| //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===// | 
 | // | 
 | //                        The Subzero Code Generator | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// \file | 
 | /// \brief Declares the Operand class and its target-independent subclasses. | 
 | /// | 
 | /// The main classes are Variable, which represents an LLVM variable that is | 
 | /// either register- or stack-allocated, and the Constant hierarchy, which | 
 | /// represents integer, floating-point, and/or symbolic constants. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef SUBZERO_SRC_ICEOPERAND_H | 
 | #define SUBZERO_SRC_ICEOPERAND_H | 
 |  | 
 | #include "IceCfg.h" | 
 | #include "IceDefs.h" | 
 | #include "IceGlobalContext.h" | 
 | #include "IceStringPool.h" | 
 | #include "IceTypes.h" | 
 |  | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/Format.h" | 
 |  | 
 | #include <limits> | 
 | #include <type_traits> | 
 |  | 
 | namespace Ice { | 
 |  | 
 | class Operand { | 
 |   Operand() = delete; | 
 |   Operand(const Operand &) = delete; | 
 |   Operand &operator=(const Operand &) = delete; | 
 |  | 
 | public: | 
 |   static constexpr size_t MaxTargetKinds = 10; | 
 |   enum OperandKind { | 
 |     kConst_Base, | 
 |     kConstInteger32, | 
 |     kConstInteger64, | 
 |     kConstFloat, | 
 |     kConstDouble, | 
 |     kConstRelocatable, | 
 |     kConstUndef, | 
 |     kConst_Target, // leave space for target-specific constant kinds | 
 |     kConst_Max = kConst_Target + MaxTargetKinds, | 
 |     kVariable, | 
 |     kVariable64On32, | 
 |     kVariableVecOn32, | 
 |     kVariableBoolean, | 
 |     kVariable_Target, // leave space for target-specific variable kinds | 
 |     kVariable_Max = kVariable_Target + MaxTargetKinds, | 
 |     // Target-specific operand classes use kTarget as the starting point for | 
 |     // their Kind enum space. Note that the value-spaces are shared across | 
 |     // targets. To avoid confusion over the definition of shared values, an | 
 |     // object specific to one target should never be passed to a different | 
 |     // target. | 
 |     kTarget, | 
 |     kTarget_Max = std::numeric_limits<uint8_t>::max(), | 
 |   }; | 
 |   static_assert(kTarget <= kTarget_Max, "Must not be above max."); | 
 |   OperandKind getKind() const { return Kind; } | 
 |   Type getType() const { return Ty; } | 
 |  | 
 |   /// Every Operand keeps an array of the Variables referenced in the operand. | 
 |   /// This is so that the liveness operations can get quick access to the | 
 |   /// variables of interest, without having to dig so far into the operand. | 
 |   SizeT getNumVars() const { return NumVars; } | 
 |   Variable *getVar(SizeT I) const { | 
 |     assert(I < getNumVars()); | 
 |     return Vars[I]; | 
 |   } | 
 |   virtual void emit(const Cfg *Func) const = 0; | 
 |  | 
 |   /// \name Dumping functions. | 
 |   /// @{ | 
 |  | 
 |   /// The dump(Func,Str) implementation must be sure to handle the situation | 
 |   /// where Func==nullptr. | 
 |   virtual void dump(const Cfg *Func, Ostream &Str) const = 0; | 
 |   void dump(const Cfg *Func) const { | 
 |     if (!BuildDefs::dump()) | 
 |       return; | 
 |     assert(Func); | 
 |     dump(Func, Func->getContext()->getStrDump()); | 
 |   } | 
 |   void dump(Ostream &Str) const { | 
 |     if (BuildDefs::dump()) | 
 |       dump(nullptr, Str); | 
 |   } | 
 |   /// @} | 
 |  | 
 |   virtual ~Operand() = default; | 
 |  | 
 |   virtual Variable *asBoolean() { return nullptr; } | 
 |  | 
 |   virtual SizeT hashValue() const { | 
 |     llvm::report_fatal_error("Tried to hash unsupported operand type : " + | 
 |                              std::to_string(Kind)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   inline void *getExternalData() const { return externalData; } | 
 |   inline void setExternalData(void *data) { externalData = data; } | 
 |  | 
 | protected: | 
 |   Operand(OperandKind Kind, Type Ty) : Ty(Ty), Kind(Kind) { | 
 |     // It is undefined behavior to have a larger value in the enum | 
 |     assert(Kind <= kTarget_Max); | 
 |   } | 
 |  | 
 |   const Type Ty; | 
 |   const OperandKind Kind; | 
 |   /// Vars and NumVars are initialized by the derived class. | 
 |   SizeT NumVars = 0; | 
 |   Variable **Vars = nullptr; | 
 |  | 
 |   /// External data can be set by an optimizer to compute and retain any | 
 |   /// information related to the current operand. All the memory used to | 
 |   /// store this information must be managed by the optimizer. | 
 |   void *externalData = nullptr; | 
 | }; | 
 |  | 
 | template <class StreamType> | 
 | inline StreamType &operator<<(StreamType &Str, const Operand &Op) { | 
 |   Op.dump(Str); | 
 |   return Str; | 
 | } | 
 |  | 
 | /// Constant is the abstract base class for constants. All constants are | 
 | /// allocated from a global arena and are pooled. | 
 | class Constant : public Operand { | 
 |   Constant() = delete; | 
 |   Constant(const Constant &) = delete; | 
 |   Constant &operator=(const Constant &) = delete; | 
 |  | 
 | public: | 
 |   // Declare the lookup counter to take minimal space in a non-DUMP build. | 
 |   using CounterType = | 
 |       std::conditional<BuildDefs::dump(), uint64_t, uint8_t>::type; | 
 |   void emit(const Cfg *Func) const override { emit(Func->getTarget()); } | 
 |   virtual void emit(TargetLowering *Target) const = 0; | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     OperandKind Kind = Operand->getKind(); | 
 |     return Kind >= kConst_Base && Kind <= kConst_Max; | 
 |   } | 
 |  | 
 |   const GlobalString getLabelName() const { return LabelName; } | 
 |  | 
 |   bool getShouldBePooled() const { return ShouldBePooled; } | 
 |  | 
 |   // This should be thread-safe because the constant pool lock is acquired | 
 |   // before the method is invoked. | 
 |   void updateLookupCount() { | 
 |     if (!BuildDefs::dump()) | 
 |       return; | 
 |     ++LookupCount; | 
 |   } | 
 |   CounterType getLookupCount() const { return LookupCount; } | 
 |   SizeT hashValue() const override { return 0; } | 
 |  | 
 | protected: | 
 |   Constant(OperandKind Kind, Type Ty) : Operand(Kind, Ty) { | 
 |     Vars = nullptr; | 
 |     NumVars = 0; | 
 |   } | 
 |   /// Set the ShouldBePooled field to the proper value after the object is fully | 
 |   /// initialized. | 
 |   void initShouldBePooled(); | 
 |   GlobalString LabelName; | 
 |   /// Whether we should pool this constant. Usually Float/Double and pooled | 
 |   /// Integers should be flagged true.  Ideally this field would be const, but | 
 |   /// it needs to be initialized only after the subclass is fully constructed. | 
 |   bool ShouldBePooled = false; | 
 |   /// Note: If ShouldBePooled is ever removed from the base class, we will want | 
 |   /// to completely disable LookupCount in a non-DUMP build to save space. | 
 |   CounterType LookupCount = 0; | 
 | }; | 
 |  | 
 | /// ConstantPrimitive<> wraps a primitive type. | 
 | template <typename T, Operand::OperandKind K> | 
 | class ConstantPrimitive : public Constant { | 
 |   ConstantPrimitive() = delete; | 
 |   ConstantPrimitive(const ConstantPrimitive &) = delete; | 
 |   ConstantPrimitive &operator=(const ConstantPrimitive &) = delete; | 
 |  | 
 | public: | 
 |   using PrimType = T; | 
 |  | 
 |   static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty, | 
 |                                    PrimType Value) { | 
 |     auto *Const = | 
 |         new (Ctx->allocate<ConstantPrimitive>()) ConstantPrimitive(Ty, Value); | 
 |     Const->initShouldBePooled(); | 
 |     if (Const->getShouldBePooled()) | 
 |       Const->initName(Ctx); | 
 |     return Const; | 
 |   } | 
 |   PrimType getValue() const { return Value; } | 
 |   using Constant::emit; | 
 |   void emit(TargetLowering *Target) const final; | 
 |   using Constant::dump; | 
 |   void dump(const Cfg *, Ostream &Str) const override { | 
 |     if (BuildDefs::dump()) | 
 |       Str << getValue(); | 
 |   } | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     return Operand->getKind() == K; | 
 |   } | 
 |  | 
 |   SizeT hashValue() const override { return std::hash<PrimType>()(Value); } | 
 |  | 
 | private: | 
 |   ConstantPrimitive(Type Ty, PrimType Value) : Constant(K, Ty), Value(Value) {} | 
 |  | 
 |   void initName(GlobalContext *Ctx) { | 
 |     std::string Buffer; | 
 |     llvm::raw_string_ostream Str(Buffer); | 
 |     constexpr bool IsCompact = !BuildDefs::dump(); | 
 |     if (IsCompact) { | 
 |       switch (getType()) { | 
 |       case IceType_f32: | 
 |         Str << "$F"; | 
 |         break; | 
 |       case IceType_f64: | 
 |         Str << "$D"; | 
 |         break; | 
 |       default: | 
 |         // For constant pooling diversification | 
 |         Str << ".L$" << getType() << "$"; | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       Str << ".L$" << getType() << "$"; | 
 |     } | 
 |     // Print hex characters byte by byte, starting from the most significant | 
 |     // byte.  NOTE: This ordering assumes Subzero runs on a little-endian | 
 |     // platform.  That means the possibility of different label names depending | 
 |     // on the endian-ness of the platform where Subzero runs. | 
 |     for (unsigned i = 0; i < sizeof(Value); ++i) { | 
 |       constexpr unsigned HexWidthChars = 2; | 
 |       unsigned Offset = sizeof(Value) - 1 - i; | 
 |       Str << llvm::format_hex_no_prefix( | 
 |           *(Offset + (const unsigned char *)&Value), HexWidthChars); | 
 |     } | 
 |     // For a floating-point value in DecorateAsm mode, also append the value in | 
 |     // human-readable sprintf form, changing '+' to 'p' and '-' to 'm' to | 
 |     // maintain valid asm labels. | 
 |     if (BuildDefs::dump() && std::is_floating_point<PrimType>::value && | 
 |         getFlags().getDecorateAsm()) { | 
 |       char Buf[30]; | 
 |       snprintf(Buf, llvm::array_lengthof(Buf), "$%g", (double)Value); | 
 |       for (unsigned i = 0; i < llvm::array_lengthof(Buf) && Buf[i]; ++i) { | 
 |         if (Buf[i] == '-') | 
 |           Buf[i] = 'm'; | 
 |         else if (Buf[i] == '+') | 
 |           Buf[i] = 'p'; | 
 |       } | 
 |       Str << Buf; | 
 |     } | 
 |     LabelName = GlobalString::createWithString(Ctx, Str.str()); | 
 |   } | 
 |  | 
 |   const PrimType Value; | 
 | }; | 
 |  | 
 | using ConstantInteger32 = ConstantPrimitive<int32_t, Operand::kConstInteger32>; | 
 | using ConstantInteger64 = ConstantPrimitive<int64_t, Operand::kConstInteger64>; | 
 | using ConstantFloat = ConstantPrimitive<float, Operand::kConstFloat>; | 
 | using ConstantDouble = ConstantPrimitive<double, Operand::kConstDouble>; | 
 |  | 
 | template <> | 
 | inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const { | 
 |   if (!BuildDefs::dump()) | 
 |     return; | 
 |   if (getType() == IceType_i1) | 
 |     Str << (getValue() ? "true" : "false"); | 
 |   else | 
 |     Str << static_cast<int32_t>(getValue()); | 
 | } | 
 |  | 
 | template <> | 
 | inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const { | 
 |   if (!BuildDefs::dump()) | 
 |     return; | 
 |   assert(getType() == IceType_i64); | 
 |   Str << static_cast<int64_t>(getValue()); | 
 | } | 
 |  | 
 | /// RelocOffset allows symbolic references in ConstantRelocatables' offsets, | 
 | /// e.g., 8 + LabelOffset, where label offset is the location (code or data) | 
 | /// of a Label that is only determinable during ELF emission. | 
 | class RelocOffset final { | 
 |   RelocOffset(const RelocOffset &) = delete; | 
 |   RelocOffset &operator=(const RelocOffset &) = delete; | 
 |  | 
 | public: | 
 |   template <typename T> static RelocOffset *create(T *AllocOwner) { | 
 |     return new (AllocOwner->template allocate<RelocOffset>()) RelocOffset(); | 
 |   } | 
 |  | 
 |   static RelocOffset *create(GlobalContext *Ctx, RelocOffsetT Value) { | 
 |     return new (Ctx->allocate<RelocOffset>()) RelocOffset(Value); | 
 |   } | 
 |  | 
 |   void setSubtract(bool Value) { Subtract = Value; } | 
 |   bool hasOffset() const { return HasOffset; } | 
 |  | 
 |   RelocOffsetT getOffset() const { | 
 |     assert(HasOffset); | 
 |     return Offset; | 
 |   } | 
 |  | 
 |   void setOffset(const RelocOffsetT Value) { | 
 |     assert(!HasOffset); | 
 |     if (Subtract) { | 
 |       assert(Value != std::numeric_limits<RelocOffsetT>::lowest()); | 
 |       Offset = -Value; | 
 |     } else { | 
 |       Offset = Value; | 
 |     } | 
 |     HasOffset = true; | 
 |   } | 
 |  | 
 | private: | 
 |   RelocOffset() = default; | 
 |   explicit RelocOffset(RelocOffsetT Offset) { setOffset(Offset); } | 
 |  | 
 |   bool Subtract = false; | 
 |   bool HasOffset = false; | 
 |   RelocOffsetT Offset; | 
 | }; | 
 |  | 
 | /// RelocatableTuple bundles the parameters that are used to construct an | 
 | /// ConstantRelocatable. It is done this way so that ConstantRelocatable can fit | 
 | /// into the global constant pool template mechanism. | 
 | class RelocatableTuple { | 
 |   RelocatableTuple() = delete; | 
 |   RelocatableTuple &operator=(const RelocatableTuple &) = delete; | 
 |  | 
 | public: | 
 |   RelocatableTuple(const RelocOffsetT Offset, | 
 |                    const RelocOffsetArray &OffsetExpr, GlobalString Name) | 
 |       : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name) {} | 
 |  | 
 |   RelocatableTuple(const RelocOffsetT Offset, | 
 |                    const RelocOffsetArray &OffsetExpr, GlobalString Name, | 
 |                    const std::string &EmitString) | 
 |       : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name), | 
 |         EmitString(EmitString) {} | 
 |  | 
 |   RelocatableTuple(const RelocatableTuple &) = default; | 
 |  | 
 |   const RelocOffsetT Offset; | 
 |   const RelocOffsetArray OffsetExpr; | 
 |   const GlobalString Name; | 
 |   const std::string EmitString; | 
 | }; | 
 |  | 
 | bool operator==(const RelocatableTuple &A, const RelocatableTuple &B); | 
 |  | 
 | /// ConstantRelocatable represents a symbolic constant combined with a fixed | 
 | /// offset. | 
 | class ConstantRelocatable : public Constant { | 
 |   ConstantRelocatable() = delete; | 
 |   ConstantRelocatable(const ConstantRelocatable &) = delete; | 
 |   ConstantRelocatable &operator=(const ConstantRelocatable &) = delete; | 
 |  | 
 | public: | 
 |   template <typename T> | 
 |   static ConstantRelocatable *create(T *AllocOwner, Type Ty, | 
 |                                      const RelocatableTuple &Tuple) { | 
 |     return new (AllocOwner->template allocate<ConstantRelocatable>()) | 
 |         ConstantRelocatable(Ty, Tuple.Offset, Tuple.OffsetExpr, Tuple.Name, | 
 |                             Tuple.EmitString); | 
 |   } | 
 |  | 
 |   RelocOffsetT getOffset() const { | 
 |     RelocOffsetT Ret = Offset; | 
 |     for (const auto *const OffsetReloc : OffsetExpr) { | 
 |       Ret += OffsetReloc->getOffset(); | 
 |     } | 
 |     return Ret; | 
 |   } | 
 |  | 
 |   const std::string &getEmitString() const { return EmitString; } | 
 |  | 
 |   GlobalString getName() const { return Name; } | 
 |   using Constant::emit; | 
 |   void emit(TargetLowering *Target) const final; | 
 |   void emitWithoutPrefix(const TargetLowering *Target, | 
 |                          const char *Suffix = "") const; | 
 |   using Constant::dump; | 
 |   void dump(const Cfg *Func, Ostream &Str) const override; | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     OperandKind Kind = Operand->getKind(); | 
 |     return Kind == kConstRelocatable; | 
 |   } | 
 |  | 
 | private: | 
 |   ConstantRelocatable(Type Ty, const RelocOffsetT Offset, | 
 |                       const RelocOffsetArray &OffsetExpr, GlobalString Name, | 
 |                       const std::string &EmitString) | 
 |       : Constant(kConstRelocatable, Ty), Offset(Offset), OffsetExpr(OffsetExpr), | 
 |         Name(Name), EmitString(EmitString) {} | 
 |  | 
 |   const RelocOffsetT Offset;         /// fixed, known offset to add | 
 |   const RelocOffsetArray OffsetExpr; /// fixed, unknown offset to add | 
 |   const GlobalString Name;           /// optional for debug/dump | 
 |   const std::string EmitString;      /// optional for textual emission | 
 | }; | 
 |  | 
 | /// ConstantUndef represents an unspecified bit pattern. Although it is legal to | 
 | /// lower ConstantUndef to any value, backends should try to make code | 
 | /// generation deterministic by lowering ConstantUndefs to 0. | 
 | class ConstantUndef : public Constant { | 
 |   ConstantUndef() = delete; | 
 |   ConstantUndef(const ConstantUndef &) = delete; | 
 |   ConstantUndef &operator=(const ConstantUndef &) = delete; | 
 |  | 
 | public: | 
 |   static ConstantUndef *create(GlobalContext *Ctx, Type Ty) { | 
 |     return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty); | 
 |   } | 
 |  | 
 |   using Constant::emit; | 
 |   void emit(TargetLowering *Target) const final; | 
 |   using Constant::dump; | 
 |   void dump(const Cfg *, Ostream &Str) const override { | 
 |     if (BuildDefs::dump()) | 
 |       Str << "undef"; | 
 |   } | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     return Operand->getKind() == kConstUndef; | 
 |   } | 
 |  | 
 | private: | 
 |   ConstantUndef(Type Ty) : Constant(kConstUndef, Ty) {} | 
 | }; | 
 |  | 
 | /// RegNumT is for holding target-specific register numbers, plus the sentinel | 
 | /// value if no register is assigned. Its public ctor allows direct use of enum | 
 | /// values, such as RegNumT(Reg_eax), but not things like RegNumT(Reg_eax+1). | 
 | /// This is to try to prevent inappropriate assumptions about enum ordering. If | 
 | /// needed, the fromInt() method can be used, such as when a RegNumT is based | 
 | /// on a bitvector index. | 
 | class RegNumT { | 
 | public: | 
 |   using BaseType = uint32_t; | 
 |   RegNumT() = default; | 
 |   RegNumT(const RegNumT &) = default; | 
 |   template <typename AnyEnum> | 
 |   RegNumT(AnyEnum Value, | 
 |           typename std::enable_if<std::is_enum<AnyEnum>::value, int>::type = 0) | 
 |       : Value(Value) { | 
 |     validate(Value); | 
 |   } | 
 |   RegNumT &operator=(const RegNumT &) = default; | 
 |   operator unsigned() const { return Value; } | 
 |   /// Asserts that the register is valid, i.e. not NoRegisterValue.  Note that | 
 |   /// the ctor already does the target-specific limit check. | 
 |   void assertIsValid() const { assert(Value != NoRegisterValue); } | 
 |   static RegNumT fromInt(BaseType Value) { return RegNumT(Value); } | 
 |   /// Marks cases that inappropriately add/subtract RegNumT values, and | 
 |   /// therefore need to be fixed because they make assumptions about register | 
 |   /// enum value ordering.  TODO(stichnot): Remove fixme() as soon as all | 
 |   /// current uses are fixed/removed. | 
 |   static RegNumT fixme(BaseType Value) { return RegNumT(Value); } | 
 |   /// The target's staticInit() method should call setLimit() to register the | 
 |   /// upper bound of allowable values. | 
 |   static void setLimit(BaseType Value) { | 
 |     // Make sure it's only called once. | 
 |     assert(Limit == 0); | 
 |     assert(Value != 0); | 
 |     Limit = Value; | 
 |   } | 
 |   // Define NoRegisterValue as an enum value so that it can be used as an | 
 |   // argument for the public ctor if desired. | 
 |   enum : BaseType { NoRegisterValue = std::numeric_limits<BaseType>::max() }; | 
 |  | 
 |   bool hasValue() const { return Value != NoRegisterValue; } | 
 |   bool hasNoValue() const { return !hasValue(); } | 
 |  | 
 | private: | 
 |   BaseType Value = NoRegisterValue; | 
 |   static BaseType Limit; | 
 |   /// Private ctor called only by fromInt() and fixme(). | 
 |   RegNumT(BaseType Value) : Value(Value) { validate(Value); } | 
 |   /// The ctor calls this to validate against the target-supplied limit. | 
 |   static void validate(BaseType Value) { | 
 |     (void)Value; | 
 |     assert(Value == NoRegisterValue || Value < Limit); | 
 |   } | 
 |   /// Disallow operators that inappropriately make assumptions about register | 
 |   /// enum value ordering. | 
 |   bool operator<(const RegNumT &) = delete; | 
 |   bool operator<=(const RegNumT &) = delete; | 
 |   bool operator>(const RegNumT &) = delete; | 
 |   bool operator>=(const RegNumT &) = delete; | 
 | }; | 
 |  | 
 | /// RegNumBVIter wraps SmallBitVector so that instead of this pattern: | 
 | /// | 
 | ///   for (int i = V.find_first(); i != -1; i = V.find_next(i)) { | 
 | ///     RegNumT RegNum = RegNumT::fromInt(i); | 
 | ///     ... | 
 | ///   } | 
 | /// | 
 | /// this cleaner pattern can be used: | 
 | /// | 
 | ///   for (RegNumT RegNum : RegNumBVIter(V)) { | 
 | ///     ... | 
 | ///   } | 
 | template <class B> class RegNumBVIterImpl { | 
 |   using T = B; | 
 |   static constexpr int Sentinel = -1; | 
 |   RegNumBVIterImpl() = delete; | 
 |  | 
 | public: | 
 |   class Iterator { | 
 |     Iterator() = delete; | 
 |     Iterator &operator=(const Iterator &) = delete; | 
 |  | 
 |   public: | 
 |     explicit Iterator(const T &V) : V(V), Current(V.find_first()) {} | 
 |     Iterator(const T &V, int Value) : V(V), Current(Value) {} | 
 |     Iterator(const Iterator &) = default; | 
 |     RegNumT operator*() { | 
 |       assert(Current != Sentinel); | 
 |       return RegNumT::fromInt(Current); | 
 |     } | 
 |     Iterator &operator++() { | 
 |       assert(Current != Sentinel); | 
 |       Current = V.find_next(Current); | 
 |       return *this; | 
 |     } | 
 |     bool operator!=(Iterator &Other) { return Current != Other.Current; } | 
 |  | 
 |   private: | 
 |     const T &V; | 
 |     int Current; | 
 |   }; | 
 |  | 
 |   RegNumBVIterImpl(const RegNumBVIterImpl &) = default; | 
 |   RegNumBVIterImpl &operator=(const RegNumBVIterImpl &) = delete; | 
 |   explicit RegNumBVIterImpl(const T &V) : V(V) {} | 
 |   Iterator begin() { return Iterator(V); } | 
 |   Iterator end() { return Iterator(V, Sentinel); } | 
 |  | 
 | private: | 
 |   const T &V; | 
 | }; | 
 |  | 
 | template <class B> RegNumBVIterImpl<B> RegNumBVIter(const B &BV) { | 
 |   return RegNumBVIterImpl<B>(BV); | 
 | } | 
 |  | 
 | /// RegWeight is a wrapper for a uint32_t weight value, with a special value | 
 | /// that represents infinite weight, and an addWeight() method that ensures that | 
 | /// W+infinity=infinity. | 
 | class RegWeight { | 
 | public: | 
 |   using BaseType = uint32_t; | 
 |   RegWeight() = default; | 
 |   explicit RegWeight(BaseType Weight) : Weight(Weight) {} | 
 |   RegWeight(const RegWeight &) = default; | 
 |   RegWeight &operator=(const RegWeight &) = default; | 
 |   constexpr static BaseType Inf = ~0; /// Force regalloc to give a register | 
 |   constexpr static BaseType Zero = 0; /// Force regalloc NOT to give a register | 
 |   constexpr static BaseType Max = Inf - 1; /// Max natural weight. | 
 |   void addWeight(BaseType Delta) { | 
 |     if (Delta == Inf) | 
 |       Weight = Inf; | 
 |     else if (Weight != Inf) | 
 |       if (Utils::add_overflow(Weight, Delta, &Weight) || Weight == Inf) | 
 |         Weight = Max; | 
 |   } | 
 |   void addWeight(const RegWeight &Other) { addWeight(Other.Weight); } | 
 |   void setWeight(BaseType Val) { Weight = Val; } | 
 |   BaseType getWeight() const { return Weight; } | 
 |  | 
 | private: | 
 |   BaseType Weight = 0; | 
 | }; | 
 | Ostream &operator<<(Ostream &Str, const RegWeight &W); | 
 | bool operator<(const RegWeight &A, const RegWeight &B); | 
 | bool operator<=(const RegWeight &A, const RegWeight &B); | 
 | bool operator==(const RegWeight &A, const RegWeight &B); | 
 |  | 
 | /// LiveRange is a set of instruction number intervals representing a variable's | 
 | /// live range. Generally there is one interval per basic block where the | 
 | /// variable is live, but adjacent intervals get coalesced into a single | 
 | /// interval. | 
 | class LiveRange { | 
 | public: | 
 |   using RangeElementType = std::pair<InstNumberT, InstNumberT>; | 
 |   /// RangeType is arena-allocated from the Cfg's allocator. | 
 |   using RangeType = CfgVector<RangeElementType>; | 
 |   LiveRange() = default; | 
 |   /// Special constructor for building a kill set. The advantage is that we can | 
 |   /// reserve the right amount of space in advance. | 
 |   explicit LiveRange(const CfgVector<InstNumberT> &Kills) { | 
 |     Range.reserve(Kills.size()); | 
 |     for (InstNumberT I : Kills) | 
 |       addSegment(I, I); | 
 |   } | 
 |   LiveRange(const LiveRange &) = default; | 
 |   LiveRange &operator=(const LiveRange &) = default; | 
 |  | 
 |   void reset() { | 
 |     Range.clear(); | 
 |     untrim(); | 
 |   } | 
 |   void addSegment(InstNumberT Start, InstNumberT End, CfgNode *Node = nullptr); | 
 |   void addSegment(RangeElementType Segment, CfgNode *Node = nullptr) { | 
 |     addSegment(Segment.first, Segment.second, Node); | 
 |   } | 
 |  | 
 |   bool endsBefore(const LiveRange &Other) const; | 
 |   bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const; | 
 |   bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const; | 
 |   bool containsValue(InstNumberT Value, bool IsDest) const; | 
 |   bool isEmpty() const { return Range.empty(); } | 
 |   InstNumberT getStart() const { | 
 |     return Range.empty() ? -1 : Range.begin()->first; | 
 |   } | 
 |   InstNumberT getEnd() const { | 
 |     return Range.empty() ? -1 : Range.rbegin()->second; | 
 |   } | 
 |  | 
 |   void untrim() { TrimmedBegin = Range.begin(); } | 
 |   void trim(InstNumberT Lower); | 
 |  | 
 |   void dump(Ostream &Str) const; | 
 |  | 
 |   SizeT getNumSegments() const { return Range.size(); } | 
 |  | 
 |   const RangeType &getSegments() const { return Range; } | 
 |   CfgNode *getNodeForSegment(InstNumberT Begin) { | 
 |     auto Iter = NodeMap.find(Begin); | 
 |     assert(Iter != NodeMap.end()); | 
 |     return Iter->second; | 
 |   } | 
 |  | 
 | private: | 
 |   RangeType Range; | 
 |   CfgUnorderedMap<InstNumberT, CfgNode *> NodeMap; | 
 |   /// TrimmedBegin is an optimization for the overlaps() computation. Since the | 
 |   /// linear-scan algorithm always calls it as overlaps(Cur) and Cur advances | 
 |   /// monotonically according to live range start, we can optimize overlaps() by | 
 |   /// ignoring all segments that end before the start of Cur's range. The | 
 |   /// linear-scan code enables this by calling trim() on the ranges of interest | 
 |   /// as Cur advances. Note that linear-scan also has to initialize TrimmedBegin | 
 |   /// at the beginning by calling untrim(). | 
 |   RangeType::const_iterator TrimmedBegin; | 
 | }; | 
 |  | 
 | Ostream &operator<<(Ostream &Str, const LiveRange &L); | 
 |  | 
 | /// Variable represents an operand that is register-allocated or | 
 | /// stack-allocated. If it is register-allocated, it will ultimately have a | 
 | /// valid RegNum field. | 
 | class Variable : public Operand { | 
 |   Variable() = delete; | 
 |   Variable(const Variable &) = delete; | 
 |   Variable &operator=(const Variable &) = delete; | 
 |  | 
 |   enum RegRequirement : uint8_t { | 
 |     RR_MayHaveRegister, | 
 |     RR_MustHaveRegister, | 
 |     RR_MustNotHaveRegister, | 
 |   }; | 
 |  | 
 | public: | 
 |   static Variable *create(Cfg *Func, Type Ty, SizeT Index) { | 
 |     return new (Func->allocate<Variable>()) | 
 |         Variable(Func, kVariable, Ty, Index); | 
 |   } | 
 |  | 
 |   SizeT getIndex() const { return Number; } | 
 |   std::string getName() const { | 
 |     if (Name.hasStdString()) | 
 |       return Name.toString(); | 
 |     return "__" + std::to_string(getIndex()); | 
 |   } | 
 |   virtual void setName(const Cfg *Func, const std::string &NewName) { | 
 |     if (NewName.empty()) | 
 |       return; | 
 |     Name = VariableString::createWithString(Func, NewName); | 
 |   } | 
 |  | 
 |   bool getIsArg() const { return IsArgument; } | 
 |   virtual void setIsArg(bool Val = true) { IsArgument = Val; } | 
 |   bool getIsImplicitArg() const { return IsImplicitArgument; } | 
 |   void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; } | 
 |  | 
 |   void setIgnoreLiveness() { IgnoreLiveness = true; } | 
 |   bool getIgnoreLiveness() const { | 
 |     return IgnoreLiveness || IsRematerializable; | 
 |   } | 
 |  | 
 |   /// Returns true if the variable either has a definite stack offset, or has | 
 |   /// the UndeterminedStackOffset such that it is guaranteed to have a definite | 
 |   /// stack offset at emission time. | 
 |   bool hasStackOffset() const { return StackOffset != InvalidStackOffset; } | 
 |   /// Returns true if the variable has a stack offset that is known at this | 
 |   /// time. | 
 |   bool hasKnownStackOffset() const { | 
 |     return StackOffset != InvalidStackOffset && | 
 |            StackOffset != UndeterminedStackOffset; | 
 |   } | 
 |   int32_t getStackOffset() const { | 
 |     assert(hasKnownStackOffset()); | 
 |     return StackOffset; | 
 |   } | 
 |   void setStackOffset(int32_t Offset) { StackOffset = Offset; } | 
 |   /// Set a "placeholder" stack offset before its actual offset has been | 
 |   /// determined. | 
 |   void setHasStackOffset() { | 
 |     if (!hasStackOffset()) | 
 |       StackOffset = UndeterminedStackOffset; | 
 |   } | 
 |   /// Returns the variable's stack offset in symbolic form, to improve | 
 |   /// readability in DecorateAsm mode. | 
 |   std::string getSymbolicStackOffset() const { | 
 |     if (!BuildDefs::dump()) | 
 |       return ""; | 
 |     return ".L$lv$" + getName(); | 
 |   } | 
 |  | 
 |   bool hasReg() const { return getRegNum().hasValue(); } | 
 |   RegNumT getRegNum() const { return RegNum; } | 
 |   void setRegNum(RegNumT NewRegNum) { | 
 |     // Regnum shouldn't be set more than once. | 
 |     assert(!hasReg() || RegNum == NewRegNum); | 
 |     RegNum = NewRegNum; | 
 |   } | 
 |   bool hasRegTmp() const { return getRegNumTmp().hasValue(); } | 
 |   RegNumT getRegNumTmp() const { return RegNumTmp; } | 
 |   void setRegNumTmp(RegNumT NewRegNum) { RegNumTmp = NewRegNum; } | 
 |  | 
 |   RegWeight getWeight(const Cfg *Func) const; | 
 |  | 
 |   void setMustHaveReg() { RegRequirement = RR_MustHaveRegister; } | 
 |   bool mustHaveReg() const { return RegRequirement == RR_MustHaveRegister; } | 
 |   void setMustNotHaveReg() { RegRequirement = RR_MustNotHaveRegister; } | 
 |   bool mustNotHaveReg() const { | 
 |     return RegRequirement == RR_MustNotHaveRegister; | 
 |   } | 
 |   bool mayHaveReg() const { return RegRequirement == RR_MayHaveRegister; } | 
 |   void setRematerializable(RegNumT NewRegNum, int32_t NewOffset) { | 
 |     IsRematerializable = true; | 
 |     setRegNum(NewRegNum); | 
 |     setStackOffset(NewOffset); | 
 |     setMustHaveReg(); | 
 |   } | 
 |   bool isRematerializable() const { return IsRematerializable; } | 
 |   int32_t getRematerializableOffset(const ::Ice::TargetLowering *Target); | 
 |  | 
 |   void setRegClass(uint8_t RC) { RegisterClass = static_cast<RegClass>(RC); } | 
 |   RegClass getRegClass() const { return RegisterClass; } | 
 |  | 
 |   LiveRange &getLiveRange() { return Live; } | 
 |   const LiveRange &getLiveRange() const { return Live; } | 
 |   void setLiveRange(const LiveRange &Range) { Live = Range; } | 
 |   void resetLiveRange() { Live.reset(); } | 
 |   void addLiveRange(InstNumberT Start, InstNumberT End, | 
 |                     CfgNode *Node = nullptr) { | 
 |     assert(!getIgnoreLiveness()); | 
 |     Live.addSegment(Start, End, Node); | 
 |   } | 
 |   void trimLiveRange(InstNumberT Start) { Live.trim(Start); } | 
 |   void untrimLiveRange() { Live.untrim(); } | 
 |   bool rangeEndsBefore(const Variable *Other) const { | 
 |     return Live.endsBefore(Other->Live); | 
 |   } | 
 |   bool rangeOverlaps(const Variable *Other) const { | 
 |     constexpr bool UseTrimmed = true; | 
 |     return Live.overlaps(Other->Live, UseTrimmed); | 
 |   } | 
 |   bool rangeOverlapsStart(const Variable *Other) const { | 
 |     constexpr bool UseTrimmed = true; | 
 |     return Live.overlapsInst(Other->Live.getStart(), UseTrimmed); | 
 |   } | 
 |  | 
 |   /// Creates a temporary copy of the variable with a different type. Used | 
 |   /// primarily for syntactic correctness of textual assembly emission. Note | 
 |   /// that only basic information is copied, in particular not IsArgument, | 
 |   /// IsImplicitArgument, IgnoreLiveness, RegNumTmp, Live, LoVar, HiVar, | 
 |   /// VarsReal. If NewRegNum.hasValue(), then that register assignment is made | 
 |   /// instead of copying the existing assignment. | 
 |   const Variable *asType(const Cfg *Func, Type Ty, RegNumT NewRegNum) const; | 
 |  | 
 |   void emit(const Cfg *Func) const override; | 
 |   using Operand::dump; | 
 |   void dump(const Cfg *Func, Ostream &Str) const override; | 
 |  | 
 |   /// Return reg num of base register, if different from stack/frame register. | 
 |   virtual RegNumT getBaseRegNum() const { return RegNumT(); } | 
 |  | 
 |   /// Access the LinkedTo field. | 
 |   void setLinkedTo(Variable *Var) { LinkedTo = Var; } | 
 |   Variable *getLinkedTo() const { return LinkedTo; } | 
 |   /// Follow the LinkedTo chain up to the furthest ancestor. | 
 |   Variable *getLinkedToRoot() const { | 
 |     Variable *Root = LinkedTo; | 
 |     if (Root == nullptr) | 
 |       return nullptr; | 
 |     while (Root->LinkedTo != nullptr) | 
 |       Root = Root->LinkedTo; | 
 |     return Root; | 
 |   } | 
 |   /// Follow the LinkedTo chain up to the furthest stack-allocated ancestor. | 
 |   /// This is only certain to be accurate after register allocation and stack | 
 |   /// slot assignment have completed. | 
 |   Variable *getLinkedToStackRoot() const { | 
 |     Variable *FurthestStackVar = nullptr; | 
 |     for (Variable *Root = LinkedTo; Root != nullptr; Root = Root->LinkedTo) { | 
 |       if (!Root->hasReg() && Root->hasStackOffset()) { | 
 |         FurthestStackVar = Root; | 
 |       } | 
 |     } | 
 |     return FurthestStackVar; | 
 |   } | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     OperandKind Kind = Operand->getKind(); | 
 |     return Kind >= kVariable && Kind <= kVariable_Max; | 
 |   } | 
 |  | 
 |   SizeT hashValue() const override { return std::hash<SizeT>()(getIndex()); } | 
 |  | 
 |   inline void *getExternalData() const { return externalData; } | 
 |   inline void setExternalData(void *data) { externalData = data; } | 
 |  | 
 | protected: | 
 |   Variable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
 |       : Operand(K, Ty), Number(Index), | 
 |         Name(VariableString::createWithoutString(Func)), | 
 |         RegisterClass(static_cast<RegClass>(Ty)) { | 
 |     Vars = VarsReal; | 
 |     Vars[0] = this; | 
 |     NumVars = 1; | 
 |   } | 
 |   /// Number is unique across all variables, and is used as a (bit)vector index | 
 |   /// for liveness analysis. | 
 |   const SizeT Number; | 
 |   VariableString Name; | 
 |   bool IsArgument = false; | 
 |   bool IsImplicitArgument = false; | 
 |   /// IgnoreLiveness means that the variable should be ignored when constructing | 
 |   /// and validating live ranges. This is usually reserved for the stack | 
 |   /// pointer and other physical registers specifically referenced by name. | 
 |   bool IgnoreLiveness = false; | 
 |   // If IsRematerializable, RegNum keeps track of which register (stack or frame | 
 |   // pointer), and StackOffset is the known offset from that register. | 
 |   bool IsRematerializable = false; | 
 |   RegRequirement RegRequirement = RR_MayHaveRegister; | 
 |   RegClass RegisterClass; | 
 |   /// RegNum is the allocated register, (as long as RegNum.hasValue() is true). | 
 |   RegNumT RegNum; | 
 |   /// RegNumTmp is the tentative assignment during register allocation. | 
 |   RegNumT RegNumTmp; | 
 |   static constexpr int32_t InvalidStackOffset = | 
 |       std::numeric_limits<int32_t>::min(); | 
 |   static constexpr int32_t UndeterminedStackOffset = | 
 |       1 + std::numeric_limits<int32_t>::min(); | 
 |   /// StackOffset is the canonical location on stack (only if | 
 |   /// RegNum.hasNoValue() || IsArgument). | 
 |   int32_t StackOffset = InvalidStackOffset; | 
 |   LiveRange Live; | 
 |   /// VarsReal (and Operand::Vars) are set up such that Vars[0] == this. | 
 |   Variable *VarsReal[1]; | 
 |   /// This Variable may be "linked" to another Variable, such that if neither | 
 |   /// Variable gets a register, they are guaranteed to share a stack location. | 
 |   Variable *LinkedTo = nullptr; | 
 |   /// External data can be set by an optimizer to compute and retain any | 
 |   /// information related to the current variable. All the memory used to | 
 |   /// store this information must be managed by the optimizer. | 
 |   void *externalData = nullptr; | 
 | }; | 
 |  | 
 | // Variable64On32 represents a 64-bit variable on a 32-bit architecture. In | 
 | // this situation the variable must be split into a low and a high word. | 
 | class Variable64On32 : public Variable { | 
 |   Variable64On32() = delete; | 
 |   Variable64On32(const Variable64On32 &) = delete; | 
 |   Variable64On32 &operator=(const Variable64On32 &) = delete; | 
 |  | 
 | public: | 
 |   static Variable64On32 *create(Cfg *Func, Type Ty, SizeT Index) { | 
 |     return new (Func->allocate<Variable64On32>()) | 
 |         Variable64On32(Func, kVariable64On32, Ty, Index); | 
 |   } | 
 |  | 
 |   void setName(const Cfg *Func, const std::string &NewName) override { | 
 |     Variable::setName(Func, NewName); | 
 |     if (LoVar && HiVar) { | 
 |       LoVar->setName(Func, getName() + "__lo"); | 
 |       HiVar->setName(Func, getName() + "__hi"); | 
 |     } | 
 |   } | 
 |  | 
 |   void setIsArg(bool Val = true) override { | 
 |     Variable::setIsArg(Val); | 
 |     if (LoVar && HiVar) { | 
 |       LoVar->setIsArg(Val); | 
 |       HiVar->setIsArg(Val); | 
 |     } | 
 |   } | 
 |  | 
 |   Variable *getLo() const { | 
 |     assert(LoVar != nullptr); | 
 |     return LoVar; | 
 |   } | 
 |   Variable *getHi() const { | 
 |     assert(HiVar != nullptr); | 
 |     return HiVar; | 
 |   } | 
 |  | 
 |   void initHiLo(Cfg *Func) { | 
 |     assert(LoVar == nullptr); | 
 |     assert(HiVar == nullptr); | 
 |     LoVar = Func->makeVariable(IceType_i32); | 
 |     HiVar = Func->makeVariable(IceType_i32); | 
 |     LoVar->setIsArg(getIsArg()); | 
 |     HiVar->setIsArg(getIsArg()); | 
 |     if (BuildDefs::dump()) { | 
 |       LoVar->setName(Func, getName() + "__lo"); | 
 |       HiVar->setName(Func, getName() + "__hi"); | 
 |     } | 
 |   } | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     OperandKind Kind = Operand->getKind(); | 
 |     return Kind == kVariable64On32; | 
 |   } | 
 |  | 
 | protected: | 
 |   Variable64On32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
 |       : Variable(Func, K, Ty, Index) { | 
 |     assert(typeWidthInBytes(Ty) == 8); | 
 |   } | 
 |  | 
 |   Variable *LoVar = nullptr; | 
 |   Variable *HiVar = nullptr; | 
 | }; | 
 |  | 
 | // VariableVecOn32 represents a 128-bit vector variable on a 32-bit | 
 | // architecture. In this case the variable must be split into 4 containers. | 
 | class VariableVecOn32 : public Variable { | 
 |   VariableVecOn32() = delete; | 
 |   VariableVecOn32(const VariableVecOn32 &) = delete; | 
 |   VariableVecOn32 &operator=(const VariableVecOn32 &) = delete; | 
 |  | 
 | public: | 
 |   static VariableVecOn32 *create(Cfg *Func, Type Ty, SizeT Index) { | 
 |     return new (Func->allocate<VariableVecOn32>()) | 
 |         VariableVecOn32(Func, kVariableVecOn32, Ty, Index); | 
 |   } | 
 |  | 
 |   void setName(const Cfg *Func, const std::string &NewName) override { | 
 |     Variable::setName(Func, NewName); | 
 |     if (!Containers.empty()) { | 
 |       for (SizeT i = 0; i < ContainersPerVector; ++i) { | 
 |         Containers[i]->setName(Func, getName() + "__cont" + std::to_string(i)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void setIsArg(bool Val = true) override { | 
 |     Variable::setIsArg(Val); | 
 |     for (Variable *Var : Containers) { | 
 |       Var->setIsArg(getIsArg()); | 
 |     } | 
 |   } | 
 |  | 
 |   const VarList &getContainers() const { return Containers; } | 
 |  | 
 |   void initVecElement(Cfg *Func) { | 
 |     for (SizeT i = 0; i < ContainersPerVector; ++i) { | 
 |       Variable *Var = Func->makeVariable(IceType_i32); | 
 |       Var->setIsArg(getIsArg()); | 
 |       if (BuildDefs::dump()) { | 
 |         Var->setName(Func, getName() + "__cont" + std::to_string(i)); | 
 |       } | 
 |       Containers.push_back(Var); | 
 |     } | 
 |   } | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     OperandKind Kind = Operand->getKind(); | 
 |     return Kind == kVariableVecOn32; | 
 |   } | 
 |  | 
 |   // A 128-bit vector value is mapped onto 4 32-bit register values. | 
 |   static constexpr SizeT ContainersPerVector = 4; | 
 |  | 
 | protected: | 
 |   VariableVecOn32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
 |       : Variable(Func, K, Ty, Index) { | 
 |     assert(typeWidthInBytes(Ty) == | 
 |            ContainersPerVector * typeWidthInBytes(IceType_i32)); | 
 |   } | 
 |  | 
 |   VarList Containers; | 
 | }; | 
 |  | 
 | enum MetadataKind { | 
 |   VMK_Uses,       /// Track only uses, not defs | 
 |   VMK_SingleDefs, /// Track uses+defs, but only record single def | 
 |   VMK_All         /// Track uses+defs, including full def list | 
 | }; | 
 | using InstDefList = CfgVector<const Inst *>; | 
 |  | 
 | /// VariableTracking tracks the metadata for a single variable.  It is | 
 | /// only meant to be used internally by VariablesMetadata. | 
 | class VariableTracking { | 
 | public: | 
 |   enum MultiDefState { | 
 |     // TODO(stichnot): Consider using just a simple counter. | 
 |     MDS_Unknown, | 
 |     MDS_SingleDef, | 
 |     MDS_MultiDefSingleBlock, | 
 |     MDS_MultiDefMultiBlock | 
 |   }; | 
 |   enum MultiBlockState { | 
 |     MBS_Unknown,     // Not yet initialized, so be conservative | 
 |     MBS_NoUses,      // Known to have no uses | 
 |     MBS_SingleBlock, // All uses in are in a single block | 
 |     MBS_MultiBlock   // Several uses across several blocks | 
 |   }; | 
 |   VariableTracking() = default; | 
 |   VariableTracking(const VariableTracking &) = default; | 
 |   VariableTracking &operator=(const VariableTracking &) = default; | 
 |   VariableTracking(MultiBlockState MultiBlock) : MultiBlock(MultiBlock) {} | 
 |   MultiDefState getMultiDef() const { return MultiDef; } | 
 |   MultiBlockState getMultiBlock() const { return MultiBlock; } | 
 |   const Inst *getFirstDefinitionSingleBlock() const; | 
 |   const Inst *getSingleDefinition() const; | 
 |   const Inst *getFirstDefinition() const; | 
 |   const InstDefList &getLatterDefinitions() const { return Definitions; } | 
 |   CfgNode *getNode() const { return SingleUseNode; } | 
 |   RegWeight getUseWeight() const { return UseWeight; } | 
 |   void markUse(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node, | 
 |                bool IsImplicit); | 
 |   void markDef(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node); | 
 |  | 
 | private: | 
 |   MultiDefState MultiDef = MDS_Unknown; | 
 |   MultiBlockState MultiBlock = MBS_Unknown; | 
 |   CfgNode *SingleUseNode = nullptr; | 
 |   CfgNode *SingleDefNode = nullptr; | 
 |   /// All definitions of the variable are collected in Definitions[] (except for | 
 |   /// the earliest definition), in increasing order of instruction number. | 
 |   InstDefList Definitions; /// Only used if Kind==VMK_All | 
 |   const Inst *FirstOrSingleDefinition = nullptr; | 
 |   RegWeight UseWeight; | 
 | }; | 
 |  | 
 | /// VariablesMetadata analyzes and summarizes the metadata for the complete set | 
 | /// of Variables. | 
 | class VariablesMetadata { | 
 |   VariablesMetadata() = delete; | 
 |   VariablesMetadata(const VariablesMetadata &) = delete; | 
 |   VariablesMetadata &operator=(const VariablesMetadata &) = delete; | 
 |  | 
 | public: | 
 |   explicit VariablesMetadata(const Cfg *Func) : Func(Func) {} | 
 |   /// Initialize the state by traversing all instructions/variables in the CFG. | 
 |   void init(MetadataKind TrackingKind); | 
 |   /// Add a single node. This is called by init(), and can be called | 
 |   /// incrementally from elsewhere, e.g. after edge-splitting. | 
 |   void addNode(CfgNode *Node); | 
 |   MetadataKind getKind() const { return Kind; } | 
 |   /// Returns whether the given Variable is tracked in this object. It should | 
 |   /// only return false if changes were made to the CFG after running init(), in | 
 |   /// which case the state is stale and the results shouldn't be trusted (but it | 
 |   /// may be OK e.g. for dumping). | 
 |   bool isTracked(const Variable *Var) const { | 
 |     return Var->getIndex() < Metadata.size(); | 
 |   } | 
 |  | 
 |   /// Returns whether the given Variable has multiple definitions. | 
 |   bool isMultiDef(const Variable *Var) const; | 
 |   /// Returns the first definition instruction of the given Variable. This is | 
 |   /// only valid for variables whose definitions are all within the same block, | 
 |   /// e.g. T after the lowered sequence "T=B; T+=C; A=T", for which | 
 |   /// getFirstDefinitionSingleBlock(T) would return the "T=B" instruction. For | 
 |   /// variables with definitions span multiple blocks, nullptr is returned. | 
 |   const Inst *getFirstDefinitionSingleBlock(const Variable *Var) const; | 
 |   /// Returns the definition instruction of the given Variable, when the | 
 |   /// variable has exactly one definition. Otherwise, nullptr is returned. | 
 |   const Inst *getSingleDefinition(const Variable *Var) const; | 
 |   /// getFirstDefinition() and getLatterDefinitions() are used together to | 
 |   /// return the complete set of instructions that define the given Variable, | 
 |   /// regardless of whether the definitions are within the same block (in | 
 |   /// contrast to getFirstDefinitionSingleBlock). | 
 |   const Inst *getFirstDefinition(const Variable *Var) const; | 
 |   const InstDefList &getLatterDefinitions(const Variable *Var) const; | 
 |  | 
 |   /// Returns whether the given Variable is live across multiple blocks. Mainly, | 
 |   /// this is used to partition Variables into single-block versus multi-block | 
 |   /// sets for leveraging sparsity in liveness analysis, and for implementing | 
 |   /// simple stack slot coalescing. As a special case, function arguments are | 
 |   /// always considered multi-block because they are live coming into the entry | 
 |   /// block. | 
 |   bool isMultiBlock(const Variable *Var) const; | 
 |   bool isSingleBlock(const Variable *Var) const; | 
 |   /// Returns the node that the given Variable is used in, assuming | 
 |   /// isMultiBlock() returns false. Otherwise, nullptr is returned. | 
 |   CfgNode *getLocalUseNode(const Variable *Var) const; | 
 |  | 
 |   /// Returns the total use weight computed as the sum of uses multiplied by a | 
 |   /// loop nest depth factor for each use. | 
 |   RegWeight getUseWeight(const Variable *Var) const; | 
 |  | 
 | private: | 
 |   const Cfg *Func; | 
 |   MetadataKind Kind; | 
 |   CfgVector<VariableTracking> Metadata; | 
 |   static const InstDefList *NoDefinitions; | 
 | }; | 
 |  | 
 | /// BooleanVariable represents a variable that was the zero-extended result of a | 
 | /// comparison. It maintains a pointer to its original i1 source so that the | 
 | /// WASM frontend can avoid adding needless comparisons. | 
 | class BooleanVariable : public Variable { | 
 |   BooleanVariable() = delete; | 
 |   BooleanVariable(const BooleanVariable &) = delete; | 
 |   BooleanVariable &operator=(const BooleanVariable &) = delete; | 
 |  | 
 |   BooleanVariable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
 |       : Variable(Func, K, Ty, Index) {} | 
 |  | 
 | public: | 
 |   static BooleanVariable *create(Cfg *Func, Type Ty, SizeT Index) { | 
 |     return new (Func->allocate<BooleanVariable>()) | 
 |         BooleanVariable(Func, kVariable, Ty, Index); | 
 |   } | 
 |  | 
 |   virtual Variable *asBoolean() { return BoolSource; } | 
 |  | 
 |   void setBoolSource(Variable *Src) { BoolSource = Src; } | 
 |  | 
 |   static bool classof(const Operand *Operand) { | 
 |     return Operand->getKind() == kVariableBoolean; | 
 |   } | 
 |  | 
 | private: | 
 |   Variable *BoolSource = nullptr; | 
 | }; | 
 |  | 
 | } // end of namespace Ice | 
 |  | 
 | #endif // SUBZERO_SRC_ICEOPERAND_H |