|  | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "Assert.hpp" | 
|  | #include "Coroutine.hpp" | 
|  | #include "Print.hpp" | 
|  | #include "Reactor.hpp" | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | #include <array> | 
|  | #include <cmath> | 
|  | #include <filesystem> | 
|  | #include <fstream> | 
|  | #include <thread> | 
|  | #include <tuple> | 
|  |  | 
|  | using namespace rr; | 
|  |  | 
|  | using float4 = float[4]; | 
|  | using int4 = int[4]; | 
|  |  | 
|  | static std::string testName() | 
|  | { | 
|  | auto info = ::testing::UnitTest::GetInstance()->current_test_info(); | 
|  | return std::string{ info->test_suite_name() } + "_" + info->name(); | 
|  | } | 
|  |  | 
|  | int reference(int *p, int y) | 
|  | { | 
|  | int x = p[-1]; | 
|  | int z = 4; | 
|  |  | 
|  | for(int i = 0; i < 10; i++) | 
|  | { | 
|  | z += (2 << i) - (i / 3); | 
|  | } | 
|  |  | 
|  | int sum = x + y + z; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Sample) | 
|  | { | 
|  | FunctionT<int(int *, int)> function; | 
|  | { | 
|  | Pointer<Int> p = function.Arg<0>(); | 
|  | Int x = p[-1]; | 
|  | Int y = function.Arg<1>(); | 
|  | Int z = 4; | 
|  |  | 
|  | For(Int i = 0, i < 10, i++) | 
|  | { | 
|  | z += (2 << i) - (i / 3); | 
|  | } | 
|  |  | 
|  | Float4 v; | 
|  | v.z = As<Float>(z); | 
|  | z = As<Int>(Float(Float4(v.xzxx).y)); | 
|  |  | 
|  | Int sum = x + y + z; | 
|  |  | 
|  | Return(sum); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int one[2] = { 1, 0 }; | 
|  | int result = routine(&one[1], 2); | 
|  | EXPECT_EQ(result, reference(&one[1], 2)); | 
|  | } | 
|  |  | 
|  | // This test demonstrates the use of a 'trampoline', where a routine calls | 
|  | // a static function which then generates another routine during the execution | 
|  | // of the first routine. Also note the code generated for the second routine | 
|  | // depends on a parameter passed to the first routine. | 
|  | TEST(ReactorUnitTests, Trampoline) | 
|  | { | 
|  | using SecondaryFunc = int(int, int); | 
|  |  | 
|  | static auto generateSecondary = [](int upDown) { | 
|  | FunctionT<SecondaryFunc> secondary; | 
|  | { | 
|  | Int x = secondary.Arg<0>(); | 
|  | Int y = secondary.Arg<1>(); | 
|  | Int r; | 
|  |  | 
|  | if(upDown > 0) | 
|  | { | 
|  | r = x + y; | 
|  | } | 
|  | else if(upDown < 0) | 
|  | { | 
|  | r = x - y; | 
|  | } | 
|  | else | 
|  | { | 
|  | r = 0; | 
|  | } | 
|  |  | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | static auto routine = secondary((testName() + "_secondary").c_str()); | 
|  | return routine.getEntry(); | 
|  | }; | 
|  |  | 
|  | using SecondaryGeneratorFunc = SecondaryFunc *(*)(int); | 
|  | SecondaryGeneratorFunc secondaryGenerator = (SecondaryGeneratorFunc)generateSecondary; | 
|  |  | 
|  | using PrimaryFunc = int(int, int, int); | 
|  |  | 
|  | FunctionT<PrimaryFunc> primary; | 
|  | { | 
|  | Int x = primary.Arg<0>(); | 
|  | Int y = primary.Arg<1>(); | 
|  | Int z = primary.Arg<2>(); | 
|  |  | 
|  | Pointer<Byte> secondary = Call(secondaryGenerator, z); | 
|  | Int r = Call<SecondaryFunc>(secondary, x, y); | 
|  |  | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = primary((testName() + "_primary").c_str()); | 
|  |  | 
|  | int result = routine(100, 20, -3); | 
|  | EXPECT_EQ(result, 80); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Uninitialized) | 
|  | { | 
|  | #if __has_feature(memory_sanitizer) | 
|  | // Building the static C++ code with MemorySanitizer enabled does not | 
|  | // automatically enable MemorySanitizer instrumentation for Reactor | 
|  | // routines. False positives can also be prevented by unpoisoning all | 
|  | // memory writes. This Pragma ensures proper instrumentation is enabled. | 
|  | Pragma(MemorySanitizerInstrumentation, true); | 
|  | #endif | 
|  |  | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int a; | 
|  | Int z = 4; | 
|  | Int q; | 
|  | Int c; | 
|  | Int p; | 
|  | Bool b; | 
|  |  | 
|  | q += q; | 
|  |  | 
|  | If(b) | 
|  | { | 
|  | c = p; | 
|  | } | 
|  |  | 
|  | Return(a + z + q + c); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | if(!__has_feature(memory_sanitizer)) | 
|  | { | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, result);  // Anything is fine, just don't crash | 
|  | } | 
|  | else | 
|  | { | 
|  | // Optimizations may turn the conditional If() in the Reactor code | 
|  | // into a conditional move or arithmetic operations, which would not | 
|  | // trigger a MemorySanitizer error. However, in that case the equals | 
|  | // operator below should trigger it before the abort is reached. | 
|  | EXPECT_DEATH( | 
|  | { | 
|  | int result = routine(); | 
|  | if(result == 0) abort(); | 
|  | }, | 
|  | "MemorySanitizer: use-of-uninitialized-value"); | 
|  | } | 
|  |  | 
|  | Pragma(MemorySanitizerInstrumentation, false); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Unreachable) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Int z = 4; | 
|  |  | 
|  | Return(a + z); | 
|  |  | 
|  | // Code beyond this point is unreachable but should not cause any | 
|  | // compilation issues. | 
|  |  | 
|  | z += a; | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(16); | 
|  | EXPECT_EQ(result, 20); | 
|  | } | 
|  |  | 
|  | // Stopping in the middle of a `Function<>` is supported and should not affect | 
|  | // subsequent complete ones. | 
|  | TEST(ReactorUnitTests, UnfinishedFunction) | 
|  | { | 
|  | do | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Int z = 4; | 
|  |  | 
|  | if((true)) break;  // Terminate do-while early. | 
|  |  | 
|  | Return(a + z); | 
|  | } | 
|  | } while(true); | 
|  |  | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Int z = 4; | 
|  |  | 
|  | Return(a - z); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(16); | 
|  | EXPECT_EQ(result, 12); | 
|  | } | 
|  |  | 
|  | // Deriving from `Function<>` and using Reactor variables as members can be a | 
|  | // convenient way to 'name' function arguments and compose complex functions | 
|  | // with helper methods. This test checks the interactions between the lifetime | 
|  | // of the `Function<>` and the variables belonging to the derived class. | 
|  | struct FunctionMembers : FunctionT<int(int)> | 
|  | { | 
|  | FunctionMembers() | 
|  | : level(Arg<0>()) | 
|  | { | 
|  | For(Int i = 0, i < 3, i++) | 
|  | { | 
|  | pourSomeMore(); | 
|  | } | 
|  |  | 
|  | Return(level); | 
|  | } | 
|  |  | 
|  | void pourSomeMore() | 
|  | { | 
|  | level += 2; | 
|  | } | 
|  |  | 
|  | Int level; | 
|  | }; | 
|  |  | 
|  | TEST(ReactorUnitTests, FunctionMembers) | 
|  | { | 
|  | FunctionMembers function; | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(3); | 
|  | EXPECT_EQ(result, 9); | 
|  | } | 
|  |  | 
|  | // This test excercises modifying the value of a local variable through a | 
|  | // pointer to it. | 
|  | TEST(ReactorUnitTests, VariableAddress) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Int z = 0; | 
|  | Pointer<Int> p = &z; | 
|  | *p = 4; | 
|  |  | 
|  | Return(a + z); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(16); | 
|  | EXPECT_EQ(result, 20); | 
|  | } | 
|  |  | 
|  | // This test exercises taking the address of a local varible at the end of a | 
|  | // loop and modifying its value through the pointer in the second iteration. | 
|  | TEST(ReactorUnitTests, LateVariableAddress) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Pointer<Int> p = nullptr; | 
|  | Int a = 0; | 
|  |  | 
|  | While(a == 0) | 
|  | { | 
|  | If(p != Pointer<Int>(nullptr)) | 
|  | { | 
|  | *p = 1; | 
|  | } | 
|  |  | 
|  | p = &a; | 
|  | } | 
|  |  | 
|  | Return(a); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 1); | 
|  | } | 
|  |  | 
|  | // This test checks that the value of a local variable which has been modified | 
|  | // though a pointer is correct at the point before its address is (statically) | 
|  | // obtained. | 
|  | TEST(ReactorUnitTests, LoadAfterIndirectStore) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Pointer<Int> p = nullptr; | 
|  | Int a = 0; | 
|  | Int b = 0; | 
|  |  | 
|  | While(a == 0) | 
|  | { | 
|  | If(p != Pointer<Int>(nullptr)) | 
|  | { | 
|  | *p = 1; | 
|  | } | 
|  |  | 
|  | // `a` must be loaded from memory here, despite not statically knowing | 
|  | // yet that its address will be taken below. | 
|  | b = a + 5; | 
|  |  | 
|  | p = &a; | 
|  | } | 
|  |  | 
|  | Return(b); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 6); | 
|  | } | 
|  |  | 
|  | // This test checks that variables statically accessed after a Return statement | 
|  | // are still loaded, modified, and stored correctly. | 
|  | TEST(ReactorUnitTests, LoopAfterReturn) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Int min = 100; | 
|  | Int max = 200; | 
|  |  | 
|  | If(min > max) | 
|  | { | 
|  | Return(5); | 
|  | } | 
|  |  | 
|  | While(min < max) | 
|  | { | 
|  | min++; | 
|  | } | 
|  |  | 
|  | Return(7); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 7); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, ConstantPointer) | 
|  | { | 
|  | int c = 44; | 
|  |  | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int x = *Pointer<Int>(ConstantPointer(&c)); | 
|  |  | 
|  | Return(x); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 44); | 
|  | } | 
|  |  | 
|  | // This test excercises the Optimizer::eliminateLoadsFollowingSingleStore() optimization pass. | 
|  | // The three load operations for `y` should get eliminated. | 
|  | TEST(ReactorUnitTests, EliminateLoadsFollowingSingleStore) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int x = function.Arg<0>(); | 
|  |  | 
|  | Int y; | 
|  | Int z; | 
|  |  | 
|  | // This branch materializes the variables. | 
|  | If(x != 0)  // TODO(b/179922668): Support If(x) | 
|  | { | 
|  | y = x; | 
|  | z = y + y + y; | 
|  | } | 
|  |  | 
|  | Return(z); | 
|  | } | 
|  |  | 
|  | Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { | 
|  | EXPECT_EQ(report->allocas, 2); | 
|  | EXPECT_EQ(report->loads, 2); | 
|  | EXPECT_EQ(report->stores, 2); | 
|  | }); | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(11); | 
|  | EXPECT_EQ(result, 33); | 
|  | } | 
|  |  | 
|  | // This test excercises the Optimizer::propagateAlloca() optimization pass. | 
|  | // The pointer variable should not get stored to / loaded from memory. | 
|  | TEST(ReactorUnitTests, PropagateAlloca) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int b = function.Arg<0>(); | 
|  |  | 
|  | Int a = 22; | 
|  | Pointer<Int> p; | 
|  |  | 
|  | // This branch materializes both `a` and `p`, and ensures single basic block | 
|  | // optimizations don't also eliminate the pointer store and load. | 
|  | If(b != 0)  // TODO(b/179922668): Support If(b) | 
|  | { | 
|  | p = &a; | 
|  | } | 
|  |  | 
|  | Return(Int(*p));  // TODO(b/179694472): Support Return(*p) | 
|  | } | 
|  |  | 
|  | Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { | 
|  | EXPECT_EQ(report->allocas, 1); | 
|  | EXPECT_EQ(report->loads, 1); | 
|  | EXPECT_EQ(report->stores, 1); | 
|  | }); | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(true); | 
|  | EXPECT_EQ(result, 22); | 
|  | } | 
|  |  | 
|  | // Corner case for Optimizer::propagateAlloca(). It should not replace loading of `p` | 
|  | // with the addres of `a`, since it also got the address of `b` assigned. | 
|  | TEST(ReactorUnitTests, PointerToPointer) | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int a = 444; | 
|  | Int b = 555; | 
|  |  | 
|  | Pointer<Int> p = &a; | 
|  | Pointer<Pointer<Int>> pp = &p; | 
|  | p = &b; | 
|  |  | 
|  | Return(Int(*Pointer<Int>(*pp)));  // TODO(b/179694472): Support **pp | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 555); | 
|  | } | 
|  |  | 
|  | // Corner case for Optimizer::propagateAlloca(). It should not replace loading of `p[i]` | 
|  | // with any of the addresses of the `a`, `b`, or `c`. | 
|  | TEST(ReactorUnitTests, ArrayOfPointersToLocals) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int i = function.Arg<0>(); | 
|  |  | 
|  | Int a = 111; | 
|  | Int b = 222; | 
|  | Int c = 333; | 
|  |  | 
|  | Array<Pointer<Int>, 3> p; | 
|  | p[0] = &a; | 
|  | p[1] = &b; | 
|  | p[2] = &c; | 
|  |  | 
|  | Return(Int(*Pointer<Int>(p[i])));  // TODO(b/179694472): Support *p[i] | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(1); | 
|  | EXPECT_EQ(result, 222); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, ModifyLocalThroughPointer) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Int a = 1; | 
|  |  | 
|  | Pointer<Int> p = &a; | 
|  | Pointer<Pointer<Int>> pp = &p; | 
|  |  | 
|  | Pointer<Int> q = *pp; | 
|  | *q = 3; | 
|  |  | 
|  | Return(a); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 3); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, ScalarReplacementOfArray) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Array<Int, 2> a; | 
|  | a[0] = 1; | 
|  | a[1] = 2; | 
|  |  | 
|  | Return(a[0] + a[1]); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 3); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CArray) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Int a[2]; | 
|  | a[0] = 1; | 
|  | a[1] = 2; | 
|  |  | 
|  | auto x = a[0]; | 
|  | a[0] = a[1]; | 
|  | a[1] = x; | 
|  |  | 
|  | Return(a[0] + a[1]); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 3); | 
|  | } | 
|  |  | 
|  | // SRoA should replace the array elements with scalars, which in turn enables | 
|  | // eliminating all loads and stores. | 
|  | TEST(ReactorUnitTests, ReactorArray) | 
|  | { | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Array<Int, 2> a; | 
|  | a[0] = 1; | 
|  | a[1] = 2; | 
|  |  | 
|  | Int x = a[0]; | 
|  | a[0] = a[1]; | 
|  | a[1] = x; | 
|  |  | 
|  | Return(a[0] + a[1]); | 
|  | } | 
|  |  | 
|  | Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { | 
|  | EXPECT_EQ(report->allocas, 0); | 
|  | EXPECT_EQ(report->loads, 0); | 
|  | EXPECT_EQ(report->stores, 0); | 
|  | }); | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 3); | 
|  | } | 
|  |  | 
|  | // Excercises the optimizeSingleBasicBlockLoadsStores optimization pass. | 
|  | TEST(ReactorUnitTests, StoresInMultipleBlocks) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int b = function.Arg<0>(); | 
|  |  | 
|  | Int a = 13; | 
|  |  | 
|  | If(b != 0)  // TODO(b/179922668): Support If(b) | 
|  | { | 
|  | a = 4; | 
|  | a = a + 3; | 
|  | } | 
|  | Else | 
|  | { | 
|  | a = 6; | 
|  | a = a + 5; | 
|  | } | 
|  |  | 
|  | Return(a); | 
|  | } | 
|  |  | 
|  | Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { | 
|  | EXPECT_EQ(report->allocas, 1); | 
|  | EXPECT_EQ(report->loads, 1); | 
|  | EXPECT_EQ(report->stores, 3); | 
|  | }); | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(true); | 
|  | EXPECT_EQ(result, 7); | 
|  | } | 
|  |  | 
|  | // This is similar to the LoadAfterIndirectStore test except that the indirect | 
|  | // store is preceded by a direct store. The subsequent load should not be replaced | 
|  | // by the value written by the direct store. | 
|  | TEST(ReactorUnitTests, StoreBeforeIndirectStore) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | // Int b = function.Arg<0>(); | 
|  |  | 
|  | Int b; | 
|  | Pointer<Int> p = &b; | 
|  | Int a = 13; | 
|  |  | 
|  | For(Int i = 0, i < 2, i++) | 
|  | { | 
|  | a = 10; | 
|  |  | 
|  | *p = 4; | 
|  |  | 
|  | // This load of `a` should not be replaced by the 10 written above, since | 
|  | // in the second iteration `p` points to `a` and writes 4. | 
|  | b = a; | 
|  |  | 
|  | p = &a; | 
|  | } | 
|  |  | 
|  | Return(b); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(true); | 
|  | EXPECT_EQ(result, 4); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, AssertTrue) | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int a = 3; | 
|  | Int b = 5; | 
|  |  | 
|  | Assert(a < b); | 
|  |  | 
|  | Return(a + b); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 8); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, AssertFalse) | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int a = 3; | 
|  | Int b = 5; | 
|  |  | 
|  | Assert(a == b); | 
|  |  | 
|  | Return(a + b); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | #	if !defined(__APPLE__) | 
|  | const char *stderrRegex = "AssertFalse";  // stderr should contain the assert's expression, file:line, and function | 
|  | #	else | 
|  | const char *stderrRegex = "";  // TODO(b/156389924): On macOS an stderr redirect can cause googletest to fail the capture | 
|  | #	endif | 
|  |  | 
|  | EXPECT_DEATH( | 
|  | { | 
|  | int result = routine(); | 
|  | EXPECT_NE(result, result);  // We should never reach this | 
|  | }, | 
|  | stderrRegex); | 
|  | #else | 
|  | int result = routine(); | 
|  | EXPECT_EQ(result, 8); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, SubVectorLoadStore) | 
|  | { | 
|  | FunctionT<int(void *, void *)> function; | 
|  | { | 
|  | Pointer<Byte> in = function.Arg<0>(); | 
|  | Pointer<Byte> out = function.Arg<1>(); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 0) = *Pointer<Int4>(in + 16 * 0); | 
|  | *Pointer<Short4>(out + 16 * 1) = *Pointer<Short4>(in + 16 * 1); | 
|  | *Pointer<Byte8>(out + 16 * 2) = *Pointer<Byte8>(in + 16 * 2); | 
|  | *Pointer<Byte4>(out + 16 * 3) = *Pointer<Byte4>(in + 16 * 3); | 
|  | *Pointer<Short2>(out + 16 * 4) = *Pointer<Short2>(in + 16 * 4); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int8_t in[16 * 5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, | 
|  | 17, 18, 19, 20, 21, 22, 23, 24, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 25, 26, 27, 28, 29, 30, 31, 32, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 33, 34, 35, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 37, 38, 39, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | 
|  |  | 
|  | int8_t out[16 * 5] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; | 
|  |  | 
|  | routine(in, out); | 
|  |  | 
|  | for(int row = 0; row < 5; row++) | 
|  | { | 
|  | for(int col = 0; col < 16; col++) | 
|  | { | 
|  | int i = row * 16 + col; | 
|  |  | 
|  | if(in[i] == 0) | 
|  | { | 
|  | EXPECT_EQ(out[i], -1) << "Row " << row << " column " << col << " not left untouched."; | 
|  | } | 
|  | else | 
|  | { | 
|  | EXPECT_EQ(out[i], in[i]) << "Row " << row << " column " << col << " not equal to input."; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, VectorConstant) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 0) = Int4(0x04030201, 0x08070605, 0x0C0B0A09, 0x100F0E0D); | 
|  | *Pointer<Short4>(out + 16 * 1) = Short4(0x1211, 0x1413, 0x1615, 0x1817); | 
|  | *Pointer<Byte8>(out + 16 * 2) = Byte8(0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20); | 
|  | *Pointer<Int2>(out + 16 * 3) = Int2(0x24232221, 0x28272625); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int8_t out[16 * 4] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; | 
|  |  | 
|  | int8_t exp[16 * 4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, | 
|  | 17, 18, 19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | 33, 34, 35, 36, 37, 38, 39, 40, -1, -1, -1, -1, -1, -1, -1, -1 }; | 
|  |  | 
|  | routine(out); | 
|  |  | 
|  | for(int row = 0; row < 4; row++) | 
|  | { | 
|  | for(int col = 0; col < 16; col++) | 
|  | { | 
|  | int i = row * 16 + col; | 
|  |  | 
|  | EXPECT_EQ(out[i], exp[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Concatenate) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 0) = Int4(Int2(0x04030201, 0x08070605), Int2(0x0C0B0A09, 0x100F0E0D)); | 
|  | *Pointer<Short8>(out + 16 * 1) = Short8(Short4(0x0201, 0x0403, 0x0605, 0x0807), Short4(0x0A09, 0x0C0B, 0x0E0D, 0x100F)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int8_t ref[16 * 5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, | 
|  | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; | 
|  |  | 
|  | int8_t out[16 * 5] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; | 
|  |  | 
|  | routine(out); | 
|  |  | 
|  | for(int row = 0; row < 2; row++) | 
|  | { | 
|  | for(int col = 0; col < 16; col++) | 
|  | { | 
|  | int i = row * 16 + col; | 
|  |  | 
|  | EXPECT_EQ(out[i], ref[i]) << "Row " << row << " column " << col << " not equal to reference."; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Cast) | 
|  | { | 
|  | FunctionT<void(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | Int4 c = Int4(0x01020304, 0x05060708, 0x09101112, 0x13141516); | 
|  | *Pointer<Short4>(out + 16 * 0) = Short4(c); | 
|  | *Pointer<Byte4>(out + 16 * 1 + 0) = Byte4(c); | 
|  | *Pointer<Byte4>(out + 16 * 1 + 4) = Byte4(As<Byte8>(c)); | 
|  | *Pointer<Byte4>(out + 16 * 1 + 8) = Byte4(As<Short4>(c)); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int out[2][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x07080304); | 
|  | EXPECT_EQ(out[0][1], 0x15161112); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x16120804); | 
|  | EXPECT_EQ(out[1][1], 0x01020304); | 
|  | EXPECT_EQ(out[1][2], 0x06080204); | 
|  | } | 
|  |  | 
|  | static uint16_t swizzleCode4(int i) | 
|  | { | 
|  | auto x = (i >> 0) & 0x03; | 
|  | auto y = (i >> 2) & 0x03; | 
|  | auto z = (i >> 4) & 0x03; | 
|  | auto w = (i >> 6) & 0x03; | 
|  | return static_cast<uint16_t>((x << 12) | (y << 8) | (z << 4) | (w << 0)); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Swizzle4) | 
|  | { | 
|  | FunctionT<void(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | *Pointer<Float4>(out + 16 * i) = Swizzle(Float4(1.0f, 2.0f, 3.0f, 4.0f), swizzleCode4(i)); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | *Pointer<Float4>(out + 16 * (256 + i)) = ShuffleLowHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f), swizzleCode4(i)); | 
|  | } | 
|  |  | 
|  | *Pointer<Float4>(out + 16 * (512 + 0)) = UnpackLow(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f)); | 
|  | *Pointer<Float4>(out + 16 * (512 + 1)) = UnpackHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f)); | 
|  | *Pointer<Int2>(out + 16 * (512 + 2)) = UnpackLow(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8)); | 
|  | *Pointer<Int2>(out + 16 * (512 + 3)) = UnpackHigh(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8)); | 
|  | *Pointer<Short4>(out + 16 * (512 + 4)) = UnpackLow(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16)); | 
|  | *Pointer<Short4>(out + 16 * (512 + 5)) = UnpackHigh(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16)); | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | *Pointer<Short4>(out + 16 * (512 + 6) + (8 * i)) = | 
|  | Swizzle(Short4(1, 2, 3, 4), swizzleCode4(i)); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | *Pointer<Int4>(out + 16 * (512 + 6 + i) + (8 * 256)) = | 
|  | Swizzle(Int4(1, 2, 3, 4), swizzleCode4(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | struct | 
|  | { | 
|  | float f[256 + 256 + 2][4]; | 
|  | int i[388][4]; | 
|  | } out; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | EXPECT_EQ(out.f[i][0], float((i >> 0) & 0x03) + 1.0f); | 
|  | EXPECT_EQ(out.f[i][1], float((i >> 2) & 0x03) + 1.0f); | 
|  | EXPECT_EQ(out.f[i][2], float((i >> 4) & 0x03) + 1.0f); | 
|  | EXPECT_EQ(out.f[i][3], float((i >> 6) & 0x03) + 1.0f); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | EXPECT_EQ(out.f[256 + i][0], float((i >> 0) & 0x03) + 1.0f); | 
|  | EXPECT_EQ(out.f[256 + i][1], float((i >> 2) & 0x03) + 1.0f); | 
|  | EXPECT_EQ(out.f[256 + i][2], float((i >> 4) & 0x03) + 5.0f); | 
|  | EXPECT_EQ(out.f[256 + i][3], float((i >> 6) & 0x03) + 5.0f); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(out.f[512 + 0][0], 1.0f); | 
|  | EXPECT_EQ(out.f[512 + 0][1], 5.0f); | 
|  | EXPECT_EQ(out.f[512 + 0][2], 2.0f); | 
|  | EXPECT_EQ(out.f[512 + 0][3], 6.0f); | 
|  |  | 
|  | EXPECT_EQ(out.f[512 + 1][0], 3.0f); | 
|  | EXPECT_EQ(out.f[512 + 1][1], 7.0f); | 
|  | EXPECT_EQ(out.f[512 + 1][2], 4.0f); | 
|  | EXPECT_EQ(out.f[512 + 1][3], 8.0f); | 
|  |  | 
|  | EXPECT_EQ(out.i[0][0], 0x00050001); | 
|  | EXPECT_EQ(out.i[0][1], 0x00060002); | 
|  | EXPECT_EQ(out.i[0][2], 0x00000000); | 
|  | EXPECT_EQ(out.i[0][3], 0x00000000); | 
|  |  | 
|  | EXPECT_EQ(out.i[1][0], 0x00070003); | 
|  | EXPECT_EQ(out.i[1][1], 0x00080004); | 
|  | EXPECT_EQ(out.i[1][2], 0x00000000); | 
|  | EXPECT_EQ(out.i[1][3], 0x00000000); | 
|  |  | 
|  | EXPECT_EQ(out.i[2][0], 0x0A020901); | 
|  | EXPECT_EQ(out.i[2][1], 0x0C040B03); | 
|  | EXPECT_EQ(out.i[2][2], 0x00000000); | 
|  | EXPECT_EQ(out.i[2][3], 0x00000000); | 
|  |  | 
|  | EXPECT_EQ(out.i[3][0], 0x0E060D05); | 
|  | EXPECT_EQ(out.i[3][1], 0x10080F07); | 
|  | EXPECT_EQ(out.i[3][2], 0x00000000); | 
|  | EXPECT_EQ(out.i[3][3], 0x00000000); | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | EXPECT_EQ(out.i[4 + i / 2][0 + (i % 2) * 2] & 0xFFFF, | 
|  | ((i >> 0) & 0x03) + 1); | 
|  | EXPECT_EQ(out.i[4 + i / 2][0 + (i % 2) * 2] >> 16, | 
|  | ((i >> 2) & 0x03) + 1); | 
|  | EXPECT_EQ(out.i[4 + i / 2][1 + (i % 2) * 2] & 0xFFFF, | 
|  | ((i >> 4) & 0x03) + 1); | 
|  | EXPECT_EQ(out.i[4 + i / 2][1 + (i % 2) * 2] >> 16, | 
|  | ((i >> 6) & 0x03) + 1); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < 256; i++) | 
|  | { | 
|  | EXPECT_EQ(out.i[132 + i][0], ((i >> 0) & 0x03) + 1); | 
|  | EXPECT_EQ(out.i[132 + i][1], ((i >> 2) & 0x03) + 1); | 
|  | EXPECT_EQ(out.i[132 + i][2], ((i >> 4) & 0x03) + 1); | 
|  | EXPECT_EQ(out.i[132 + i][3], ((i >> 6) & 0x03) + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Swizzle) | 
|  | { | 
|  | FunctionT<void(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | Int4 c = Int4(0x01020304, 0x05060708, 0x09101112, 0x13141516); | 
|  | *Pointer<Byte16>(out + 16 * 0) = Swizzle(As<Byte16>(c), 0xFEDCBA9876543210ull); | 
|  | *Pointer<Byte8>(out + 16 * 1) = Swizzle(As<Byte8>(c), 0x76543210u); | 
|  | *Pointer<UShort8>(out + 16 * 2) = Swizzle(As<UShort8>(c), 0x76543210u); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int out[3][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x16151413); | 
|  | EXPECT_EQ(out[0][1], 0x12111009); | 
|  | EXPECT_EQ(out[0][2], 0x08070605); | 
|  | EXPECT_EQ(out[0][3], 0x04030201); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x08070605); | 
|  | EXPECT_EQ(out[1][1], 0x04030201); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0x15161314); | 
|  | EXPECT_EQ(out[2][1], 0x11120910); | 
|  | EXPECT_EQ(out[2][2], 0x07080506); | 
|  | EXPECT_EQ(out[2][3], 0x03040102); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Shuffle) | 
|  | { | 
|  | // |select| is [0aaa:0bbb:0ccc:0ddd] where |aaa|, |bbb|, |ccc| | 
|  | // and |ddd| are 7-bit selection indices. For a total (1 << 12) | 
|  | // possibilities. | 
|  | const int kSelectRange = 1 << 12; | 
|  |  | 
|  | // Unfortunately, testing the whole kSelectRange results in a test | 
|  | // that is far too slow to run, because LLVM spends exponentially more | 
|  | // time optimizing the function below as the number of test cases | 
|  | // increases. | 
|  | // | 
|  | // To work-around the problem, only test a subset of the range by | 
|  | // skipping every kRangeIncrement value. | 
|  | // | 
|  | // Set this value to 1 if you want to test the whole implementation, | 
|  | // which will take a little less than 2 minutes on a fast workstation. | 
|  | // | 
|  | // The default value here takes about 1390ms, which is a little more than | 
|  | // what the Swizzle test takes (993 ms) on my machine. A non-power-of-2 | 
|  | // value ensures a better spread over possible values. | 
|  | const int kRangeIncrement = 11; | 
|  |  | 
|  | auto rangeIndexToSelect = [](int i) { | 
|  | return static_cast<unsigned short>( | 
|  | (((i >> 9) & 7) << 0) | | 
|  | (((i >> 6) & 7) << 4) | | 
|  | (((i >> 3) & 7) << 8) | | 
|  | (((i >> 0) & 7) << 12)); | 
|  | }; | 
|  |  | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | for(int i = 0; i < kSelectRange; i += kRangeIncrement) | 
|  | { | 
|  | unsigned short select = rangeIndexToSelect(i); | 
|  |  | 
|  | *Pointer<Float4>(out + 16 * i) = Shuffle(Float4(1.0f, 2.0f, 3.0f, 4.0f), | 
|  | Float4(5.0f, 6.0f, 7.0f, 8.0f), | 
|  | select); | 
|  |  | 
|  | *Pointer<Int4>(out + (kSelectRange + i) * 16) = Shuffle(Int4(10, 11, 12, 13), | 
|  | Int4(14, 15, 16, 17), | 
|  | select); | 
|  |  | 
|  | *Pointer<UInt4>(out + (2 * kSelectRange + i) * 16) = Shuffle(UInt4(100, 101, 102, 103), | 
|  | UInt4(104, 105, 106, 107), | 
|  | select); | 
|  | } | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | struct | 
|  | { | 
|  | float f[kSelectRange][4]; | 
|  | int i[kSelectRange][4]; | 
|  | unsigned u[kSelectRange][4]; | 
|  | } out; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | for(int i = 0; i < kSelectRange; i += kRangeIncrement) | 
|  | { | 
|  | EXPECT_EQ(out.f[i][0], float(1.0f + (i & 7))); | 
|  | EXPECT_EQ(out.f[i][1], float(1.0f + ((i >> 3) & 7))); | 
|  | EXPECT_EQ(out.f[i][2], float(1.0f + ((i >> 6) & 7))); | 
|  | EXPECT_EQ(out.f[i][3], float(1.0f + ((i >> 9) & 7))); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < kSelectRange; i += kRangeIncrement) | 
|  | { | 
|  | EXPECT_EQ(out.i[i][0], int(10 + (i & 7))); | 
|  | EXPECT_EQ(out.i[i][1], int(10 + ((i >> 3) & 7))); | 
|  | EXPECT_EQ(out.i[i][2], int(10 + ((i >> 6) & 7))); | 
|  | EXPECT_EQ(out.i[i][3], int(10 + ((i >> 9) & 7))); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < kSelectRange; i += kRangeIncrement) | 
|  | { | 
|  | EXPECT_EQ(out.u[i][0], unsigned(100 + (i & 7))); | 
|  | EXPECT_EQ(out.u[i][1], unsigned(100 + ((i >> 3) & 7))); | 
|  | EXPECT_EQ(out.u[i][2], unsigned(100 + ((i >> 6) & 7))); | 
|  | EXPECT_EQ(out.u[i][3], unsigned(100 + ((i >> 9) & 7))); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Broadcast) | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int4 i = 2; | 
|  | Int j = 3 + i.x; | 
|  | Int4 k = i * 7; | 
|  |  | 
|  | Return(k.z - j); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  |  | 
|  | EXPECT_EQ(result, 9); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Branching) | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int x = 0; | 
|  |  | 
|  | For(Int i = 0, i < 8, i++) | 
|  | { | 
|  | If(i < 2) | 
|  | { | 
|  | x += 1; | 
|  | } | 
|  | Else If(i < 4) | 
|  | { | 
|  | x += 10; | 
|  | } | 
|  | Else If(i < 6) | 
|  | { | 
|  | x += 100; | 
|  | } | 
|  | Else | 
|  | { | 
|  | x += 1000; | 
|  | } | 
|  |  | 
|  | For(Int i = 0, i < 5, i++) | 
|  | x += 10000; | 
|  | } | 
|  |  | 
|  | For(Int i = 0, i < 10, i++) for(int i = 0; i < 10; i++) | 
|  | For(Int i = 0, i < 10, i++) | 
|  | { | 
|  | x += 1000000; | 
|  | } | 
|  |  | 
|  | For(Int i = 0, i < 2, i++) | 
|  | If(x == 1000402222) | 
|  | { | 
|  | If(x != 1000402222) | 
|  | x += 1000000000; | 
|  | } | 
|  | Else | 
|  | x = -5; | 
|  |  | 
|  | Return(x); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int result = routine(); | 
|  |  | 
|  | EXPECT_EQ(result, 1000402222); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, FMulAdd) | 
|  | { | 
|  | Function<Void(Pointer<Float4>, Pointer<Float4>, Pointer<Float4>, Pointer<Float4>)> function; | 
|  | { | 
|  | Pointer<Float4> r = function.Arg<0>(); | 
|  | Pointer<Float4> x = function.Arg<1>(); | 
|  | Pointer<Float4> y = function.Arg<2>(); | 
|  | Pointer<Float4> z = function.Arg<3>(); | 
|  |  | 
|  | *r = MulAdd(*x, *y, *z); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (void (*)(float4 *, float4 *, float4 *, float4 *))routine->getEntry(); | 
|  |  | 
|  | float x[] = { 0.0f, 2.0f, 4.0f, 1.00000011920929f }; | 
|  | float y[] = { 0.0f, 3.0f, 0.0f, 53400708.0f }; | 
|  | float z[] = { 0.0f, 0.0f, 7.0f, -53400708.0f }; | 
|  |  | 
|  | for(size_t i = 0; i < std::size(x); i++) | 
|  | { | 
|  | float4 x_in = { x[i], x[i], x[i], x[i] }; | 
|  | float4 y_in = { y[i], y[i], y[i], y[i] }; | 
|  | float4 z_in = { z[i], z[i], z[i], z[i] }; | 
|  | float4 r_out; | 
|  |  | 
|  | callable(&r_out, &x_in, &y_in, &z_in); | 
|  |  | 
|  | // Possible results | 
|  | float fma = fmaf(x[i], y[i], z[i]); | 
|  | float mul_add = x[i] * y[i] + z[i]; | 
|  |  | 
|  | // If the backend and the CPU support FMA instructions, we assume MulAdd to use | 
|  | // them. Otherwise it may behave as a multiplication followed by an addition. | 
|  | if(rr::Caps::fmaIsFast()) | 
|  | { | 
|  | EXPECT_FLOAT_EQ(r_out[0], fma); | 
|  | } | 
|  | else if(r_out[0] != fma) | 
|  | { | 
|  | EXPECT_FLOAT_EQ(r_out[0], mul_add); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, FMA) | 
|  | { | 
|  | Function<Void(Pointer<Float4>, Pointer<Float4>, Pointer<Float4>, Pointer<Float4>)> function; | 
|  | { | 
|  | Pointer<Float4> r = function.Arg<0>(); | 
|  | Pointer<Float4> x = function.Arg<1>(); | 
|  | Pointer<Float4> y = function.Arg<2>(); | 
|  | Pointer<Float4> z = function.Arg<3>(); | 
|  |  | 
|  | *r = FMA(*x, *y, *z); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (void (*)(float4 *, float4 *, float4 *, float4 *))routine->getEntry(); | 
|  |  | 
|  | float x[] = { 0.0f, 2.0f, 4.0f, 1.00000011920929f }; | 
|  | float y[] = { 0.0f, 3.0f, 0.0f, 53400708.0f }; | 
|  | float z[] = { 0.0f, 0.0f, 7.0f, -53400708.0f }; | 
|  |  | 
|  | for(size_t i = 0; i < std::size(x); i++) | 
|  | { | 
|  | float4 x_in = { x[i], x[i], x[i], x[i] }; | 
|  | float4 y_in = { y[i], y[i], y[i], y[i] }; | 
|  | float4 z_in = { z[i], z[i], z[i], z[i] }; | 
|  | float4 r_out; | 
|  |  | 
|  | callable(&r_out, &x_in, &y_in, &z_in); | 
|  |  | 
|  | float expected = fmaf(x[i], y[i], z[i]); | 
|  | EXPECT_FLOAT_EQ(r_out[0], expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, FAbs) | 
|  | { | 
|  | Function<Void(Pointer<Float4>, Pointer<Float4>)> function; | 
|  | { | 
|  | Pointer<Float4> x = function.Arg<0>(); | 
|  | Pointer<Float4> y = function.Arg<1>(); | 
|  |  | 
|  | *y = Abs(*x); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (void (*)(float4 *, float4 *))routine->getEntry(); | 
|  |  | 
|  | float input[] = { 1.0f, -1.0f, -0.0f, 0.0f }; | 
|  |  | 
|  | for(float x : input) | 
|  | { | 
|  | float4 v_in = { x, x, x, x }; | 
|  | float4 v_out; | 
|  |  | 
|  | callable(&v_in, &v_out); | 
|  |  | 
|  | float expected = fabs(x); | 
|  | EXPECT_FLOAT_EQ(v_out[0], expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Abs) | 
|  | { | 
|  | Function<Void(Pointer<Int4>, Pointer<Int4>)> function; | 
|  | { | 
|  | Pointer<Int4> x = function.Arg<0>(); | 
|  | Pointer<Int4> y = function.Arg<1>(); | 
|  |  | 
|  | *y = Abs(*x); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (void (*)(int4 *, int4 *))routine->getEntry(); | 
|  |  | 
|  | int input[] = { 1, -1, 0, (int)0x80000000 }; | 
|  |  | 
|  | for(int x : input) | 
|  | { | 
|  | int4 v_in = { x, x, x, x }; | 
|  | int4 v_out; | 
|  |  | 
|  | callable(&v_in, &v_out); | 
|  |  | 
|  | float expected = abs(x); | 
|  | EXPECT_EQ(v_out[0], expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, MinMax) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Float4>(out + 16 * 0) = Min(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); | 
|  | *Pointer<Float4>(out + 16 * 1) = Max(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 2) = Min(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); | 
|  | *Pointer<Int4>(out + 16 * 3) = Max(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); | 
|  | *Pointer<UInt4>(out + 16 * 4) = Min(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0)); | 
|  | *Pointer<UInt4>(out + 16 * 5) = Max(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0)); | 
|  |  | 
|  | *Pointer<Short4>(out + 16 * 6) = Min(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0)); | 
|  | *Pointer<Short4>(out + 16 * 7) = Max(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0)); | 
|  | *Pointer<UShort4>(out + 16 * 8) = Min(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0)); | 
|  | *Pointer<UShort4>(out + 16 * 9) = Max(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[10][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x00000000u); | 
|  | EXPECT_EQ(out[0][1], 0x00000000u); | 
|  | EXPECT_EQ(out[0][2], 0x00000000u); | 
|  | EXPECT_EQ(out[0][3], 0x80000000u); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x3F800000u); | 
|  | EXPECT_EQ(out[1][1], 0x3F800000u); | 
|  | EXPECT_EQ(out[1][2], 0x00000000u); | 
|  | EXPECT_EQ(out[1][3], 0x80000000u); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0x00000000u); | 
|  | EXPECT_EQ(out[2][1], 0x00000000u); | 
|  | EXPECT_EQ(out[2][2], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[2][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[3][0], 0x00000001u); | 
|  | EXPECT_EQ(out[3][1], 0x00000001u); | 
|  | EXPECT_EQ(out[3][2], 0x00000000u); | 
|  | EXPECT_EQ(out[3][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[4][0], 0x00000000u); | 
|  | EXPECT_EQ(out[4][1], 0x00000000u); | 
|  | EXPECT_EQ(out[4][2], 0x00000000u); | 
|  | EXPECT_EQ(out[4][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[5][0], 0x00000001u); | 
|  | EXPECT_EQ(out[5][1], 0x00000001u); | 
|  | EXPECT_EQ(out[5][2], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[5][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[6][0], 0x00000000u); | 
|  | EXPECT_EQ(out[6][1], 0x0000FFFFu); | 
|  | EXPECT_EQ(out[6][2], 0x00000000u); | 
|  | EXPECT_EQ(out[6][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[7][0], 0x00010001u); | 
|  | EXPECT_EQ(out[7][1], 0x00000000u); | 
|  | EXPECT_EQ(out[7][2], 0x00000000u); | 
|  | EXPECT_EQ(out[7][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[8][0], 0x00000000u); | 
|  | EXPECT_EQ(out[8][1], 0x00000000u); | 
|  | EXPECT_EQ(out[8][2], 0x00000000u); | 
|  | EXPECT_EQ(out[8][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[9][0], 0x00010001u); | 
|  | EXPECT_EQ(out[9][1], 0x0000FFFFu); | 
|  | EXPECT_EQ(out[9][2], 0x00000000u); | 
|  | EXPECT_EQ(out[9][3], 0x00000000u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, NotNeg) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Int>(out + 16 * 0) = ~Int(0x55555555); | 
|  | *Pointer<Short>(out + 16 * 1) = ~Short(0x5555); | 
|  | *Pointer<Int4>(out + 16 * 2) = ~Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF); | 
|  | *Pointer<Short4>(out + 16 * 3) = ~Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF); | 
|  |  | 
|  | *Pointer<Int>(out + 16 * 4) = -Int(0x55555555); | 
|  | *Pointer<Short>(out + 16 * 5) = -Short(0x5555); | 
|  | *Pointer<Int4>(out + 16 * 6) = -Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF); | 
|  | *Pointer<Short4>(out + 16 * 7) = -Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF); | 
|  |  | 
|  | *Pointer<Float4>(out + 16 * 8) = -Float4(1.0f, -1.0f, 0.0f, -0.0f); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[10][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0xAAAAAAAAu); | 
|  | EXPECT_EQ(out[0][1], 0x00000000u); | 
|  | EXPECT_EQ(out[0][2], 0x00000000u); | 
|  | EXPECT_EQ(out[0][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x0000AAAAu); | 
|  | EXPECT_EQ(out[1][1], 0x00000000u); | 
|  | EXPECT_EQ(out[1][2], 0x00000000u); | 
|  | EXPECT_EQ(out[1][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0xAAAAAAAAu); | 
|  | EXPECT_EQ(out[2][1], 0x55555555u); | 
|  | EXPECT_EQ(out[2][2], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[2][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[3][0], 0x5555AAAAu); | 
|  | EXPECT_EQ(out[3][1], 0x0000FFFFu); | 
|  | EXPECT_EQ(out[3][2], 0x00000000u); | 
|  | EXPECT_EQ(out[3][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[4][0], 0xAAAAAAABu); | 
|  | EXPECT_EQ(out[4][1], 0x00000000u); | 
|  | EXPECT_EQ(out[4][2], 0x00000000u); | 
|  | EXPECT_EQ(out[4][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[5][0], 0x0000AAABu); | 
|  | EXPECT_EQ(out[5][1], 0x00000000u); | 
|  | EXPECT_EQ(out[5][2], 0x00000000u); | 
|  | EXPECT_EQ(out[5][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[6][0], 0xAAAAAAABu); | 
|  | EXPECT_EQ(out[6][1], 0x55555556u); | 
|  | EXPECT_EQ(out[6][2], 0x00000000u); | 
|  | EXPECT_EQ(out[6][3], 0x00000001u); | 
|  |  | 
|  | EXPECT_EQ(out[7][0], 0x5556AAABu); | 
|  | EXPECT_EQ(out[7][1], 0x00010000u); | 
|  | EXPECT_EQ(out[7][2], 0x00000000u); | 
|  | EXPECT_EQ(out[7][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[8][0], 0xBF800000u); | 
|  | EXPECT_EQ(out[8][1], 0x3F800000u); | 
|  | EXPECT_EQ(out[8][2], 0x80000000u); | 
|  | EXPECT_EQ(out[8][3], 0x00000000u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, RoundInt) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Int4>(out + 0) = RoundInt(Float4(3.1f, 3.6f, -3.1f, -3.6f)); | 
|  | *Pointer<Int4>(out + 16) = RoundIntClamped(Float4(2147483648.0f, -2147483648.0f, 2147483520, -2147483520)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int out[2][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 3); | 
|  | EXPECT_EQ(out[0][1], 4); | 
|  | EXPECT_EQ(out[0][2], -3); | 
|  | EXPECT_EQ(out[0][3], -4); | 
|  |  | 
|  | // x86 returns 0x80000000 for values which cannot be represented in a 32-bit | 
|  | // integer, but RoundIntClamped() clamps to ensure a positive value for | 
|  | // positive input. ARM saturates to the largest representable integers. | 
|  | EXPECT_GE(out[1][0], 2147483520); | 
|  | EXPECT_LT(out[1][1], -2147483647); | 
|  | EXPECT_EQ(out[1][2], 2147483520); | 
|  | EXPECT_EQ(out[1][3], -2147483520); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, FPtoUI) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<UInt>(out + 0) = UInt(Float(0xF0000000u)); | 
|  | *Pointer<UInt>(out + 4) = UInt(Float(0xC0000000u)); | 
|  | *Pointer<UInt>(out + 8) = UInt(Float(0x00000001u)); | 
|  | *Pointer<UInt>(out + 12) = UInt(Float(0xF000F000u)); | 
|  |  | 
|  | *Pointer<UInt4>(out + 16) = UInt4(Float4(0xF0000000u, 0x80000000u, 0x00000000u, 0xCCCC0000u)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[2][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0xF0000000u); | 
|  | EXPECT_EQ(out[0][1], 0xC0000000u); | 
|  | EXPECT_EQ(out[0][2], 0x00000001u); | 
|  | EXPECT_EQ(out[0][3], 0xF000F000u); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0xF0000000u); | 
|  | EXPECT_EQ(out[1][1], 0x80000000u); | 
|  | EXPECT_EQ(out[1][2], 0x00000000u); | 
|  | EXPECT_EQ(out[1][3], 0xCCCC0000u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, VectorCompare) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 0) = CmpEQ(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); | 
|  | *Pointer<Int4>(out + 16 * 1) = CmpEQ(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); | 
|  | *Pointer<Byte8>(out + 16 * 2) = CmpEQ(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 3) = CmpNLT(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); | 
|  | *Pointer<Int4>(out + 16 * 4) = CmpNLT(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); | 
|  | *Pointer<Byte8>(out + 16 * 5) = CmpGT(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[6][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x00000000u); | 
|  | EXPECT_EQ(out[0][1], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[0][2], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[0][3], 0xFFFFFFFFu); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x00000000u); | 
|  | EXPECT_EQ(out[1][1], 0x00000000u); | 
|  | EXPECT_EQ(out[1][2], 0x00000000u); | 
|  | EXPECT_EQ(out[1][3], 0xFFFFFFFFu); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0xFF000000u); | 
|  | EXPECT_EQ(out[2][1], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[3][0], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[3][1], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[3][2], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[3][3], 0xFFFFFFFFu); | 
|  |  | 
|  | EXPECT_EQ(out[4][0], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[4][1], 0x00000000u); | 
|  | EXPECT_EQ(out[4][2], 0x00000000u); | 
|  | EXPECT_EQ(out[4][3], 0xFFFFFFFFu); | 
|  |  | 
|  | EXPECT_EQ(out[5][0], 0x00000000u); | 
|  | EXPECT_EQ(out[5][1], 0xFFFFFFFFu); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, SaturatedAddAndSubtract) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Byte8>(out + 8 * 0) = | 
|  | AddSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8), | 
|  | Byte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  | *Pointer<Byte8>(out + 8 * 1) = | 
|  | AddSat(Byte8(0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE), | 
|  | Byte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  | *Pointer<Byte8>(out + 8 * 2) = | 
|  | SubSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8), | 
|  | Byte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  |  | 
|  | *Pointer<SByte8>(out + 8 * 3) = | 
|  | AddSat(SByte8(1, 2, 3, 4, 5, 6, 7, 8), | 
|  | SByte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  | *Pointer<SByte8>(out + 8 * 4) = | 
|  | AddSat(SByte8(0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E), | 
|  | SByte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  | *Pointer<SByte8>(out + 8 * 5) = | 
|  | AddSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88), | 
|  | SByte8(-7, -6, -5, -4, -3, -2, -1, -0)); | 
|  | *Pointer<SByte8>(out + 8 * 6) = | 
|  | SubSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88), | 
|  | SByte8(7, 6, 5, 4, 3, 2, 1, 0)); | 
|  |  | 
|  | *Pointer<Short4>(out + 8 * 7) = | 
|  | AddSat(Short4(1, 2, 3, 4), Short4(3, 2, 1, 0)); | 
|  | *Pointer<Short4>(out + 8 * 8) = | 
|  | AddSat(Short4(0x7FFE, 0x7FFE, 0x7FFE, 0x7FFE), | 
|  | Short4(3, 2, 1, 0)); | 
|  | *Pointer<Short4>(out + 8 * 9) = | 
|  | AddSat(Short4(0x8001, 0x8002, 0x8003, 0x8004), | 
|  | Short4(-3, -2, -1, -0)); | 
|  | *Pointer<Short4>(out + 8 * 10) = | 
|  | SubSat(Short4(0x8001, 0x8002, 0x8003, 0x8004), | 
|  | Short4(3, 2, 1, 0)); | 
|  |  | 
|  | *Pointer<UShort4>(out + 8 * 11) = | 
|  | AddSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0)); | 
|  | *Pointer<UShort4>(out + 8 * 12) = | 
|  | AddSat(UShort4(0xFFFE, 0xFFFE, 0xFFFE, 0xFFFE), | 
|  | UShort4(3, 2, 1, 0)); | 
|  | *Pointer<UShort4>(out + 8 * 13) = | 
|  | SubSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[14][2]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x08080808u); | 
|  | EXPECT_EQ(out[0][1], 0x08080808u); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[1][1], 0xFEFFFFFFu); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0x00000000u); | 
|  | EXPECT_EQ(out[2][1], 0x08060402u); | 
|  |  | 
|  | EXPECT_EQ(out[3][0], 0x08080808u); | 
|  | EXPECT_EQ(out[3][1], 0x08080808u); | 
|  |  | 
|  | EXPECT_EQ(out[4][0], 0x7F7F7F7Fu); | 
|  | EXPECT_EQ(out[4][1], 0x7E7F7F7Fu); | 
|  |  | 
|  | EXPECT_EQ(out[5][0], 0x80808080u); | 
|  | EXPECT_EQ(out[5][1], 0x88868482u); | 
|  |  | 
|  | EXPECT_EQ(out[6][0], 0x80808080u); | 
|  | EXPECT_EQ(out[6][1], 0x88868482u); | 
|  |  | 
|  | EXPECT_EQ(out[7][0], 0x00040004u); | 
|  | EXPECT_EQ(out[7][1], 0x00040004u); | 
|  |  | 
|  | EXPECT_EQ(out[8][0], 0x7FFF7FFFu); | 
|  | EXPECT_EQ(out[8][1], 0x7FFE7FFFu); | 
|  |  | 
|  | EXPECT_EQ(out[9][0], 0x80008000u); | 
|  | EXPECT_EQ(out[9][1], 0x80048002u); | 
|  |  | 
|  | EXPECT_EQ(out[10][0], 0x80008000u); | 
|  | EXPECT_EQ(out[10][1], 0x80048002u); | 
|  |  | 
|  | EXPECT_EQ(out[11][0], 0x00040004u); | 
|  | EXPECT_EQ(out[11][1], 0x00040004u); | 
|  |  | 
|  | EXPECT_EQ(out[12][0], 0xFFFFFFFFu); | 
|  | EXPECT_EQ(out[12][1], 0xFFFEFFFFu); | 
|  |  | 
|  | EXPECT_EQ(out[13][0], 0x00000000u); | 
|  | EXPECT_EQ(out[13][1], 0x00040002u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Unpack) | 
|  | { | 
|  | FunctionT<int(void *, void *)> function; | 
|  | { | 
|  | Pointer<Byte> in = function.Arg<0>(); | 
|  | Pointer<Byte> out = function.Arg<1>(); | 
|  |  | 
|  | Byte4 test_byte_a = *Pointer<Byte4>(in + 4 * 0); | 
|  | Byte4 test_byte_b = *Pointer<Byte4>(in + 4 * 1); | 
|  |  | 
|  | *Pointer<Short4>(out + 8 * 0) = | 
|  | Unpack(test_byte_a, test_byte_b); | 
|  |  | 
|  | *Pointer<Short4>(out + 8 * 1) = Unpack(test_byte_a); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int in[1][2]; | 
|  | unsigned int out[2][2]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | in[0][0] = 0xABCDEF12u; | 
|  | in[0][1] = 0x34567890u; | 
|  |  | 
|  | routine(&in, &out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x78EF9012u); | 
|  | EXPECT_EQ(out[0][1], 0x34AB56CDu); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0xEFEF1212u); | 
|  | EXPECT_EQ(out[1][1], 0xABABCDCDu); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Pack) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<SByte8>(out + 8 * 0) = | 
|  | PackSigned(Short4(-1, -2, 1, 2), | 
|  | Short4(3, 4, -3, -4)); | 
|  |  | 
|  | *Pointer<Byte8>(out + 8 * 1) = | 
|  | PackUnsigned(Short4(-1, -2, 1, 2), | 
|  | Short4(3, 4, -3, -4)); | 
|  |  | 
|  | *Pointer<Short8>(out + 8 * 2) = | 
|  | PackSigned(Int4(-1, -2, 1, 2), | 
|  | Int4(3, 4, -3, -4)); | 
|  |  | 
|  | *Pointer<UShort8>(out + 8 * 4) = | 
|  | PackUnsigned(Int4(-1, -2, 1, 2), | 
|  | Int4(3, 4, -3, -4)); | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[6][2]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x0201FEFFu); | 
|  | EXPECT_EQ(out[0][1], 0xFCFD0403u); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x02010000u); | 
|  | EXPECT_EQ(out[1][1], 0x00000403u); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0xFFFEFFFFu); | 
|  | EXPECT_EQ(out[2][1], 0x00020001u); | 
|  |  | 
|  | EXPECT_EQ(out[3][0], 0x00040003u); | 
|  | EXPECT_EQ(out[3][1], 0xFFFCFFFDu); | 
|  |  | 
|  | EXPECT_EQ(out[4][0], 0x00000000u); | 
|  | EXPECT_EQ(out[4][1], 0x00020001u); | 
|  |  | 
|  | EXPECT_EQ(out[5][0], 0x00040003u); | 
|  | EXPECT_EQ(out[5][1], 0x00000000u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, MulHigh) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Short4>(out + 16 * 0) = | 
|  | MulHigh(Short4(0x01AA, 0x02DD, 0x03EE, 0xF422), | 
|  | Short4(0x01BB, 0x02CC, 0x03FF, 0xF411)); | 
|  | *Pointer<UShort4>(out + 16 * 1) = | 
|  | MulHigh(UShort4(0x01AA, 0x02DD, 0x03EE, 0xF422), | 
|  | UShort4(0x01BB, 0x02CC, 0x03FF, 0xF411)); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 2) = | 
|  | MulHigh(Int4(0x000001AA, 0x000002DD, 0xC8000000, 0xF8000000), | 
|  | Int4(0x000001BB, 0x84000000, 0x000003EE, 0xD7000000)); | 
|  | *Pointer<UInt4>(out + 16 * 3) = | 
|  | MulHigh(UInt4(0x000001AAu, 0x000002DDu, 0xC8000000u, 0xD8000000u), | 
|  | UInt4(0x000001BBu, 0x84000000u, 0x000003EEu, 0xD7000000u)); | 
|  |  | 
|  | *Pointer<Int4>(out + 16 * 4) = | 
|  | MulHigh(Int4(0x7FFFFFFF, 0x7FFFFFFF, 0x80008000, 0xFFFFFFFF), | 
|  | Int4(0x7FFFFFFF, 0x80000000, 0x80008000, 0xFFFFFFFF)); | 
|  | *Pointer<UInt4>(out + 16 * 5) = | 
|  | MulHigh(UInt4(0x7FFFFFFFu, 0x7FFFFFFFu, 0x80008000u, 0xFFFFFFFFu), | 
|  | UInt4(0x7FFFFFFFu, 0x80000000u, 0x80008000u, 0xFFFFFFFFu)); | 
|  |  | 
|  | // (U)Short8 variants currently unimplemented. | 
|  |  | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[6][4]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x00080002u); | 
|  | EXPECT_EQ(out[0][1], 0x008D000Fu); | 
|  |  | 
|  | EXPECT_EQ(out[1][0], 0x00080002u); | 
|  | EXPECT_EQ(out[1][1], 0xE8C0000Fu); | 
|  |  | 
|  | EXPECT_EQ(out[2][0], 0x00000000u); | 
|  | EXPECT_EQ(out[2][1], 0xFFFFFE9Cu); | 
|  | EXPECT_EQ(out[2][2], 0xFFFFFF23u); | 
|  | EXPECT_EQ(out[2][3], 0x01480000u); | 
|  |  | 
|  | EXPECT_EQ(out[3][0], 0x00000000u); | 
|  | EXPECT_EQ(out[3][1], 0x00000179u); | 
|  | EXPECT_EQ(out[3][2], 0x00000311u); | 
|  | EXPECT_EQ(out[3][3], 0xB5680000u); | 
|  |  | 
|  | EXPECT_EQ(out[4][0], 0x3FFFFFFFu); | 
|  | EXPECT_EQ(out[4][1], 0xC0000000u); | 
|  | EXPECT_EQ(out[4][2], 0x3FFF8000u); | 
|  | EXPECT_EQ(out[4][3], 0x00000000u); | 
|  |  | 
|  | EXPECT_EQ(out[5][0], 0x3FFFFFFFu); | 
|  | EXPECT_EQ(out[5][1], 0x3FFFFFFFu); | 
|  | EXPECT_EQ(out[5][2], 0x40008000u); | 
|  | EXPECT_EQ(out[5][3], 0xFFFFFFFEu); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, MulAdd) | 
|  | { | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> out = function.Arg<0>(); | 
|  |  | 
|  | *Pointer<Int2>(out + 8 * 0) = | 
|  | MulAdd(Short4(0x1aa, 0x2dd, 0x3ee, 0xF422), | 
|  | Short4(0x1bb, 0x2cc, 0x3ff, 0xF411)); | 
|  |  | 
|  | // (U)Short8 variant is mentioned but unimplemented | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | unsigned int out[1][2]; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | routine(&out); | 
|  |  | 
|  | EXPECT_EQ(out[0][0], 0x000AE34Au); | 
|  | EXPECT_EQ(out[0][1], 0x009D5254u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, PointersEqual) | 
|  | { | 
|  | FunctionT<int(void *, void *)> function; | 
|  | { | 
|  | Pointer<Byte> ptrA = function.Arg<0>(); | 
|  | Pointer<Byte> ptrB = function.Arg<1>(); | 
|  | If(ptrA == ptrB) | 
|  | { | 
|  | Return(1); | 
|  | } | 
|  | Else | 
|  | { | 
|  | Return(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | int *a = reinterpret_cast<int *>(uintptr_t(0x0000000000000000)); | 
|  | int *b = reinterpret_cast<int *>(uintptr_t(0x00000000F0000000)); | 
|  | int *c = reinterpret_cast<int *>(uintptr_t(0xF000000000000000)); | 
|  | EXPECT_EQ(routine(&a, &a), 1); | 
|  | EXPECT_EQ(routine(&b, &b), 1); | 
|  | EXPECT_EQ(routine(&c, &c), 1); | 
|  |  | 
|  | EXPECT_EQ(routine(&a, &b), 0); | 
|  | EXPECT_EQ(routine(&b, &a), 0); | 
|  | EXPECT_EQ(routine(&b, &c), 0); | 
|  | EXPECT_EQ(routine(&c, &b), 0); | 
|  | EXPECT_EQ(routine(&c, &a), 0); | 
|  | EXPECT_EQ(routine(&a, &c), 0); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Args_2Mixed) | 
|  | { | 
|  | // 2 mixed type args | 
|  | FunctionT<float(int, float)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Float b = function.Arg<1>(); | 
|  | Return(Float(a) + b); | 
|  | } | 
|  |  | 
|  | if(auto routine = function(testName().c_str())) | 
|  | { | 
|  | float result = routine(1, 2.f); | 
|  | EXPECT_EQ(result, 3.f); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Args_4Mixed) | 
|  | { | 
|  | // 4 mixed type args (max register allocation on Windows) | 
|  | FunctionT<float(int, float, int, float)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Float b = function.Arg<1>(); | 
|  | Int c = function.Arg<2>(); | 
|  | Float d = function.Arg<3>(); | 
|  | Return(Float(a) + b + Float(c) + d); | 
|  | } | 
|  |  | 
|  | if(auto routine = function(testName().c_str())) | 
|  | { | 
|  | float result = routine(1, 2.f, 3, 4.f); | 
|  | EXPECT_EQ(result, 10.f); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Args_5Mixed) | 
|  | { | 
|  | // 5 mixed type args (5th spills over to stack on Windows) | 
|  | FunctionT<float(int, float, int, float, int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Float b = function.Arg<1>(); | 
|  | Int c = function.Arg<2>(); | 
|  | Float d = function.Arg<3>(); | 
|  | Int e = function.Arg<4>(); | 
|  | Return(Float(a) + b + Float(c) + d + Float(e)); | 
|  | } | 
|  |  | 
|  | if(auto routine = function(testName().c_str())) | 
|  | { | 
|  | float result = routine(1, 2.f, 3, 4.f, 5); | 
|  | EXPECT_EQ(result, 15.f); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Args_GreaterThan5Mixed) | 
|  | { | 
|  | // >5 mixed type args | 
|  | FunctionT<float(int, float, int, float, int, float, int, float, int, float)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Float b = function.Arg<1>(); | 
|  | Int c = function.Arg<2>(); | 
|  | Float d = function.Arg<3>(); | 
|  | Int e = function.Arg<4>(); | 
|  | Float f = function.Arg<5>(); | 
|  | Int g = function.Arg<6>(); | 
|  | Float h = function.Arg<7>(); | 
|  | Int i = function.Arg<8>(); | 
|  | Float j = function.Arg<9>(); | 
|  | Return(Float(a) + b + Float(c) + d + Float(e) + f + Float(g) + h + Float(i) + j); | 
|  | } | 
|  |  | 
|  | if(auto routine = function(testName().c_str())) | 
|  | { | 
|  | float result = routine(1, 2.f, 3, 4.f, 5, 6.f, 7, 8.f, 9, 10.f); | 
|  | EXPECT_EQ(result, 55.f); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This test was written because on Windows with Subzero, we would get a crash when executing a function | 
|  | // with a large number of local variables. The problem was that on Windows, 4K pages are allocated as | 
|  | // needed for the stack whenever an access is made in a "guard page", at which point the page is committed, | 
|  | // and the next 4K page becomes the guard page. If a stack access is made that's beyond the guard page, | 
|  | // a regular page fault occurs. To fix this, Subzero (and any compiler) now emits a call to __chkstk with | 
|  | // the stack size in EAX, so that it can probe the stack in 4K increments up to that size, committing the | 
|  | // required pages. See https://docs.microsoft.com/en-us/windows/win32/devnotes/-win32-chkstk. | 
|  | TEST(ReactorUnitTests, LargeStack) | 
|  | { | 
|  | // An empirically large enough value to access outside the guard pages | 
|  | constexpr int ArrayByteSize = 24 * 1024; | 
|  | constexpr int ArraySize = ArrayByteSize / sizeof(int32_t); | 
|  |  | 
|  | FunctionT<void(int32_t * v)> function; | 
|  | { | 
|  | // Allocate a stack array large enough that writing to the first element will reach beyond | 
|  | // the guard page. | 
|  | Array<Int, ArraySize> largeStackArray; | 
|  | for(int i = 0; i < ArraySize; ++i) | 
|  | { | 
|  | largeStackArray[i] = i; | 
|  | } | 
|  |  | 
|  | Pointer<Int> in = function.Arg<0>(); | 
|  | for(int i = 0; i < ArraySize; ++i) | 
|  | { | 
|  | in[i] = largeStackArray[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // LLVM takes very long to generate this routine when O2 optimizations are enabled. Disable for now. | 
|  | // TODO(b/174031014): Remove this once we fix LLVM taking so long. | 
|  | ScopedPragma O0(OptimizationLevel, 0); | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | std::array<int32_t, ArraySize> v; | 
|  |  | 
|  | // Run this in a thread, so that we get the default reserved stack size (8K on Win64). | 
|  | std::thread t([&] { | 
|  | routine(v.data()); | 
|  | }); | 
|  | t.join(); | 
|  |  | 
|  | for(int i = 0; i < ArraySize; ++i) | 
|  | { | 
|  | EXPECT_EQ(v[i], i); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Call) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static int Callback(Class *p, int i, float f) | 
|  | { | 
|  | p->i = i; | 
|  | p->f = f; | 
|  | return i + int(f); | 
|  | } | 
|  |  | 
|  | int i = 0; | 
|  | float f = 0.0f; | 
|  | }; | 
|  |  | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> c = function.Arg<0>(); | 
|  | auto res = Call(Class::Callback, c, 10, 20.0f); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | Class c; | 
|  | int res = routine(&c); | 
|  | EXPECT_EQ(res, 30); | 
|  | EXPECT_EQ(c.i, 10); | 
|  | EXPECT_EQ(c.f, 20.0f); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CallMemberFunction) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | int Callback(int argI, float argF) | 
|  | { | 
|  | i = argI; | 
|  | f = argF; | 
|  | return i + int(f); | 
|  | } | 
|  |  | 
|  | int i = 0; | 
|  | float f = 0.0f; | 
|  | }; | 
|  |  | 
|  | Class c; | 
|  |  | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | auto res = Call(&Class::Callback, &c, 10, 20.0f); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int res = routine(); | 
|  | EXPECT_EQ(res, 30); | 
|  | EXPECT_EQ(c.i, 10); | 
|  | EXPECT_EQ(c.f, 20.0f); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CallMemberFunctionIndirect) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | int Callback(int argI, float argF) | 
|  | { | 
|  | i = argI; | 
|  | f = argF; | 
|  | return i + int(f); | 
|  | } | 
|  |  | 
|  | int i = 0; | 
|  | float f = 0.0f; | 
|  | }; | 
|  |  | 
|  | FunctionT<int(void *)> function; | 
|  | { | 
|  | Pointer<Byte> c = function.Arg<0>(); | 
|  | auto res = Call(&Class::Callback, c, 10, 20.0f); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | Class c; | 
|  | int res = routine(&c); | 
|  | EXPECT_EQ(res, 30); | 
|  | EXPECT_EQ(c.i, 10); | 
|  | EXPECT_EQ(c.f, 20.0f); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CallImplicitCast) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static void Callback(Class *c, const char *s) | 
|  | { | 
|  | c->str = s; | 
|  | } | 
|  | std::string str; | 
|  | }; | 
|  |  | 
|  | FunctionT<void(Class * c, const char *s)> function; | 
|  | { | 
|  | Pointer<Byte> c = function.Arg<0>(); | 
|  | Pointer<Byte> s = function.Arg<1>(); | 
|  | Call(Class::Callback, c, s); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | Class c; | 
|  | routine(&c, "hello world"); | 
|  | EXPECT_EQ(c.str, "hello world"); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CallBoolReturnFunction) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static bool IsEven(int a) | 
|  | { | 
|  | return a % 2 == 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Bool res = Call(Class::IsEven, a); | 
|  | If(res) | 
|  | { | 
|  | Return(1); | 
|  | } | 
|  | Return(0); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | for(int i = 0; i < 10; ++i) | 
|  | { | 
|  | EXPECT_EQ(routine(i), i % 2 == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Call_Args4) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static int Func(int a, int b, int c, int d) | 
|  | { | 
|  | return a + b + c + d; | 
|  | } | 
|  | }; | 
|  |  | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | auto res = Call(Class::Func, 1, 2, 3, 4); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int res = routine(); | 
|  | EXPECT_EQ(res, 1 + 2 + 3 + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Call_Args5) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static int Func(int a, int b, int c, int d, int e) | 
|  | { | 
|  | return a + b + c + d + e; | 
|  | } | 
|  | }; | 
|  |  | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | auto res = Call(Class::Func, 1, 2, 3, 4, 5); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int res = routine(); | 
|  | EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Call_ArgsMany) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static int Func(int a, int b, int c, int d, int e, int f, int g, int h) | 
|  | { | 
|  | return a + b + c + d + e + f + g + h; | 
|  | } | 
|  | }; | 
|  |  | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | auto res = Call(Class::Func, 1, 2, 3, 4, 5, 6, 7, 8); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int res = routine(); | 
|  | EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Call_ArgsMixed) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static int Func(int a, float b, int *c, float *d, int e, float f, int *g, float *h) | 
|  | { | 
|  | return a + b + *c + *d + e + f + *g + *h; | 
|  | } | 
|  | }; | 
|  |  | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int c(3); | 
|  | Float d(4); | 
|  | Int g(7); | 
|  | Float h(8); | 
|  | auto res = Call(Class::Func, 1, 2.f, &c, &d, 5, 6.f, &g, &h); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int res = routine(); | 
|  | EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Call_ArgsPointer) | 
|  | { | 
|  | struct Class | 
|  | { | 
|  | static int Func(int *a) | 
|  | { | 
|  | return *a; | 
|  | } | 
|  | }; | 
|  |  | 
|  | { | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | Int a(12345); | 
|  | auto res = Call(Class::Func, &a); | 
|  | Return(res); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int res = routine(); | 
|  | EXPECT_EQ(res, 12345); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CallExternalCallRoutine) | 
|  | { | 
|  | // routine1 calls Class::Func, passing it a pointer to routine2, and Class::Func calls routine2 | 
|  |  | 
|  | auto routine2 = [] { | 
|  | FunctionT<float(float, int)> function; | 
|  | { | 
|  | Float a = function.Arg<0>(); | 
|  | Int b = function.Arg<1>(); | 
|  | Return(a + Float(b)); | 
|  | } | 
|  | return function("%s2", testName().c_str()); | 
|  | }(); | 
|  |  | 
|  | struct Class | 
|  | { | 
|  | static float Func(void *p, float a, int b) | 
|  | { | 
|  | auto funcToCall = reinterpret_cast<float (*)(float, int)>(p); | 
|  | return funcToCall(a, b); | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto routine1 = [] { | 
|  | FunctionT<float(void *, float, int)> function; | 
|  | { | 
|  | Pointer<Byte> funcToCall = function.Arg<0>(); | 
|  | Float a = function.Arg<1>(); | 
|  | Int b = function.Arg<2>(); | 
|  | Float result = Call(Class::Func, funcToCall, a, b); | 
|  | Return(result); | 
|  | } | 
|  | return function(testName().c_str()); | 
|  | }(); | 
|  |  | 
|  | float result = routine1((void *)routine2.getEntry(), 12.f, 13); | 
|  | EXPECT_EQ(result, 25.f); | 
|  | } | 
|  |  | 
|  | // Check that a complex generated function which utilizes all 8 or 16 XMM | 
|  | // registers computes the correct result. | 
|  | // (Note that due to MSC's lack of support for inline assembly in x64, | 
|  | // this test does not actually check that the register contents are | 
|  | // preserved, just that the generated function computes the correct value. | 
|  | // It's necessary to inspect the registers in a debugger to actually verify.) | 
|  | TEST(ReactorUnitTests, PreserveXMMRegisters) | 
|  | { | 
|  | FunctionT<void(void *, void *)> function; | 
|  | { | 
|  | Pointer<Byte> in = function.Arg<0>(); | 
|  | Pointer<Byte> out = function.Arg<1>(); | 
|  |  | 
|  | Float4 a = *Pointer<Float4>(in + 16 * 0); | 
|  | Float4 b = *Pointer<Float4>(in + 16 * 1); | 
|  | Float4 c = *Pointer<Float4>(in + 16 * 2); | 
|  | Float4 d = *Pointer<Float4>(in + 16 * 3); | 
|  | Float4 e = *Pointer<Float4>(in + 16 * 4); | 
|  | Float4 f = *Pointer<Float4>(in + 16 * 5); | 
|  | Float4 g = *Pointer<Float4>(in + 16 * 6); | 
|  | Float4 h = *Pointer<Float4>(in + 16 * 7); | 
|  | Float4 i = *Pointer<Float4>(in + 16 * 8); | 
|  | Float4 j = *Pointer<Float4>(in + 16 * 9); | 
|  | Float4 k = *Pointer<Float4>(in + 16 * 10); | 
|  | Float4 l = *Pointer<Float4>(in + 16 * 11); | 
|  | Float4 m = *Pointer<Float4>(in + 16 * 12); | 
|  | Float4 n = *Pointer<Float4>(in + 16 * 13); | 
|  | Float4 o = *Pointer<Float4>(in + 16 * 14); | 
|  | Float4 p = *Pointer<Float4>(in + 16 * 15); | 
|  |  | 
|  | Float4 ab = a + b; | 
|  | Float4 cd = c + d; | 
|  | Float4 ef = e + f; | 
|  | Float4 gh = g + h; | 
|  | Float4 ij = i + j; | 
|  | Float4 kl = k + l; | 
|  | Float4 mn = m + n; | 
|  | Float4 op = o + p; | 
|  |  | 
|  | Float4 abcd = ab + cd; | 
|  | Float4 efgh = ef + gh; | 
|  | Float4 ijkl = ij + kl; | 
|  | Float4 mnop = mn + op; | 
|  |  | 
|  | Float4 abcdefgh = abcd + efgh; | 
|  | Float4 ijklmnop = ijkl + mnop; | 
|  | Float4 sum = abcdefgh + ijklmnop; | 
|  | *Pointer<Float4>(out) = sum; | 
|  | Return(); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | assert(routine); | 
|  |  | 
|  | float input[64] = { 1.0f, 0.0f, 0.0f, 0.0f, | 
|  | -1.0f, 1.0f, -1.0f, 0.0f, | 
|  | 1.0f, 2.0f, -2.0f, 0.0f, | 
|  | -1.0f, 3.0f, -3.0f, 0.0f, | 
|  | 1.0f, 4.0f, -4.0f, 0.0f, | 
|  | -1.0f, 5.0f, -5.0f, 0.0f, | 
|  | 1.0f, 6.0f, -6.0f, 0.0f, | 
|  | -1.0f, 7.0f, -7.0f, 0.0f, | 
|  | 1.0f, 8.0f, -8.0f, 0.0f, | 
|  | -1.0f, 9.0f, -9.0f, 0.0f, | 
|  | 1.0f, 10.0f, -10.0f, 0.0f, | 
|  | -1.0f, 11.0f, -11.0f, 0.0f, | 
|  | 1.0f, 12.0f, -12.0f, 0.0f, | 
|  | -1.0f, 13.0f, -13.0f, 0.0f, | 
|  | 1.0f, 14.0f, -14.0f, 0.0f, | 
|  | -1.0f, 15.0f, -15.0f, 0.0f }; | 
|  |  | 
|  | float result[4]; | 
|  |  | 
|  | routine(input, result); | 
|  |  | 
|  | EXPECT_EQ(result[0], 0.0f); | 
|  | EXPECT_EQ(result[1], 120.0f); | 
|  | EXPECT_EQ(result[2], -120.0f); | 
|  | EXPECT_EQ(result[3], 0.0f); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | class CToReactorTCastTest : public ::testing::Test | 
|  | { | 
|  | public: | 
|  | using CType = typename std::tuple_element<0, T>::type; | 
|  | using ReactorType = typename std::tuple_element<1, T>::type; | 
|  | }; | 
|  |  | 
|  | using CToReactorTCastTestTypes = ::testing::Types<  // Subset of types that can be used as arguments. | 
|  | //	std::pair<bool,         Bool>,    FIXME(capn): Not supported as argument type by Subzero. | 
|  | //	std::pair<uint8_t,      Byte>,    FIXME(capn): Not supported as argument type by Subzero. | 
|  | //	std::pair<int8_t,       SByte>,   FIXME(capn): Not supported as argument type by Subzero. | 
|  | //	std::pair<int16_t,      Short>,   FIXME(capn): Not supported as argument type by Subzero. | 
|  | //	std::pair<uint16_t,     UShort>,  FIXME(capn): Not supported as argument type by Subzero. | 
|  | std::pair<int, Int>, | 
|  | std::pair<unsigned int, UInt>, | 
|  | std::pair<float, Float>>; | 
|  |  | 
|  | TYPED_TEST_SUITE(CToReactorTCastTest, CToReactorTCastTestTypes); | 
|  |  | 
|  | TYPED_TEST(CToReactorTCastTest, Casts) | 
|  | { | 
|  | using CType = typename TestFixture::CType; | 
|  | using ReactorType = typename TestFixture::ReactorType; | 
|  |  | 
|  | std::shared_ptr<Routine> routine; | 
|  |  | 
|  | { | 
|  | Function<Int(ReactorType)> function; | 
|  | { | 
|  | ReactorType a = function.template Arg<0>(); | 
|  | ReactorType b = CType{}; | 
|  | RValue<ReactorType> c = RValue<ReactorType>(CType{}); | 
|  | Bool same = (a == b) && (a == c); | 
|  | Return(IfThenElse(same, Int(1), Int(0)));  // TODO: Ability to use Bools as return values. | 
|  | } | 
|  |  | 
|  | routine = function(testName().c_str()); | 
|  |  | 
|  | auto callable = (int (*)(CType))routine->getEntry(); | 
|  | CType in = {}; | 
|  | EXPECT_EQ(callable(in), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | class GEPTest : public ::testing::Test | 
|  | { | 
|  | public: | 
|  | using CType = typename std::tuple_element<0, T>::type; | 
|  | using ReactorType = typename std::tuple_element<1, T>::type; | 
|  | }; | 
|  |  | 
|  | using GEPTestTypes = ::testing::Types< | 
|  | std::pair<bool, Bool>, | 
|  | std::pair<int8_t, Byte>, | 
|  | std::pair<int8_t, SByte>, | 
|  | std::pair<int8_t[4], Byte4>, | 
|  | std::pair<int8_t[4], SByte4>, | 
|  | std::pair<int8_t[8], Byte8>, | 
|  | std::pair<int8_t[8], SByte8>, | 
|  | std::pair<int8_t[16], Byte16>, | 
|  | std::pair<int8_t[16], SByte16>, | 
|  | std::pair<int16_t, Short>, | 
|  | std::pair<int16_t, UShort>, | 
|  | std::pair<int16_t[2], Short2>, | 
|  | std::pair<int16_t[2], UShort2>, | 
|  | std::pair<int16_t[4], Short4>, | 
|  | std::pair<int16_t[4], UShort4>, | 
|  | std::pair<int16_t[8], Short8>, | 
|  | std::pair<int16_t[8], UShort8>, | 
|  | std::pair<int, Int>, | 
|  | std::pair<int, UInt>, | 
|  | std::pair<int[2], Int2>, | 
|  | std::pair<int[2], UInt2>, | 
|  | std::pair<int[4], Int4>, | 
|  | std::pair<int[4], UInt4>, | 
|  | std::pair<int64_t, Long>, | 
|  | std::pair<int16_t, Half>, | 
|  | std::pair<float, Float>, | 
|  | std::pair<float[2], Float2>, | 
|  | std::pair<float[4], Float4>>; | 
|  |  | 
|  | TYPED_TEST_SUITE(GEPTest, GEPTestTypes); | 
|  |  | 
|  | TYPED_TEST(GEPTest, PtrOffsets) | 
|  | { | 
|  | using CType = typename TestFixture::CType; | 
|  | using ReactorType = typename TestFixture::ReactorType; | 
|  |  | 
|  | std::shared_ptr<Routine> routine; | 
|  |  | 
|  | { | 
|  | Function<Pointer<ReactorType>(Pointer<ReactorType>, Int)> function; | 
|  | { | 
|  | Pointer<ReactorType> pointer = function.template Arg<0>(); | 
|  | Int index = function.template Arg<1>(); | 
|  | Return(&pointer[index]); | 
|  | } | 
|  |  | 
|  | routine = function(testName().c_str()); | 
|  |  | 
|  | auto callable = (CType * (*)(CType *, unsigned int)) routine->getEntry(); | 
|  |  | 
|  | union PtrInt | 
|  | { | 
|  | CType *p; | 
|  | size_t i; | 
|  | }; | 
|  |  | 
|  | PtrInt base; | 
|  | base.i = 0x10000; | 
|  |  | 
|  | for(int i = 0; i < 5; i++) | 
|  | { | 
|  | PtrInt reference; | 
|  | reference.p = &base.p[i]; | 
|  |  | 
|  | PtrInt result; | 
|  | result.p = callable(base.p, i); | 
|  |  | 
|  | auto expect = reference.i - base.i; | 
|  | auto got = result.i - base.i; | 
|  |  | 
|  | EXPECT_EQ(got, expect) << "i:" << i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static const std::vector<int> fibonacci = { | 
|  | 0, | 
|  | 1, | 
|  | 1, | 
|  | 2, | 
|  | 3, | 
|  | 5, | 
|  | 8, | 
|  | 13, | 
|  | 21, | 
|  | 34, | 
|  | 55, | 
|  | 89, | 
|  | 144, | 
|  | 233, | 
|  | 377, | 
|  | 610, | 
|  | 987, | 
|  | 1597, | 
|  | 2584, | 
|  | 4181, | 
|  | 6765, | 
|  | 10946, | 
|  | 17711, | 
|  | 28657, | 
|  | 46368, | 
|  | 75025, | 
|  | 121393, | 
|  | 196418, | 
|  | 317811, | 
|  | }; | 
|  |  | 
|  | TEST(ReactorUnitTests, Fibonacci) | 
|  | { | 
|  | FunctionT<int(int)> function; | 
|  | { | 
|  | Int n = function.Arg<0>(); | 
|  | Int current = 0; | 
|  | Int next = 1; | 
|  | For(Int i = 0, i < n, i++) | 
|  | { | 
|  | auto tmp = current + next; | 
|  | current = next; | 
|  | next = tmp; | 
|  | } | 
|  | Return(current); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | for(size_t i = 0; i < fibonacci.size(); i++) | 
|  | { | 
|  | EXPECT_EQ(routine(i), fibonacci[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Coroutines_Fibonacci) | 
|  | { | 
|  | if(!rr::Caps::coroutinesSupported()) | 
|  | { | 
|  | SUCCEED() << "Coroutines not supported"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Coroutine<int()> function; | 
|  | { | 
|  | Yield(Int(0)); | 
|  | Yield(Int(1)); | 
|  | Int current = 1; | 
|  | Int next = 1; | 
|  | While(true) | 
|  | { | 
|  | Yield(next); | 
|  | auto tmp = current + next; | 
|  | current = next; | 
|  | next = tmp; | 
|  | } | 
|  | } | 
|  | function.finalize(testName().c_str()); | 
|  |  | 
|  | auto coroutine = function(); | 
|  |  | 
|  | for(size_t i = 0; i < fibonacci.size(); i++) | 
|  | { | 
|  | int out = 0; | 
|  | EXPECT_EQ(coroutine->await(out), true); | 
|  | EXPECT_EQ(out, fibonacci[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Coroutines_Parameters) | 
|  | { | 
|  | if(!rr::Caps::coroutinesSupported()) | 
|  | { | 
|  | SUCCEED() << "Coroutines not supported"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Coroutine<uint8_t(uint8_t * data, int count)> function; | 
|  | { | 
|  | Pointer<Byte> data = function.Arg<0>(); | 
|  | Int count = function.Arg<1>(); | 
|  |  | 
|  | For(Int i = 0, i < count, i++) | 
|  | { | 
|  | Yield(data[i]); | 
|  | } | 
|  | } | 
|  | function.finalize(testName().c_str()); | 
|  |  | 
|  | uint8_t data[] = { 10, 20, 30 }; | 
|  | auto coroutine = function(&data[0], 3); | 
|  |  | 
|  | uint8_t out = 0; | 
|  | EXPECT_EQ(coroutine->await(out), true); | 
|  | EXPECT_EQ(out, 10); | 
|  | out = 0; | 
|  | EXPECT_EQ(coroutine->await(out), true); | 
|  | EXPECT_EQ(out, 20); | 
|  | out = 0; | 
|  | EXPECT_EQ(coroutine->await(out), true); | 
|  | EXPECT_EQ(out, 30); | 
|  | out = 99; | 
|  | EXPECT_EQ(coroutine->await(out), false); | 
|  | EXPECT_EQ(out, 99); | 
|  | EXPECT_EQ(coroutine->await(out), false); | 
|  | EXPECT_EQ(out, 99); | 
|  | } | 
|  |  | 
|  | // This test was written because Subzero's handling of vector types | 
|  | // failed when more than one function is generated, as is the case | 
|  | // with coroutines. | 
|  | TEST(ReactorUnitTests, Coroutines_Vectors) | 
|  | { | 
|  | if(!rr::Caps::coroutinesSupported()) | 
|  | { | 
|  | SUCCEED() << "Coroutines not supported"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Coroutine<int()> function; | 
|  | { | 
|  | Int4 a{ 1, 2, 3, 4 }; | 
|  | Yield(rr::Extract(a, 2)); | 
|  | Int4 b{ 5, 6, 7, 8 }; | 
|  | Yield(rr::Extract(b, 1)); | 
|  | Int4 c{ 9, 10, 11, 12 }; | 
|  | Yield(rr::Extract(c, 1)); | 
|  | } | 
|  | function.finalize(testName().c_str()); | 
|  |  | 
|  | auto coroutine = function(); | 
|  |  | 
|  | int out; | 
|  | coroutine->await(out); | 
|  | EXPECT_EQ(out, 3); | 
|  | coroutine->await(out); | 
|  | EXPECT_EQ(out, 6); | 
|  | coroutine->await(out); | 
|  | EXPECT_EQ(out, 10); | 
|  | } | 
|  |  | 
|  | // This test was written to make sure a coroutine without a Yield() | 
|  | // works correctly, by executing like a regular function with no | 
|  | // return (the return type is ignored). | 
|  | // We also run it twice to ensure per instance and/or global state | 
|  | // is properly cleaned up in between. | 
|  | TEST(ReactorUnitTests, Coroutines_NoYield) | 
|  | { | 
|  | if(!rr::Caps::coroutinesSupported()) | 
|  | { | 
|  | SUCCEED() << "Coroutines not supported"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < 2; ++i) | 
|  | { | 
|  | Coroutine<int()> function; | 
|  | { | 
|  | Int a; | 
|  | a = 4; | 
|  | } | 
|  | function.finalize(testName().c_str()); | 
|  |  | 
|  | auto coroutine = function(); | 
|  | int out; | 
|  | EXPECT_EQ(coroutine->await(out), false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test generating one coroutine, and executing it on multiple threads. This makes | 
|  | // sure the implementation manages per-call instance data correctly. | 
|  | TEST(ReactorUnitTests, Coroutines_Parallel) | 
|  | { | 
|  | if(!rr::Caps::coroutinesSupported()) | 
|  | { | 
|  | SUCCEED() << "Coroutines not supported"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Coroutine<int()> function; | 
|  | { | 
|  | Yield(Int(0)); | 
|  | Yield(Int(1)); | 
|  | Int current = 1; | 
|  | Int next = 1; | 
|  | While(true) | 
|  | { | 
|  | Yield(next); | 
|  | auto tmp = current + next; | 
|  | current = next; | 
|  | next = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Must call on same thread that creates the coroutine | 
|  | function.finalize(testName().c_str()); | 
|  |  | 
|  | std::vector<std::thread> threads; | 
|  | const size_t numThreads = 100; | 
|  |  | 
|  | for(size_t t = 0; t < numThreads; ++t) | 
|  | { | 
|  | threads.emplace_back([&] { | 
|  | auto coroutine = function(); | 
|  |  | 
|  | for(size_t i = 0; i < fibonacci.size(); i++) | 
|  | { | 
|  | int out = 0; | 
|  | EXPECT_EQ(coroutine->await(out), true); | 
|  | EXPECT_EQ(out, fibonacci[i]); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | for(auto &t : threads) | 
|  | { | 
|  | t.join(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename TestFuncType, typename RefFuncType, typename TestValueType> | 
|  | struct IntrinsicTestParams | 
|  | { | 
|  | std::function<TestFuncType> testFunc;   // Function we're testing (Reactor) | 
|  | std::function<RefFuncType> refFunc;     // Reference function to test against (C) | 
|  | std::vector<TestValueType> testValues;  // Values to input to functions | 
|  | }; | 
|  |  | 
|  | using IntrinsicTestParams_Float = IntrinsicTestParams<RValue<Float>(RValue<Float>), float(float), float>; | 
|  | using IntrinsicTestParams_Float4 = IntrinsicTestParams<RValue<Float4>(RValue<Float4>), float(float), float>; | 
|  | using IntrinsicTestParams_Float4_Float4 = IntrinsicTestParams<RValue<Float4>(RValue<Float4>, RValue<Float4>), float(float, float), std::pair<float, float>>; | 
|  |  | 
|  | // TODO(b/147818976): Each function has its own precision requirements for Vulkan, sometimes broken down | 
|  | // by input range. These are currently validated by deqp, but we can improve our own tests as well. | 
|  | // See https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html#spirvenv-precision-operation | 
|  | constexpr double INTRINSIC_PRECISION = 1e-4; | 
|  |  | 
|  | struct IntrinsicTest_Float : public testing::TestWithParam<IntrinsicTestParams_Float> | 
|  | { | 
|  | void test() | 
|  | { | 
|  | FunctionT<float(float)> function; | 
|  | { | 
|  | Return(GetParam().testFunc((Float(function.Arg<0>())))); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | for(auto &&v : GetParam().testValues) | 
|  | { | 
|  | SCOPED_TRACE(v); | 
|  | EXPECT_NEAR(routine(v), GetParam().refFunc(v), INTRINSIC_PRECISION); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // TODO: Move to Reactor.hpp | 
|  | template<> | 
|  | struct rr::CToReactor<int[4]> | 
|  | { | 
|  | using type = Int4; | 
|  | static Int4 cast(float[4]); | 
|  | }; | 
|  |  | 
|  | // Value type wrapper around a <type>[4] (i.e. float4, int4) | 
|  | template<typename T> | 
|  | struct type4_value | 
|  | { | 
|  | using E = typename std::remove_pointer_t<std::decay_t<T>>; | 
|  |  | 
|  | type4_value() = default; | 
|  | explicit type4_value(E rep) | 
|  | : v{ rep, rep, rep, rep } | 
|  | {} | 
|  | type4_value(E x, E y, E z, E w) | 
|  | : v{ x, y, z, w } | 
|  | {} | 
|  |  | 
|  | bool operator==(const type4_value &rhs) const | 
|  | { | 
|  | return std::equal(std::begin(v), std::end(v), rhs.v); | 
|  | } | 
|  |  | 
|  | // For gtest printing | 
|  | friend std::ostream &operator<<(std::ostream &os, const type4_value &value) | 
|  | { | 
|  | return os << "[" << value.v[0] << ", " << value.v[1] << ", " << value.v[2] << ", " << value.v[3] << "]"; | 
|  | } | 
|  |  | 
|  | T v; | 
|  | }; | 
|  |  | 
|  | using float4_value = type4_value<float4>; | 
|  | using int4_value = type4_value<int4>; | 
|  |  | 
|  | // Invoke a void(type4_value<T>*) routine on &v.v, returning wrapped result in v | 
|  | template<typename RoutineType, typename T> | 
|  | type4_value<T> invokeRoutine(RoutineType &routine, type4_value<T> v) | 
|  | { | 
|  | routine(&v.v); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | // Invoke a void(type4_value<T>*, type4_value<T>*) routine on &v1.v, &v2.v returning wrapped result in v1 | 
|  | template<typename RoutineType, typename T> | 
|  | type4_value<T> invokeRoutine(RoutineType &routine, type4_value<T> v1, type4_value<T> v2) | 
|  | { | 
|  | routine(&v1.v, &v2.v); | 
|  | return v1; | 
|  | } | 
|  |  | 
|  | struct IntrinsicTest_Float4 : public testing::TestWithParam<IntrinsicTestParams_Float4> | 
|  | { | 
|  | void test() | 
|  | { | 
|  | FunctionT<void(float4 *)> function; | 
|  | { | 
|  | Pointer<Float4> a = function.Arg<0>(); | 
|  | *a = GetParam().testFunc(*a); | 
|  | Return(); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | for(auto &&v : GetParam().testValues) | 
|  | { | 
|  | SCOPED_TRACE(v); | 
|  | float4_value result = invokeRoutine(routine, float4_value{ v }); | 
|  | float4_value expected = float4_value{ GetParam().refFunc(v) }; | 
|  | EXPECT_NEAR(result.v[0], expected.v[0], INTRINSIC_PRECISION); | 
|  | EXPECT_NEAR(result.v[1], expected.v[1], INTRINSIC_PRECISION); | 
|  | EXPECT_NEAR(result.v[2], expected.v[2], INTRINSIC_PRECISION); | 
|  | EXPECT_NEAR(result.v[3], expected.v[3], INTRINSIC_PRECISION); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct IntrinsicTest_Float4_Float4 : public testing::TestWithParam<IntrinsicTestParams_Float4_Float4> | 
|  | { | 
|  | void test() | 
|  | { | 
|  | FunctionT<void(float4 *, float4 *)> function; | 
|  | { | 
|  | Pointer<Float4> a = function.Arg<0>(); | 
|  | Pointer<Float4> b = function.Arg<1>(); | 
|  | *a = GetParam().testFunc(*a, *b); | 
|  | Return(); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | for(auto &&v : GetParam().testValues) | 
|  | { | 
|  | SCOPED_TRACE(v); | 
|  | float4_value result = invokeRoutine(routine, float4_value{ v.first }, float4_value{ v.second }); | 
|  | float4_value expected = float4_value{ GetParam().refFunc(v.first, v.second) }; | 
|  | EXPECT_NEAR(result.v[0], expected.v[0], INTRINSIC_PRECISION); | 
|  | EXPECT_NEAR(result.v[1], expected.v[1], INTRINSIC_PRECISION); | 
|  | EXPECT_NEAR(result.v[2], expected.v[2], INTRINSIC_PRECISION); | 
|  | EXPECT_NEAR(result.v[3], expected.v[3], INTRINSIC_PRECISION); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // clang-format off | 
|  | INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float, IntrinsicTest_Float, testing::Values( | 
|  | IntrinsicTestParams_Float{ [](Float v) { return rr::Exp2(v); }, exp2f, {0.f, 1.f, 123.f} }, | 
|  | IntrinsicTestParams_Float{ [](Float v) { return rr::Log2(v); }, log2f, {1.f, 123.f} }, | 
|  | IntrinsicTestParams_Float{ [](Float v) { return rr::Sqrt(v); }, sqrtf, {0.f, 1.f, 123.f} } | 
|  | )); | 
|  | // clang-format on | 
|  |  | 
|  | // TODO(b/149110874) Use coshf/sinhf when we've implemented SpirV versions at the SpirV level | 
|  | float vulkan_sinhf(float a) | 
|  | { | 
|  | return ((expf(a) - expf(-a)) / 2); | 
|  | } | 
|  | float vulkan_coshf(float a) | 
|  | { | 
|  | return ((expf(a) + expf(-a)) / 2); | 
|  | } | 
|  |  | 
|  | // clang-format off | 
|  | constexpr float PI = 3.141592653589793f; | 
|  | INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float4, IntrinsicTest_Float4, testing::Values( | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sin(v); },   sinf,         {0.f, 1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Cos(v); },   cosf,         {0.f, 1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Tan(v); },   tanf,         {0.f, 1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Asin(v); },  asinf,        {0.f, 1.f, -1.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Acos(v); },  acosf,        {0.f, 1.f, -1.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Atan(v); },  atanf,        {0.f, 1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sinh(v); },  vulkan_sinhf, {0.f, 1.f, PI}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Cosh(v); },  vulkan_coshf, {0.f, 1.f, PI} }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Tanh(v); },  tanhf,        {0.f, 1.f, PI}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Asinh(v); }, asinhf,       {0.f, 1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Acosh(v); }, acoshf,       {     1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Atanh(v); }, atanhf,       {0.f, 0.9999f, -0.9999f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Exp(v); },   expf,         {0.f, 1.f, PI}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Log(v); },   logf,         {1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Exp2(v); },  exp2f,        {0.f, 1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Log2(v); },  log2f,        {1.f, PI, 123.f}  }, | 
|  | IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sqrt(v); },  sqrtf,        {0.f, 1.f, PI, 123.f}  } | 
|  | )); | 
|  | // clang-format on | 
|  |  | 
|  | // clang-format off | 
|  | INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float4_Float4, IntrinsicTest_Float4_Float4, testing::Values( | 
|  | IntrinsicTestParams_Float4_Float4{ [](RValue<Float4> v1, RValue<Float4> v2) { return Atan2(v1, v2); }, atan2f, { {0.f, 0.f}, {0.f, -1.f}, {-1.f, 0.f}, {123.f, 123.f} } }, | 
|  | IntrinsicTestParams_Float4_Float4{ [](RValue<Float4> v1, RValue<Float4> v2) { return Pow(v1, v2); },   powf,   { {1.f, 0.f}, {1.f, -1.f}, {-1.f, 0.f} } } | 
|  | )); | 
|  | // clang-format on | 
|  |  | 
|  | TEST_P(IntrinsicTest_Float, Test) | 
|  | { | 
|  | test(); | 
|  | } | 
|  | TEST_P(IntrinsicTest_Float4, Test) | 
|  | { | 
|  | test(); | 
|  | } | 
|  | TEST_P(IntrinsicTest_Float4_Float4, Test) | 
|  | { | 
|  | test(); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Intrinsics_Ctlz) | 
|  | { | 
|  | // ctlz: counts number of leading zeros | 
|  |  | 
|  | { | 
|  | Function<UInt(UInt x)> function; | 
|  | { | 
|  | UInt x = function.Arg<0>(); | 
|  | Return(rr::Ctlz(x, false)); | 
|  | } | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (uint32_t(*)(uint32_t))routine->getEntry(); | 
|  |  | 
|  | for(uint32_t i = 0; i < 31; ++i) | 
|  | { | 
|  | uint32_t result = callable(1 << i); | 
|  | EXPECT_EQ(result, 31 - i); | 
|  | } | 
|  |  | 
|  | // Input 0 should return 32 for isZeroUndef == false | 
|  | { | 
|  | uint32_t result = callable(0); | 
|  | EXPECT_EQ(result, 32u); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Function<Void(Pointer<UInt4>, UInt x)> function; | 
|  | { | 
|  | Pointer<UInt4> out = function.Arg<0>(); | 
|  | UInt x = function.Arg<1>(); | 
|  | *out = rr::Ctlz(UInt4(x), false); | 
|  | } | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (void (*)(uint32_t *, uint32_t))routine->getEntry(); | 
|  |  | 
|  | uint32_t x[4]; | 
|  |  | 
|  | for(uint32_t i = 0; i < 31; ++i) | 
|  | { | 
|  | callable(x, 1 << i); | 
|  | EXPECT_EQ(x[0], 31 - i); | 
|  | EXPECT_EQ(x[1], 31 - i); | 
|  | EXPECT_EQ(x[2], 31 - i); | 
|  | EXPECT_EQ(x[3], 31 - i); | 
|  | } | 
|  |  | 
|  | // Input 0 should return 32 for isZeroUndef == false | 
|  | { | 
|  | callable(x, 0); | 
|  | EXPECT_EQ(x[0], 32u); | 
|  | EXPECT_EQ(x[1], 32u); | 
|  | EXPECT_EQ(x[2], 32u); | 
|  | EXPECT_EQ(x[3], 32u); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Intrinsics_Cttz) | 
|  | { | 
|  | // cttz: counts number of trailing zeros | 
|  |  | 
|  | { | 
|  | Function<UInt(UInt x)> function; | 
|  | { | 
|  | UInt x = function.Arg<0>(); | 
|  | Return(rr::Cttz(x, false)); | 
|  | } | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (uint32_t(*)(uint32_t))routine->getEntry(); | 
|  |  | 
|  | for(uint32_t i = 0; i < 31; ++i) | 
|  | { | 
|  | uint32_t result = callable(1 << i); | 
|  | EXPECT_EQ(result, i); | 
|  | } | 
|  |  | 
|  | // Input 0 should return 32 for isZeroUndef == false | 
|  | { | 
|  | uint32_t result = callable(0); | 
|  | EXPECT_EQ(result, 32u); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Function<Void(Pointer<UInt4>, UInt x)> function; | 
|  | { | 
|  | Pointer<UInt4> out = function.Arg<0>(); | 
|  | UInt x = function.Arg<1>(); | 
|  | *out = rr::Cttz(UInt4(x), false); | 
|  | } | 
|  | auto routine = function(testName().c_str()); | 
|  | auto callable = (void (*)(uint32_t *, uint32_t))routine->getEntry(); | 
|  |  | 
|  | uint32_t x[4]; | 
|  |  | 
|  | for(uint32_t i = 0; i < 31; ++i) | 
|  | { | 
|  | callable(x, 1 << i); | 
|  | EXPECT_EQ(x[0], i); | 
|  | EXPECT_EQ(x[1], i); | 
|  | EXPECT_EQ(x[2], i); | 
|  | EXPECT_EQ(x[3], i); | 
|  | } | 
|  |  | 
|  | // Input 0 should return 32 for isZeroUndef == false | 
|  | { | 
|  | callable(x, 0); | 
|  | EXPECT_EQ(x[0], 32u); | 
|  | EXPECT_EQ(x[1], 32u); | 
|  | EXPECT_EQ(x[2], 32u); | 
|  | EXPECT_EQ(x[3], 32u); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Intrinsics_Scatter) | 
|  | { | 
|  | Function<Void(Pointer<Float> base, Pointer<Float4> val, Pointer<Int4> offsets)> function; | 
|  | { | 
|  | Pointer<Float> base = function.Arg<0>(); | 
|  | Pointer<Float4> val = function.Arg<1>(); | 
|  | Pointer<Int4> offsets = function.Arg<2>(); | 
|  |  | 
|  | auto mask = Int4(~0, ~0, ~0, ~0); | 
|  | unsigned int alignment = 1; | 
|  | Scatter(base, *val, *offsets, mask, alignment); | 
|  | } | 
|  |  | 
|  | float buffer[16] = { 0 }; | 
|  |  | 
|  | constexpr auto elemSize = sizeof(buffer[0]); | 
|  |  | 
|  | int offsets[] = { | 
|  | 1 * elemSize, | 
|  | 6 * elemSize, | 
|  | 11 * elemSize, | 
|  | 13 * elemSize | 
|  | }; | 
|  |  | 
|  | float val[4] = { 10, 60, 110, 130 }; | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto entry = (void (*)(float *, float *, int *))routine->getEntry(); | 
|  |  | 
|  | entry(buffer, val, offsets); | 
|  |  | 
|  | EXPECT_EQ(buffer[offsets[0] / sizeof(buffer[0])], 10); | 
|  | EXPECT_EQ(buffer[offsets[1] / sizeof(buffer[0])], 60); | 
|  | EXPECT_EQ(buffer[offsets[2] / sizeof(buffer[0])], 110); | 
|  | EXPECT_EQ(buffer[offsets[3] / sizeof(buffer[0])], 130); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Intrinsics_Gather) | 
|  | { | 
|  | Function<Void(Pointer<Float> base, Pointer<Int4> offsets, Pointer<Float4> result)> function; | 
|  | { | 
|  | Pointer<Float> base = function.Arg<0>(); | 
|  | Pointer<Int4> offsets = function.Arg<1>(); | 
|  | Pointer<Float4> result = function.Arg<2>(); | 
|  |  | 
|  | auto mask = Int4(~0, ~0, ~0, ~0); | 
|  | unsigned int alignment = 1; | 
|  | bool zeroMaskedLanes = true; | 
|  | *result = Gather(base, *offsets, mask, alignment, zeroMaskedLanes); | 
|  | } | 
|  |  | 
|  | float buffer[] = { | 
|  | 0, 10, 20, 30, | 
|  | 40, 50, 60, 70, | 
|  | 80, 90, 100, 110, | 
|  | 120, 130, 140, 150 | 
|  | }; | 
|  |  | 
|  | constexpr auto elemSize = sizeof(buffer[0]); | 
|  |  | 
|  | int offsets[] = { | 
|  | 1 * elemSize, | 
|  | 6 * elemSize, | 
|  | 11 * elemSize, | 
|  | 13 * elemSize | 
|  | }; | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto entry = (void (*)(float *, int *, float *))routine->getEntry(); | 
|  |  | 
|  | float result[4] = {}; | 
|  | entry(buffer, offsets, result); | 
|  |  | 
|  | EXPECT_EQ(result[0], 10); | 
|  | EXPECT_EQ(result[1], 60); | 
|  | EXPECT_EQ(result[2], 110); | 
|  | EXPECT_EQ(result[3], 130); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, ExtractFromRValue) | 
|  | { | 
|  | Function<Void(Pointer<Int4> values, Pointer<Int4> result)> function; | 
|  | { | 
|  | Pointer<Int4> vIn = function.Arg<0>(); | 
|  | Pointer<Int4> resultIn = function.Arg<1>(); | 
|  |  | 
|  | RValue<Int4> v = *vIn; | 
|  |  | 
|  | Int4 result(678); | 
|  |  | 
|  | If(Extract(v, 0) == 42) | 
|  | { | 
|  | result = Insert(result, 1, 0); | 
|  | } | 
|  |  | 
|  | If(Extract(v, 1) == 42) | 
|  | { | 
|  | result = Insert(result, 1, 1); | 
|  | } | 
|  |  | 
|  | *resultIn = result; | 
|  |  | 
|  | Return(); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | auto entry = (void (*)(int *, int *))routine->getEntry(); | 
|  |  | 
|  | int v[4] = { 42, 42, 42, 42 }; | 
|  | int result[4] = { 99, 99, 99, 99 }; | 
|  | entry(v, result); | 
|  | EXPECT_EQ(result[0], 1); | 
|  | EXPECT_EQ(result[1], 1); | 
|  | EXPECT_EQ(result[2], 678); | 
|  | EXPECT_EQ(result[3], 678); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, AddAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::AddAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 123; | 
|  | uint32_t y = 456; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 123u); | 
|  | EXPECT_EQ(x, 579u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, SubAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::SubAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 456; | 
|  | uint32_t y = 123; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 456u); | 
|  | EXPECT_EQ(x, 333u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, AndAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::AndAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 0b1111'0000; | 
|  | uint32_t y = 0b1010'1100; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 0b1111'0000u); | 
|  | EXPECT_EQ(x, 0b1010'0000u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, OrAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::OrAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 0b1111'0000; | 
|  | uint32_t y = 0b1010'1100; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 0b1111'0000u); | 
|  | EXPECT_EQ(x, 0b1111'1100u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, XorAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::XorAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 0b1111'0000; | 
|  | uint32_t y = 0b1010'1100; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 0b1111'0000u); | 
|  | EXPECT_EQ(x, 0b0101'1100u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, MinAtomic) | 
|  | { | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::MinAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 123; | 
|  | uint32_t y = 100; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 123u); | 
|  | EXPECT_EQ(x, 100u); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionT<int32_t(int32_t * p, int32_t a)> function; | 
|  | { | 
|  | Pointer<Int> p = function.Arg<0>(); | 
|  | Int a = function.Arg<1>(); | 
|  | Int r = rr::MinAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | int32_t x = -123; | 
|  | int32_t y = -200; | 
|  | int32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, -123); | 
|  | EXPECT_EQ(x, -200); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, MaxAtomic) | 
|  | { | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::MaxAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 123; | 
|  | uint32_t y = 100; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 123u); | 
|  | EXPECT_EQ(x, 123u); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionT<int32_t(int32_t * p, int32_t a)> function; | 
|  | { | 
|  | Pointer<Int> p = function.Arg<0>(); | 
|  | Int a = function.Arg<1>(); | 
|  | Int r = rr::MaxAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | int32_t x = -123; | 
|  | int32_t y = -200; | 
|  | int32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, -123); | 
|  | EXPECT_EQ(x, -123); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, ExchangeAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; | 
|  | { | 
|  | Pointer<UInt> p = function.Arg<0>(); | 
|  | UInt a = function.Arg<1>(); | 
|  | UInt r = rr::ExchangeAtomic(p, a, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 123; | 
|  | uint32_t y = 456; | 
|  | uint32_t prevX = routine(&x, y); | 
|  | EXPECT_EQ(prevX, 123u); | 
|  | EXPECT_EQ(x, y); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, CompareExchangeAtomic) | 
|  | { | 
|  | FunctionT<uint32_t(uint32_t * x, uint32_t y, uint32_t compare)> function; | 
|  | { | 
|  | Pointer<UInt> x = function.Arg<0>(); | 
|  | UInt y = function.Arg<1>(); | 
|  | UInt compare = function.Arg<2>(); | 
|  | UInt r = rr::CompareExchangeAtomic(x, y, compare, std::memory_order_relaxed, std::memory_order_relaxed); | 
|  | Return(r); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | uint32_t x = 123; | 
|  | uint32_t y = 456; | 
|  | uint32_t compare = 123; | 
|  | uint32_t prevX = routine(&x, y, compare); | 
|  | EXPECT_EQ(prevX, 123u); | 
|  | EXPECT_EQ(x, y); | 
|  |  | 
|  | x = 123; | 
|  | y = 456; | 
|  | compare = 456; | 
|  | prevX = routine(&x, y, compare); | 
|  | EXPECT_EQ(prevX, 123u); | 
|  | EXPECT_EQ(x, 123u); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, SRem) | 
|  | { | 
|  | FunctionT<void(int4 *, int4 *)> function; | 
|  | { | 
|  | Pointer<Int4> a = function.Arg<0>(); | 
|  | Pointer<Int4> b = function.Arg<1>(); | 
|  | *a = *a % *b; | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | int4_value result = invokeRoutine(routine, int4_value{ 10, 11, 12, 13 }, int4_value{ 3, 3, 3, 3 }); | 
|  | int4_value expected = int4_value{ 10 % 3, 11 % 3, 12 % 3, 13 % 3 }; | 
|  | EXPECT_FLOAT_EQ(result.v[0], expected.v[0]); | 
|  | EXPECT_FLOAT_EQ(result.v[1], expected.v[1]); | 
|  | EXPECT_FLOAT_EQ(result.v[2], expected.v[2]); | 
|  | EXPECT_FLOAT_EQ(result.v[3], expected.v[3]); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, FRem) | 
|  | { | 
|  | FunctionT<void(float4 *, float4 *)> function; | 
|  | { | 
|  | Pointer<Float4> a = function.Arg<0>(); | 
|  | Pointer<Float4> b = function.Arg<1>(); | 
|  | *a = *a % *b; | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | float4_value result = invokeRoutine(routine, float4_value{ 10.1f, 11.2f, 12.3f, 13.4f }, float4_value{ 3.f, 3.f, 3.f, 3.f }); | 
|  | float4_value expected = float4_value{ fmodf(10.1f, 3.f), fmodf(11.2f, 3.f), fmodf(12.3f, 3.f), fmodf(13.4f, 3.f) }; | 
|  | EXPECT_FLOAT_EQ(result.v[0], expected.v[0]); | 
|  | EXPECT_FLOAT_EQ(result.v[1], expected.v[1]); | 
|  | EXPECT_FLOAT_EQ(result.v[2], expected.v[2]); | 
|  | EXPECT_FLOAT_EQ(result.v[3], expected.v[3]); | 
|  | } | 
|  |  | 
|  | // Subzero's load instruction assumes that a Constant ptr value is an offset, rather than an absolute | 
|  | // pointer, and would fail during codegen. This was fixed by casting the constant to a non-const | 
|  | // variable, and loading from it instead. This test makes sure this works. | 
|  | TEST(ReactorUnitTests, LoadFromConstantData) | 
|  | { | 
|  | const int value = 123; | 
|  |  | 
|  | FunctionT<int()> function; | 
|  | { | 
|  | auto p = Pointer<Int>{ ConstantData(&value, sizeof(value)) }; | 
|  | Int v = *p; | 
|  | Return(v); | 
|  | } | 
|  |  | 
|  | const int result = function(testName().c_str())(); | 
|  | EXPECT_EQ(result, value); | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Multithreaded_Function) | 
|  | { | 
|  | constexpr int numThreads = 8; | 
|  | constexpr int numLoops = 16; | 
|  |  | 
|  | auto threads = std::unique_ptr<std::thread[]>(new std::thread[numThreads]); | 
|  | auto results = std::unique_ptr<int[]>(new int[numThreads * numLoops]); | 
|  |  | 
|  | for(int t = 0; t < numThreads; t++) | 
|  | { | 
|  | auto threadFunc = [&](int t) { | 
|  | for(int l = 0; l < numLoops; l++) | 
|  | { | 
|  | FunctionT<int(int, int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Int b = function.Arg<1>(); | 
|  | Return((a << 16) | b); | 
|  | } | 
|  |  | 
|  | auto f = function("%s_thread%d_loop%d", testName().c_str(), t, l); | 
|  | results[t * numLoops + l] = f(t, l); | 
|  | } | 
|  | }; | 
|  | threads[t] = std::thread(threadFunc, t); | 
|  | } | 
|  |  | 
|  | for(int t = 0; t < numThreads; t++) | 
|  | { | 
|  | threads[t].join(); | 
|  | } | 
|  |  | 
|  | for(int t = 0; t < numThreads; t++) | 
|  | { | 
|  | for(int l = 0; l < numLoops; l++) | 
|  | { | 
|  | auto expect = (t << 16) | l; | 
|  | auto result = results[t * numLoops + l]; | 
|  | EXPECT_EQ(result, expect); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, Multithreaded_Coroutine) | 
|  | { | 
|  | if(!rr::Caps::coroutinesSupported()) | 
|  | { | 
|  | SUCCEED() << "Coroutines not supported"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | constexpr int numThreads = 8; | 
|  | constexpr int numLoops = 16; | 
|  |  | 
|  | struct Result | 
|  | { | 
|  | bool yieldReturns[3]; | 
|  | int yieldValues[3]; | 
|  | }; | 
|  |  | 
|  | auto threads = std::unique_ptr<std::thread[]>(new std::thread[numThreads]); | 
|  | auto results = std::unique_ptr<Result[]>(new Result[numThreads * numLoops]); | 
|  |  | 
|  | for(int t = 0; t < numThreads; t++) | 
|  | { | 
|  | auto threadFunc = [&](int t) { | 
|  | for(int l = 0; l < numLoops; l++) | 
|  | { | 
|  | Coroutine<int(int, int)> function; | 
|  | { | 
|  | Int a = function.Arg<0>(); | 
|  | Int b = function.Arg<1>(); | 
|  | Yield(a); | 
|  | Yield(b); | 
|  | } | 
|  | function.finalize((testName() + "_thread" + std::to_string(t) + "_loop" + std::to_string(l)).c_str()); | 
|  |  | 
|  | auto coroutine = function(t, l); | 
|  |  | 
|  | auto &result = results[t * numLoops + l]; | 
|  | result = {}; | 
|  | result.yieldReturns[0] = coroutine->await(result.yieldValues[0]); | 
|  | result.yieldReturns[1] = coroutine->await(result.yieldValues[1]); | 
|  | result.yieldReturns[2] = coroutine->await(result.yieldValues[2]); | 
|  | } | 
|  | }; | 
|  | threads[t] = std::thread(threadFunc, t); | 
|  | } | 
|  |  | 
|  | for(int t = 0; t < numThreads; t++) | 
|  | { | 
|  | threads[t].join(); | 
|  | } | 
|  |  | 
|  | for(int t = 0; t < numThreads; t++) | 
|  | { | 
|  | for(int l = 0; l < numLoops; l++) | 
|  | { | 
|  | auto const &result = results[t * numLoops + l]; | 
|  | EXPECT_EQ(result.yieldReturns[0], true); | 
|  | EXPECT_EQ(result.yieldValues[0], t); | 
|  | EXPECT_EQ(result.yieldReturns[1], true); | 
|  | EXPECT_EQ(result.yieldValues[1], l); | 
|  | EXPECT_EQ(result.yieldReturns[2], false); | 
|  | EXPECT_EQ(result.yieldValues[2], 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // For gtest printing of pairs | 
|  | namespace std { | 
|  | template<typename T, typename U> | 
|  | std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &value) | 
|  | { | 
|  | return os << "{ " << value.first << ", " << value.second << " }"; | 
|  | } | 
|  | }  // namespace std | 
|  |  | 
|  | class StdOutCapture | 
|  | { | 
|  | public: | 
|  | ~StdOutCapture() | 
|  | { | 
|  | stopIfCapturing(); | 
|  | } | 
|  |  | 
|  | void start() | 
|  | { | 
|  | stopIfCapturing(); | 
|  | capturing = true; | 
|  | testing::internal::CaptureStdout(); | 
|  | } | 
|  |  | 
|  | std::string stop() | 
|  | { | 
|  | assert(capturing); | 
|  | capturing = false; | 
|  | return testing::internal::GetCapturedStdout(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void stopIfCapturing() | 
|  | { | 
|  | if(capturing) | 
|  | { | 
|  | // This stops the capture | 
|  | testing::internal::GetCapturedStdout(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool capturing = false; | 
|  | }; | 
|  |  | 
|  | std::vector<std::string> split(const std::string &s) | 
|  | { | 
|  | std::vector<std::string> result; | 
|  | std::istringstream iss(s); | 
|  | for(std::string line; std::getline(iss, line);) | 
|  | { | 
|  | result.push_back(line); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, PrintPrimitiveTypes) | 
|  | { | 
|  | #if defined(ENABLE_RR_PRINT) && !defined(ENABLE_RR_EMIT_PRINT_LOCATION) | 
|  | FunctionT<void()> function; | 
|  | { | 
|  | bool b(true); | 
|  | int8_t i8(-1); | 
|  | uint8_t ui8(1); | 
|  | int16_t i16(-1); | 
|  | uint16_t ui16(1); | 
|  | int32_t i32(-1); | 
|  | uint32_t ui32(1); | 
|  | int64_t i64(-1); | 
|  | uint64_t ui64(1); | 
|  | float f(1); | 
|  | double d(2); | 
|  | const char *cstr = "const char*"; | 
|  | std::string str = "std::string"; | 
|  | int *p = nullptr; | 
|  |  | 
|  | RR_WATCH(b); | 
|  | RR_WATCH(i8); | 
|  | RR_WATCH(ui8); | 
|  | RR_WATCH(i16); | 
|  | RR_WATCH(ui16); | 
|  | RR_WATCH(i32); | 
|  | RR_WATCH(ui32); | 
|  | RR_WATCH(i64); | 
|  | RR_WATCH(ui64); | 
|  | RR_WATCH(f); | 
|  | RR_WATCH(d); | 
|  | RR_WATCH(cstr); | 
|  | RR_WATCH(str); | 
|  | RR_WATCH(p); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | char pNullptr[64]; | 
|  | snprintf(pNullptr, sizeof(pNullptr), "  p: %p", nullptr); | 
|  |  | 
|  | const char *expected[] = { | 
|  | "  b: true", | 
|  | "  i8: -1", | 
|  | "  ui8: 1", | 
|  | "  i16: -1", | 
|  | "  ui16: 1", | 
|  | "  i32: -1", | 
|  | "  ui32: 1", | 
|  | "  i64: -1", | 
|  | "  ui64: 1", | 
|  | "  f: 1.000000", | 
|  | "  d: 2.000000", | 
|  | "  cstr: const char*", | 
|  | "  str: std::string", | 
|  | pNullptr, | 
|  | }; | 
|  | constexpr size_t expectedSize = sizeof(expected) / sizeof(expected[0]); | 
|  |  | 
|  | StdOutCapture capture; | 
|  | capture.start(); | 
|  | routine(); | 
|  | auto output = split(capture.stop()); | 
|  | for(size_t i = 0, j = 1; i < expectedSize; ++i, j += 2) | 
|  | { | 
|  | ASSERT_EQ(expected[i], output[j]); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(ReactorUnitTests, PrintReactorTypes) | 
|  | { | 
|  | #if defined(ENABLE_RR_PRINT) && !defined(ENABLE_RR_EMIT_PRINT_LOCATION) | 
|  | FunctionT<void()> function; | 
|  | { | 
|  | Bool b(true); | 
|  | Int i(-1); | 
|  | Int2 i2(-1, -2); | 
|  | Int4 i4(-1, -2, -3, -4); | 
|  | UInt ui(1); | 
|  | UInt2 ui2(1, 2); | 
|  | UInt4 ui4(1, 2, 3, 4); | 
|  | Short s(-1); | 
|  | Short4 s4(-1, -2, -3, -4); | 
|  | UShort us(1); | 
|  | UShort4 us4(1, 2, 3, 4); | 
|  | Float f(1); | 
|  | Float4 f4(1, 2, 3, 4); | 
|  | Long l(i); | 
|  | Pointer<Int> pi = nullptr; | 
|  | RValue<Int> rvi = i; | 
|  | Byte by('a'); | 
|  | Byte4 by4(i4); | 
|  |  | 
|  | RR_WATCH(b); | 
|  | RR_WATCH(i); | 
|  | RR_WATCH(i2); | 
|  | RR_WATCH(i4); | 
|  | RR_WATCH(ui); | 
|  | RR_WATCH(ui2); | 
|  | RR_WATCH(ui4); | 
|  | RR_WATCH(s); | 
|  | RR_WATCH(s4); | 
|  | RR_WATCH(us); | 
|  | RR_WATCH(us4); | 
|  | RR_WATCH(f); | 
|  | RR_WATCH(f4); | 
|  | RR_WATCH(l); | 
|  | RR_WATCH(pi); | 
|  | RR_WATCH(rvi); | 
|  | RR_WATCH(by); | 
|  | RR_WATCH(by4); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | char piNullptr[64]; | 
|  | snprintf(piNullptr, sizeof(piNullptr), "  pi: %p", nullptr); | 
|  |  | 
|  | const char *expected[] = { | 
|  | "  b: true", | 
|  | "  i: -1", | 
|  | "  i2: [-1, -2]", | 
|  | "  i4: [-1, -2, -3, -4]", | 
|  | "  ui: 1", | 
|  | "  ui2: [1, 2]", | 
|  | "  ui4: [1, 2, 3, 4]", | 
|  | "  s: -1", | 
|  | "  s4: [-1, -2, -3, -4]", | 
|  | "  us: 1", | 
|  | "  us4: [1, 2, 3, 4]", | 
|  | "  f: 1.000000", | 
|  | "  f4: [1.000000, 2.000000, 3.000000, 4.000000]", | 
|  | "  l: -1", | 
|  | piNullptr, | 
|  | "  rvi: -1", | 
|  | "  by: 97", | 
|  | "  by4: [255, 254, 253, 252]", | 
|  | }; | 
|  | constexpr size_t expectedSize = sizeof(expected) / sizeof(expected[0]); | 
|  |  | 
|  | StdOutCapture capture; | 
|  | capture.start(); | 
|  | routine(); | 
|  | auto output = split(capture.stop()); | 
|  | for(size_t i = 0, j = 1; i < expectedSize; ++i, j += 2) | 
|  | { | 
|  | ASSERT_EQ(expected[i], output[j]); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Test constant <op> variable | 
|  | template<typename T, typename Func> | 
|  | T Arithmetic_LhsConstArg(T arg1, T arg2, Func f) | 
|  | { | 
|  | using ReactorT = CToReactorT<T>; | 
|  |  | 
|  | FunctionT<T(T)> function; | 
|  | { | 
|  | ReactorT lhs = arg1; | 
|  | ReactorT rhs = function.template Arg<0>(); | 
|  | ReactorT result = f(lhs, rhs); | 
|  | Return(result); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | return routine(arg2); | 
|  | } | 
|  |  | 
|  | // Test variable <op> constant | 
|  | template<typename T, typename Func> | 
|  | T Arithmetic_RhsConstArg(T arg1, T arg2, Func f) | 
|  | { | 
|  | using ReactorT = CToReactorT<T>; | 
|  |  | 
|  | FunctionT<T(T)> function; | 
|  | { | 
|  | ReactorT lhs = function.template Arg<0>(); | 
|  | ReactorT rhs = arg2; | 
|  | ReactorT result = f(lhs, rhs); | 
|  | Return(result); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | return routine(arg1); | 
|  | } | 
|  |  | 
|  | // Test constant <op> constant | 
|  | template<typename T, typename Func> | 
|  | T Arithmetic_TwoConstArgs(T arg1, T arg2, Func f) | 
|  | { | 
|  | using ReactorT = CToReactorT<T>; | 
|  |  | 
|  | FunctionT<T()> function; | 
|  | { | 
|  | ReactorT lhs = arg1; | 
|  | ReactorT rhs = arg2; | 
|  | ReactorT result = f(lhs, rhs); | 
|  | Return(result); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | return routine(); | 
|  | } | 
|  |  | 
|  | template<typename T, typename Func> | 
|  | void Arithmetic_ConstArgs(T arg1, T arg2, T expected, Func f) | 
|  | { | 
|  | SCOPED_TRACE(std::to_string(arg1) + " <op> " + std::to_string(arg2) + " = " + std::to_string(expected)); | 
|  | T result{}; | 
|  | result = Arithmetic_LhsConstArg(arg1, arg2, std::forward<Func>(f)); | 
|  | EXPECT_EQ(result, expected); | 
|  | result = Arithmetic_RhsConstArg(arg1, arg2, std::forward<Func>(f)); | 
|  | EXPECT_EQ(result, expected); | 
|  | result = Arithmetic_TwoConstArgs(arg1, arg2, std::forward<Func>(f)); | 
|  | EXPECT_EQ(result, expected); | 
|  | } | 
|  |  | 
|  | // Test that we generate valid code for when one or both args to arithmetic operations | 
|  | // are constant. In particular, we want to validate the case for two const args, as | 
|  | // often lowered instructions do not support this case. | 
|  | TEST(ReactorUnitTests, Arithmetic_ConstantArgs) | 
|  | { | 
|  | Arithmetic_ConstArgs(2, 3, 5, [](auto c1, auto c2) { return c1 + c2; }); | 
|  | Arithmetic_ConstArgs(5, 3, 2, [](auto c1, auto c2) { return c1 - c2; }); | 
|  | Arithmetic_ConstArgs(2, 3, 6, [](auto c1, auto c2) { return c1 * c2; }); | 
|  | Arithmetic_ConstArgs(6, 3, 2, [](auto c1, auto c2) { return c1 / c2; }); | 
|  | Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0xA0A0, [](auto c1, auto c2) { return c1 & c2; }); | 
|  | Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0xFAFA, [](auto c1, auto c2) { return c1 | c2; }); | 
|  | Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0x5A5A, [](auto c1, auto c2) { return c1 ^ c2; }); | 
|  |  | 
|  | Arithmetic_ConstArgs(2.f, 3.f, 5.f, [](auto c1, auto c2) { return c1 + c2; }); | 
|  | Arithmetic_ConstArgs(5.f, 3.f, 2.f, [](auto c1, auto c2) { return c1 - c2; }); | 
|  | Arithmetic_ConstArgs(2.f, 3.f, 6.f, [](auto c1, auto c2) { return c1 * c2; }); | 
|  | Arithmetic_ConstArgs(6.f, 3.f, 2.f, [](auto c1, auto c2) { return c1 / c2; }); | 
|  | } | 
|  |  | 
|  | // Test for Subzero bad code-gen that was fixed in swiftshader-cl/50008 | 
|  | // This tests the case of copying enough arguments to local variables so that the locals | 
|  | // get spilled to the stack when no more registers remain, and making sure these copies | 
|  | // are generated correctly. Without the aforementioned fix, this fails 100% on Windows x86. | 
|  | TEST(ReactorUnitTests, SpillLocalCopiesOfArgs) | 
|  | { | 
|  | struct Helpers | 
|  | { | 
|  | static bool True() { return true; } | 
|  | }; | 
|  |  | 
|  | const int numLoops = 5;  // 2 should be enough, but loop more to make sure | 
|  |  | 
|  | FunctionT<int(int, int, int, int, int, int, int, int, int, int, int, int)> function; | 
|  | { | 
|  | Int result = 0; | 
|  | Int a1 = function.Arg<0>(); | 
|  | Int a2 = function.Arg<1>(); | 
|  | Int a3 = function.Arg<2>(); | 
|  | Int a4 = function.Arg<3>(); | 
|  | Int a5 = function.Arg<4>(); | 
|  | Int a6 = function.Arg<5>(); | 
|  | Int a7 = function.Arg<6>(); | 
|  | Int a8 = function.Arg<7>(); | 
|  | Int a9 = function.Arg<8>(); | 
|  | Int a10 = function.Arg<9>(); | 
|  | Int a11 = function.Arg<10>(); | 
|  | Int a12 = function.Arg<11>(); | 
|  |  | 
|  | for(int i = 0; i < numLoops; ++i) | 
|  | { | 
|  | // Copy all arguments to locals so that Ice::LocalVariableSplitter::handleSimpleVarAssign | 
|  | // creates Variable copies of arguments. We loop so that we create enough of these so | 
|  | // that some spill over to the stack. | 
|  | Int i1 = a1; | 
|  | Int i2 = a2; | 
|  | Int i3 = a3; | 
|  | Int i4 = a4; | 
|  | Int i5 = a5; | 
|  | Int i6 = a6; | 
|  | Int i7 = a7; | 
|  | Int i8 = a8; | 
|  | Int i9 = a9; | 
|  | Int i10 = a10; | 
|  | Int i11 = a11; | 
|  | Int i12 = a12; | 
|  |  | 
|  | // Forcibly materialize all variables so that Ice::Variable instances are created for each | 
|  | // local; otherwise, Reactor r-value optimizations kick in, and the locals are elided. | 
|  | Variable::materializeAll(); | 
|  |  | 
|  | // We also need to create a separate block that uses the variables declared above | 
|  | // so that rr::optimize() doesn't optimize them out when attempting to eliminate stores | 
|  | // followed by a load in the same block. | 
|  | If(Call(Helpers::True)) | 
|  | { | 
|  | result += (i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12); | 
|  | } | 
|  | } | 
|  |  | 
|  | Return(result); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  | int result = routine(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); | 
|  | int expected = numLoops * (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12); | 
|  | EXPECT_EQ(result, expected); | 
|  | } | 
|  |  | 
|  | #if defined(ENABLE_RR_EMIT_ASM_FILE) | 
|  | TEST(ReactorUnitTests, EmitAsm) | 
|  | { | 
|  | // Only supported by LLVM for now | 
|  | if(Caps::backendName().find("LLVM") == std::string::npos) return; | 
|  |  | 
|  | namespace fs = std::filesystem; | 
|  |  | 
|  | FunctionT<int(void)> function; | 
|  | { | 
|  | Int sum; | 
|  | For(Int i = 0, i < 10, i++) | 
|  | { | 
|  | sum += i; | 
|  | } | 
|  | Return(sum); | 
|  | } | 
|  |  | 
|  | auto routine = function(testName().c_str()); | 
|  |  | 
|  | // Returns path to first match of filename in current directory | 
|  | auto findFile = [](const std::string filename) -> fs::path { | 
|  | for(auto &p : fs::directory_iterator(".")) | 
|  | { | 
|  | if(!p.is_regular_file()) | 
|  | continue; | 
|  | auto currFilename = p.path().filename().string(); | 
|  | auto index = currFilename.find(testName()); | 
|  | if(index != std::string::npos) | 
|  | { | 
|  | return p.path(); | 
|  | } | 
|  | } | 
|  | return {}; | 
|  | }; | 
|  |  | 
|  | fs::path path = findFile(testName()); | 
|  | EXPECT_FALSE(path.empty()); | 
|  |  | 
|  | // Make sure an asm file was created | 
|  | std::ifstream fin(path); | 
|  | EXPECT_TRUE(fin); | 
|  |  | 
|  | // Make sure address of routine is in the file | 
|  | auto findAddressInFile = [](std::ifstream &fin, size_t address) { | 
|  | std::string addressString = [&] { | 
|  | std::stringstream addressSS; | 
|  | addressSS << "0x" << std::uppercase << std::hex << address; | 
|  | return addressSS.str(); | 
|  | }(); | 
|  |  | 
|  | std::string token; | 
|  | while(fin >> token) | 
|  | { | 
|  | if(token.find(addressString) != std::string::npos) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | size_t address = reinterpret_cast<size_t>(routine.getEntry()); | 
|  | EXPECT_TRUE(findAddressInFile(fin, address)); | 
|  |  | 
|  | // Delete the file in case subsequent runs generate one with a different sequence number | 
|  | fin.close(); | 
|  | std::filesystem::remove(path); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //////////////////////////////// | 
|  | // Trait compile time checks. // | 
|  | //////////////////////////////// | 
|  |  | 
|  | // Assert CToReactorT resolves to expected types. | 
|  | static_assert(std::is_same<CToReactorT<void>, Void>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<bool>, Bool>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint8_t>, Byte>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<int8_t>, SByte>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<int16_t>, Short>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint16_t>, UShort>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<int32_t>, Int>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint64_t>, Long>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint32_t>, UInt>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<float>, Float>::value, ""); | 
|  |  | 
|  | // Assert CToReactorT for known pointer types resolves to expected types. | 
|  | static_assert(std::is_same<CToReactorT<void *>, Pointer<Byte>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<bool *>, Pointer<Bool>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint8_t *>, Pointer<Byte>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<int8_t *>, Pointer<SByte>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<int16_t *>, Pointer<Short>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint16_t *>, Pointer<UShort>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<int32_t *>, Pointer<Int>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint64_t *>, Pointer<Long>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint32_t *>, Pointer<UInt>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<float *>, Pointer<Float>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint16_t **>, Pointer<Pointer<UShort>>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<uint16_t ***>, Pointer<Pointer<Pointer<UShort>>>>::value, ""); | 
|  |  | 
|  | // Assert CToReactorT for unknown pointer types resolves to Pointer<Byte>. | 
|  | struct S | 
|  | {}; | 
|  | static_assert(std::is_same<CToReactorT<S *>, Pointer<Byte>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<S **>, Pointer<Pointer<Byte>>>::value, ""); | 
|  | static_assert(std::is_same<CToReactorT<S ***>, Pointer<Pointer<Pointer<Byte>>>>::value, ""); | 
|  |  | 
|  | // Assert IsRValue<> resolves true for RValue<> types. | 
|  | static_assert(IsRValue<RValue<Void>>::value, ""); | 
|  | static_assert(IsRValue<RValue<Bool>>::value, ""); | 
|  | static_assert(IsRValue<RValue<Byte>>::value, ""); | 
|  | static_assert(IsRValue<RValue<SByte>>::value, ""); | 
|  | static_assert(IsRValue<RValue<Short>>::value, ""); | 
|  | static_assert(IsRValue<RValue<UShort>>::value, ""); | 
|  | static_assert(IsRValue<RValue<Int>>::value, ""); | 
|  | static_assert(IsRValue<RValue<Long>>::value, ""); | 
|  | static_assert(IsRValue<RValue<UInt>>::value, ""); | 
|  | static_assert(IsRValue<RValue<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsLValue<> resolves true for LValue types. | 
|  | static_assert(IsLValue<Bool>::value, ""); | 
|  | static_assert(IsLValue<Byte>::value, ""); | 
|  | static_assert(IsLValue<SByte>::value, ""); | 
|  | static_assert(IsLValue<Short>::value, ""); | 
|  | static_assert(IsLValue<UShort>::value, ""); | 
|  | static_assert(IsLValue<Int>::value, ""); | 
|  | static_assert(IsLValue<Long>::value, ""); | 
|  | static_assert(IsLValue<UInt>::value, ""); | 
|  | static_assert(IsLValue<Float>::value, ""); | 
|  |  | 
|  | // Assert IsReference<> resolves true for Reference types. | 
|  | static_assert(IsReference<Reference<Bool>>::value, ""); | 
|  | static_assert(IsReference<Reference<Byte>>::value, ""); | 
|  | static_assert(IsReference<Reference<SByte>>::value, ""); | 
|  | static_assert(IsReference<Reference<Short>>::value, ""); | 
|  | static_assert(IsReference<Reference<UShort>>::value, ""); | 
|  | static_assert(IsReference<Reference<Int>>::value, ""); | 
|  | static_assert(IsReference<Reference<Long>>::value, ""); | 
|  | static_assert(IsReference<Reference<UInt>>::value, ""); | 
|  | static_assert(IsReference<Reference<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsRValue<> resolves false for LValue types. | 
|  | static_assert(!IsRValue<Void>::value, ""); | 
|  | static_assert(!IsRValue<Bool>::value, ""); | 
|  | static_assert(!IsRValue<Byte>::value, ""); | 
|  | static_assert(!IsRValue<SByte>::value, ""); | 
|  | static_assert(!IsRValue<Short>::value, ""); | 
|  | static_assert(!IsRValue<UShort>::value, ""); | 
|  | static_assert(!IsRValue<Int>::value, ""); | 
|  | static_assert(!IsRValue<Long>::value, ""); | 
|  | static_assert(!IsRValue<UInt>::value, ""); | 
|  | static_assert(!IsRValue<Float>::value, ""); | 
|  |  | 
|  | // Assert IsRValue<> resolves false for Reference types. | 
|  | static_assert(!IsRValue<Reference<Void>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<Bool>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<Byte>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<SByte>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<Short>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<UShort>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<Int>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<Long>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<UInt>>::value, ""); | 
|  | static_assert(!IsRValue<Reference<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsRValue<> resolves false for C types. | 
|  | static_assert(!IsRValue<void>::value, ""); | 
|  | static_assert(!IsRValue<bool>::value, ""); | 
|  | static_assert(!IsRValue<uint8_t>::value, ""); | 
|  | static_assert(!IsRValue<int8_t>::value, ""); | 
|  | static_assert(!IsRValue<int16_t>::value, ""); | 
|  | static_assert(!IsRValue<uint16_t>::value, ""); | 
|  | static_assert(!IsRValue<int32_t>::value, ""); | 
|  | static_assert(!IsRValue<uint64_t>::value, ""); | 
|  | static_assert(!IsRValue<uint32_t>::value, ""); | 
|  | static_assert(!IsRValue<float>::value, ""); | 
|  |  | 
|  | // Assert IsLValue<> resolves false for RValue<> types. | 
|  | static_assert(!IsLValue<RValue<Void>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<Bool>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<Byte>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<SByte>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<Short>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<UShort>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<Int>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<Long>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<UInt>>::value, ""); | 
|  | static_assert(!IsLValue<RValue<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsLValue<> resolves false for Void type. | 
|  | static_assert(!IsLValue<Void>::value, ""); | 
|  |  | 
|  | // Assert IsLValue<> resolves false for Reference<> types. | 
|  | static_assert(!IsLValue<Reference<Void>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<Bool>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<Byte>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<SByte>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<Short>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<UShort>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<Int>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<Long>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<UInt>>::value, ""); | 
|  | static_assert(!IsLValue<Reference<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsLValue<> resolves false for C types. | 
|  | static_assert(!IsLValue<void>::value, ""); | 
|  | static_assert(!IsLValue<bool>::value, ""); | 
|  | static_assert(!IsLValue<uint8_t>::value, ""); | 
|  | static_assert(!IsLValue<int8_t>::value, ""); | 
|  | static_assert(!IsLValue<int16_t>::value, ""); | 
|  | static_assert(!IsLValue<uint16_t>::value, ""); | 
|  | static_assert(!IsLValue<int32_t>::value, ""); | 
|  | static_assert(!IsLValue<uint64_t>::value, ""); | 
|  | static_assert(!IsLValue<uint32_t>::value, ""); | 
|  | static_assert(!IsLValue<float>::value, ""); | 
|  |  | 
|  | // Assert IsDefined<> resolves true for RValue<> types. | 
|  | static_assert(IsDefined<RValue<Void>>::value, ""); | 
|  | static_assert(IsDefined<RValue<Bool>>::value, ""); | 
|  | static_assert(IsDefined<RValue<Byte>>::value, ""); | 
|  | static_assert(IsDefined<RValue<SByte>>::value, ""); | 
|  | static_assert(IsDefined<RValue<Short>>::value, ""); | 
|  | static_assert(IsDefined<RValue<UShort>>::value, ""); | 
|  | static_assert(IsDefined<RValue<Int>>::value, ""); | 
|  | static_assert(IsDefined<RValue<Long>>::value, ""); | 
|  | static_assert(IsDefined<RValue<UInt>>::value, ""); | 
|  | static_assert(IsDefined<RValue<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsDefined<> resolves true for LValue types. | 
|  | static_assert(IsDefined<Void>::value, ""); | 
|  | static_assert(IsDefined<Bool>::value, ""); | 
|  | static_assert(IsDefined<Byte>::value, ""); | 
|  | static_assert(IsDefined<SByte>::value, ""); | 
|  | static_assert(IsDefined<Short>::value, ""); | 
|  | static_assert(IsDefined<UShort>::value, ""); | 
|  | static_assert(IsDefined<Int>::value, ""); | 
|  | static_assert(IsDefined<Long>::value, ""); | 
|  | static_assert(IsDefined<UInt>::value, ""); | 
|  | static_assert(IsDefined<Float>::value, ""); | 
|  |  | 
|  | // Assert IsDefined<> resolves true for Reference<> types. | 
|  | static_assert(IsDefined<Reference<Bool>>::value, ""); | 
|  | static_assert(IsDefined<Reference<Byte>>::value, ""); | 
|  | static_assert(IsDefined<Reference<SByte>>::value, ""); | 
|  | static_assert(IsDefined<Reference<Short>>::value, ""); | 
|  | static_assert(IsDefined<Reference<UShort>>::value, ""); | 
|  | static_assert(IsDefined<Reference<Int>>::value, ""); | 
|  | static_assert(IsDefined<Reference<Long>>::value, ""); | 
|  | static_assert(IsDefined<Reference<UInt>>::value, ""); | 
|  | static_assert(IsDefined<Reference<Float>>::value, ""); | 
|  |  | 
|  | // Assert IsDefined<> resolves true for C types. | 
|  | static_assert(IsDefined<void>::value, ""); | 
|  | static_assert(IsDefined<bool>::value, ""); | 
|  | static_assert(IsDefined<uint8_t>::value, ""); | 
|  | static_assert(IsDefined<int8_t>::value, ""); | 
|  | static_assert(IsDefined<int16_t>::value, ""); | 
|  | static_assert(IsDefined<uint16_t>::value, ""); | 
|  | static_assert(IsDefined<int32_t>::value, ""); | 
|  | static_assert(IsDefined<uint64_t>::value, ""); | 
|  | static_assert(IsDefined<uint32_t>::value, ""); | 
|  | static_assert(IsDefined<float>::value, ""); |