| //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a hash set that can be used to remove duplication of |
| // nodes in a graph. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Host.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <cstring> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetNodeIDRef Implementation |
| |
| /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, |
| /// used to lookup the node in the FoldingSetBase. |
| unsigned FoldingSetNodeIDRef::ComputeHash() const { |
| return static_cast<unsigned>(hash_combine_range(Data, Data+Size)); |
| } |
| |
| bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const { |
| if (Size != RHS.Size) return false; |
| return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0; |
| } |
| |
| /// Used to compare the "ordering" of two nodes as defined by the |
| /// profiled bits and their ordering defined by memcmp(). |
| bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const { |
| if (Size != RHS.Size) |
| return Size < RHS.Size; |
| return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetNodeID Implementation |
| |
| /// Add* - Add various data types to Bit data. |
| /// |
| void FoldingSetNodeID::AddPointer(const void *Ptr) { |
| // Note: this adds pointers to the hash using sizes and endianness that |
| // depend on the host. It doesn't matter, however, because hashing on |
| // pointer values is inherently unstable. Nothing should depend on the |
| // ordering of nodes in the folding set. |
| static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), |
| "unexpected pointer size"); |
| AddInteger(reinterpret_cast<uintptr_t>(Ptr)); |
| } |
| void FoldingSetNodeID::AddInteger(signed I) { |
| Bits.push_back(I); |
| } |
| void FoldingSetNodeID::AddInteger(unsigned I) { |
| Bits.push_back(I); |
| } |
| void FoldingSetNodeID::AddInteger(long I) { |
| AddInteger((unsigned long)I); |
| } |
| void FoldingSetNodeID::AddInteger(unsigned long I) { |
| if (sizeof(long) == sizeof(int)) |
| AddInteger(unsigned(I)); |
| else if (sizeof(long) == sizeof(long long)) { |
| AddInteger((unsigned long long)I); |
| } else { |
| llvm_unreachable("unexpected sizeof(long)"); |
| } |
| } |
| void FoldingSetNodeID::AddInteger(long long I) { |
| AddInteger((unsigned long long)I); |
| } |
| void FoldingSetNodeID::AddInteger(unsigned long long I) { |
| AddInteger(unsigned(I)); |
| AddInteger(unsigned(I >> 32)); |
| } |
| |
| void FoldingSetNodeID::AddString(StringRef String) { |
| unsigned Size = String.size(); |
| Bits.push_back(Size); |
| if (!Size) return; |
| |
| unsigned Units = Size / 4; |
| unsigned Pos = 0; |
| const unsigned *Base = (const unsigned*) String.data(); |
| |
| // If the string is aligned do a bulk transfer. |
| if (!((intptr_t)Base & 3)) { |
| Bits.append(Base, Base + Units); |
| Pos = (Units + 1) * 4; |
| } else { |
| // Otherwise do it the hard way. |
| // To be compatible with above bulk transfer, we need to take endianness |
| // into account. |
| static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost, |
| "Unexpected host endianness"); |
| if (sys::IsBigEndianHost) { |
| for (Pos += 4; Pos <= Size; Pos += 4) { |
| unsigned V = ((unsigned char)String[Pos - 4] << 24) | |
| ((unsigned char)String[Pos - 3] << 16) | |
| ((unsigned char)String[Pos - 2] << 8) | |
| (unsigned char)String[Pos - 1]; |
| Bits.push_back(V); |
| } |
| } else { // Little-endian host |
| for (Pos += 4; Pos <= Size; Pos += 4) { |
| unsigned V = ((unsigned char)String[Pos - 1] << 24) | |
| ((unsigned char)String[Pos - 2] << 16) | |
| ((unsigned char)String[Pos - 3] << 8) | |
| (unsigned char)String[Pos - 4]; |
| Bits.push_back(V); |
| } |
| } |
| } |
| |
| // With the leftover bits. |
| unsigned V = 0; |
| // Pos will have overshot size by 4 - #bytes left over. |
| // No need to take endianness into account here - this is always executed. |
| switch (Pos - Size) { |
| case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH; |
| case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH; |
| case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break; |
| default: return; // Nothing left. |
| } |
| |
| Bits.push_back(V); |
| } |
| |
| // AddNodeID - Adds the Bit data of another ID to *this. |
| void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) { |
| Bits.append(ID.Bits.begin(), ID.Bits.end()); |
| } |
| |
| /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to |
| /// lookup the node in the FoldingSetBase. |
| unsigned FoldingSetNodeID::ComputeHash() const { |
| return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash(); |
| } |
| |
| /// operator== - Used to compare two nodes to each other. |
| /// |
| bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const { |
| return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); |
| } |
| |
| /// operator== - Used to compare two nodes to each other. |
| /// |
| bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const { |
| return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS; |
| } |
| |
| /// Used to compare the "ordering" of two nodes as defined by the |
| /// profiled bits and their ordering defined by memcmp(). |
| bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const { |
| return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); |
| } |
| |
| bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const { |
| return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS; |
| } |
| |
| /// Intern - Copy this node's data to a memory region allocated from the |
| /// given allocator and return a FoldingSetNodeIDRef describing the |
| /// interned data. |
| FoldingSetNodeIDRef |
| FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const { |
| unsigned *New = Allocator.Allocate<unsigned>(Bits.size()); |
| std::uninitialized_copy(Bits.begin(), Bits.end(), New); |
| return FoldingSetNodeIDRef(New, Bits.size()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// Helper functions for FoldingSetBase. |
| |
| /// GetNextPtr - In order to save space, each bucket is a |
| /// singly-linked-list. In order to make deletion more efficient, we make |
| /// the list circular, so we can delete a node without computing its hash. |
| /// The problem with this is that the start of the hash buckets are not |
| /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null: |
| /// use GetBucketPtr when this happens. |
| static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) { |
| // The low bit is set if this is the pointer back to the bucket. |
| if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1) |
| return nullptr; |
| |
| return static_cast<FoldingSetBase::Node*>(NextInBucketPtr); |
| } |
| |
| |
| /// testing. |
| static void **GetBucketPtr(void *NextInBucketPtr) { |
| intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr); |
| assert((Ptr & 1) && "Not a bucket pointer"); |
| return reinterpret_cast<void**>(Ptr & ~intptr_t(1)); |
| } |
| |
| /// GetBucketFor - Hash the specified node ID and return the hash bucket for |
| /// the specified ID. |
| static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) { |
| // NumBuckets is always a power of 2. |
| unsigned BucketNum = Hash & (NumBuckets-1); |
| return Buckets + BucketNum; |
| } |
| |
| /// AllocateBuckets - Allocated initialized bucket memory. |
| static void **AllocateBuckets(unsigned NumBuckets) { |
| void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1, |
| sizeof(void*))); |
| // Set the very last bucket to be a non-null "pointer". |
| Buckets[NumBuckets] = reinterpret_cast<void*>(-1); |
| return Buckets; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetBase Implementation |
| |
| void FoldingSetBase::anchor() {} |
| |
| FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) { |
| assert(5 < Log2InitSize && Log2InitSize < 32 && |
| "Initial hash table size out of range"); |
| NumBuckets = 1 << Log2InitSize; |
| Buckets = AllocateBuckets(NumBuckets); |
| NumNodes = 0; |
| } |
| |
| FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg) |
| : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) { |
| Arg.Buckets = nullptr; |
| Arg.NumBuckets = 0; |
| Arg.NumNodes = 0; |
| } |
| |
| FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) { |
| free(Buckets); // This may be null if the set is in a moved-from state. |
| Buckets = RHS.Buckets; |
| NumBuckets = RHS.NumBuckets; |
| NumNodes = RHS.NumNodes; |
| RHS.Buckets = nullptr; |
| RHS.NumBuckets = 0; |
| RHS.NumNodes = 0; |
| return *this; |
| } |
| |
| FoldingSetBase::~FoldingSetBase() { |
| free(Buckets); |
| } |
| |
| void FoldingSetBase::clear() { |
| // Set all but the last bucket to null pointers. |
| memset(Buckets, 0, NumBuckets*sizeof(void*)); |
| |
| // Set the very last bucket to be a non-null "pointer". |
| Buckets[NumBuckets] = reinterpret_cast<void*>(-1); |
| |
| // Reset the node count to zero. |
| NumNodes = 0; |
| } |
| |
| void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount) { |
| assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount"); |
| assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!"); |
| void **OldBuckets = Buckets; |
| unsigned OldNumBuckets = NumBuckets; |
| |
| // Clear out new buckets. |
| Buckets = AllocateBuckets(NewBucketCount); |
| // Set NumBuckets only if allocation of new buckets was succesful |
| NumBuckets = NewBucketCount; |
| NumNodes = 0; |
| |
| // Walk the old buckets, rehashing nodes into their new place. |
| FoldingSetNodeID TempID; |
| for (unsigned i = 0; i != OldNumBuckets; ++i) { |
| void *Probe = OldBuckets[i]; |
| if (!Probe) continue; |
| while (Node *NodeInBucket = GetNextPtr(Probe)) { |
| // Figure out the next link, remove NodeInBucket from the old link. |
| Probe = NodeInBucket->getNextInBucket(); |
| NodeInBucket->SetNextInBucket(nullptr); |
| |
| // Insert the node into the new bucket, after recomputing the hash. |
| InsertNode(NodeInBucket, |
| GetBucketFor(ComputeNodeHash(NodeInBucket, TempID), |
| Buckets, NumBuckets)); |
| TempID.clear(); |
| } |
| } |
| |
| free(OldBuckets); |
| } |
| |
| /// GrowHashTable - Double the size of the hash table and rehash everything. |
| /// |
| void FoldingSetBase::GrowHashTable() { |
| GrowBucketCount(NumBuckets * 2); |
| } |
| |
| void FoldingSetBase::reserve(unsigned EltCount) { |
| // This will give us somewhere between EltCount / 2 and |
| // EltCount buckets. This puts us in the load factor |
| // range of 1.0 - 2.0. |
| if(EltCount < capacity()) |
| return; |
| GrowBucketCount(PowerOf2Floor(EltCount)); |
| } |
| |
| /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| /// return it. If not, return the insertion token that will make insertion |
| /// faster. |
| FoldingSetBase::Node * |
| FoldingSetBase::FindNodeOrInsertPos(const FoldingSetNodeID &ID, |
| void *&InsertPos) { |
| unsigned IDHash = ID.ComputeHash(); |
| void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets); |
| void *Probe = *Bucket; |
| |
| InsertPos = nullptr; |
| |
| FoldingSetNodeID TempID; |
| while (Node *NodeInBucket = GetNextPtr(Probe)) { |
| if (NodeEquals(NodeInBucket, ID, IDHash, TempID)) |
| return NodeInBucket; |
| TempID.clear(); |
| |
| Probe = NodeInBucket->getNextInBucket(); |
| } |
| |
| // Didn't find the node, return null with the bucket as the InsertPos. |
| InsertPos = Bucket; |
| return nullptr; |
| } |
| |
| /// InsertNode - Insert the specified node into the folding set, knowing that it |
| /// is not already in the map. InsertPos must be obtained from |
| /// FindNodeOrInsertPos. |
| void FoldingSetBase::InsertNode(Node *N, void *InsertPos) { |
| assert(!N->getNextInBucket()); |
| // Do we need to grow the hashtable? |
| if (NumNodes+1 > capacity()) { |
| GrowHashTable(); |
| FoldingSetNodeID TempID; |
| InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets); |
| } |
| |
| ++NumNodes; |
| |
| /// The insert position is actually a bucket pointer. |
| void **Bucket = static_cast<void**>(InsertPos); |
| |
| void *Next = *Bucket; |
| |
| // If this is the first insertion into this bucket, its next pointer will be |
| // null. Pretend as if it pointed to itself, setting the low bit to indicate |
| // that it is a pointer to the bucket. |
| if (!Next) |
| Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1); |
| |
| // Set the node's next pointer, and make the bucket point to the node. |
| N->SetNextInBucket(Next); |
| *Bucket = N; |
| } |
| |
| /// RemoveNode - Remove a node from the folding set, returning true if one was |
| /// removed or false if the node was not in the folding set. |
| bool FoldingSetBase::RemoveNode(Node *N) { |
| // Because each bucket is a circular list, we don't need to compute N's hash |
| // to remove it. |
| void *Ptr = N->getNextInBucket(); |
| if (!Ptr) return false; // Not in folding set. |
| |
| --NumNodes; |
| N->SetNextInBucket(nullptr); |
| |
| // Remember what N originally pointed to, either a bucket or another node. |
| void *NodeNextPtr = Ptr; |
| |
| // Chase around the list until we find the node (or bucket) which points to N. |
| while (true) { |
| if (Node *NodeInBucket = GetNextPtr(Ptr)) { |
| // Advance pointer. |
| Ptr = NodeInBucket->getNextInBucket(); |
| |
| // We found a node that points to N, change it to point to N's next node, |
| // removing N from the list. |
| if (Ptr == N) { |
| NodeInBucket->SetNextInBucket(NodeNextPtr); |
| return true; |
| } |
| } else { |
| void **Bucket = GetBucketPtr(Ptr); |
| Ptr = *Bucket; |
| |
| // If we found that the bucket points to N, update the bucket to point to |
| // whatever is next. |
| if (Ptr == N) { |
| *Bucket = NodeNextPtr; |
| return true; |
| } |
| } |
| } |
| } |
| |
| /// GetOrInsertNode - If there is an existing simple Node exactly |
| /// equal to the specified node, return it. Otherwise, insert 'N' and it |
| /// instead. |
| FoldingSetBase::Node *FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N) { |
| FoldingSetNodeID ID; |
| GetNodeProfile(N, ID); |
| void *IP; |
| if (Node *E = FindNodeOrInsertPos(ID, IP)) |
| return E; |
| InsertNode(N, IP); |
| return N; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetIteratorImpl Implementation |
| |
| FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) { |
| // Skip to the first non-null non-self-cycle bucket. |
| while (*Bucket != reinterpret_cast<void*>(-1) && |
| (!*Bucket || !GetNextPtr(*Bucket))) |
| ++Bucket; |
| |
| NodePtr = static_cast<FoldingSetNode*>(*Bucket); |
| } |
| |
| void FoldingSetIteratorImpl::advance() { |
| // If there is another link within this bucket, go to it. |
| void *Probe = NodePtr->getNextInBucket(); |
| |
| if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe)) |
| NodePtr = NextNodeInBucket; |
| else { |
| // Otherwise, this is the last link in this bucket. |
| void **Bucket = GetBucketPtr(Probe); |
| |
| // Skip to the next non-null non-self-cycle bucket. |
| do { |
| ++Bucket; |
| } while (*Bucket != reinterpret_cast<void*>(-1) && |
| (!*Bucket || !GetNextPtr(*Bucket))); |
| |
| NodePtr = static_cast<FoldingSetNode*>(*Bucket); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetBucketIteratorImpl Implementation |
| |
| FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) { |
| Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket; |
| } |