate every changes made in that transaction. |
| void commit(); |
| |
| /// Undo all the changes made after the given point. |
| void rollback(ConstRestorationPt Point); |
| |
| /// Get the current restoration point. |
| ConstRestorationPt getRestorationPoint() const; |
| |
| /// \name API for IR modification with state keeping to support rollback. |
| /// @{ |
| /// Same as Instruction::setOperand. |
| void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); |
| |
| /// Same as Instruction::eraseFromParent. |
| void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); |
| |
| /// Same as Value::replaceAllUsesWith. |
| void replaceAllUsesWith(Instruction *Inst, Value *New); |
| |
| /// Same as Value::mutateType. |
| void mutateType(Instruction *Inst, Type *NewTy); |
| |
| /// Same as IRBuilder::createTrunc. |
| Value *createTrunc(Instruction *Opnd, Type *Ty); |
| |
| /// Same as IRBuilder::createSExt. |
| Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); |
| |
| /// Same as IRBuilder::createZExt. |
| Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); |
| |
| /// Same as Instruction::moveBefore. |
| void moveBefore(Instruction *Inst, Instruction *Before); |
| /// @} |
| |
| private: |
| /// The ordered list of actions made so far. |
| SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; |
| |
| using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; |
| |
| SetOfInstrs &RemovedInsts; |
| }; |
| |
| } // end anonymous namespace |
| |
| void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, |
| Value *NewVal) { |
| Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( |
| Inst, Idx, NewVal)); |
| } |
| |
| void TypePromotionTransaction::eraseInstruction(Instruction *Inst, |
| Value *NewVal) { |
| Actions.push_back( |
| std::make_unique<TypePromotionTransaction::InstructionRemover>( |
| Inst, RemovedInsts, NewVal)); |
| } |
| |
| void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, |
| Value *New) { |
| Actions.push_back( |
| std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); |
| } |
| |
| void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { |
| Actions.push_back( |
| std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); |
| } |
| |
| Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, |
| Type *Ty) { |
| std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); |
| Value *Val = Ptr->getBuiltValue(); |
| Actions.push_back(std::move(Ptr)); |
| return Val; |
| } |
| |
| Value *TypePromotionTransaction::createSExt(Instruction *Inst, |
| Value *Opnd, Type *Ty) { |
| std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); |
| Value *Val = Ptr->getBuiltValue(); |
| Actions.push_back(std::move(Ptr)); |
| return Val; |
| } |
| |
| Value *TypePromotionTransaction::createZExt(Instruction *Inst, |
| Value *Opnd, Type *Ty) { |
| std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); |
| Value *Val = Ptr->getBuiltValue(); |
| Actions.push_back(std::move(Ptr)); |
| return Val; |
| } |
| |
| void TypePromotionTransaction::moveBefore(Instruction *Inst, |
| Instruction *Before) { |
| Actions.push_back( |
| std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( |
| Inst, Before)); |
| } |
| |
| TypePromotionTransaction::ConstRestorationPt |
| TypePromotionTransaction::getRestorationPoint() const { |
| return !Actions.empty() ? Actions.back().get() : nullptr; |
| } |
| |
| void TypePromotionTransaction::commit() { |
| for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; |
| ++It) |
| (*It)->commit(); |
| Actions.clear(); |
| } |
| |
| void TypePromotionTransaction::rollback( |
| TypePromotionTransaction::ConstRestorationPt Point) { |
| while (!Actions.empty() && Point != Actions.back().get()) { |
| std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); |
| Curr->undo(); |
| } |
| } |
| |
| namespace { |
| |
| /// A helper class for matching addressing modes. |
| /// |
| /// This encapsulates the logic for matching the target-legal addressing modes. |
| class AddressingModeMatcher { |
| SmallVectorImpl<Instruction*> &AddrModeInsts; |
| const TargetLowering &TLI; |
| const TargetRegisterInfo &TRI; |
| const DataLayout &DL; |
| |
| /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and |
| /// the memory instruction that we're computing this address for. |
| Type *AccessTy; |
| unsigned AddrSpace; |
| Instruction *MemoryInst; |
| |
| /// This is the addressing mode that we're building up. This is |
| /// part of the return value of this addressing mode matching stuff. |
| ExtAddrMode &AddrMode; |
| |
| /// The instructions inserted by other CodeGenPrepare optimizations. |
| const SetOfInstrs &InsertedInsts; |
| |
| /// A map from the instructions to their type before promotion. |
| InstrToOrigTy &PromotedInsts; |
| |
| /// The ongoing transaction where every action should be registered. |
| TypePromotionTransaction &TPT; |
| |
| // A GEP which has too large offset to be folded into the addressing mode. |
| std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; |
| |
| /// This is set to true when we should not do profitability checks. |
| /// When true, IsProfitableToFoldIntoAddressingMode always returns true. |
| bool IgnoreProfitability; |
| |
| /// True if we are optimizing for size. |
| bool OptSize; |
| |
| ProfileSummaryInfo *PSI; |
| BlockFrequencyInfo *BFI; |
| |
| AddressingModeMatcher( |
| SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, |
| const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, |
| ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, |
| InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, |
| std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, |
| bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) |
| : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), |
| DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), |
| MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), |
| PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), |
| OptSize(OptSize), PSI(PSI), BFI(BFI) { |
| IgnoreProfitability = false; |
| } |
| |
| public: |
| /// Find the maximal addressing mode that a load/store of V can fold, |
| /// give an access type of AccessTy. This returns a list of involved |
| /// instructions in AddrModeInsts. |
| /// \p InsertedInsts The instructions inserted by other CodeGenPrepare |
| /// optimizations. |
| /// \p PromotedInsts maps the instructions to their type before promotion. |
| /// \p The ongoing transaction where every action should be registered. |
| static ExtAddrMode |
| Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, |
| SmallVectorImpl<Instruction *> &AddrModeInsts, |
| const TargetLowering &TLI, const TargetRegisterInfo &TRI, |
| const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, |
| TypePromotionTransaction &TPT, |
| std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, |
| bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { |
| ExtAddrMode Result; |
| |
| bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, |
| MemoryInst, Result, InsertedInsts, |
| PromotedInsts, TPT, LargeOffsetGEP, |
| OptSize, PSI, BFI) |
| .matchAddr(V, 0); |
| (void)Success; assert(Success && "Couldn't select *anything*?"); |
| return Result; |
| } |
| |
| private: |
| bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); |
| bool matchAddr(Value *Addr, unsigned Depth); |
| bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, |
| bool *MovedAway = nullptr); |
| bool isProfitableToFoldIntoAddressingMode(Instruction *I, |
| ExtAddrMode &AMBefore, |
| ExtAddrMode &AMAfter); |
| bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); |
| bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, |
| Value *PromotedOperand) const; |
| }; |
| |
| class PhiNodeSet; |
| |
| /// An iterator for PhiNodeSet. |
| class PhiNodeSetIterator { |
| PhiNodeSet * const Set; |
| size_t CurrentIndex = 0; |
| |
| public: |
| /// The constructor. Start should point to either a valid element, or be equal |
| /// to the size of the underlying SmallVector of the PhiNodeSet. |
| PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); |
| PHINode * operator*() const; |
| PhiNodeSetIterator& operator++(); |
| bool operator==(const PhiNodeSetIterator &RHS) const; |
| bool operator!=(const PhiNodeSetIterator &RHS) const; |
| }; |
| |
| /// Keeps a set of PHINodes. |
| /// |
| /// This is a minimal set implementation for a specific use case: |
| /// It is very fast when there are very few elements, but also provides good |
| /// performance when there are many. It is similar to SmallPtrSet, but also |
| /// provides iteration by insertion order, which is deterministic and stable |
| /// across runs. It is also similar to SmallSetVector, but provides removing |
| /// elements in O(1) time. This is achieved by not actually removing the element |
| /// from the underlying vector, so comes at the cost of using more memory, but |
| /// that is fine, since PhiNodeSets are used as short lived objects. |
| class PhiNodeSet { |
| friend class PhiNodeSetIterator; |
| |
| using MapType = SmallDenseMap<PHINode *, size_t, 32>; |
| using iterator = PhiNodeSetIterator; |
| |
| /// Keeps the elements in the order of their insertion in the underlying |
| /// vector. To achieve constant time removal, it never deletes any element. |
| SmallVector<PHINode *, 32> NodeList; |
| |
| /// Keeps the elements in the underlying set implementation. This (and not the |
| /// NodeList defined above) is the source of truth on whether an element |
| /// is actually in the collection. |
| MapType NodeMap; |
| |
| /// Points to the first valid (not deleted) element when the set is not empty |
| /// and the value is not zero. Equals to the size of the underlying vector |
| /// when the set is empty. When the value is 0, as in the beginning, the |
| /// first element may or may not be valid. |
| size_t FirstValidElement = 0; |
| |
| public: |
| /// Inserts a new element to the collection. |
| /// \returns true if the element is actually added, i.e. was not in the |
| /// collection before the operation. |
| bool insert(PHINode *Ptr) { |
| if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { |
| NodeList.push_back(Ptr); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Removes the element from the collection. |
| /// \returns whether the element is actually removed, i.e. was in the |
| /// collection before the operation. |
| bool erase(PHINode *Ptr) { |
| auto it = NodeMap.find(Ptr); |
| if (it != NodeMap.end()) { |
| NodeMap.erase(Ptr); |
| SkipRemovedElements(FirstValidElement); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Removes all elements and clears the collection. |
| void clear() { |
| NodeMap.clear(); |
| NodeList.clear(); |
| FirstValidElement = 0; |
| } |
| |
| /// \returns an iterator that will iterate the elements in the order of |
| /// insertion. |
| iterator begin() { |
| if (FirstValidElement == 0) |
| SkipRemovedElements(FirstValidElement); |
| return PhiNodeSetIterator(this, FirstValidElement); |
| } |
| |
| /// \returns an iterator that points to the end of the collection. |
| iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } |
| |
| /// Returns the number of elements in the collection. |
| size_t size() const { |
| return NodeMap.size(); |
| } |
| |
| /// \returns 1 if the given element is in the collection, and 0 if otherwise. |
| size_t count(PHINode *Ptr) const { |
| return NodeMap.count(Ptr); |
| } |
| |
| private: |
| /// Updates the CurrentIndex so that it will point to a valid element. |
| /// |
| /// If the element of NodeList at CurrentIndex is valid, it does not |
| /// change it. If there are no more valid elements, it updates CurrentIndex |
| /// to point to the end of the NodeList. |
| void SkipRemovedElements(size_t &CurrentIndex) { |
| while (CurrentIndex < NodeList.size()) { |
| auto it = NodeMap.find(NodeList[CurrentIndex]); |
| // If the element has been deleted and added again later, NodeMap will |
| // point to a different index, so CurrentIndex will still be invalid. |
| if (it != NodeMap.end() && it->second == CurrentIndex) |
| break; |
| ++CurrentIndex; |
| } |
| } |
| }; |
| |
| PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) |
| : Set(Set), CurrentIndex(Start) {} |
| |
| PHINode * PhiNodeSetIterator::operator*() const { |
| assert(CurrentIndex < Set->NodeList.size() && |
| "PhiNodeSet access out of range"); |
| return Set->NodeList[CurrentIndex]; |
| } |
| |
| PhiNodeSetIterator& PhiNodeSetIterator::operator++() { |
| assert(CurrentIndex < Set->NodeList.size() && |
| "PhiNodeSet access out of range"); |
| ++CurrentIndex; |
| Set->SkipRemovedElements(CurrentIndex); |
| return *this; |
| } |
| |
| bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { |
| return CurrentIndex == RHS.CurrentIndex; |
| } |
| |
| bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { |
| return !((*this) == RHS); |
| } |
| |
| /// Keep track of simplification of Phi nodes. |
| /// Accept the set of all phi nodes and erase phi node from this set |
| /// if it is simplified. |
| class SimplificationTracker { |
| DenseMap<Value *, Value *> Storage; |
| const SimplifyQuery &SQ; |
| // Tracks newly created Phi nodes. The elements are iterated by insertion |
| // order. |
| PhiNodeSet AllPhiNodes; |
| // Tracks newly created Select nodes. |
| SmallPtrSet<SelectInst *, 32> AllSelectNodes; |
| |
| public: |
| SimplificationTracker(const SimplifyQuery &sq) |
| : SQ(sq) {} |
| |
| Value *Get(Value *V) { |
| do { |
| auto SV = Storage.find(V); |
| if (SV == Storage.end()) |
| return V; |
| V = SV->second; |
| } while (true); |
| } |
| |
| Value *Simplify(Value *Val) { |
| SmallVector<Value *, 32> WorkList; |
| SmallPtrSet<Value *, 32> Visited; |
| WorkList.push_back(Val); |
| while (!WorkList.empty()) { |
| auto P = WorkList.pop_back_val(); |
| if (!Visited.insert(P).second) |
| continue; |
| if (auto *PI = dyn_cast<Instruction>(P)) |
| if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { |
| for (auto *U : PI->users()) |
| WorkList.push_back(cast<Value>(U)); |
| Put(PI, V); |
| PI->replaceAllUsesWith(V); |
| if (auto *PHI = dyn_cast<PHINode>(PI)) |
| AllPhiNodes.erase(PHI); |
| if (auto *Select = dyn_cast<SelectInst>(PI)) |
| AllSelectNodes.erase(Select); |
| PI->eraseFromParent(); |
| } |
| } |
| return Get(Val); |
| } |
| |
| void Put(Value *From, Value *To) { |
| Storage.insert({ From, To }); |
| } |
| |
| void ReplacePhi(PHINode *From, PHINode *To) { |
| Value* OldReplacement = Get(From); |
| while (OldReplacement != From) { |
| From = To; |
| To = dyn_cast<PHINode>(OldReplacement); |
| OldReplacement = Get(From); |
| } |
| assert(To && Get(To) == To && "Replacement PHI node is already replaced."); |
| Put(From, To); |
| From->replaceAllUsesWith(To); |
| AllPhiNodes.erase(From); |
| From->eraseFromParent(); |
| } |
| |
| PhiNodeSet& newPhiNodes() { return AllPhiNodes; } |
| |
| void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } |
| |
| void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } |
| |
| unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } |
| |
| unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } |
| |
| void destroyNewNodes(Type *CommonType) { |
| // For safe erasing, replace the uses with dummy value first. |
| auto Dummy = UndefValue::get(CommonType); |
| for (auto I : AllPhiNodes) { |
| I->replaceAllUsesWith(Dummy); |
| I->eraseFromParent(); |
| } |
| AllPhiNodes.clear(); |
| for (auto I : AllSelectNodes) { |
| I->replaceAllUsesWith(Dummy); |
| I->eraseFromParent(); |
| } |
| AllSelectNodes.clear(); |
| } |
| }; |
| |
| /// A helper class for combining addressing modes. |
| class AddressingModeCombiner { |
| typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; |
| typedef std::pair<PHINode *, PHINode *> PHIPair; |
| |
| private: |
| /// The addressing modes we've collected. |
| SmallVector<ExtAddrMode, 16> AddrModes; |
| |
| /// The field in which the AddrModes differ, when we have more than one. |
| ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; |
| |
| /// Are the AddrModes that we have all just equal to their original values? |
| bool AllAddrModesTrivial = true; |
| |
| /// Common Type for all different fields in addressing modes. |
| Type *CommonType; |
| |
| /// SimplifyQuery for simplifyInstruction utility. |
| const SimplifyQuery &SQ; |
| |
| /// Original Address. |
| Value *Original; |
| |
| public: |
| AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) |
| : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} |
| |
| /// Get the combined AddrMode |
| const ExtAddrMode &getAddrMode() const { |
| return AddrModes[0]; |
| } |
| |
| /// Add a new AddrMode if it's compatible with the AddrModes we already |
| /// have. |
| /// \return True iff we succeeded in doing so. |
| bool addNewAddrMode(ExtAddrMode &NewAddrMode) { |
| // Take note of if we have any non-trivial AddrModes, as we need to detect |
| // when all AddrModes are trivial as then we would introduce a phi or select |
| // which just duplicates what's already there. |
| AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); |
| |
| // If this is the first addrmode then everything is fine. |
| if (AddrModes.empty()) { |
| AddrModes.emplace_back(NewAddrMode); |
| return true; |
| } |
| |
| // Figure out how different this is from the other address modes, which we |
| // can do just by comparing against the first one given that we only care |
| // about the cumulative difference. |
| ExtAddrMode::FieldName ThisDifferentField = |
| AddrModes[0].compare(NewAddrMode); |
| if (DifferentField == ExtAddrMode::NoField) |
| DifferentField = ThisDifferentField; |
| else if (DifferentField != ThisDifferentField) |
| DifferentField = ExtAddrMode::MultipleFields; |
| |
| // If NewAddrMode differs in more than one dimension we cannot handle it. |
| bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; |
| |
| // If Scale Field is different then we reject. |
| CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; |
| |
| // We also must reject the case when base offset is different and |
| // scale reg is not null, we cannot handle this case due to merge of |
| // different offsets will be used as ScaleReg. |
| CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || |
| !NewAddrMode.ScaledReg); |
| |
| // We also must reject the case when GV is different and BaseReg installed |
| // due to we want to use base reg as a merge of GV values. |
| CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || |
| !NewAddrMode.HasBaseReg); |
| |
| // Even if NewAddMode is the same we still need to collect it due to |
| // original value is different. And later we will need all original values |
| // as anchors during finding the common Phi node. |
| if (CanHandle) |
| AddrModes.emplace_back(NewAddrMode); |
| else |
| AddrModes.clear(); |
| |
| return CanHandle; |
| } |
| |
| /// Combine the addressing modes we've collected into a single |
| /// addressing mode. |
| /// \return True iff we successfully combined them or we only had one so |
| /// didn't need to combine them anyway. |
| bool combineAddrModes() { |
| // If we have no AddrModes then they can't be combined. |
| if (AddrModes.size() == 0) |
| return false; |
| |
| // A single AddrMode can trivially be combined. |
| if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) |
| return true; |
| |
| // If the AddrModes we collected are all just equal to the value they are |
| // derived from then combining them wouldn't do anything useful. |
| if (AllAddrModesTrivial) |
| return false; |
| |
| if (!addrModeCombiningAllowed()) |
| return false; |
| |
| // Build a map between <original value, basic block where we saw it> to |
| // value of base register. |
| // Bail out if there is no common type. |
| FoldAddrToValueMapping Map; |
| if (!initializeMap(Map)) |
| return false; |
| |
| Value *CommonValue = findCommon(Map); |
| if (CommonValue) |
| AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); |
| return CommonValue != nullptr; |
| } |
| |
| private: |
| /// Initialize Map with anchor values. For address seen |
| /// we set the value of different field saw in this address. |
| /// At the same time we find a common type for different field we will |
| /// use to create new Phi/Select nodes. Keep it in CommonType field. |
| /// Return false if there is no common type found. |
| bool initializeMap(FoldAddrToValueMapping &Map) { |
| // Keep track of keys where the value is null. We will need to replace it |
| // with constant null when we know the common type. |
| SmallVector<Value *, 2> NullValue; |
| Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); |
| for (auto &AM : AddrModes) { |
| Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); |
| if (DV) { |
| auto *Type = DV->getType(); |
| if (CommonType && CommonType != Type) |
| return false; |
| CommonType = Type; |
| Map[AM.OriginalValue] = DV; |
| } else { |
| NullValue.push_back(AM.OriginalValue); |
| } |
| } |
| assert(CommonType && "At least one non-null value must be!"); |
| for (auto *V : NullValue) |
| Map[V] = Constant::getNullValue(CommonType); |
| return true; |
| } |
| |
| /// We have mapping between value A and other value B where B was a field in |
| /// addressing mode represented by A. Also we have an original value C |
| /// representing an address we start with. Traversing from C through phi and |
| /// selects we ended up with A's in a map. This utility function tries to find |
| /// a value V which is a field in addressing mode C and traversing through phi |
| /// nodes and selects we will end up in corresponded values B in a map. |
| /// The utility will create a new Phi/Selects if needed. |
| // The simple example looks as follows: |
| // BB1: |
| // p1 = b1 + 40 |
| // br cond BB2, BB3 |
| // BB2: |
| // p2 = b2 + 40 |
| // br BB3 |
| // BB3: |
| // p = phi [p1, BB1], [p2, BB2] |
| // v = load p |
| // Map is |
| // p1 -> b1 |
| // p2 -> b2 |
| // Request is |
| // p -> ? |
| // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. |
| Value *findCommon(FoldAddrToValueMapping &Map) { |
| // Tracks the simplification of newly created phi nodes. The reason we use |
| // this mapping is because we will add new created Phi nodes in AddrToBase. |
| // Simplification of Phi nodes is recursive, so some Phi node may |
| // be simplified after we added it to AddrToBase. In reality this |
| // simplification is possible only if original phi/selects were not |
| // simplified yet. |
| // Using this mapping we can find the current value in AddrToBase. |
| SimplificationTracker ST(SQ); |
| |
| // First step, DFS to create PHI nodes for all intermediate blocks. |
| // Also fill traverse order for the second step. |
| SmallVector<Value *, 32> TraverseOrder; |
| InsertPlaceholders(Map, TraverseOrder, ST); |
| |
| // Second Step, fill new nodes by merged values and simplify if possible. |
| FillPlaceholders(Map, TraverseOrder, ST); |
| |
| if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { |
| ST.destroyNewNodes(CommonType); |
| return nullptr; |
| } |
| |
| // Now we'd like to match New Phi nodes to existed ones. |
| unsigned PhiNotMatchedCount = 0; |
| if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { |
| ST.destroyNewNodes(CommonType); |
| return nullptr; |
| } |
| |
| auto *Result = ST.Get(Map.find(Original)->second); |
| if (Result) { |
| NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; |
| NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); |
| } |
| return Result; |
| } |
| |
| /// Try to match PHI node to Candidate. |
| /// Matcher tracks the matched Phi nodes. |
| bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, |
| SmallSetVector<PHIPair, 8> &Matcher, |
| PhiNodeSet &PhiNodesToMatch) { |
| SmallVector<PHIPair, 8> WorkList; |
| Matcher.insert({ PHI, Candidate }); |
| SmallSet<PHINode *, 8> MatchedPHIs; |
| MatchedPHIs.insert(PHI); |
| WorkList.push_back({ PHI, Candidate }); |
| SmallSet<PHIPair, 8> Visited; |
| while (!WorkList.empty()) { |
| auto Item = WorkList.pop_back_val(); |
| if (!Visited.insert(Item).second) |
| continue; |
| // We iterate over all incoming values to Phi to compare them. |
| // If values are different and both of them Phi and the first one is a |
| // Phi we added (subject to match) and both of them is in the same basic |
| // block then we can match our pair if values match. So we state that |
| // these values match and add it to work list to verify that. |
| for (auto B : Item.first->blocks()) { |
| Value *FirstValue = Item.first->getIncomingValueForBlock(B); |
| Value *SecondValue = Item.second->getIncomingValueForBlock(B); |
| if (FirstValue == SecondValue) |
| continue; |
| |
| PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); |
| PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); |
| |
| // One of them is not Phi or |
| // The first one is not Phi node from the set we'd like to match or |
| // Phi nodes from different basic blocks then |
| // we will not be able to match. |
| if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || |
| FirstPhi->getParent() != SecondPhi->getParent()) |
| return false; |
| |
| // If we already matched them then continue. |
| if (Matcher.count({ FirstPhi, SecondPhi })) |
| continue; |
| // So the values are different and does not match. So we need them to |
| // match. (But we register no more than one match per PHI node, so that |
| // we won't later try to replace them twice.) |
| if (MatchedPHIs.insert(FirstPhi).second) |
| Matcher.insert({ FirstPhi, SecondPhi }); |
| // But me must check it. |
| WorkList.push_back({ FirstPhi, SecondPhi }); |
| } |
| } |
| return true; |
| } |
| |
| /// For the given set of PHI nodes (in the SimplificationTracker) try |
| /// to find their equivalents. |
| /// Returns false if this matching fails and creation of new Phi is disabled. |
| bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, |
| unsigned &PhiNotMatchedCount) { |
| // Matched and PhiNodesToMatch iterate their elements in a deterministic |
| // order, so the replacements (ReplacePhi) are also done in a deterministic |
| // order. |
| SmallSetVector<PHIPair, 8> Matched; |
| SmallPtrSet<PHINode *, 8> WillNotMatch; |
| PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); |
| while (PhiNodesToMatch.size()) { |
| PHINode *PHI = *PhiNodesToMatch.begin(); |
| |
| // Add us, if no Phi nodes in the basic block we do not match. |
| WillNotMatch.clear(); |
| WillNotMatch.insert(PHI); |
| |
| // Traverse all Phis until we found equivalent or fail to do that. |
| bool IsMatched = false; |
| for (auto &P : PHI->getParent()->phis()) { |
| if (&P == PHI) |
| continue; |
| if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) |
| break; |
| // If it does not match, collect all Phi nodes from matcher. |
| // if we end up with no match, them all these Phi nodes will not match |
| // later. |
| for (auto M : Matched) |
| WillNotMatch.insert(M.first); |
| Matched.clear(); |
| } |
| if (IsMatched) { |
| // Replace all matched values and erase them. |
| for (auto MV : Matched) |
| ST.ReplacePhi(MV.first, MV.second); |
| Matched.clear(); |
| continue; |
| } |
| // If we are not allowed to create new nodes then bail out. |
| if (!AllowNewPhiNodes) |
| return false; |
| // Just remove all seen values in matcher. They will not match anything. |
| PhiNotMatchedCount += WillNotMatch.size(); |
| for (auto *P : WillNotMatch) |
| PhiNodesToMatch.erase(P); |
| } |
| return true; |
| } |
| /// Fill the placeholders with values from predecessors and simplify them. |
| void FillPlaceholders(FoldAddrToValueMapping &Map, |
| SmallVectorImpl<Value *> &TraverseOrder, |
| SimplificationTracker &ST) { |
| while (!TraverseOrder.empty()) { |
| Value *Current = TraverseOrder.pop_back_val(); |
| assert(Map.find(Current) != Map.end() && "No node to fill!!!"); |
| Value *V = Map[Current]; |
| |
| if (SelectInst *Select = dyn_cast<SelectInst>(V)) { |
| // CurrentValue also must be Select. |
| auto *CurrentSelect = cast<SelectInst>(Current); |
| auto *TrueValue = CurrentSelect->getTrueValue(); |
| assert(Map.find(TrueValue) != Map.end() && "No True Value!"); |
| Select->setTrueValue(ST.Get(Map[TrueValue])); |
| auto *FalseValue = CurrentSelect->getFalseValue(); |
| assert(Map.find(FalseValue) != Map.end() && "No False Value!"); |
| Select->setFalseValue(ST.Get(Map[FalseValue])); |
| } else { |
| // Must be a Phi node then. |
| auto *PHI = cast<PHINode>(V); |
| // Fill the Phi node with values from predecessors. |
| for (auto B : predecessors(PHI->getParent())) { |
| Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); |
| assert(Map.find(PV) != Map.end() && "No predecessor Value!"); |
| PHI->addIncoming(ST.Get(Map[PV]), B); |
| } |
| } |
| Map[Current] = ST.Simplify(V); |
| } |
| } |
| |
| /// Starting from original value recursively iterates over def-use chain up to |
| /// known ending values represented in a map. For each traversed phi/select |
| /// inserts a placeholder Phi or Select. |
| /// Reports all new created Phi/Select nodes by adding them to set. |
| /// Also reports and order in what values have been traversed. |
| void InsertPlaceholders(FoldAddrToValueMapping &Map, |
| SmallVectorImpl<Value *> &TraverseOrder, |
| SimplificationTracker &ST) { |
| SmallVector<Value *, 32> Worklist; |
| assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && |
| "Address must be a Phi or Select node"); |
| auto *Dummy = UndefValue::get(CommonType); |
| Worklist.push_back(Original); |
| while (!Worklist.empty()) { |
| Value *Current = Worklist.pop_back_val(); |
| // if it is already visited or it is an ending value then skip it. |
| if (Map.find(Current) != Map.end()) |
| continue; |
| TraverseOrder.push_back(Current); |
| |
| // CurrentValue must be a Phi node or select. All others must be covered |
| // by anchors. |
| if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { |
| // Is it OK to get metadata from OrigSelect?! |
| // Create a Select placeholder with dummy value. |
| SelectInst *Select = SelectInst::Create( |
| CurrentSelect->getCondition(), Dummy, Dummy, |
| CurrentSelect->getName(), CurrentSelect, CurrentSelect); |
| Map[Current] = Select; |
| ST.insertNewSelect(Select); |
| // We are interested in True and False values. |
| Worklist.push_back(CurrentSelect->getTrueValue()); |
| Worklist.push_back(CurrentSelect->getFalseValue()); |
| } else { |
| // It must be a Phi node then. |
| PHINode *CurrentPhi = cast<PHINode>(Current); |
| unsigned PredCount = CurrentPhi->getNumIncomingValues(); |
| PHINode *PHI = |
| PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); |
| Map[Current] = PHI; |
| ST.insertNewPhi(PHI); |
| for (Value *P : CurrentPhi->incoming_values()) |
| Worklist.push_back(P); |
| } |
| } |
| } |
| |
| bool addrModeCombiningAllowed() { |
| if (DisableComplexAddrModes) |
| return false; |
| switch (DifferentField) { |
| default: |
| return false; |
| case ExtAddrMode::BaseRegField: |
| return AddrSinkCombineBaseReg; |
| case ExtAddrMode::BaseGVField: |
| return AddrSinkCombineBaseGV; |
| case ExtAddrMode::BaseOffsField: |
| return AddrSinkCombineBaseOffs; |
| case ExtAddrMode::ScaledRegField: |
| return AddrSinkCombineScaledReg; |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Try adding ScaleReg*Scale to the current addressing mode. |
| /// Return true and update AddrMode if this addr mode is legal for the target, |
| /// false if not. |
| bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, |
| unsigned Depth) { |
| // If Scale is 1, then this is the same as adding ScaleReg to the addressing |
| // mode. Just process that directly. |
| if (Scale == 1) |
| return matchAddr(ScaleReg, Depth); |
| |
| // If the scale is 0, it takes nothing to add this. |
| if (Scale == 0) |
| return true; |
| |
| // If we already have a scale of this value, we can add to it, otherwise, we |
| // need an available scale field. |
| if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) |
| return false; |
| |
| ExtAddrMode TestAddrMode = AddrMode; |
| |
| // Add scale to turn X*4+X*3 -> X*7. This could also do things like |
| // [A+B + A*7] -> [B+A*8]. |
| TestAddrMode.Scale += Scale; |
| TestAddrMode.ScaledReg = ScaleReg; |
| |
| // If the new address isn't legal, bail out. |
| if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) |
| return false; |
| |
| // It was legal, so commit it. |
| AddrMode = TestAddrMode; |
| |
| // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now |
| // to see if ScaleReg is actually X+C. If so, we can turn this into adding |
| // X*Scale + C*Scale to addr mode. |
| ConstantInt *CI = nullptr; Value *AddLHS = nullptr; |
| if (isa<Instruction>(ScaleReg) && // not a constant expr. |
| match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { |
| TestAddrMode.InBounds = false; |
| TestAddrMode.ScaledReg = AddLHS; |
| TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; |
| |
| // If this addressing mode is legal, commit it and remember that we folded |
| // this instruction. |
| if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { |
| AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); |
| AddrMode = TestAddrMode; |
| return true; |
| } |
| } |
| |
| // Otherwise, not (x+c)*scale, just return what we have. |
| return true; |
| } |
| |
| /// This is a little filter, which returns true if an addressing computation |
| /// involving I might be folded into a load/store accessing it. |
| /// This doesn't need to be perfect, but needs to accept at least |
| /// the set of instructions that MatchOperationAddr can. |
| static bool MightBeFoldableInst(Instruction *I) { |
| switch (I->getOpcode()) { |
| case Instruction::BitCast: |
| case Instruction::AddrSpaceCast: |
| // Don't touch identity bitcasts. |
| if (I->getType() == I->getOperand(0)->getType()) |
| return false; |
| return I->getType()->isIntOrPtrTy(); |
| case Instruction::PtrToInt: |
| // PtrToInt is always a noop, as we know that the int type is pointer sized. |
| return true; |
| case Instruction::IntToPtr: |
| // We know the input is intptr_t, so this is foldable. |
| return true; |
| case Instruction::Add: |
| return true; |
| case Instruction::Mul: |
| case Instruction::Shl: |
| // Can only handle X*C and X << C. |
| return isa<ConstantInt>(I->getOperand(1)); |
| case Instruction::GetElementPtr: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// Check whether or not \p Val is a legal instruction for \p TLI. |
| /// \note \p Val is assumed to be the product of some type promotion. |
| /// Therefore if \p Val has an undefined state in \p TLI, this is assumed |
| /// to be legal, as the non-promoted value would have had the same state. |
| static bool isPromotedInstructionLegal(const TargetLowering &TLI, |
| const DataLayout &DL, Value *Val) { |
| Instruction *PromotedInst = dyn_cast<Instruction>(Val); |
| if (!PromotedInst) |
| return false; |
| int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); |
| // If the ISDOpcode is undefined, it was undefined before the promotion. |
| if (!ISDOpcode) |
| return true; |
| // Otherwise, check if the promoted instruction is legal or not. |
| return TLI.isOperationLegalOrCustom( |
| ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); |
| } |
| |
| namespace { |
| |
| /// Hepler class to perform type promotion. |
| class TypePromotionHelper { |
| /// Utility function to add a promoted instruction \p ExtOpnd to |
| /// \p PromotedInsts and record the type of extension we have seen. |
| static void addPromotedInst(InstrToOrigTy &PromotedInsts, |
| Instruction *ExtOpnd, |
| bool IsSExt) { |
| ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; |
| InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); |
| if (It != PromotedInsts.end()) { |
| // If the new extension is same as original, the information in |
| // PromotedInsts[ExtOpnd] is still correct. |
| if (It->second.getInt() == ExtTy) |
| return; |
| |
| // Now the new extension is different from old extension, we make |
| // the type information invalid by setting extension type to |
| // BothExtension. |
| ExtTy = BothExtension; |
| } |
| PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); |
| } |
| |
| /// Utility function to query the original type of instruction \p Opnd |
| /// with a matched extension type. If the extension doesn't match, we |
| /// cannot use the information we had on the original type. |
| /// BothExtension doesn't match any extension type. |
| static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, |
| Instruction *Opnd, |
| bool IsSExt) { |
| ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; |
| InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); |
| if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) |
| return It->second.getPointer(); |
| return nullptr; |
| } |
| |
| /// Utility function to check whether or not a sign or zero extension |
| /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by |
| /// either using the operands of \p Inst or promoting \p Inst. |
| /// The type of the extension is defined by \p IsSExt. |
| /// In other words, check if: |
| /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. |
| /// #1 Promotion applies: |
| /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). |
| /// #2 Operand reuses: |
| /// ext opnd1 to ConsideredExtType. |
| /// \p PromotedInsts maps the instructions to their type before promotion. |
| static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, |
| const InstrToOrigTy &PromotedInsts, bool IsSExt); |
| |
| /// Utility function to determine if \p OpIdx should be promoted when |
| /// promoting \p Inst. |
| static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { |
| return !(isa<SelectInst>(Inst) && OpIdx == 0); |
| } |
| |
| /// Utility function to promote the operand of \p Ext when this |
| /// operand is a promotable trunc or sext or zext. |
| /// \p PromotedInsts maps the instructions to their type before promotion. |
| /// \p CreatedInstsCost[out] contains the cost of all instructions |
| /// created to promote the operand of Ext. |
| /// Newly added extensions are inserted in \p Exts. |
| /// Newly added truncates are inserted in \p Truncs. |
| /// Should never be called directly. |
| /// \return The promoted value which is used instead of Ext. |
| static Value *promoteOperandForTruncAndAnyExt( |
| Instruction *Ext, TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); |
| |
| /// Utility function to promote the operand of \p Ext when this |
| /// operand is promotable and is not a supported trunc or sext. |
| /// \p PromotedInsts maps the instructions to their type before promotion. |
| /// \p CreatedInstsCost[out] contains the cost of all the instructions |
| /// created to promote the operand of Ext. |
| /// Newly added extensions are inserted in \p Exts. |
| /// Newly added truncates are inserted in \p Truncs. |
| /// Should never be called directly. |
| /// \return The promoted value which is used instead of Ext. |
| static Value *promoteOperandForOther(Instruction *Ext, |
| TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, |
| unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, |
| const TargetLowering &TLI, bool IsSExt); |
| |
| /// \see promoteOperandForOther. |
| static Value *signExtendOperandForOther( |
| Instruction *Ext, TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { |
| return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, |
| Exts, Truncs, TLI, true); |
| } |
| |
| /// \see promoteOperandForOther. |
| static Value *zeroExtendOperandForOther( |
| Instruction *Ext, TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { |
| return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, |
| Exts, Truncs, TLI, false); |
| } |
| |
| public: |
| /// Type for the utility function that promotes the operand of Ext. |
| using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, |
| unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, |
| const TargetLowering &TLI); |
| |
| /// Given a sign/zero extend instruction \p Ext, return the appropriate |
| /// action to promote the operand of \p Ext instead of using Ext. |
| /// \return NULL if no promotable action is possible with the current |
| /// sign extension. |
| /// \p InsertedInsts keeps track of all the instructions inserted by the |
| /// other CodeGenPrepare optimizations. This information is important |
| /// because we do not want to promote these instructions as CodeGenPrepare |
| /// will reinsert them later. Thus creating an infinite loop: create/remove. |
| /// \p PromotedInsts maps the instructions to their type before promotion. |
| static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, |
| const TargetLowering &TLI, |
| const InstrToOrigTy &PromotedInsts); |
| }; |
| |
| } // end anonymous namespace |
| |
| bool TypePromotionHelper::canGetThrough(const Instruction *Inst, |
| Type *ConsideredExtType, |
| const InstrToOrigTy &PromotedInsts, |
| bool IsSExt) { |
| // The promotion helper does not know how to deal with vector types yet. |
| // To be able to fix that, we would need to fix the places where we |
| // statically extend, e.g., constants and such. |
| if (Inst->getType()->isVectorTy()) |
| return false; |
| |
| // We can always get through zext. |
| if (isa<ZExtInst>(Inst)) |
| return true; |
| |
| // sext(sext) is ok too. |
| if (IsSExt && isa<SExtInst>(Inst)) |
| return true; |
| |
| // We can get through binary operator, if it is legal. In other words, the |
| // binary operator must have a nuw or nsw flag. |
| const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); |
| if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && |
| ((!IsSExt && BinOp->hasNoUnsignedWrap()) || |
| (IsSExt && BinOp->hasNoSignedWrap()))) |
| return true; |
| |
| // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) |
| if ((Inst->getOpcode() == Instruction::And || |
| Inst->getOpcode() == Instruction::Or)) |
| return true; |
| |
| // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) |
| if (Inst->getOpcode() == Instruction::Xor) { |
| const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); |
| // Make sure it is not a NOT. |
| if (Cst && !Cst->getValue().isAllOnesValue()) |
| return true; |
| } |
| |
| // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) |
| // It may change a poisoned value into a regular value, like |
| // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 |
| // poisoned value regular value |
| // It should be OK since undef covers valid value. |
| if (Inst->getOpcode() == Instruction::LShr && !IsSExt) |
| return true; |
| |
| // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) |
| // It may change a poisoned value into a regular value, like |
| // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 |
| // poisoned value regular value |
| // It should be OK since undef covers valid value. |
| if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { |
| const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); |
| if (ExtInst->hasOneUse()) { |
| const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); |
| if (AndInst && AndInst->getOpcode() == Instruction::And) { |
| const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); |
| if (Cst && |
| Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) |
| return true; |
| } |
| } |
| } |
| |
| // Check if we can do the following simplification. |
| // ext(trunc(opnd)) --> ext(opnd) |
| if (!isa<TruncInst>(Inst)) |
| return false; |
| |
| Value *OpndVal = Inst->getOperand(0); |
| // Check if we can use this operand in the extension. |
| // If the type is larger than the result type of the extension, we cannot. |
| if (!OpndVal->getType()->isIntegerTy() || |
| OpndVal->getType()->getIntegerBitWidth() > |
| ConsideredExtType->getIntegerBitWidth()) |
| return false; |
| |
| // If the operand of the truncate is not an instruction, we will not have |
| // any information on the dropped bits. |
| // (Actually we could for constant but it is not worth the extra logic). |
| Instruction *Opnd = dyn_cast<Instruction>(OpndVal); |
| if (!Opnd) |
| return false; |
| |
| // Check if the source of the type is narrow enough. |
| // I.e., check that trunc just drops extended bits of the same kind of |
| // the extension. |
| // #1 get the type of the operand and check the kind of the extended bits. |
| const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); |
| if (OpndType) |
| ; |
| else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) |
| OpndType = Opnd->getOperand(0)->getType(); |
| else |
| return false; |
| |
| // #2 check that the truncate just drops extended bits. |
| return Inst->getType()->getIntegerBitWidth() >= |
| OpndType->getIntegerBitWidth(); |
| } |
| |
| TypePromotionHelper::Action TypePromotionHelper::getAction( |
| Instruction *Ext, const SetOfInstrs &InsertedInsts, |
| const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { |
| assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && |
| "Unexpected instruction type"); |
| Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); |
| Type *ExtTy = Ext->getType(); |
| bool IsSExt = isa<SExtInst>(Ext); |
| // If the operand of the extension is not an instruction, we cannot |
| // get through. |
| // If it, check we can get through. |
| if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) |
| return nullptr; |
| |
| // Do not promote if the operand has been added by codegenprepare. |
| // Otherwise, it means we are undoing an optimization that is likely to be |
| // redone, thus causing potential infinite loop. |
| if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) |
| return nullptr; |
| |
| // SExt or Trunc instructions. |
| // Return the related handler. |
| if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || |
| isa<ZExtInst>(ExtOpnd)) |
| return promoteOperandForTruncAndAnyExt; |
| |
| // Regular instruction. |
| // Abort early if we will have to insert non-free instructions. |
| if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) |
| return nullptr; |
| return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; |
| } |
| |
| Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( |
| Instruction *SExt, TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { |
| // By construction, the operand of SExt is an instruction. Otherwise we cannot |
| // get through it and this method should not be called. |
| Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); |
| Value *ExtVal = SExt; |
| bool HasMergedNonFreeExt = false; |
| if (isa<ZExtInst>(SExtOpnd)) { |
| // Replace s|zext(zext(opnd)) |
| // => zext(opnd). |
| HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); |
| Value *ZExt = |
| TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); |
| TPT.replaceAllUsesWith(SExt, ZExt); |
| TPT.eraseInstruction(SExt); |
| ExtVal = ZExt; |
| } else { |
| // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) |
| // => z|sext(opnd). |
| TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); |
| } |
| CreatedInstsCost = 0; |
| |
| // Remove dead code. |
| if (SExtOpnd->use_empty()) |
| TPT.eraseInstruction(SExtOpnd); |
| |
| // Check if the extension is still needed. |
| Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); |
| if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { |
| if (ExtInst) { |
| if (Exts) |
| Exts->push_back(ExtInst); |
| CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; |
| } |
| return ExtVal; |
| } |
| |
| // At this point we have: ext ty opnd to ty. |
| // Reassign the uses of ExtInst to the opnd and remove ExtInst. |
| Value *NextVal = ExtInst->getOperand(0); |
| TPT.eraseInstruction(ExtInst, NextVal); |
| return NextVal; |
| } |
| |
| Value *TypePromotionHelper::promoteOperandForOther( |
| Instruction *Ext, TypePromotionTransaction &TPT, |
| InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| SmallVectorImpl<Instruction *> *Exts, |
| SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, |
| bool IsSExt) { |
| // By construction, the operand of Ext is an instruction. Otherwise we cannot |
| // get through it and this method should not be called. |
| Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); |
| CreatedInstsCost = 0; |
| if (!ExtOpnd->hasOneUse()) { |
| // ExtOpnd will be promoted. |
| // All its uses, but Ext, will need to use a truncated value of the |
| // promoted version. |
| // Create the truncate now. |
| Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); |
| if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { |
| // Insert it just after the definition. |
| ITrunc->moveAfter(ExtOpnd); |
| if (Truncs) |
| Truncs->push_back(ITrunc); |
| } |
| |
| TPT.replaceAllUsesWith(ExtOpnd, Trunc); |
| // Restore the operand of Ext (which has been replaced by the previous call |
| // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. |
| TPT.setOperand(Ext, 0, ExtOpnd); |
| } |
| |
| // Get through the Instruction: |
| // 1. Update its type. |
| // 2. Replace the uses of Ext by Inst. |
| // 3. Extend each operand that needs to be extended. |
| |
| // Remember the original type of the instruction before promotion. |
| // This is useful to know that the high bits are sign extended bits. |
| addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); |
| // Step #1. |
| TPT.mutateType(ExtOpnd, Ext->getType()); |
| // Step #2. |
| TPT.replaceAllUsesWith(Ext, ExtOpnd); |
| // Step #3. |
| Instruction *ExtForOpnd = Ext; |
| |
| LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); |
| for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; |
| ++OpIdx) { |
| LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); |
| if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || |
| !shouldExtOperand(ExtOpnd, OpIdx)) { |
| LLVM_DEBUG(dbgs() << "No need to propagate\n"); |
| continue; |
| } |
| // Check if we can statically extend the operand. |
| Value *Opnd = ExtOpnd->getOperand(OpIdx); |
| if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { |
| LLVM_DEBUG(dbgs() << "Statically extend\n"); |
| unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); |
| APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) |
| : Cst->getValue().zext(BitWidth); |
| TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); |
| continue; |
| } |
| // UndefValue are typed, so we have to statically sign extend them. |
| if (isa<UndefValue>(Opnd)) { |
| LLVM_DEBUG(dbgs() << "Statically extend\n"); |
| TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); |
| continue; |
| } |
| |
| // Otherwise we have to explicitly sign extend the operand. |
| // Check if Ext was reused to extend an operand. |
| if (!ExtForOpnd) { |
| // If yes, create a new one. |
| LLVM_DEBUG(dbgs() << "More operands to ext\n"); |
| Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) |
| : TPT.createZExt(Ext, Opnd, Ext->getType()); |
| if (!isa<Instruction>(ValForExtOpnd)) { |
| TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); |
| continue; |
| } |
| ExtForOpnd = cast<Instruction>(ValForExtOpnd); |
| } |
| if (Exts) |
| Exts->push_back(ExtForOpnd); |
| TPT.setOperand(ExtForOpnd, 0, Opnd); |
| |
| // Move the sign extension before the insertion point. |
| TPT.moveBefore(ExtForOpnd, ExtOpnd); |
| TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); |
| CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); |
| // If more sext are required, new instructions will have to be created. |
| ExtForOpnd = nullptr; |
| } |
| if (ExtForOpnd == Ext) { |
| LLVM_DEBUG(dbgs() << "Extension is useless now\n"); |
| TPT.eraseInstruction(Ext); |
| } |
| return ExtOpnd; |
| } |
| |
| /// Check whether or not promoting an instruction to a wider type is profitable. |
| /// \p NewCost gives the cost of extension instructions created by the |
| /// promotion. |
| /// \p OldCost gives the cost of extension instructions before the promotion |
| /// plus the number of instructions that have been |
| /// matched in the addressing mode the promotion. |
| /// \p PromotedOperand is the value that has been promoted. |
| /// \return True if the promotion is profitable, false otherwise. |
| bool AddressingModeMatcher::isPromotionProfitable( |
| unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { |
| LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost |
| << '\n'); |
| // The cost of the new extensions is greater than the cost of the |
| // old extension plus what we folded. |
| // This is not profitable. |
| if (NewCost > OldCost) |
| return false; |
| if (NewCost < OldCost) |
| return true; |
| // The promotion is neutral but it may help folding the sign extension in |
| // loads for instance. |
| // Check that we did not create an illegal instruction. |
| return isPromotedInstructionLegal(TLI, DL, PromotedOperand); |
| } |
| |
| /// Given an instruction or constant expr, see if we can fold the operation |
| /// into the addressing mode. If so, update the addressing mode and return |
| /// true, otherwise return false without modifying AddrMode. |
| /// If \p MovedAway is not NULL, it contains the information of whether or |
| /// not AddrInst has to be folded into the addressing mode on success. |
| /// If \p MovedAway == true, \p AddrInst will not be part of the addressing |
| /// because it has been moved away. |
| /// Thus AddrInst must not be added in the matched instructions. |
| /// This state can happen when AddrInst is a sext, since it may be moved away. |
| /// Therefore, AddrInst may not be valid when MovedAway is true and it must |
| /// not be referenced anymore. |
| bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, |
| unsigned Depth, |
| bool *MovedAway) { |
| // Avoid exponential behavior on extremely deep expression trees. |
| if (Depth >= 5) return false; |
| |
| // By default, all matched instructions stay in place. |
| if (MovedAway) |
| *MovedAway = false; |
| |
| switch (Opcode) { |
| case Instruction::PtrToInt: |
| // PtrToInt is always a noop, as we know that the int type is pointer sized. |
| return matchAddr(AddrInst->getOperand(0), Depth); |
| case Instruction::IntToPtr: { |
| auto AS = AddrInst->getType()->getPointerAddressSpace(); |
| auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); |
| // This inttoptr is a no-op if the integer type is pointer sized. |
| if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) |
| return matchAddr(AddrInst->getOperand(0), Depth); |
| return false; |
| } |
| case Instruction::BitCast: |
| // BitCast is always a noop, and we can handle it as long as it is |
| // int->int or pointer->pointer (we don't want int<->fp or something). |
| if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && |
| // Don't touch identity bitcasts. These were probably put here by LSR, |
| // and we don't want to mess around with them. Assume it knows what it |
| // is doing. |
| AddrInst->getOperand(0)->getType() != AddrInst->getType()) |
| return matchAddr(AddrInst->getOperand(0), Depth); |
| return false; |
| case Instruction::AddrSpaceCast: { |
| unsigned SrcAS |
| = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); |
| unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); |
| if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) |
| return matchAddr(AddrInst->getOperand(0), Depth); |
| return false; |
| } |
| case Instruction::Add: { |
| // Check to see if we can merge in the RHS then the LHS. If so, we win. |
| ExtAddrMode BackupAddrMode = AddrMode; |
| unsigned OldSize = AddrModeInsts.size(); |
| // Start a transaction at this point. |
| // The LHS may match but not the RHS. |
| // Therefore, we need a higher level restoration point to undo partially |
| // matched operation. |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| |
| AddrMode.InBounds = false; |
| if (matchAddr(AddrInst->getOperand(1), Depth+1) && |
| matchAddr(AddrInst->getOperand(0), Depth+1)) |
| return true; |
| |
| // Restore the old addr mode info. |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| TPT.rollback(LastKnownGood); |
| |
| // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. |
| if (matchAddr(AddrInst->getOperand(0), Depth+1) && |
| matchAddr(AddrInst->getOperand(1), Depth+1)) |
| return true; |
| |
| // Otherwise we definitely can't merge the ADD in. |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| TPT.rollback(LastKnownGood); |
| break; |
| } |
| //case Instruction::Or: |
| // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. |
| //break; |
| case Instruction::Mul: |
| case Instruction::Shl: { |
| // Can only handle X*C and X << C. |
| AddrMode.InBounds = false; |
| ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); |
| if (!RHS || RHS->getBitWidth() > 64) |
| return false; |
| int64_t Scale = RHS->getSExtValue(); |
| if (Opcode == Instruction::Shl) |
| Scale = 1LL << Scale; |
| |
| return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); |
| } |
| case Instruction::GetElementPtr: { |
| // Scan the GEP. We check it if it contains constant offsets and at most |
| // one variable offset. |
| int VariableOperand = -1; |
| unsigned VariableScale = 0; |
| |
| int64_t ConstantOffset = 0; |
| gep_type_iterator GTI = gep_type_begin(AddrInst); |
| for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| unsigned Idx = |
| cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); |
| ConstantOffset += SL->getElementOffset(Idx); |
| } else { |
| uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { |
| const APInt &CVal = CI->getValue(); |
| if (CVal.getMinSignedBits() <= 64) { |
| ConstantOffset += CVal.getSExtValue() * TypeSize; |
| continue; |
| } |
| } |
| if (TypeSize) { // Scales of zero don't do anything. |
| // We only allow one variable index at the moment. |
| if (VariableOperand != -1) |
| return false; |
| |
| // Remember the variable index. |
| VariableOperand = i; |
| VariableScale = TypeSize; |
| } |
| } |
| } |
| |
| // A common case is for the GEP to only do a constant offset. In this case, |
| // just add it to the disp field and check validity. |
| if (VariableOperand == -1) { |
| AddrMode.BaseOffs += ConstantOffset; |
| if (ConstantOffset == 0 || |
| TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { |
| // Check to see if we can fold the base pointer in too. |
| if (matchAddr(AddrInst->getOperand(0), Depth+1)) { |
| if (!cast<GEPOperator>(AddrInst)->isInBounds()) |
| AddrMode.InBounds = false; |
| return true; |
| } |
| } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && |
| TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && |
| ConstantOffset > 0) { |
| // Record GEPs with non-zero offsets as candidates for splitting in the |
| // event that the offset cannot fit into the r+i addressing mode. |
| // Simple and common case that only one GEP is used in calculating the |
| // address for the memory access. |
| Value *Base = AddrInst->getOperand(0); |
| auto *BaseI = dyn_cast<Instruction>(Base); |
| auto *GEP = cast<GetElementPtrInst>(AddrInst); |
| if (isa<Argument>(Base) || isa<GlobalValue>(Base) || |
| (BaseI && !isa<CastInst>(BaseI) && |
| !isa<GetElementPtrInst>(BaseI))) { |
| // Make sure the parent block allows inserting non-PHI instructions |
| // before the terminator. |
| BasicBlock *Parent = |
| BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); |
| if (!Parent->getTerminator()->isEHPad()) |
| LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); |
| } |
| } |
| AddrMode.BaseOffs -= ConstantOffset; |
| return false; |
| } |
| |
| // Save the valid addressing mode in case we can't match. |
| ExtAddrMode BackupAddrMode = AddrMode; |
| unsigned OldSize = AddrModeInsts.size(); |
| |
| // See if the scale and offset amount is valid for this target. |
| AddrMode.BaseOffs += ConstantOffset; |
| if (!cast<GEPOperator>(AddrInst)->isInBounds()) |
| AddrMode.InBounds = false; |
| |
| // Match the base operand of the GEP. |
| if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { |
| // If it couldn't be matched, just stuff the value in a register. |
| if (AddrMode.HasBaseReg) { |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| return false; |
| } |
| AddrMode.HasBaseReg = true; |
| AddrMode.BaseReg = AddrInst->getOperand(0); |
| } |
| |
| // Match the remaining variable portion of the GEP. |
| if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, |
| Depth)) { |
| // If it couldn't be matched, try stuffing the base into a register |
| // instead of matching it, and retrying the match of the scale. |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| if (AddrMode.HasBaseReg) |
| return false; |
| AddrMode.HasBaseReg = true; |
| AddrMode.BaseReg = AddrInst->getOperand(0); |
| AddrMode.BaseOffs += ConstantOffset; |
| if (!matchScaledValue(AddrInst->getOperand(VariableOperand), |
| VariableScale, Depth)) { |
| // If even that didn't work, bail. |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| case Instruction::SExt: |
| case Instruction::ZExt: { |
| Instruction *Ext = dyn_cast<Instruction>(AddrInst); |
| if (!Ext) |
| return false; |
| |
| // Try to move this ext out of the way of the addressing mode. |
| // Ask for a method for doing so. |
| TypePromotionHelper::Action TPH = |
| TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); |
| if (!TPH) |
| return false; |
| |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| unsigned CreatedInstsCost = 0; |
| unsigned ExtCost = !TLI.isExtFree(Ext); |
| Value *PromotedOperand = |
| TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); |
| // SExt has been moved away. |
| // Thus either it will be rematched later in the recursive calls or it is |
| // gone. Anyway, we must not fold it into the addressing mode at this point. |
| // E.g., |
| // op = add opnd, 1 |
| // idx = ext op |
| // addr = gep base, idx |
| // is now: |
| // promotedOpnd = ext opnd <- no match here |
| // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) |
| // addr = gep base, op <- match |
| if (MovedAway) |
| *MovedAway = true; |
| |
| assert(PromotedOperand && |
| "TypePromotionHelper should have filtered out those cases"); |
| |
| ExtAddrMode BackupAddrMode = AddrMode; |
| unsigned OldSize = AddrModeInsts.size(); |
| |
| if (!matchAddr(PromotedOperand, Depth) || |
| // The total of the new cost is equal to the cost of the created |
| // instructions. |
| // The total of the old cost is equal to the cost of the extension plus |
| // what we have saved in the addressing mode. |
| !isPromotionProfitable(CreatedInstsCost, |
| ExtCost + (AddrModeInsts.size() - OldSize), |
| PromotedOperand)) { |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); |
| TPT.rollback(LastKnownGood); |
| return false; |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// If we can, try to add the value of 'Addr' into the current addressing mode. |
| /// If Addr can't be added to AddrMode this returns false and leaves AddrMode |
| /// unmodified. This assumes that Addr is either a pointer type or intptr_t |
| /// for the target. |
| /// |
| bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { |
| // Start a transaction at this point that we will rollback if the matching |
| // fails. |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { |
| // Fold in immediates if legal for the target. |
| AddrMode.BaseOffs += CI->getSExtValue(); |
| if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) |
| return true; |
| AddrMode.BaseOffs -= CI->getSExtValue(); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { |
| // If this is a global variable, try to fold it into the addressing mode. |
| if (!AddrMode.BaseGV) { |
| AddrMode.BaseGV = GV; |
| if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) |
| return true; |
| AddrMode.BaseGV = nullptr; |
| } |
| } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { |
| ExtAddrMode BackupAddrMode = AddrMode; |
| unsigned OldSize = AddrModeInsts.size(); |
| |
| // Check to see if it is possible to fold this operation. |
| bool MovedAway = false; |
| if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { |
| // This instruction may have been moved away. If so, there is nothing |
| // to check here. |
| if (MovedAway) |
| return true; |
| // Okay, it's possible to fold this. Check to see if it is actually |
| // *profitable* to do so. We use a simple cost model to avoid increasing |
| // register pressure too much. |
| if (I->hasOneUse() || |
| isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { |
| AddrModeInsts.push_back(I); |
| return true; |
| } |
| |
| // It isn't profitable to do this, roll back. |
| //cerr << "NOT FOLDING: " << *I; |
| AddrMode = BackupAddrMode; |
| AddrModeInsts.resize(OldSize); |
| TPT.rollback(LastKnownGood); |
| } |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { |
| if (matchOperationAddr(CE, CE->getOpcode(), Depth)) |
| return true; |
| TPT.rollback(LastKnownGood); |
| } else if (isa<ConstantPointerNull>(Addr)) { |
| // Null pointer gets folded without affecting the addressing mode. |
| return true; |
| } |
| |
| // Worse case, the target should support [reg] addressing modes. :) |
| if (!AddrMode.HasBaseReg) { |
| AddrMode.HasBaseReg = true; |
| AddrMode.BaseReg = Addr; |
| // Still check for legality in case the target supports [imm] but not [i+r]. |
| if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) |
| return true; |
| AddrMode.HasBaseReg = false; |
| AddrMode.BaseReg = nullptr; |
| } |
| |
| // If the base register is already taken, see if we can do [r+r]. |
| if (AddrMode.Scale == 0) { |
| AddrMode.Scale = 1; |
| AddrMode.ScaledReg = Addr; |
| if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) |
| return true; |
| AddrMode.Scale = 0; |
| AddrMode.ScaledReg = nullptr; |
| } |
| // Couldn't match. |
| TPT.rollback(LastKnownGood); |
| return false; |
| } |
| |
| /// Check to see if all uses of OpVal by the specified inline asm call are due |
| /// to memory operands. If so, return true, otherwise return false. |
| static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, |
| const TargetLowering &TLI, |
| const TargetRegisterInfo &TRI) { |
| const Function *F = CI->getFunction(); |
| TargetLowering::AsmOperandInfoVector TargetConstraints = |
| TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, |
| ImmutableCallSite(CI)); |
| |
| for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { |
| TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI.ComputeConstraintToUse(OpInfo, SDValue()); |
| |
| // If this asm operand is our Value*, and if it isn't an indirect memory |
| // operand, we can't fold it! |
| if (OpInfo.CallOperandVal == OpVal && |
| (OpInfo.ConstraintType != TargetLowering::C_Memory || |
| !OpInfo.isIndirect)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Max number of memory uses to look at before aborting the search to conserve |
| // compile time. |
| static constexpr int MaxMemoryUsesToScan = 20; |
| |
| /// Recursively walk all the uses of I until we find a memory use. |
| /// If we find an obviously non-foldable instruction, return true. |
| /// Add the ultimately found memory instructions to MemoryUses. |
| static bool FindAllMemoryUses( |
| Instruction *I, |
| SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, |
| SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, |
| const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *BFI, int SeenInsts = 0) { |
| // If we already considered this instruction, we're done. |
| if (!ConsideredInsts.insert(I).second) |
| return false; |
| |
| // If this is an obviously unfoldable instruction, bail out. |
| if (!MightBeFoldableInst(I)) |
| return true; |
| |
| // Loop over all the uses, recursively processing them. |
| for (Use &U : I->uses()) { |
| // Conservatively return true if we're seeing a large number or a deep chain |
| // of users. This avoids excessive compilation times in pathological cases. |
| if (SeenInsts++ >= MaxMemoryUsesToScan) |
| return true; |
| |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { |
| MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); |
| continue; |
| } |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { |
| unsigned opNo = U.getOperandNo(); |
| if (opNo != StoreInst::getPointerOperandIndex()) |
| return true; // Storing addr, not into addr. |
| MemoryUses.push_back(std::make_pair(SI, opNo)); |
| continue; |
| } |
| |
| if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { |
| unsigned opNo = U.getOperandNo(); |
| if (opNo != AtomicRMWInst::getPointerOperandIndex()) |
| return true; // Storing addr, not into addr. |
| MemoryUses.push_back(std::make_pair(RMW, opNo)); |
| continue; |
| } |
| |
| if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { |
| unsigned opNo = U.getOperandNo(); |
| if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) |
| return true; // Storing addr, not into addr. |
| MemoryUses.push_back(std::make_pair(CmpX, opNo)); |
| continue; |
| } |
| |
| if (CallInst *CI = dyn_cast<CallInst>(UserI)) { |
| // If this is a cold call, we can sink the addressing calculation into |
| // the cold path. See optimizeCallInst |
| bool OptForSize = OptSize || |
| llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); |
| if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) |
| continue; |
| |
| InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); |
| if (!IA) return true; |
| |
| // If this is a memory operand, we're cool, otherwise bail out. |
| if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) |
| return true; |
| continue; |
| } |
| |
| if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, |
| PSI, BFI, SeenInsts)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Return true if Val is already known to be live at the use site that we're |
| /// folding it into. If so, there is no cost to include it in the addressing |
| /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the |
| /// instruction already. |
| bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, |
| Value *KnownLive2) { |
| // If Val is either of the known-live values, we know it is live! |
| if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) |
| return true; |
| |
| // All values other than instructions and arguments (e.g. constants) are live. |
| if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; |
| |
| // If Val is a constant sized alloca in the entry block, it is live, this is |
| // true because it is just a reference to the stack/frame pointer, which is |
| // live for the whole function. |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) |
| if (AI->isStaticAlloca()) |
| return true; |
| |
| // Check to see if this value is already used in the memory instruction's |
| // block. If so, it's already live into the block at the very least, so we |
| // can reasonably fold it. |
| return Val->isUsedInBasicBlock(MemoryInst->getParent()); |
| } |
| |
| /// It is possible for the addressing mode of the machine to fold the specified |
| /// instruction into a load or store that ultimately uses it. |
| /// However, the specified instruction has multiple uses. |
| /// Given this, it may actually increase register pressure to fold it |
| /// into the load. For example, consider this code: |
| /// |
| /// X = ... |
| /// Y = X+1 |
| /// use(Y) -> nonload/store |
| /// Z = Y+1 |
| /// load Z |
| /// |
| /// In this case, Y has multiple uses, and can be folded into the load of Z |
| /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to |
| /// be live at the use(Y) line. If we don't fold Y into load Z, we use one |
| /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the |
| /// number of computations either. |
| /// |
| /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If |
| /// X was live across 'load Z' for other reasons, we actually *would* want to |
| /// fold the addressing mode in the Z case. This would make Y die earlier. |
| bool AddressingModeMatcher:: |
| isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, |
| ExtAddrMode &AMAfter) { |
| if (IgnoreProfitability) return true; |
| |
| // AMBefore is the addressing mode before this instruction was folded into it, |
| // and AMAfter is the addressing mode after the instruction was folded. Get |
| // the set of registers referenced by AMAfter and subtract out those |
| // referenced by AMBefore: this is the set of values which folding in this |
| // address extends the lifetime of. |
| // |
| // Note that there are only two potential values being referenced here, |
| // BaseReg and ScaleReg (global addresses are always available, as are any |
| // folded immediates). |
| Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; |
| |
| // If the BaseReg or ScaledReg was referenced by the previous addrmode, their |
| // lifetime wasn't extended by adding this instruction. |
| if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) |
| BaseReg = nullptr; |
| if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) |
| ScaledReg = nullptr; |
| |
| // If folding this instruction (and it's subexprs) didn't extend any live |
| // ranges, we're ok with it. |
| if (!BaseReg && !ScaledReg) |
| return true; |
| |
| // If all uses of this instruction can have the address mode sunk into them, |
| // we can remove the addressing mode and effectively trade one live register |
| // for another (at worst.) In this context, folding an addressing mode into |
| // the use is just a particularly nice way of sinking it. |
| SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; |
| SmallPtrSet<Instruction*, 16> ConsideredInsts; |
| if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, |
| PSI, BFI)) |
| return false; // Has a non-memory, non-foldable use! |
| |
| // Now that we know that all uses of this instruction are part of a chain of |
| // computation involving only operations that could theoretically be folded |
| // into a memory use, loop over each of these memory operation uses and see |
| // if they could *actually* fold the instruction. The assumption is that |
| // addressing modes are cheap and that duplicating the computation involved |
| // many times is worthwhile, even on a fastpath. For sinking candidates |
| // (i.e. cold call sites), this serves as a way to prevent excessive code |
| // growth since most architectures have some reasonable small and fast way to |
| // compute an effective address. (i.e LEA on x86) |
| SmallVector<Instruction*, 32> MatchedAddrModeInsts; |
| for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { |
| Instruction *User = MemoryUses[i].first; |
| unsigned OpNo = MemoryUses[i].second; |
| |
| // Get the access type of this use. If the use isn't a pointer, we don't |
| // know what it accesses. |
| Value *Address = User->getOperand(OpNo); |
| PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); |
| if (!AddrTy) |
| return false; |
| Type *AddressAccessTy = AddrTy->getElementType(); |
| unsigned AS = AddrTy->getAddressSpace(); |
| |
| // Do a match against the root of this address, ignoring profitability. This |
| // will tell us if the addressing mode for the memory operation will |
| // *actually* cover the shared instruction. |
| ExtAddrMode Result; |
| std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, |
| 0); |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| AddressingModeMatcher Matcher( |
| MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, |
| InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); |
| Matcher.IgnoreProfitability = true; |
| bool Success = Matcher.matchAddr(Address, 0); |
| (void)Success; assert(Success && "Couldn't select *anything*?"); |
| |
| // The match was to check the profitability, the changes made are not |
| // part of the original matcher. Therefore, they should be dropped |
| // otherwise the original matcher will not present the right state. |
| TPT.rollback(LastKnownGood); |
| |
| // If the match didn't cover I, then it won't be shared by it. |
| if (!is_contained(MatchedAddrModeInsts, I)) |
| return false; |
| |
| MatchedAddrModeInsts.clear(); |
| } |
| |
| return true; |
| } |
| |
| /// Return true if the specified values are defined in a |
| /// different basic block than BB. |
| static bool IsNonLocalValue(Value *V, BasicBlock *BB) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent() != BB; |
| return false; |
| } |
| |
| /// Sink addressing mode computation immediate before MemoryInst if doing so |
| /// can be done without increasing register pressure. The need for the |
| /// register pressure constraint means this can end up being an all or nothing |
| /// decision for all uses of the same addressing computation. |
| /// |
| /// Load and Store Instructions often have addressing modes that can do |
| /// significant amounts of computation. As such, instruction selection will try |
| /// to get the load or store to do as much computation as possible for the |
| /// program. The problem is that isel can only see within a single block. As |
| /// such, we sink as much legal addressing mode work into the block as possible. |
| /// |
| /// This method is used to optimize both load/store and inline asms with memory |
| /// operands. It's also used to sink addressing computations feeding into cold |
| /// call sites into their (cold) basic block. |
| /// |
| /// The motivation for handling sinking into cold blocks is that doing so can |
| /// both enable other address mode sinking (by satisfying the register pressure |
| /// constraint above), and reduce register pressure globally (by removing the |
| /// addressing mode computation from the fast path entirely.). |
| bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, |
| Type *AccessTy, unsigned AddrSpace) { |
| Value *Repl = Addr; |
| |
| // Try to collapse single-value PHI nodes. This is necessary to undo |
| // unprofitable PRE transformations. |
| SmallVector<Value*, 8> worklist; |
| SmallPtrSet<Value*, 16> Visited; |
| worklist.push_back(Addr); |
| |
| // Use a worklist to iteratively look through PHI and select nodes, and |
| // ensure that the addressing mode obtained from the non-PHI/select roots of |
| // the graph are compatible. |
| bool PhiOrSelectSeen = false; |
| SmallVector<Instruction*, 16> AddrModeInsts; |
| const SimplifyQuery SQ(*DL, TLInfo); |
| AddressingModeCombiner AddrModes(SQ, Addr); |
| TypePromotionTransaction TPT(RemovedInsts); |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| while (!worklist.empty()) { |
| Value *V = worklist.back(); |
| worklist.pop_back(); |
| |
| // We allow traversing cyclic Phi nodes. |
| // In case of success after this loop we ensure that traversing through |
| // Phi nodes ends up with all cases to compute address of the form |
| // BaseGV + Base + Scale * Index + Offset |
| // where Scale and Offset are constans and BaseGV, Base and Index |
| // are exactly the same Values in all cases. |
| // It means that BaseGV, Scale and Offset dominate our memory instruction |
| // and have the same value as they had in address computation represented |
| // as Phi. So we can safely sink address computation to memory instruction. |
| if (!Visited.insert(V).second) |
| continue; |
| |
| // For a PHI node, push all of its incoming values. |
| if (PHINode *P = dyn_cast<PHINode>(V)) { |
| for (Value *IncValue : P->incoming_values()) |
| worklist.push_back(IncValue); |
| PhiOrSelectSeen = true; |
| continue; |
| } |
| // Similar for select. |
| if (SelectInst *SI = dyn_cast<SelectInst>(V)) { |
| worklist.push_back(SI->getFalseValue()); |
| worklist.push_back(SI->getTrueValue()); |
| PhiOrSelectSeen = true; |
| continue; |
| } |
| |
| // For non-PHIs, determine the addressing mode being computed. Note that |
| // the result may differ depending on what other uses our candidate |
| // addressing instructions might have. |
| AddrModeInsts.clear(); |
| std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, |
| 0); |
| ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( |
| V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, |
| InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, |
| BFI.get()); |
| |
| GetElementPtrInst *GEP = LargeOffsetGEP.first; |
| if (GEP && !NewGEPBases.count(GEP)) { |
| // If splitting the underlying data structure can reduce the offset of a |
| // GEP, collect the GEP. Skip the GEPs that are the new bases of |
| // previously split data structures. |
| LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); |
| if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) |
| LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); |
| } |
| |
| NewAddrMode.OriginalValue = V; |
| if (!AddrModes.addNewAddrMode(NewAddrMode)) |
| break; |
| } |
| |
| // Try to combine the AddrModes we've collected. If we couldn't collect any, |
| // or we have multiple but either couldn't combine them or combining them |
| // wouldn't do anything useful, bail out now. |
| if (!AddrModes.combineAddrModes()) { |
| TPT.rollback(LastKnownGood); |
| return false; |
| } |
| TPT.commit(); |
| |
| // Get the combined AddrMode (or the only AddrMode, if we only had one). |
| ExtAddrMode AddrMode = AddrModes.getAddrMode(); |
| |
| // If all the instructions matched are already in this BB, don't do anything. |
| // If we saw a Phi node then it is not local definitely, and if we saw a select |
| // then we want to push the address calculation past it even if it's already |
| // in this BB. |
| if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { |
| return IsNonLocalValue(V, MemoryInst->getParent()); |
| })) { |
| LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode |
| << "\n"); |
| return false; |
| } |
| |
| // Insert this computation right after this user. Since our caller is |
| // scanning from the top of the BB to the bottom, reuse of the expr are |
| // guaranteed to happen later. |
| IRBuilder<> Builder(MemoryInst); |
| |
| // Now that we determined the addressing expression we want to use and know |
| // that we have to sink it into this block. Check to see if we have already |
| // done this for some other load/store instr in this block. If so, reuse |
| // the computation. Before attempting reuse, check if the address is valid |
| // as it may have been erased. |
| |
| WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; |
| |
| Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; |
| if (SunkAddr) { |
| LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode |
| << " for " << *MemoryInst << "\n"); |
| if (SunkAddr->getType() != Addr->getType()) |
| SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); |
| } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && |
| TM && SubtargetInfo->addrSinkUsingGEPs())) { |
| // By default, we use the GEP-based method when AA is used later. This |
| // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. |
| LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode |
| << " for " << *MemoryInst << "\n"); |
| Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); |
| Value *ResultPtr = nullptr, *ResultIndex = nullptr; |
| |
| // First, find the pointer. |
| if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { |
| ResultPtr = AddrMode.BaseReg; |
| AddrMode.BaseReg = nullptr; |
| } |
| |
| if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { |
| // We can't add more than one pointer together, nor can we scale a |
| // pointer (both of which seem meaningless). |
| if (ResultPtr || AddrMode.Scale != 1) |
| return false; |
| |
| ResultPtr = AddrMode.ScaledReg; |
| AddrMode.Scale = 0; |
| } |
| |
| // It is only safe to sign extend the BaseReg if we know that the math |
| // required to create it did not overflow before we extend it. Since |
| // the original IR value was tossed in favor of a constant back when |
| // the AddrMode was created we need to bail out gracefully if widths |
| // do not match instead of extending it. |
| // |
| // (See below for code to add the scale.) |
| if (AddrMode.Scale) { |
| Type *ScaledRegTy = AddrMode.ScaledReg->getType(); |
| if (cast<IntegerType>(IntPtrTy)->getBitWidth() > |
| cast<IntegerType>(ScaledRegTy)->getBitWidth()) |
| return false; |
| } |
| |
| if (AddrMode.BaseGV) { |
| if (ResultPtr) |
| return false; |
| |
| ResultPtr = AddrMode.BaseGV; |
| } |
| |
| // If the real base value actually came from an inttoptr, then the matcher |
| // will look through it and provide only the integer value. In that case, |
| // use it here. |
| if (!DL->isNonIntegralPointerType(Addr->getType())) { |
| if (!ResultPtr && AddrMode.BaseReg) { |
| ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), |
| "sunkaddr"); |
| AddrMode.BaseReg = nullptr; |
| } else if (!ResultPtr && AddrMode.Scale == 1) { |
| ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), |
| "sunkaddr"); |
| AddrMode.Scale = 0; |
| } |
| } |
| |
| if (!ResultPtr && |
| !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { |
| SunkAddr = Constant::getNullValue(Addr->getType()); |
| } else if (!ResultPtr) { |
| return false; |
| } else { |
| Type *I8PtrTy = |
| Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); |
| Type *I8Ty = Builder.getInt8Ty(); |
| |
| // Start with the base register. Do this first so that subsequent address |
| // matching finds it last, which will prevent it from trying to match it |
| // as the scaled value in case it happens to be a mul. That would be |
| // problematic if we've sunk a different mul for the scale, because then |
| // we'd end up sinking both muls. |
| if (AddrMode.BaseReg) { |
| Value *V = AddrMode.BaseReg; |
| if (V->getType() != IntPtrTy) |
| V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); |
| |
| ResultIndex = V; |
| } |
| |
| // Add the scale value. |
| if (AddrMode.Scale) { |
| Value *V = AddrMode.ScaledReg; |
| if (V->getType() == IntPtrTy) { |
| // done. |
| } else { |
| assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < |
| cast<IntegerType>(V->getType())->getBitWidth() && |
| "We can't transform if ScaledReg is too narrow"); |
| V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); |
| } |
| |
| if (AddrMode.Scale != 1) |
| V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), |
| "sunkaddr"); |
| if (ResultIndex) |
| ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); |
| else |
| ResultIndex = V; |
| } |
| |
| // Add in the Base Offset if present. |
| if (AddrMode.BaseOffs) { |
| Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); |
| if (ResultIndex) { |
| // We need to add this separately from the scale above to help with |
| // SDAG consecutive load/store merging. |
| if (ResultPtr->getType() != I8PtrTy) |
| ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); |
| ResultPtr = |
| AddrMode.InBounds |
| ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, |
| "sunkaddr") |
| : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); |
| } |
| |
| ResultIndex = V; |
| } |
| |
| if (!ResultIndex) { |
| SunkAddr = ResultPtr; |
| } else { |
| if (ResultPtr->getType() != I8PtrTy) |
| ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); |
| SunkAddr = |
| AddrMode.InBounds |
| ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, |
| "sunkaddr") |
| : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); |
| } |
| |
| if (SunkAddr->getType() != Addr->getType()) |
| SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); |
| } |
| } else { |
| // We'd require a ptrtoint/inttoptr down the line, which we can't do for |
| // non-integral pointers, so in that case bail out now. |
| Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; |
| Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; |
| PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); |
| PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); |
| if (DL->isNonIntegralPointerType(Addr->getType()) || |
| (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || |
| (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || |
| (AddrMode.BaseGV && |
| DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode |
| << " for " << *MemoryInst << "\n"); |
| Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); |
| Value *Result = nullptr; |
| |
| // Start with the base register. Do this first so that subsequent address |
| // matching finds it last, which will prevent it from trying to match it |
| // as the scaled value in case it happens to be a mul. That would be |
| // problematic if we've sunk a different mul for the scale, because then |
| // we'd end up sinking both muls. |
| if (AddrMode.BaseReg) { |
| Value *V = AddrMode.BaseReg; |
| if (V->getType()->isPointerTy()) |
| V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); |
| if (V->getType() != IntPtrTy) |
| V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); |
| Result = V; |
| } |
| |
| // Add the scale value. |
| if (AddrMode.Scale) { |
| Value *V = AddrMode.ScaledReg; |
| if (V->getType() == IntPtrTy) { |
| // done. |
| } else if (V->getType()->isPointerTy()) { |
| V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); |
| } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < |
| cast<IntegerType>(V->getType())->getBitWidth()) { |
| V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); |
| } else { |
| // It is only safe to sign extend the BaseReg if we know that the math |
| // required to create it did not overflow before we extend it. Since |
| // the original IR value was tossed in favor of a constant back when |
| // the AddrMode was created we need to bail out gracefully if widths |
| // do not match instead of extending it. |
| Instruction *I = dyn_cast_or_null<Instruction>(Result); |
| if (I && (Result != AddrMode.BaseReg)) |
| I->eraseFromParent(); |
| return false; |
| } |
| if (AddrMode.Scale != 1) |
| V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), |
| "sunkaddr"); |
| if (Result) |
| Result = Builder.CreateAdd(Result, V, "sunkaddr"); |
| else |
| Result = V; |
| } |
| |
| // Add in the BaseGV if present. |
| if (AddrMode.BaseGV) { |
| Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); |
| if (Result) |
| Result = Builder.CreateAdd(Result, V, "sunkaddr"); |
| else |
| Result = V; |
| } |
| |
| // Add in the Base Offset if present. |
| if (AddrMode.BaseOffs) { |
| Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); |
| if (Result) |
| Result = Builder.CreateAdd(Result, V, "sunkaddr"); |
| else |
| Result = V; |
| } |
| |
| if (!Result) |
| SunkAddr = Constant::getNullValue(Addr->getType()); |
| else |
| SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); |
| } |
| |
| MemoryInst->replaceUsesOfWith(Repl, SunkAddr); |
| // Store the newly computed address into the cache. In the case we reused a |
| // value, this should be idempotent. |
| SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); |
| |
| // If we have no uses, recursively delete the value and all dead instructions |
| // using it. |
| if (Repl->use_empty()) { |
| // This can cause recursive deletion, which can invalidate our iterator. |
| // Use a WeakTrackingVH to hold onto it in case this happens. |
| Value *CurValue = &*CurInstIterator; |
| WeakTrackingVH IterHandle(CurValue); |
| BasicBlock *BB = CurInstIterator->getParent(); |
| |
| RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); |
| |
| if (IterHandle != CurValue) { |
| // If the iterator instruction was recursively deleted, start over at the |
| // start of the block. |
| CurInstIterator = BB->begin(); |
| SunkAddrs.clear(); |
| } |
| } |
| ++NumMemoryInsts; |
| return true; |
| } |
| |
| /// If there are any memory operands, use OptimizeMemoryInst to sink their |
| /// address computing into the block when possible / profitable. |
| bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { |
| bool MadeChange = false; |
| |
| const TargetRegisterInfo *TRI = |
| TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); |
| TargetLowering::AsmOperandInfoVector TargetConstraints = |
| TLI->ParseConstraints(*DL, TRI, CS); |
| unsigned ArgNo = 0; |
| for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { |
| TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI->ComputeConstraintToUse(OpInfo, SDValue()); |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| OpInfo.isIndirect) { |
| Value *OpVal = CS->getArgOperand(ArgNo++); |
| MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); |
| } else if (OpInfo.Type == InlineAsm::isInput) |
| ArgNo++; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// Check if all the uses of \p Val are equivalent (or free) zero or |
| /// sign extensions. |
| static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { |
| assert(!Val->use_empty() && "Input must have at least one use"); |
| const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); |
| bool IsSExt = isa<SExtInst>(FirstUser); |
| Type *ExtTy = FirstUser->getType(); |
| for (const User *U : Val->users()) { |
| const Instruction *UI = cast<Instruction>(U); |
| if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) |
| return false; |
| Type *CurTy = UI->getType(); |
| // Same input and output types: Same instruction after CSE. |
| if (CurTy == ExtTy) |
| continue; |
| |
| // If IsSExt is true, we are in this situation: |
| // a = Val |
| // b = sext ty1 a to ty2 |
| // c = sext ty1 a to ty3 |
| // Assuming ty2 is shorter than ty3, this could be turned into: |
| // a = Val |
| // b = sext ty1 a to ty2 |
| // c = sext ty2 b to ty3 |
| // However, the last sext is not free. |
| if (IsSExt) |
| return false; |
| |
| // This is a ZExt, maybe this is free to extend from one type to another. |
| // In that case, we would not account for a different use. |
| Type *NarrowTy; |
| Type *LargeTy; |
| if (ExtTy->getScalarType()->getIntegerBitWidth() > |
| CurTy->getScalarType()->getIntegerBitWidth()) { |
| NarrowTy = CurTy; |
| LargeTy = ExtTy; |
| } else { |
| NarrowTy = ExtTy; |
| LargeTy = CurTy; |
| } |
| |
| if (!TLI.isZExtFree(NarrowTy, LargeTy)) |
| return false; |
| } |
| // All uses are the same or can be derived from one another for free. |
| return true; |
| } |
| |
| /// Try to speculatively promote extensions in \p Exts and continue |
| /// promoting through newly promoted operands recursively as far as doing so is |
| /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. |
| /// When some promotion happened, \p TPT contains the proper state to revert |
| /// them. |
| /// |
| /// \return true if some promotion happened, false otherwise. |
| bool CodeGenPrepare::tryToPromoteExts( |
| TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, |
| SmallVectorImpl<Instruction *> &ProfitablyMovedExts, |
| unsigned CreatedInstsCost) { |
| bool Promoted = false; |
| |
| // Iterate over all the extensions to try to promote them. |
| for (auto I : Exts) { |
| // Early check if we directly have ext(load). |
| if (isa<LoadInst>(I->getOperand(0))) { |
| ProfitablyMovedExts.push_back(I); |
| continue; |
| } |
| |
| // Check whether or not we want to do any promotion. The reason we have |
| // this check inside the for loop is to catch the case where an extension |
| // is directly fed by a load because in such case the extension can be moved |
| // up without any promotion on its operands. |
| if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) |
| return false; |
| |
| // Get the action to perform the promotion. |
| TypePromotionHelper::Action TPH = |
| TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); |
| // Check if we can promote. |
| if (!TPH) { |
| // Save the current extension as we cannot move up through its operand. |
| ProfitablyMovedExts.push_back(I); |
| continue; |
| } |
| |
| // Save the current state. |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| SmallVector<Instruction *, 4> NewExts; |
| unsigned NewCreatedInstsCost = 0; |
| unsigned ExtCost = !TLI->isExtFree(I); |
| // Promote. |
| Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, |
| &NewExts, nullptr, *TLI); |
| assert(PromotedVal && |
| "TypePromotionHelper should have filtered out those cases"); |
| |
| // We would be able to merge only one extension in a load. |
| // Therefore, if we have more than 1 new extension we heuristically |
| // cut this search path, because it means we degrade the code quality. |
| // With exactly 2, the transformation is neutral, because we will merge |
| // one extension but leave one. However, we optimistically keep going, |
| // because the new extension may be removed too. |
| long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; |
| // FIXME: It would be possible to propagate a negative value instead of |
| // conservatively ceiling it to 0. |
| TotalCreatedInstsCost = |
| std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); |
| if (!StressExtLdPromotion && |
| (TotalCreatedInstsCost > 1 || |
| !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { |
| // This promotion is not profitable, rollback to the previous state, and |
| // save the current extension in ProfitablyMovedExts as the latest |
| // speculative promotion turned out to be unprofitable. |
| TPT.rollback(LastKnownGood); |
| ProfitablyMovedExts.push_back(I); |
| continue; |
| } |
| // Continue promoting NewExts as far as doing so is profitable. |
| SmallVector<Instruction *, 2> NewlyMovedExts; |
| (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); |
| bool NewPromoted = false; |
| for (auto ExtInst : NewlyMovedExts) { |
| Instruction *MovedExt = cast<Instruction>(ExtInst); |
| Value *ExtOperand = MovedExt->getOperand(0); |
| // If we have reached to a load, we need this extra profitability check |
| // as it could potentially be merged into an ext(load). |
| if (isa<LoadInst>(ExtOperand) && |
| !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || |
| (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) |
| continue; |
| |
| ProfitablyMovedExts.push_back(MovedExt); |
| NewPromoted = true; |
| } |
| |
| // If none of speculative promotions for NewExts is profitable, rollback |
| // and save the current extension (I) as the last profitable extension. |
| if (!NewPromoted) { |
| TPT.rollback(LastKnownGood); |
| ProfitablyMovedExts.push_back(I); |
| continue; |
| } |
| // The promotion is profitable. |
| Promoted = true; |
| } |
| return Promoted; |
| } |
| |
| /// Merging redundant sexts when one is dominating the other. |
| bool CodeGenPrepare::mergeSExts(Function &F) { |
| bool Changed = false; |
| for (auto &Entry : ValToSExtendedUses) { |
| SExts &Insts = Entry.second; |
| SExts CurPts; |
| for (Instruction *Inst : Insts) { |
| if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || |
| Inst->getOperand(0) != Entry.first) |
| continue; |
| bool inserted = false; |
| for (auto &Pt : CurPts) { |
| if (getDT(F).dominates(Inst, Pt)) { |
| Pt->replaceAllUsesWith(Inst); |
| RemovedInsts.insert(Pt); |
| Pt->removeFromParent(); |
| Pt = Inst; |
| inserted = true; |
| Changed = true; |
| break; |
| } |
| if (!getDT(F).dominates(Pt, Inst)) |
| // Give up if we need to merge in a common dominator as the |
| // experiments show it is not profitable. |
| continue; |
| Inst->replaceAllUsesWith(Pt); |
| RemovedInsts.insert(Inst); |
| Inst->removeFromParent(); |
| inserted = true; |
| Changed = true; |
| break; |
| } |
| if (!inserted) |
| CurPts.push_back(Inst); |
| } |
| } |
| return Changed; |
| } |
| |
| // Spliting large data structures so that the GEPs accessing them can have |
| // smaller offsets so that they can be sunk to the same blocks as their users. |
| // For example, a large struct starting from %base is splitted into two parts |
| // where the second part starts from %new_base. |
| // |
| // Before: |
| // BB0: |
| // %base = |
| // |
| // BB1: |
| // %gep0 = gep %base, off0 |
| // %gep1 = gep %base, off1 |
| // %gep2 = gep %base, off2 |
| // |
| // BB2: |
| // %load1 = load %gep0 |
| // %load2 = load %gep1 |
| // %load3 = load %gep2 |
| // |
| // After: |
| // BB0: |
| // %base = |
| // %new_base = gep %base, off0 |
| // |
| // BB1: |
| // %new_gep0 = %new_base |
| // %new_gep1 = gep %new_base, off1 - off0 |
| // %new_gep2 = gep %new_base, off2 - off0 |
| // |
| // BB2: |
| // %load1 = load i32, i32* %new_gep0 |
| // %load2 = load i32, i32* %new_gep1 |
| // %load3 = load i32, i32* %new_gep2 |
| // |
| // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because |
| // their offsets are smaller enough to fit into the addressing mode. |
| bool CodeGenPrepare::splitLargeGEPOffsets() { |
| bool Changed = false; |
| for (auto &Entry : LargeOffsetGEPMap) { |
| Value *OldBase = Entry.first; |
| SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> |
| &LargeOffsetGEPs = Entry.second; |
| auto compareGEPOffset = |
| [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, |
| const std::pair<GetElementPtrInst *, int64_t> &RHS) { |
| if (LHS.first == RHS.first) |
| return false; |
| if (LHS.second != RHS.second) |
| return LHS.second < RHS.second; |
| return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; |
| }; |
| // Sorting all the GEPs of the same data structures based on the offsets. |
| llvm::sort(LargeOffsetGEPs, compareGEPOffset); |
| LargeOffsetGEPs.erase( |
| std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), |
| LargeOffsetGEPs.end()); |
| // Skip if all the GEPs have the same offsets. |
| if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) |
| continue; |
| GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; |
| int64_t BaseOffset = LargeOffsetGEPs.begin()->second; |
| Value *NewBaseGEP = nullptr; |
| |
| auto LargeOffsetGEP = LargeOffsetGEPs.begin(); |
| while (LargeOffsetGEP != LargeOffsetGEPs.end()) { |
| GetElementPtrInst *GEP = LargeOffsetGEP->first; |
| int64_t Offset = LargeOffsetGEP->second; |
| if (Offset != BaseOffset) { |
| TargetLowering::AddrMode AddrMode; |
| AddrMode.BaseOffs = Offset - BaseOffset; |
| // The result type of the GEP might not be the type of the memory |
| // access. |
| if (!TLI->isLegalAddressingMode(*DL, AddrMode, |
| GEP->getResultElementType(), |
| GEP->getAddressSpace())) { |
| // We need to create a new base if the offset to the current base is |
| // too large to fit into the addressing mode. So, a very large struct |
| // may be splitted into several parts. |
| BaseGEP = GEP; |
| BaseOffset = Offset; |
| NewBaseGEP = nullptr; |
| } |
| } |
| |
| // Generate a new GEP to replace the current one. |
| LLVMContext &Ctx = GEP->getContext(); |
| Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); |
| Type *I8PtrTy = |
| Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); |
| Type *I8Ty = Type::getInt8Ty(Ctx); |
| |
| if (!NewBaseGEP) { |
| // Create a new base if we don't have one yet. Find the insertion |
| // pointer for the new base first. |
| BasicBlock::iterator NewBaseInsertPt; |
| BasicBlock *NewBaseInsertBB; |
| if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { |
| // If the base of the struct is an instruction, the new base will be |
| // inserted close to it. |
| NewBaseInsertBB = BaseI->getParent(); |
| if (isa<PHINode>(BaseI)) |
| NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); |
| else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { |
| NewBaseInsertBB = |
| SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); |
| NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); |
| } else |
| NewBaseInsertPt = std::next(BaseI->getIterator()); |
| } else { |
| // If the current base is an argument or global value, the new base |
| // will be inserted to the entry block. |
| NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); |
| NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); |
| } |
| IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); |
| // Create a new base. |
| Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); |
| NewBaseGEP = OldBase; |
| if (NewBaseGEP->getType() != I8PtrTy) |
| NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); |
| NewBaseGEP = |
| NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); |
| NewGEPBases.insert(NewBaseGEP); |
| } |
| |
| IRBuilder<> Builder(GEP); |
| Value *NewGEP = NewBaseGEP; |
| if (Offset == BaseOffset) { |
| if (GEP->getType() != I8PtrTy) |
| NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); |
| } else { |
| // Calculate the new offset for the new GEP. |
| Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); |
| NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); |
| |
| if (GEP->getType() != I8PtrTy) |
| NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); |
| } |
| GEP->replaceAllUsesWith(NewGEP); |
| LargeOffsetGEPID.erase(GEP); |
| LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); |
| GEP->eraseFromParent(); |
| Changed = true; |
| } |
| } |
| return Changed; |
| } |
| |
| /// Return true, if an ext(load) can be formed from an extension in |
| /// \p MovedExts. |
| bool CodeGenPrepare::canFormExtLd( |
| const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, |
| Instruction *&Inst, bool HasPromoted) { |
| for (auto *MovedExtInst : MovedExts) { |
| if (isa<LoadInst>(MovedExtInst->getOperand(0))) { |
| LI = cast<LoadInst>(MovedExtInst->getOperand(0)); |
| Inst = MovedExtInst; |
| break; |
| } |
| } |
| if (!LI) |
| return false; |
| |
| // If they're already in the same block, there's nothing to do. |
| // Make the cheap checks first if we did not promote. |
| // If we promoted, we need to check if it is indeed profitable. |
| if (!HasPromoted && LI->getParent() == Inst->getParent()) |
| return false; |
| |
| return TLI->isExtLoad(LI, Inst, *DL); |
| } |
| |
| /// Move a zext or sext fed by a load into the same basic block as the load, |
| /// unless conditions are unfavorable. This allows SelectionDAG to fold the |
| /// extend into the load. |
| /// |
| /// E.g., |
| /// \code |
| /// %ld = load i32* %addr |
| /// %add = add nuw i32 %ld, 4 |
| /// %zext = zext i32 %add to i64 |
| // \endcode |
| /// => |
| /// \code |
| /// %ld = load i32* %addr |
| /// %zext = zext i32 %ld to i64 |
| /// %add = add nuw i64 %zext, 4 |
| /// \encode |
| /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which |
| /// allow us to match zext(load i32*) to i64. |
| /// |
| /// Also, try to promote the computations used to obtain a sign extended |
| /// value used into memory accesses. |
| /// E.g., |
| /// \code |
| /// a = add nsw i32 b, 3 |
| /// d = sext i32 a to i64 |
| /// e = getelementptr ..., i64 d |
| /// \endcode |
| /// => |
| /// \code |
| /// f = sext i32 b to i64 |
| /// a = add nsw i64 f, 3 |
| /// e = getelementptr ..., i64 a |
| /// \endcode |
| /// |
| /// \p Inst[in/out] the extension may be modified during the process if some |
| /// promotions apply. |
| bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { |
| // ExtLoad formation and address type promotion infrastructure requires TLI to |
| // be effective. |
| if (!TLI) |
| return false; |
| |
| bool AllowPromotionWithoutCommonHeader = false; |
| /// See if it is an interesting sext operations for the address type |
| /// promotion before trying to promote it, e.g., the ones with the right |
| /// type and used in memory accesses. |
| bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( |
| *Inst, AllowPromotionWithoutCommonHeader); |
| TypePromotionTransaction TPT(RemovedInsts); |
| TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| TPT.getRestorationPoint(); |
| SmallVector<Instruction *, 1> Exts; |
| SmallVector<Instruction *, 2> SpeculativelyMovedExts; |
| Exts.push_back(Inst); |
| |
| bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); |
| |
| // Look for a load being extended. |
| LoadInst *LI = nullptr; |
| Instruction *ExtFedByLoad; |
| |
| // Try to promote a chain of computation if it allows to form an extended |
| // load. |
| if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { |
| assert(LI && ExtFedByLoad && "Expect a valid load and extension"); |
| TPT.commit(); |
| // Move the extend into the same block as the load |
| ExtFedByLoad->moveAfter(LI); |
| // CGP does not check if the zext would be speculatively executed when moved |
| // to the same basic block as the load. Preserving its original location |
| // would pessimize the debugging experience, as well as negatively impact |
| // the quality of sample pgo. We don't want to use "line 0" as that has a |
| // size cost in the line-table section and logically the zext can be seen as |
| // part of the load. Therefore we conservatively reuse the same debug |
| // location for the load and the zext. |
| ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); |
| ++NumExtsMoved; |
| Inst = ExtFedByLoad; |
| return true; |
| } |
| |
| // Continue promoting SExts if known as considerable depending on targets. |
| if (ATPConsiderable && |
| performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, |
| HasPromoted, TPT, SpeculativelyMovedExts)) |
| return true; |
| |
| TPT.rollback(LastKnownGood); |
| return false; |
| } |
| |
| // Perform address type promotion if doing so is profitable. |
| // If AllowPromotionWithoutCommonHeader == false, we should find other sext |
| // instructions that sign extended the same initial value. However, if |
| // AllowPromotionWithoutCommonHeader == true, we expect promoting the |
| // extension is just profitable. |
| bool CodeGenPrepare::performAddressTypePromotion( |
| Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, |
| bool HasPromoted, TypePromotionTransaction &TPT, |
| SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { |
| bool Promoted = false; |
| SmallPtrSet<Instruction *, 1> UnhandledExts; |
| bool AllSeenFirst = true; |
| for (auto I : SpeculativelyMovedExts) { |
| Value *HeadOfChain = I->getOperand(0); |
| DenseMap<Value *, Instruction *>::iterator AlreadySeen = |
| SeenChainsForSExt.find(HeadOfChain); |
| // If there is an unhandled SExt which has the same header, try to promote |
| // it as well. |
| if (AlreadySeen != SeenChainsForSExt.end()) { |
| if (AlreadySeen->second != nullptr) |
| UnhandledExts.insert(AlreadySeen->second); |
| AllSeenFirst = false; |
| } |
| } |
| |
| if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && |
| SpeculativelyMovedExts.size() == 1)) { |
| TPT.commit(); |
| if (HasPromoted) |
| Promoted = true; |
| for (auto I : SpeculativelyMovedExts) { |
| Value *HeadOfChain = I->getOperand(0); |
| SeenChainsForSExt[HeadOfChain] = nullptr; |
| ValToSExtendedUses[HeadOfChain].push_back(I); |
| } |
| // Update Inst as promotion happen. |
| Inst = SpeculativelyMovedExts.pop_back_val(); |
| } else { |
| // This is the first chain visited from the header, keep the current chain |
| // as unhandled. Defer to promote this until we encounter another SExt |
| // chain derived from the same header. |
| for (auto I : SpeculativelyMovedExts) { |
| Value *HeadOfChain = I->getOperand(0); |
| SeenChainsForSExt[HeadOfChain] = Inst; |
| } |
| return false; |
| } |
| |
| if (!AllSeenFirst && !UnhandledExts.empty()) |
| for (auto VisitedSExt : UnhandledExts) { |
| if (RemovedInsts.count(VisitedSExt)) |
| continue; |
| TypePromotionTransaction TPT(RemovedInsts); |
| SmallVector<Instruction *, 1> Exts; |
| SmallVector<Instruction *, 2> Chains; |
| Exts.push_back(VisitedSExt); |
| bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); |
| TPT.commit(); |
| if (HasPromoted) |
| Promoted = true; |
| for (auto I : Chains) { |
| Value *HeadOfChain = I->getOperand(0); |
| // Mark this as handled. |
| SeenChainsForSExt[HeadOfChain] = nullptr; |
| ValToSExtendedUses[HeadOfChain].push_back(I); |
| } |
| } |
| return Promoted; |
| } |
| |
| bool CodeGenPrepare::optimizeExtUses(Instruction *I) { |
| BasicBlock *DefBB = I->getParent(); |
| |
| // If the result of a {s|z}ext and its source are both live out, rewrite all |
| // other uses of the source with result of extension. |
| Value *Src = I->getOperand(0); |
| if (Src->hasOneUse()) |
| return false; |
| |
| // Only do this xform if truncating is free. |
| if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) |
| return false; |
| |
| // Only safe to perform the optimization if the source is also defined in |
| // this block. |
| if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) |
| return false; |
| |
| bool DefIsLiveOut = false; |
| for (User *U : I->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| |
| // Figure out which BB this ext is used in. |
| BasicBlock *UserBB = UI->getParent(); |
| if (UserBB == DefBB) continue; |
| DefIsLiveOut = true; |
| break; |
| } |
| if (!DefIsLiveOut) |
| return false; |
| |
| // Make sure none of the uses are PHI nodes. |
| for (User *U : Src->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| BasicBlock *UserBB = UI->getParent(); |
| if (UserBB == DefBB) continue; |
| // Be conservative. We don't want this xform to end up introducing |
| // reloads just before load / store instructions. |
| if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) |
| return false; |
| } |
| |
| // InsertedTruncs - Only insert one trunc in each block once. |
| DenseMap<BasicBlock*, Instruction*> InsertedTruncs; |
| |
| bool MadeChange = false; |
| for (Use &U : Src->uses()) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| |
| // Figure out which BB this ext is used in. |
| BasicBlock *UserBB = User->getParent(); |
| if (UserBB == DefBB) continue; |
| |
| // Both src and def are live in this block. Rewrite the use. |
| Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; |
| |
| if (!InsertedTrunc) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); |
| InsertedInsts.insert(InsertedTrunc); |
| } |
| |
| // Replace a use of the {s|z}ext source with a use of the result. |
| U = InsertedTrunc; |
| ++NumExtUses; |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| // Find loads whose uses only use some of the loaded value's bits. Add an "and" |
| // just after the load if the target can fold this into one extload instruction, |
| // with the hope of eliminating some of the other later "and" instructions using |
| // the loaded value. "and"s that are made trivially redundant by the insertion |
| // of the new "and" are removed by this function, while others (e.g. those whose |
| // path from the load goes through a phi) are left for isel to potentially |
| // remove. |
| // |
| // For example: |
| // |
| // b0: |
| // x = load i32 |
| // ... |
| // b1: |
| // y = and x, 0xff |
| // z = use y |
| // |
| // becomes: |
| // |
| // b0: |
| // x = load i32 |
| // x' = and x, 0xff |
| // ... |
| // b1: |
| // z = use x' |
| // |
| // whereas: |
| // |
| // b0: |
| // x1 = load i32 |
| // ... |
| // b1: |
| // x2 = load i32 |
| // ... |
| // b2: |
| // x = phi x1, x2 |
| // y = and x, 0xff |
| // |
| // becomes (after a call to optimizeLoadExt for each load): |
| // |
| // b0: |
| // x1 = load i32 |
| // x1' = and x1, 0xff |
| // ... |
| // b1: |
| // x2 = load i32 |
| // x2' = and x2, 0xff |
| // ... |
| // b2: |
| // x = phi x1', x2' |
| // y = and x, 0xff |
| bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { |
| if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) |
| return false; |
| |
| // Skip loads we've already transformed. |
| if (Load->hasOneUse() && |
| InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) |
| return false; |
| |
| // Look at all uses of Load, looking through phis, to determine how many bits |
| // of the loaded value are needed. |
| SmallVector<Instruction *, 8> WorkList; |
| SmallPtrSet<Instruction *, 16> Visited; |
| SmallVector<Instruction *, 8> AndsToMaybeRemove; |
| for (auto *U : Load->users()) |
| WorkList.push_back(cast<Instruction>(U)); |
| |
| EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); |
| unsigned BitWidth = LoadResultVT.getSizeInBits(); |
| APInt DemandBits(BitWidth, 0); |
| APInt WidestAndBits(BitWidth, 0); |
| |
| while (!WorkList.empty()) { |
| Instruction *I = WorkList.back(); |
| WorkList.pop_back(); |
| |
| // Break use-def graph loops. |
| if (!Visited.insert(I).second) |
| continue; |
| |
| // For a PHI node, push all of its users. |
| if (auto *Phi = dyn_cast<PHINode>(I)) { |
| for (auto *U : Phi->users()) |
| WorkList.push_back(cast<Instruction>(U)); |
| continue; |
| } |
| |
| switch (I->getOpcode()) { |
| case Instruction::And: { |
| auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); |
| if (!AndC) |
| return false; |
| APInt AndBits = AndC->getValue(); |
| DemandBits |= AndBits; |
| // Keep track of the widest and mask we see. |
| if (AndBits.ugt(WidestAndBits)) |
| WidestAndBits = AndBits; |
| if (AndBits == WidestAndBits && I->getOperand(0) == Load) |
| AndsToMaybeRemove.push_back(I); |
| break; |
| } |
| |
| case Instruction::Shl: { |
| auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); |
| if (!ShlC) |
| return false; |
| uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); |
| DemandBits.setLowBits(BitWidth - ShiftAmt); |
| break; |
| } |
| |
| case Instruction::Trunc: { |
| EVT TruncVT = TLI->getValueType(*DL, I->getType()); |
| unsigned TruncBitWidth = TruncVT.getSizeInBits(); |
| DemandBits.setLowBits(TruncBitWidth); |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| uint32_t ActiveBits = DemandBits.getActiveBits(); |
| // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the |
| // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, |
| // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but |
| // (and (load x) 1) is not matched as a single instruction, rather as a LDR |
| // followed by an AND. |
| // TODO: Look into removing this restriction by fixing backends to either |
| // return false for isLoadExtLegal for i1 or have them select this pattern to |
| // a single instruction. |
| // |
| // Also avoid hoisting if we didn't see any ands with the exact DemandBits |
| // mask, since these are the only ands that will be removed by isel. |
| if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || |
| WidestAndBits != DemandBits) |
| return false; |
| |
| LLVMContext &Ctx = Load->getType()->getContext(); |
| Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); |
| EVT TruncVT = TLI->getValueType(*DL, TruncTy); |
| |
| // Reject cases that won't be matched as extloads. |
| if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || |
| !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) |
| return false; |
| |
| IRBuilder<> Builder(Load->getNextNode()); |
| auto *NewAnd = cast<Instruction>( |
| Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); |
| // Mark this instruction as "inserted by CGP", so that other |
| // optimizations don't touch it. |
| InsertedInsts.insert(NewAnd); |
| |
| // Replace all uses of load with new and (except for the use of load in the |
| // new and itself). |
| Load->replaceAllUsesWith(NewAnd); |
| NewAnd->setOperand(0, Load); |
| |
| // Remove any and instructions that are now redundant. |
| for (auto *And : AndsToMaybeRemove) |
| // Check that the and mask is the same as the one we decided to put on the |
| // new and. |
| if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { |
| And->replaceAllUsesWith(NewAnd); |
| if (&*CurInstIterator == And) |
| CurInstIterator = std::next(And->getIterator()); |
| And->eraseFromParent(); |
| ++NumAndUses; |
| } |
| |
| ++NumAndsAdded; |
| return true; |
| } |
| |
| /// Check if V (an operand of a select instruction) is an expensive instruction |
| /// that is only used once. |
| static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| // If it's safe to speculatively execute, then it should not have side |
| // effects; therefore, it's safe to sink and possibly *not* execute. |
| return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && |
| TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; |
| } |
| |
| /// Returns true if a SelectInst should be turned into an explicit branch. |
| static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, |
| const TargetLowering *TLI, |
| SelectInst *SI) { |
| // If even a predictable select is cheap, then a branch can't be cheaper. |
| if (!TLI->isPredictableSelectExpensive()) |
| return false; |
| |
| // FIXME: This should use the same heuristics as IfConversion to determine |
| // whether a select is better represented as a branch. |
| |
| // If metadata tells us that the select condition is obviously predictable, |
| // then we want to replace the select with a branch. |
| uint64_t TrueWeight, FalseWeight; |
| if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { |
| uint64_t Max = std::max(TrueWeight, FalseWeight); |
| uint64_t Sum = TrueWeight + FalseWeight; |
| if (Sum != 0) { |
| auto Probability = BranchProbability::getBranchProbability(Max, Sum); |
| if (Probability > TLI->getPredictableBranchThreshold()) |
| return true; |
| } |
| } |
| |
| CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); |
| |
| // If a branch is predictable, an out-of-order CPU can avoid blocking on its |
| // comparison condition. If the compare has more than one use, there's |
| // probably another cmov or setcc around, so it's not worth emitting a branch. |
| if (!Cmp || !Cmp->hasOneUse()) |
| return false; |
| |
| // If either operand of the select is expensive and only needed on one side |
| // of the select, we should form a branch. |
| if (sinkSelectOperand(TTI, SI->getTrueValue()) || |
| sinkSelectOperand(TTI, SI->getFalseValue())) |
| return true; |
| |
| return false; |
| } |
| |
| /// If \p isTrue is true, return the true value of \p SI, otherwise return |
| /// false value of \p SI. If the true/false value of \p SI is defined by any |
| /// select instructions in \p Selects, look through the defining select |
| /// instruction until the true/false value is not defined in \p Selects. |
| static Value *getTrueOrFalseValue( |
| SelectInst *SI, bool isTrue, |
| const SmallPtrSet<const Instruction *, 2> &Selects) { |
| Value *V = nullptr; |
| |
| for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); |
| DefSI = dyn_cast<SelectInst>(V)) { |
| assert(DefSI->getCondition() == SI->getCondition() && |
| "The condition of DefSI does not match with SI"); |
| V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); |
| } |
| |
| assert(V && "Failed to get select true/false value"); |
| return V; |
| } |
| |
| bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { |
| assert(Shift->isShift() && "Expected a shift"); |
| |
| // If this is (1) a vector shift, (2) shifts by scalars are cheaper than |
| // general vector shifts, and (3) the shift amount is a select-of-splatted |
| // values, hoist the shifts before the select: |
| // shift Op0, (select Cond, TVal, FVal) --> |
| // select Cond, (shift Op0, TVal), (shift Op0, FVal) |
| // |
| // This is inverting a generic IR transform when we know that the cost of a |
| // general vector shift is more than the cost of 2 shift-by-scalars. |
| // We can't do this effectively in SDAG because we may not be able to |
| // determine if the select operands are splats from within a basic block. |
| Type *Ty = Shift->getType(); |
| if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) |
| return false; |
| Value *Cond, *TVal, *FVal; |
| if (!match(Shift->getOperand(1), |
| m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) |
| return false; |
| if (!isSplatValue(TVal) || !isSplatValue(FVal)) |
| return false; |
| |
| IRBuilder<> Builder(Shift); |
| BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); |
| Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); |
| Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); |
| Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); |
| Shift->replaceAllUsesWith(NewSel); |
| Shift->eraseFromParent(); |
| return true; |
| } |
| |
| /// If we have a SelectInst that will likely profit from branch prediction, |
| /// turn it into a branch. |
| bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { |
| // If branch conversion isn't desirable, exit early. |
| if (DisableSelectToBranch || |
| OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()) || |
| !TLI) |
| return false; |
| |
| // Find all consecutive select instructions that share the same condition. |
| SmallVector<SelectInst *, 2> ASI; |
| ASI.push_back(SI); |
| for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); |
| It != SI->getParent()->end(); ++It) { |
| SelectInst *I = dyn_cast<SelectInst>(&*It); |
| if (I && SI->getCondition() == I->getCondition()) { |
| ASI.push_back(I); |
| } else { |
| break; |
| } |
| } |
| |
| SelectInst *LastSI = ASI.back(); |
| // Increment the current iterator to skip all the rest of select instructions |
| // because they will be either "not lowered" or "all lowered" to branch. |
| CurInstIterator = std::next(LastSI->getIterator()); |
| |
| bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); |
| |
| // Can we convert the 'select' to CF ? |
| if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) |
| return false; |
| |
| TargetLowering::SelectSupportKind SelectKind; |
| if (VectorCond) |
| SelectKind = TargetLowering::VectorMaskSelect; |
| else if (SI->getType()->isVectorTy()) |
| SelectKind = TargetLowering::ScalarCondVectorVal; |
| else |
| SelectKind = TargetLowering::ScalarValSelect; |
| |
| if (TLI->isSelectSupported(SelectKind) && |
| !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) |
| return false; |
| |
| // The DominatorTree needs to be rebuilt by any consumers after this |
| // transformation. We simply reset here rather than setting the ModifiedDT |
| // flag to avoid restarting the function walk in runOnFunction for each |
| // select optimized. |
| DT.reset(); |
| |
| // Transform a sequence like this: |
| // start: |
| // %cmp = cmp uge i32 %a, %b |
| // %sel = select i1 %cmp, i32 %c, i32 %d |
| // |
| // Into: |
| // start: |
| // %cmp = cmp uge i32 %a, %b |
| // br i1 %cmp, label %select.true, label %select.false |
| // select.true: |
| // br label %select.end |
| // select.false: |
| // br label %select.end |
| // select.end: |
| // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] |
| // |
| // In addition, we may sink instructions that produce %c or %d from |
| // the entry block into the destination(s) of the new branch. |
| // If the true or false blocks do not contain a sunken instruction, that |
| // block and its branch may be optimized away. In that case, one side of the |
| // first branch will point directly to select.end, and the corresponding PHI |
| // predecessor block will be the start block. |
| |
| // First, we split the block containing the select into 2 blocks. |
| BasicBlock *StartBlock = SI->getParent(); |
| BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); |
| BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); |
| BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); |
| |
| // Delete the unconditional branch that was just created by the split. |
| StartBlock->getTerminator()->eraseFromParent(); |
| |
| // These are the new basic blocks for the conditional branch. |
| // At least one will become an actual new basic block. |
| BasicBlock *TrueBlock = nullptr; |
| BasicBlock *FalseBlock = nullptr; |
| BranchInst *TrueBranch = nullptr; |
| BranchInst *FalseBranch = nullptr; |
| |
| // Sink expensive instructions into the conditional blocks to avoid executing |
| // them speculatively. |
| for (SelectInst *SI : ASI) { |
| if (sinkSelectOperand(TTI, SI->getTrueValue())) { |
| if (TrueBlock == nullptr) { |
| TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", |
| EndBlock->getParent(), EndBlock); |
| TrueBranch = BranchInst::Create(EndBlock, TrueBlock); |
| TrueBranch->setDebugLoc(SI->getDebugLoc()); |
| } |
| auto *TrueInst = cast<Instruction>(SI->getTrueValue()); |
| TrueInst->moveBefore(TrueBranch); |
| } |
| if (sinkSelectOperand(TTI, SI->getFalseValue())) { |
| if (FalseBlock == nullptr) { |
| FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", |
| EndBlock->getParent(), EndBlock); |
| FalseBranch = BranchInst::Create(EndBlock, FalseBlock); |
| FalseBranch->setDebugLoc(SI->getDebugLoc()); |
| } |
| auto *FalseInst = cast<Instruction>(SI->getFalseValue()); |
| FalseInst->moveBefore(FalseBranch); |
| } |
| } |
| |
| // If there was nothing to sink, then arbitrarily choose the 'false' side |
| // for a new input value to the PHI. |
| if (TrueBlock == FalseBlock) { |
| assert(TrueBlock == nullptr && |
| "Unexpected basic block transform while optimizing select"); |
| |
| FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", |
| EndBlock->getParent(), EndBlock); |
| auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); |
| FalseBranch->setDebugLoc(SI->getDebugLoc()); |
| } |
| |
| // Insert the real conditional branch based on the original condition. |
| // If we did not create a new block for one of the 'true' or 'false' paths |
| // of the condition, it means that side of the branch goes to the end block |
| // directly and the path originates from the start block from the point of |
| // view of the new PHI. |
| BasicBlock *TT, *FT; |
| if (TrueBlock == nullptr) { |
| TT = EndBlock; |
| FT = FalseBlock; |
| TrueBlock = StartBlock; |
| } else if (FalseBlock == nullptr) { |
| TT = TrueBlock; |
| FT = EndBlock; |
| FalseBlock = StartBlock; |
| } else { |
| TT = TrueBlock; |
| FT = FalseBlock; |
| } |
| IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); |
| |
| SmallPtrSet<const Instruction *, 2> INS; |
| INS.insert(ASI.begin(), ASI.end()); |
| // Use reverse iterator because later select may use the value of the |
| // earlier select, and we need to propagate value through earlier select |
| // to get the PHI operand. |
| for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { |
| SelectInst *SI = *It; |
| // The select itself is replaced with a PHI Node. |
| PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); |
| PN->takeName(SI); |
| PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); |
| PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); |
| PN->setDebugLoc(SI->getDebugLoc()); |
| |
| SI->replaceAllUsesWith(PN); |
| SI->eraseFromParent(); |
| INS.erase(SI); |
| ++NumSelectsExpanded; |
| } |
| |
| // Instruct OptimizeBlock to skip to the next block. |
| CurInstIterator = StartBlock->end(); |
| return true; |
| } |
| |
| static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { |
| SmallVector<int, 16> Mask(SVI->getShuffleMask()); |
| int SplatElem = -1; |
| for (unsigned i = 0; i < Mask.size(); ++i) { |
| if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) |
| return false; |
| SplatElem = Mask[i]; |
| } |
| |
| return true; |
| } |
| |
| /// Some targets have expensive vector shifts if the lanes aren't all the same |
| /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases |
| /// it's often worth sinking a shufflevector splat down to its use so that |
| /// codegen can spot all lanes are identical. |
| bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { |
| BasicBlock *DefBB = SVI->getParent(); |
| |
| // Only do this xform if variable vector shifts are particularly expensive. |
| if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) |
| return false; |
| |
| // We only expect better codegen by sinking a shuffle if we can recognise a |
| // constant splat. |
| if (!isBroadcastShuffle(SVI)) |
| return false; |
| |
| // InsertedShuffles - Only insert a shuffle in each block once. |
| DenseMap<BasicBlock*, Instruction*> InsertedShuffles; |
| |
| bool MadeChange = false; |
| for (User *U : SVI->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| |
| // Figure out which BB this ext is used in. |
| BasicBlock *UserBB = UI->getParent(); |
| if (UserBB == DefBB) continue; |
| |
| // For now only apply this when the splat is used by a shift instruction. |
| if (!UI->isShift()) continue; |
| |
| // Everything checks out, sink the shuffle if the user's block doesn't |
| // already have a copy. |
| Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; |
| |
| if (!InsertedShuffle) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| InsertedShuffle = |
| new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), |
| SVI->getOperand(2), "", &*InsertPt); |
| InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); |
| } |
| |
| UI->replaceUsesOfWith(SVI, InsertedShuffle); |
| MadeChange = true; |
| } |
| |
| // If we removed all uses, nuke the shuffle. |
| if (SVI->use_empty()) { |
| SVI->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { |
| // If the operands of I can be folded into a target instruction together with |
| // I, duplicate and sink them. |
| SmallVector<Use *, 4> OpsToSink; |
| if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) |
| return false; |
| |
| // OpsToSink can contain multiple uses in a use chain (e.g. |
| // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating |
| // uses must come first, so we process the ops in reverse order so as to not |
| // create invalid IR. |
| BasicBlock *TargetBB = I->getParent(); |
| bool Changed = false; |
| SmallVector<Use *, 4> ToReplace; |
| for (Use *U : reverse(OpsToSink)) { |
| auto *UI = cast<Instruction>(U->get()); |
| if (UI->getParent() == TargetBB || isa<PHINode>(UI)) |
| continue; |
| ToReplace.push_back(U); |
| } |
| |
| SetVector<Instruction *> MaybeDead; |
| DenseMap<Instruction *, Instruction *> NewInstructions; |
| Instruction *InsertPoint = I; |
| for (Use *U : ToReplace) { |
| auto *UI = cast<Instruction>(U->get()); |
| Instruction *NI = UI->clone(); |
| NewInstructions[UI] = NI; |
| MaybeDead.insert(UI); |
| LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); |
| NI->insertBefore(InsertPoint); |
| InsertPoint = NI; |
| InsertedInsts.insert(NI); |
| |
| // Update the use for the new instruction, making sure that we update the |
| // sunk instruction uses, if it is part of a chain that has already been |
| // sunk. |
| Instruction *OldI = cast<Instruction>(U->getUser()); |
| if (NewInstructions.count(OldI)) |
| NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); |
| else |
| U->set(NI); |
| Changed = true; |
| } |
| |
| // Remove instructions that are dead after sinking. |
| for (auto *I : MaybeDead) { |
| if (!I->hasNUsesOrMore(1)) { |
| LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); |
| I->eraseFromParent(); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { |
| if (!TLI || !DL) |
| return false; |
| |
| Value *Cond = SI->getCondition(); |
| Type *OldType = Cond->getType(); |
| LLVMContext &Context = Cond->getContext(); |
| MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); |
| unsigned RegWidth = RegType.getSizeInBits(); |
| |
| if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) |
| return false; |
| |
| // If the register width is greater than the type width, expand the condition |
| // of the switch instruction and each case constant to the width of the |
| // register. By widening the type of the switch condition, subsequent |
| // comparisons (for case comparisons) will not need to be extended to the |
| // preferred register width, so we will potentially eliminate N-1 extends, |
| // where N is the number of cases in the switch. |
| auto *NewType = Type::getIntNTy(Context, RegWidth); |
| |
| // Zero-extend the switch condition and case constants unless the switch |
| // condition is a function argument that is already being sign-extended. |
| // In that case, we can avoid an unnecessary mask/extension by sign-extending |
| // everything instead. |
| Instruction::CastOps ExtType = Instruction::ZExt; |
| if (auto *Arg = dyn_cast<Argument>(Cond)) |
| if (Arg->hasSExtAttr()) |
| ExtType = Instruction::SExt; |
| |
| auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); |
| ExtInst->insertBefore(SI); |
| ExtInst->setDebugLoc(SI->getDebugLoc()); |
| SI->setCondition(ExtInst); |
| for (auto Case : SI->cases()) { |
| APInt NarrowConst = Case.getCaseValue()->getValue(); |
| APInt WideConst = (ExtType == Instruction::ZExt) ? |
| NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); |
| Case.setValue(ConstantInt::get(Context, WideConst)); |
| } |
| |
| return true; |
| } |
| |
| |
| namespace { |
| |
| /// Helper class to promote a scalar operation to a vector one. |
| /// This class is used to move downward extractelement transition. |
| /// E.g., |
| /// a = vector_op <2 x i32> |
| /// b = extractelement <2 x i32> a, i32 0 |
| /// c = scalar_op b |
| /// store c |
| /// |
| /// => |
| /// a = vector_op <2 x i32> |
| /// c = vector_op a (equivalent to scalar_op on the related lane) |
| /// * d = extractelement <2 x i32> c, i32 0 |
| /// * store d |
| /// Assuming both extractelement and store can be combine, we get rid of the |
| /// transition. |
| class VectorPromoteHelper { |
| /// DataLayout associated with the current module. |
| const DataLayout &DL; |
| |
| /// Used to perform some checks on the legality of vector operations. |
| const TargetLowering &TLI; |
| |
| /// Used to estimated the cost of the promoted chain. |
| const TargetTransformInfo &TTI; |
| |
| /// The transition being moved downwards. |
| Instruction *Transition; |
| |
| /// The sequence of instructions to be promoted. |
| SmallVector<Instruction *, 4> InstsToBePromoted; |
| |
| /// Cost of combining a store and an extract. |
| unsigned StoreExtractCombineCost; |
| |
| /// Instruction that will be combined with the transition. |
| Instruction *CombineInst = nullptr; |
| |
| /// The instruction that represents the current end of the transition. |
| /// Since we are faking the promotion until we reach the end of the chain |
| /// of computation, we need a way to get the current end of the transition. |
| Instruction *getEndOfTransition() const { |
| if (InstsToBePromoted.empty()) |
| return Transition; |
| return InstsToBePromoted.back(); |
| } |
| |
| /// Return the index of the original value in the transition. |
| /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, |
| /// c, is at index 0. |
| unsigned getTransitionOriginalValueIdx() const { |
| assert(isa<ExtractElementInst>(Transition) && |
| "Other kind of transitions are not supported yet"); |
| return 0; |
| } |
| |
| /// Return the index of the index in the transition. |
| /// E.g., for "extractelement <2 x i32> c, i32 0" the index |
| /// is at index 1. |
| unsigned getTransitionIdx() const { |
| assert(isa<ExtractElementInst>(Transition) && |
| "Other kind of transitions are not supported yet"); |
| return 1; |
| } |
| |
| /// Get the type of the transition. |
| /// This is the type of the original value. |
| /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the |
| /// transition is <2 x i32>. |
| Type *getTransitionType() const { |
| return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); |
| } |
| |
| /// Promote \p ToBePromoted by moving \p Def downward through. |
| /// I.e., we have the following sequence: |
| /// Def = Transition <ty1> a to <ty2> |
| /// b = ToBePromoted <ty2> Def, ... |
| /// => |
| /// b = ToBePromoted <ty1> a, ... |
| /// Def = Transition <ty1> ToBePromoted to <ty2> |
| void promoteImpl(Instruction *ToBePromoted); |
| |
| /// Check whether or not it is profitable to promote all the |
| /// instructions enqueued to be promoted. |
| bool isProfitableToPromote() { |
| Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); |
| unsigned Index = isa<ConstantInt>(ValIdx) |
| ? cast<ConstantInt>(ValIdx)->getZExtValue() |
| : -1; |
| Type *PromotedType = getTransitionType(); |
| |
| StoreInst *ST = cast<StoreInst>(CombineInst); |
| unsigned AS = ST->getPointerAddressSpace(); |
| unsigned Align = ST->getAlignment(); |
| // Check if this store is supported. |
| if (!TLI.allowsMisalignedMemoryAccesses( |
| TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, |
| Align)) { |
| // If this is not supported, there is no way we can combine |
| // the extract with the store. |
| return false; |
| } |
| |
| // The scalar chain of computation has to pay for the transition |
| // scalar to vector. |
| // The vector chain has to account for the combining cost. |
| uint64_t ScalarCost = |
| TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); |
| uint64_t VectorCost = StoreExtractCombineCost; |
| for (const auto &Inst : InstsToBePromoted) { |
| // Compute the cost. |
| // By construction, all instructions being promoted are arithmetic ones. |
| // Moreover, one argument is a constant that can be viewed as a splat |
| // constant. |
| Value *Arg0 = Inst->getOperand(0); |
| bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || |
| isa<ConstantFP>(Arg0); |
| TargetTransformInfo::OperandValueKind Arg0OVK = |
| IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue |
| : TargetTransformInfo::OK_AnyValue; |
| TargetTransformInfo::OperandValueKind Arg1OVK = |
| !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue |
| : TargetTransformInfo::OK_AnyValue; |
| ScalarCost += TTI.getArithmeticInstrCost( |
| Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); |
| VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, |
| Arg0OVK, Arg1OVK); |
| } |
| LLVM_DEBUG( |
| dbgs() << "Estimated cost of computation to be promoted:\nScalar: " |
| << ScalarCost << "\nVector: " << VectorCost << '\n'); |
| return ScalarCost > VectorCost; |
| } |
| |
| /// Generate a constant vector with \p Val with the same |
| /// number of elements as the transition. |
| /// \p UseSplat defines whether or not \p Val should be replicated |
| /// across the whole vector. |
| /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, |
| /// otherwise we generate a vector with as many undef as possible: |
| /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only |
| /// used at the index of the extract. |
| Value *getConstantVector(Constant *Val, bool UseSplat) const { |
| unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); |
| if (!UseSplat) { |
| // If we cannot determine where the constant must be, we have to |
| // use a splat constant. |
| Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); |
| if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) |
| ExtractIdx = CstVal->getSExtValue(); |
| else |
| UseSplat = true; |
| } |
| |
| unsigned End = getTransitionType()->getVectorNumElements(); |
| if (UseSplat) |
| return ConstantVector::getSplat(End, Val); |
| |
| SmallVector<Constant *, 4> ConstVec; |
| UndefValue *UndefVal = UndefValue::get(Val->getType()); |
| for (unsigned Idx = 0; Idx != End; ++Idx) { |
| if (Idx == ExtractIdx) |
| ConstVec.push_back(Val); |
| else |
| ConstVec.push_back(UndefVal); |
| } |
| return ConstantVector::get(ConstVec); |
| } |
| |
| /// Check if promoting to a vector type an operand at \p OperandIdx |
| /// in \p Use can trigger undefined behavior. |
| static bool canCauseUndefinedBehavior(const Instruction *Use, |
| unsigned OperandIdx) { |
| // This is not safe to introduce undef when the operand is on |
| // the right hand side of a division-like instruction. |
| if (OperandIdx != 1) |
| return false; |
| switch (Use->getOpcode()) { |
| default: |
| return false; |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| return true; |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| return !Use->hasNoNaNs(); |
| } |
| llvm_unreachable(nullptr); |
| } |
| |
| public: |
| VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, |
| const TargetTransformInfo &TTI, Instruction *Transition, |
| unsigned CombineCost) |
| : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), |
| StoreExtractCombineCost(CombineCost) { |
| assert(Transition && "Do not know how to promote null"); |
| } |
| |
| /// Check if we can promote \p ToBePromoted to \p Type. |
| bool canPromote(const Instruction *ToBePromoted) const { |
| // We could support CastInst too. |
| return isa<BinaryOperator>(ToBePromoted); |
| } |
| |
| /// Check if it is profitable to promote \p ToBePromoted |
| /// by moving downward the transition through. |
| bool shouldPromote(const Instruction *ToBePromoted) const { |
| // Promote only if all the operands can be statically expanded. |
| // Indeed, we do not want to introduce any new kind of transitions. |
| for (const Use &U : ToBePromoted->operands()) { |
| const Value *Val = U.get(); |
| if (Val == getEndOfTransition()) { |
| // If the use is a division and the transition is on the rhs, |
| // we cannot promote the operation, otherwise we may create a |
| // division by zero. |
| if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) |
| return false; |
| continue; |
| } |
| if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && |
| !isa<ConstantFP>(Val)) |
| return false; |
| } |
| // Check that the resulting operation is legal. |
| int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); |
| if (!ISDOpcode) |
| return false; |
| return StressStoreExtract || |
| TLI.isOperationLegalOrCustom( |
| ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); |
| } |
| |
| /// Check whether or not \p Use can be combined |
| /// with the transition. |
| /// I.e., is it possible to do Use(Transition) => AnotherUse? |
| bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } |
| |
| /// Record \p ToBePromoted as part of the chain to be promoted. |
| void enqueueForPromotion(Instruction *ToBePromoted) { |
| InstsToBePromoted.push_back(ToBePromoted); |
| } |
| |
| /// Set the instruction that will be combined with the transition. |
| void recordCombineInstruction(Instruction *ToBeCombined) { |
| assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); |
| CombineInst = ToBeCombined; |
| } |
| |
| /// Promote all the instructions enqueued for promotion if it is |
| /// is profitable. |
| /// \return True if the promotion happened, false otherwise. |
| bool promote() { |
| // Check if there is something to promote. |
| // Right now, if we do not have anything to combine with, |
| // we assume the promotion is not profitable. |
| if (InstsToBePromoted.empty() || !CombineInst) |
| return false; |
| |
| // Check cost. |
| if (!StressStoreExtract && !isProfitableToPromote()) |
| return false; |
| |
| // Promote. |
| for (auto &ToBePromoted : InstsToBePromoted) |
| promoteImpl(ToBePromoted); |
| InstsToBePromoted.clear(); |
| return true; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { |
| // At this point, we know that all the operands of ToBePromoted but Def |
| // can be statically promoted. |
| // For Def, we need to use its parameter in ToBePromoted: |
| // b = ToBePromoted ty1 a |
| // Def = Transition ty1 b to ty2 |
| // Move the transition down. |
| // 1. Replace all uses of the promoted operation by the transition. |
| // = ... b => = ... Def. |
| assert(ToBePromoted->getType() == Transition->getType() && |
| "The type of the result of the transition does not match " |
| "the final type"); |
| ToBePromoted->replaceAllUsesWith(Transition); |
| // 2. Update the type of the uses. |
| // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. |
| Type *TransitionTy = getTransitionType(); |
| ToBePromoted->mutateType(TransitionTy); |
| // 3. Update all the operands of the promoted operation with promoted |
| // operands. |
| // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. |
| for (Use &U : ToBePromoted->operands()) { |
| Value *Val = U.get(); |
| Value *NewVal = nullptr; |
| if (Val == Transition) |
| NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); |
| else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || |
| isa<ConstantFP>(Val)) { |
| // Use a splat constant if it is not safe to use undef. |
| NewVal = getConstantVector( |
| cast<Constant>(Val), |
| isa<UndefValue>(Val) || |
| canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); |
| } else |
| llvm_unreachable("Did you modified shouldPromote and forgot to update " |
| "this?"); |
| ToBePromoted->setOperand(U.getOperandNo(), NewVal); |
| } |
| Transition->moveAfter(ToBePromoted); |
| Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); |
| } |
| |
| /// Some targets can do store(extractelement) with one instruction. |
| /// Try to push the extractelement towards the stores when the target |
| /// has this feature and this is profitable. |
| bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { |
| unsigned CombineCost = std::numeric_limits<unsigned>::max(); |
| if (DisableStoreExtract || !TLI || |
| (!StressStoreExtract && |
| !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), |
| Inst->getOperand(1), CombineCost))) |
| return false; |
| |
| // At this point we know that Inst is a vector to scalar transition. |
| // Try to move it down the def-use chain, until: |
| // - We can combine the transition with its single use |
| // => we got rid of the transition. |
| // - We escape the current basic block |
| // => we would need to check that we are moving it at a cheaper place and |
| // we do not do that for now. |
| BasicBlock *Parent = Inst->getParent(); |
| LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); |
| VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); |
| // If the transition has more than one use, assume this is not going to be |
| // beneficial. |
| while (Inst->hasOneUse()) { |
| Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); |
| LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); |
| |
| if (ToBePromoted->getParent() != Parent) { |
| LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" |
| << ToBePromoted->getParent()->getName() |
| << ") than the transition (" << Parent->getName() |
| << ").\n"); |
| return false; |
| } |
| |
| if (VPH.canCombine(ToBePromoted)) { |
| LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' |
| << "will be combined with: " << *ToBePromoted << '\n'); |
| VPH.recordCombineInstruction(ToBePromoted); |
| bool Changed = VPH.promote(); |
| NumStoreExtractExposed += Changed; |
| return Changed; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Try promoting.\n"); |
| if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); |
| |
| VPH.enqueueForPromotion(ToBePromoted); |
| Inst = ToBePromoted; |
| } |
| return false; |
| } |
| |
| /// For the instruction sequence of store below, F and I values |
| /// are bundled together as an i64 value before being stored into memory. |
| /// Sometimes it is more efficient to generate separate stores for F and I, |
| /// which can remove the bitwise instructions or sink them to colder places. |
| /// |
| /// (store (or (zext (bitcast F to i32) to i64), |
| /// (shl (zext I to i64), 32)), addr) --> |
| /// (store F, addr) and (store I, addr+4) |
| /// |
| /// Similarly, splitting for other merged store can also be beneficial, like: |
| /// For pair of {i32, i32}, i64 store --> two i32 stores. |
| /// For pair of {i32, i16}, i64 store --> two i32 stores. |
| /// For pair of {i16, i16}, i32 store --> two i16 stores. |
| /// For pair of {i16, i8}, i32 store --> two i16 stores. |
| /// For pair of {i8, i8}, i16 store --> two i8 stores. |
| /// |
| /// We allow each target to determine specifically which kind of splitting is |
| /// supported. |
| /// |
| /// The store patterns are commonly seen from the simple code snippet below |
| /// if only std::make_pair(...) is sroa transformed before inlined into hoo. |
| /// void goo(const std::pair<int, float> &); |
| /// hoo() { |
| /// ... |
| /// goo(std::make_pair(tmp, ftmp)); |
| /// ... |
| /// } |
| /// |
| /// Although we already have similar splitting in DAG Combine, we duplicate |
| /// it in CodeGenPrepare to catch the case in which pattern is across |
| /// multiple BBs. The logic in DAG Combine is kept to catch case generated |
| /// during code expansion. |
| static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, |
| const TargetLowering &TLI) { |
| // Handle simple but common cases only. |
| Type *StoreType = SI.getValueOperand()->getType(); |
| if (!DL.typeSizeEqualsStoreSize(StoreType) || |
| DL.getTypeSizeInBits(StoreType) == 0) |
| return false; |
| |
| unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; |
| Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); |
| if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) |
| return false; |
| |
| // Don't split the store if it is volatile. |
| if (SI.isVolatile()) |
| return false; |
| |
| // Match the following patterns: |
| // (store (or (zext LValue to i64), |
| // (shl (zext HValue to i64), 32)), HalfValBitSize) |
| // or |
| // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) |
| // (zext LValue to i64), |
| // Expect both operands of OR and the first operand of SHL have only |
| // one use. |
| Value *LValue, *HValue; |
| if (!match(SI.getValueOperand(), |
| m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), |
| m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), |
| m_SpecificInt(HalfValBitSize)))))) |
| return false; |
| |
| // Check LValue and HValue are int with size less or equal than 32. |
| if (!LValue->getType()->isIntegerTy() || |
| DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || |
| !HValue->getType()->isIntegerTy() || |
| DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) |
| return false; |
| |
| // If LValue/HValue is a bitcast instruction, use the EVT before bitcast |
| // as the input of target query. |
| auto *LBC = dyn_cast<BitCastInst>(LValue); |
| auto *HBC = dyn_cast<BitCastInst>(HValue); |
| EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) |
| : EVT::getEVT(LValue->getType()); |
| EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) |
| : EVT::getEVT(HValue->getType()); |
| if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) |
| return false; |
| |
| // Start to split store. |
| IRBuilder<> Builder(SI.getContext()); |
| Builder.SetInsertPoint(&SI); |
| |
| // If LValue/HValue is a bitcast in another BB, create a new one in current |
| // BB so it may be merged with the splitted stores by dag combiner. |
| if (LBC && LBC->getParent() != SI.getParent()) |
| LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); |
| if (HBC && HBC->getParent() != SI.getParent()) |
| HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); |
| |
| bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); |
| auto CreateSplitStore = [&](Value *V, bool Upper) { |
| V = Builder.CreateZExtOrBitCast(V, SplitStoreType); |
| Value *Addr = Builder.CreateBitCast( |
| SI.getOperand(1), |
| SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); |
| const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); |
| if (IsOffsetStore) |
| Addr = Builder.CreateGEP( |
| SplitStoreType, Addr, |
| ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); |
| MaybeAlign Alignment(SI.getAlignment()); |
| if (IsOffsetStore && Alignment) { |
| // When splitting the store in half, naturally one half will retain the |
| // alignment of the original wider store, regardless of whether it was |
| // over-aligned or not, while the other will require adjustment. |
| Alignment = commonAlignment(Alignment, HalfValBitSize / 8); |
| } |
| Builder.CreateAlignedStore( |
| V, Addr, Alignment.hasValue() ? Alignment.getValue().value() : 0); |
| }; |
| |
| CreateSplitStore(LValue, false); |
| CreateSplitStore(HValue, true); |
| |
| // Delete the old store. |
| SI.eraseFromParent(); |
| return true; |
| } |
| |
| // Return true if the GEP has two operands, the first operand is of a sequential |
| // type, and the second operand is a constant. |
| static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { |
| gep_type_iterator I = gep_type_begin(*GEP); |
| return GEP->getNumOperands() == 2 && |
| I.isSequential() && |
| isa<ConstantInt>(GEP->getOperand(1)); |
| } |
| |
| // Try unmerging GEPs to reduce liveness interference (register pressure) across |
| // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, |
| // reducing liveness interference across those edges benefits global register |
| // allocation. Currently handles only certain cases. |
| // |
| // For example, unmerge %GEPI and %UGEPI as below. |
| // |
| // ---------- BEFORE ---------- |
| // SrcBlock: |
| // ... |
| // %GEPIOp = ... |
| // ... |
| // %GEPI = gep %GEPIOp, Idx |
| // ... |
| // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] |
| // (* %GEPI is alive on the indirectbr edges due to other uses ahead) |
| // (* %GEPIOp is alive on the indirectbr edges only because of it's used by |
| // %UGEPI) |
| // |
| // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) |
| // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) |
| // ... |
| // |
| // DstBi: |
| // ... |
| // %UGEPI = gep %GEPIOp, UIdx |
| // ... |
| // --------------------------- |
| // |
| // ---------- AFTER ---------- |
| // SrcBlock: |
| // ... (same as above) |
| // (* %GEPI is still alive on the indirectbr edges) |
| // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the |
| // unmerging) |
| // ... |
| // |
| // DstBi: |
| // ... |
| // %UGEPI = gep %GEPI, (UIdx-Idx) |
| // ... |
| // --------------------------- |
| // |
| // The register pressure on the IndirectBr edges is reduced because %GEPIOp is |
| // no longer alive on them. |
| // |
| // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging |
| // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as |
| // not to disable further simplications and optimizations as a result of GEP |
| // merging. |
| // |
| // Note this unmerging may increase the length of the data flow critical path |
| // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff |
| // between the register pressure and the length of data-flow critical |
| // path. Restricting this to the uncommon IndirectBr case would minimize the |
| // impact of potentially longer critical path, if any, and the impact on compile |
| // time. |
| static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, |
| const TargetTransformInfo *TTI) { |
| BasicBlock *SrcBlock = GEPI->getParent(); |
| // Check that SrcBlock ends with an IndirectBr. If not, give up. The common |
| // (non-IndirectBr) cases exit early here. |
| if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) |
| return false; |
| // Check that GEPI is a simple gep with a single constant index. |
| if (!GEPSequentialConstIndexed(GEPI)) |
| return false; |
| ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); |
| // Check that GEPI is a cheap one. |
| if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) |
| > TargetTransformInfo::TCC_Basic) |
| return false; |
| Value *GEPIOp = GEPI->getOperand(0); |
| // Check that GEPIOp is an instruction that's also defined in SrcBlock. |
| if (!isa<Instruction>(GEPIOp)) |
| return false; |
| auto *GEPIOpI = cast<Instruction>(GEPIOp); |
| if (GEPIOpI->getParent() != SrcBlock) |
| return false; |
| // Check that GEP is used outside the block, meaning it's alive on the |
| // IndirectBr edge(s). |
| if (find_if(GEPI->users(), [&](User *Usr) { |
| if (auto *I = dyn_cast<Instruction>(Usr)) { |
| if (I->getParent() != SrcBlock) { |
| return true; |
| } |
| } |
| return false; |
| }) == GEPI->users().end()) |
| return false; |
| // The second elements of the GEP chains to be unmerged. |
| std::vector<GetElementPtrInst *> UGEPIs; |
| // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive |
| // on IndirectBr edges. |
| for (User *Usr : GEPIOp->users()) { |
| if (Usr == GEPI) continue; |
| // Check if Usr is an Instruction. If not, give up. |
| if (!isa<Instruction>(Usr)) |
| return false; |
| auto *UI = cast<Instruction>(Usr); |
| // Check if Usr in the same block as GEPIOp, which is fine, skip. |
| if (UI->getParent() == SrcBlock) |
| continue; |
| // Check if Usr is a GEP. If not, give up. |
| if (!isa<GetElementPtrInst>(Usr)) |
| return false; |
| auto *UGEPI = cast<GetElementPtrInst>(Usr); |
| // Check if UGEPI is a simple gep with a single constant index and GEPIOp is |
| // the pointer operand to it. If so, record it in the vector. If not, give |
| // up. |
| if (!GEPSequentialConstIndexed(UGEPI)) |
| return false; |
| if (UGEPI->getOperand(0) != GEPIOp) |
| return false; |
| if (GEPIIdx->getType() != |
| cast<ConstantInt>(UGEPI->getOperand(1))->getType()) |
| return false; |
| ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); |
| if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) |
| > TargetTransformInfo::TCC_Basic) |
| return false; |
| UGEPIs.push_back(UGEPI); |
| } |
| if (UGEPIs.size() == 0) |
| return false; |
| // Check the materializing cost of (Uidx-Idx). |
| for (GetElementPtrInst *UGEPI : UGEPIs) { |
| ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); |
| APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); |
| unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); |
| if (ImmCost > TargetTransformInfo::TCC_Basic) |
| return false; |
| } |
| // Now unmerge between GEPI and UGEPIs. |
| for (GetElementPtrInst *UGEPI : UGEPIs) { |
| UGEPI->setOperand(0, GEPI); |
| ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); |
| Constant *NewUGEPIIdx = |
| ConstantInt::get(GEPIIdx->getType(), |
| UGEPIIdx->getValue() - GEPIIdx->getValue()); |
| UGEPI->setOperand(1, NewUGEPIIdx); |
| // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not |
| // inbounds to avoid UB. |
| if (!GEPI->isInBounds()) { |
| UGEPI->setIsInBounds(false); |
| } |
| } |
| // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not |
| // alive on IndirectBr edges). |
| assert(find_if(GEPIOp->users(), [&](User *Usr) { |
| return cast<Instruction>(Usr)->getParent() != SrcBlock; |
| }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); |
| return true; |
| } |
| |
| bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { |
| // Bail out if we inserted the instruction to prevent optimizations from |
| // stepping on each other's toes. |
| if (InsertedInsts.count(I)) |
| return false; |
| |
| // TODO: Move into the switch on opcode below here. |
| if (PHINode *P = dyn_cast<PHINode>(I)) { |
| // It is possible for very late stage optimizations (such as SimplifyCFG) |
| // to introduce PHI nodes too late to be cleaned up. If we detect such a |
| // trivial PHI, go ahead and zap it here. |
| if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { |
| LargeOffsetGEPMap.erase(P); |
| P->replaceAllUsesWith(V); |
| P->eraseFromParent(); |
| ++NumPHIsElim; |
| return true; |
| } |
| return false; |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| // If the source of the cast is a constant, then this should have |
| // already been constant folded. The only reason NOT to constant fold |
| // it is if something (e.g. LSR) was careful to place the constant |
| // evaluation in a block other than then one that uses it (e.g. to hoist |
| // the address of globals out of a loop). If this is the case, we don't |
| // want to forward-subst the cast. |
| if (isa<Constant>(CI->getOperand(0))) |
| return false; |
| |
| if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) |
| return true; |
| |
| if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { |
| /// Sink a zext or sext into its user blocks if the target type doesn't |
| /// fit in one register |
| if (TLI && |
| TLI->getTypeAction(CI->getContext(), |
| TLI->getValueType(*DL, CI->getType())) == |
| TargetLowering::TypeExpandInteger) { |
| return SinkCast(CI); |
| } else { |
| bool MadeChange = optimizeExt(I); |
| return MadeChange | optimizeExtUses(I); |
| } |
| } |
| return false; |
| } |
| |
| if (auto *Cmp = dyn_cast<CmpInst>(I)) |
| if (TLI && optimizeCmp(Cmp, ModifiedDT)) |
| return true; |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); |
| if (TLI) { |
| bool Modified = optimizeLoadExt(LI); |
| unsigned AS = LI->getPointerAddressSpace(); |
| Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); |
| return Modified; |
| } |
| return false; |
| } |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (TLI && splitMergedValStore(*SI, *DL, *TLI)) |
| return true; |
| SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); |
| if (TLI) { |
| unsigned AS = SI->getPointerAddressSpace(); |
| return optimizeMemoryInst(I, SI->getOperand(1), |
| SI->getOperand(0)->getType(), AS); |
| } |
| return false; |
| } |
| |
| if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| unsigned AS = RMW->getPointerAddressSpace(); |
| return optimizeMemoryInst(I, RMW->getPointerOperand(), |
| RMW->getType(), AS); |
| } |
| |
| if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { |
| unsigned AS = CmpX->getPointerAddressSpace(); |
| return optimizeMemoryInst(I, CmpX->getPointerOperand(), |
| CmpX->getCompareOperand()->getType(), AS); |
| } |
| |
| BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); |
| |
| if (BinOp && (BinOp->getOpcode() == Instruction::And) && |
| EnableAndCmpSinking && TLI) |
| return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); |
| |
| // TODO: Move this into the switch on opcode - it handles shifts already. |
| if (BinOp && (BinOp->getOpcode() == Instruction::AShr || |
| BinOp->getOpcode() == Instruction::LShr)) { |
| ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); |
| if (TLI && CI && TLI->hasExtractBitsInsn()) |
| if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) |
| return true; |
| } |
| |
| if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { |
| if (GEPI->hasAllZeroIndices()) { |
| /// The GEP operand must be a pointer, so must its result -> BitCast |
| Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), |
| GEPI->getName(), GEPI); |
| NC->setDebugLoc(GEPI->getDebugLoc()); |
| GEPI->replaceAllUsesWith(NC); |
| GEPI->eraseFromParent(); |
| ++NumGEPsElim; |
| optimizeInst(NC, ModifiedDT); |
| return true; |
| } |
| if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { |
| return true; |
| } |
| return false; |
| } |
| |
| if (tryToSinkFreeOperands(I)) |
| return true; |
| |
| switch (I->getOpcode()) { |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| return optimizeShiftInst(cast<BinaryOperator>(I)); |
| case Instruction::Call: |
| return optimizeCallInst(cast<CallInst>(I), ModifiedDT); |
| case Instruction::Select: |
| return optimizeSelectInst(cast<SelectInst>(I)); |
| case Instruction::ShuffleVector: |
| return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); |
| case Instruction::Switch: |
| return optimizeSwitchInst(cast<SwitchInst>(I)); |
| case Instruction::ExtractElement: |
| return optimizeExtractElementInst(cast<ExtractElementInst>(I)); |
| } |
| |
| return false; |
| } |
| |
| /// Given an OR instruction, check to see if this is a bitreverse |
| /// idiom. If so, insert the new intrinsic and return true. |
| static bool makeBitReverse(Instruction &I, const DataLayout &DL, |
| const TargetLowering &TLI) { |
| if (!I.getType()->isIntegerTy() || |
| !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, |
| TLI.getValueType(DL, I.getType(), true))) |
| return false; |
| |
| SmallVector<Instruction*, 4> Insts; |
| if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) |
| return false; |
| Instruction *LastInst = Insts.back(); |
| I.replaceAllUsesWith(LastInst); |
| RecursivelyDeleteTriviallyDeadInstructions(&I); |
| return true; |
| } |
| |
| // In this pass we look for GEP and cast instructions that are used |
| // across basic blocks and rewrite them to improve basic-block-at-a-time |
| // selection. |
| bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { |
| SunkAddrs.clear(); |
| bool MadeChange = false; |
| |
| CurInstIterator = BB.begin(); |
| while (CurInstIterator != BB.end()) { |
| MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); |
| if (ModifiedDT) |
| return true; |
| } |
| |
| bool MadeBitReverse = true; |
| while (TLI && MadeBitReverse) { |
| MadeBitReverse = false; |
| for (auto &I : reverse(BB)) { |
| if (makeBitReverse(I, *DL, *TLI)) { |
| MadeBitReverse = MadeChange = true; |
| break; |
| } |
| } |
| } |
| MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); |
| |
| return MadeChange; |
| } |
| |
| // Some CGP optimizations may move or alter what's computed in a block. Check |
| // whether a dbg.value intrinsic could be pointed at a more appropriate operand. |
| bool CodeGenPrepare::fixupDbgValue(Instruction *I) { |
| assert(isa<DbgValueInst>(I)); |
| DbgValueInst &DVI = *cast<DbgValueInst>(I); |
| |
| // Does this dbg.value refer to a sunk address calculation? |
| Value *Location = DVI.getVariableLocation(); |
| WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; |
| Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; |
| if (SunkAddr) { |
| // Point dbg.value at locally computed address, which should give the best |
| // opportunity to be accurately lowered. This update may change the type of |
| // pointer being referred to; however this makes no difference to debugging |
| // information, and we can't generate bitcasts that may affect codegen. |
| DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), |
| ValueAsMetadata::get(SunkAddr))); |
| return true; |
| } |
| return false; |
| } |
| |
| // A llvm.dbg.value may be using a value before its definition, due to |
| // optimizations in this pass and others. Scan for such dbg.values, and rescue |
| // them by moving the dbg.value to immediately after the value definition. |
| // FIXME: Ideally this should never be necessary, and this has the potential |
| // to re-order dbg.value intrinsics. |
| bool CodeGenPrepare::placeDbgValues(Function &F) { |
| bool MadeChange = false; |
| DominatorTree DT(F); |
| |
| for (BasicBlock &BB : F) { |
| for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { |
| Instruction *Insn = &*BI++; |
| DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); |
| if (!DVI) |
| continue; |
| |
| Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); |
| |
| if (!VI || VI->isTerminator()) |
| continue; |
| |
| // If VI is a phi in a block with an EHPad terminator, we can't insert |
| // after it. |
| if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) |
| continue; |
| |
| // If the defining instruction dominates the dbg.value, we do not need |
| // to move the dbg.value. |
| if (DT.dominates(VI, DVI)) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" |
| << *DVI << ' ' << *VI); |
| DVI->removeFromParent(); |
| if (isa<PHINode>(VI)) |
| DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); |
| else |
| DVI->insertAfter(VI); |
| MadeChange = true; |
| ++NumDbgValueMoved; |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// Scale down both weights to fit into uint32_t. |
| static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { |
| uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; |
| uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; |
| NewTrue = NewTrue / Scale; |
| NewFalse = NewFalse / Scale; |
| } |
| |
| /// Some targets prefer to split a conditional branch like: |
| /// \code |
| /// %0 = icmp ne i32 %a, 0 |
| /// %1 = icmp ne i32 %b, 0 |
| /// %or.cond = or i1 %0, %1 |
| /// br i1 %or.cond, label %TrueBB, label %FalseBB |
| /// \endcode |
| /// into multiple branch instructions like: |
| /// \code |
| /// bb1: |
| /// %0 = icmp ne i32 %a, 0 |
| /// br i1 %0, label %TrueBB, label %bb2 |
| /// bb2: |
| /// %1 = icmp ne i32 %b, 0 |
| /// br i1 %1, label %TrueBB, label %FalseBB |
| /// \endcode |
| /// This usually allows instruction selection to do even further optimizations |
| /// and combine the compare with the branch instruction. Currently this is |
| /// applied for targets which have "cheap" jump instructions. |
| /// |
| /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. |
| /// |
| bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { |
| if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) |
| return false; |
| |
| bool MadeChange = false; |
| for (auto &BB : F) { |
| // Does this BB end with the following? |
| // %cond1 = icmp|fcmp|binary instruction ... |
| // %cond2 = icmp|fcmp|binary instruction ... |
| // %cond.or = or|and i1 %cond1, cond2 |
| // br i1 %cond.or label %dest1, label %dest2" |
| BinaryOperator *LogicOp; |
| BasicBlock *TBB, *FBB; |
| if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) |
| continue; |
| |
| auto *Br1 = cast<BranchInst>(BB.getTerminator()); |
| if (Br1->getMetadata(LLVMContext::MD_unpredictable)) |
| continue; |
| |
| // The merging of mostly empty BB can cause a degenerate branch. |
| if (TBB == FBB) |
| continue; |
| |
| unsigned Opc; |
| Value *Cond1, *Cond2; |
| if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), |
| m_OneUse(m_Value(Cond2))))) |
| Opc = Instruction::And; |
| else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), |
| m_OneUse(m_Value(Cond2))))) |
| Opc = Instruction::Or; |
| else |
| continue; |
| |
| if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || |
| !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); |
| |
| // Create a new BB. |
| auto TmpBB = |
| BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", |
| BB.getParent(), BB.getNextNode()); |
| |
| // Update original basic block by using the first condition directly by the |
| // branch instruction and removing the no longer needed and/or instruction. |
| Br1->setCondition(Cond1); |
| LogicOp->eraseFromParent(); |
| |
| // Depending on the condition we have to either replace the true or the |
| // false successor of the original branch instruction. |
| if (Opc == Instruction::And) |
| Br1->setSuccessor(0, TmpBB); |
| else |
| Br1->setSuccessor(1, TmpBB); |
| |
| // Fill in the new basic block. |
| auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); |
| if (auto *I = dyn_cast<Instruction>(Cond2)) { |
| I->removeFromParent(); |
| I->insertBefore(Br2); |
| } |
| |
| // Update PHI nodes in both successors. The original BB needs to be |
| // replaced in one successor's PHI nodes, because the branch comes now from |
| // the newly generated BB (NewBB). In the other successor we need to add one |
| // incoming edge to the PHI nodes, because both branch instructions target |
| // now the same successor. Depending on the original branch condition |
| // (and/or) we have to swap the successors (TrueDest, FalseDest), so that |
| // we perform the correct update for the PHI nodes. |
| // This doesn't change the successor order of the just created branch |
| // instruction (or any other instruction). |
| if (Opc == Instruction::Or) |
| std::swap(TBB, FBB); |
| |
| // Replace the old BB with the new BB. |
| TBB->replacePhiUsesWith(&BB, TmpBB); |
| |
| // Add another incoming edge form the new BB. |
| for (PHINode &PN : FBB->phis()) { |
| auto *Val = PN.getIncomingValueForBlock(&BB); |
| PN.addIncoming(Val, TmpBB); |
| } |
| |
| // Update the branch weights (from SelectionDAGBuilder:: |
| // FindMergedConditions). |
| if (Opc == Instruction::Or) { |
| // Codegen X | Y as: |
| // BB1: |
| // jmp_if_X TBB |
| // jmp TmpBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| |
| // We have flexibility in setting Prob for BB1 and Prob for NewBB. |
| // The requirement is that |
| // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) |
| // = TrueProb for original BB. |
| // Assuming the original weights are A and B, one choice is to set BB1's |
| // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice |
| // assumes that |
| // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. |
| // Another choice is to assume TrueProb for BB1 equals to TrueProb for |
| // TmpBB, but the math is more complicated. |
| uint64_t TrueWeight, FalseWeight; |
| if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { |
| uint64_t NewTrueWeight = TrueWeight; |
| uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; |
| scaleWeights(NewTrueWeight, NewFalseWeight); |
| Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) |
| .createBranchWeights(TrueWeight, FalseWeight)); |
| |
| NewTrueWeight = TrueWeight; |
| NewFalseWeight = 2 * FalseWeight; |
| scaleWeights(NewTrueWeight, NewFalseWeight); |
| Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) |
| .createBranchWeights(TrueWeight, FalseWeight)); |
| } |
| } else { |
| // Codegen X & Y as: |
| // BB1: |
| // jmp_if_X TmpBB |
| // jmp FBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| // This requires creation of TmpBB after CurBB. |
| |
| // We have flexibility in setting Prob for BB1 and Prob for TmpBB. |
| // The requirement is that |
| // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) |
| // = FalseProb for original BB. |
| // Assuming the original weights are A and B, one choice is to set BB1's |
| // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice |
| // assumes that |
| // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. |
| uint64_t TrueWeight, FalseWeight; |
| if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { |
| uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; |
| uint64_t NewFalseWeight = FalseWeight; |
| scaleWeights(NewTrueWeight, NewFalseWeight); |
| Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) |
| .createBranchWeights(TrueWeight, FalseWeight)); |
| |
| NewTrueWeight = 2 * TrueWeight; |
| NewFalseWeight = FalseWeight; |
| scaleWeights(NewTrueWeight, NewFalseWeight); |
| Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) |
| .createBranchWeights(TrueWeight, FalseWeight)); |
| } |
| } |
| |
| ModifiedDT = true; |
| MadeChange = true; |
| |
| LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); |
| TmpBB->dump()); |
| } |
| return MadeChange; |
| } |