| //===- subzero/src/IceUtils.h - Utility functions ---------------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Defines some utility functions. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEUTILS_H |
| #define SUBZERO_SRC_ICEUTILS_H |
| |
| #include <climits> |
| #include <cmath> // std::signbit() |
| |
| namespace Ice { |
| namespace Utils { |
| |
| /// Allows copying from types of unrelated sizes. This method was introduced to |
| /// enable the strict aliasing optimizations of GCC 4.4. Basically, GCC |
| /// mindlessly relies on obscure details in the C++ standard that make |
| /// reinterpret_cast virtually useless. |
| template <typename D, typename S> inline D bitCopy(const S &Source) { |
| static_assert(sizeof(D) <= sizeof(S), |
| "bitCopy between incompatible type widths"); |
| static_assert(!std::is_pointer<S>::value, ""); |
| D Destination; |
| // This use of memcpy is safe: source and destination cannot overlap. |
| memcpy(&Destination, reinterpret_cast<const void *>(&Source), sizeof(D)); |
| return Destination; |
| } |
| |
| /// Check whether an N-bit two's-complement representation can hold value. |
| template <typename T> inline bool IsInt(int N, T value) { |
| assert((0 < N) && |
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
| T limit = static_cast<T>(1) << (N - 1); |
| return (-limit <= value) && (value < limit); |
| } |
| |
| template <typename T> inline bool IsUint(int N, T value) { |
| assert((0 < N) && |
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
| T limit = static_cast<T>(1) << N; |
| return (0 <= value) && (value < limit); |
| } |
| |
| /// Check whether the magnitude of value fits in N bits, i.e., whether an |
| /// (N+1)-bit sign-magnitude representation can hold value. |
| template <typename T> inline bool IsAbsoluteUint(int N, T Value) { |
| assert((0 < N) && |
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); |
| if (Value < 0) |
| Value = -Value; |
| return IsUint(N, Value); |
| } |
| |
| /// Return true if the addition X + Y will cause integer overflow for integers |
| /// of type T. |
| template <typename T> inline bool WouldOverflowAdd(T X, T Y) { |
| return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || |
| (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); |
| } |
| |
| /// Adds x to y and stores the result in sum. Returns true if the addition |
| /// overflowed. |
| inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { |
| static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type"); |
| #if __has_builtin(__builtin_uadd_overflow) |
| return __builtin_uadd_overflow(x, y, sum); |
| #else |
| *sum = x + y; |
| return WouldOverflowAdd(x, y); |
| #endif |
| } |
| |
| /// Return true if X is already aligned by N, where N is a power of 2. |
| template <typename T> inline bool IsAligned(T X, intptr_t N) { |
| assert(llvm::isPowerOf2_64(N)); |
| return (X & (N - 1)) == 0; |
| } |
| |
| /// Return Value adjusted to the next highest multiple of Alignment. |
| inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { |
| assert(llvm::isPowerOf2_32(Alignment)); |
| return (Value + Alignment - 1) & -Alignment; |
| } |
| |
| /// Return amount which must be added to adjust Pos to the next highest |
| /// multiple of Align. |
| inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { |
| assert(llvm::isPowerOf2_64(Align)); |
| uint64_t Mod = Pos & (Align - 1); |
| if (Mod == 0) |
| return 0; |
| return Align - Mod; |
| } |
| |
| /// Rotate the value bit pattern to the left by shift bits. |
| /// Precondition: 0 <= shift < 32 |
| inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { |
| if (shift == 0) |
| return value; |
| return (value << shift) | (value >> (32 - shift)); |
| } |
| |
| /// Rotate the value bit pattern to the right by shift bits. |
| inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { |
| if (shift == 0) |
| return value; |
| return (value >> shift) | (value << (32 - shift)); |
| } |
| |
| /// Returns true if Val is +0.0. It requires T to be a floating point type. |
| template <typename T> bool isPositiveZero(T Val) { |
| static_assert(std::is_floating_point<T>::value, |
| "Input type must be floating point"); |
| return Val == 0 && !std::signbit(Val); |
| } |
| |
| /// Resize a vector (or other suitable container) to a particular size, and also |
| /// reserve possibly a larger size to avoid repeatedly recopying as the |
| /// container grows. It uses a strategy of doubling capacity up to a certain |
| /// point, after which it bumps the capacity by a fixed amount. |
| template <typename Container> |
| inline void reserveAndResize(Container &V, uint32_t Size, |
| uint32_t ChunkSizeBits = 10) { |
| #if __has_builtin(__builtin_clz) |
| // Don't call reserve() if Size==0. |
| if (Size > 0) { |
| uint32_t Mask; |
| if (Size <= (1 << ChunkSizeBits)) { |
| // For smaller sizes, reserve the smallest power of 2 greater than or |
| // equal to Size. |
| Mask = |
| ((1 << (CHAR_BIT * sizeof(uint32_t) - __builtin_clz(Size))) - 1) - 1; |
| } else { |
| // For larger sizes, round up to the smallest multiple of 1<<ChunkSizeBits |
| // greater than or equal to Size. |
| Mask = (1 << ChunkSizeBits) - 1; |
| } |
| V.reserve((Size + Mask) & ~Mask); |
| } |
| #endif |
| V.resize(Size); |
| } |
| |
| /// An RAII class to ensure that a boolean flag is restored to its previous |
| /// value upon function exit. |
| /// |
| /// Used in places like RandomizationPoolingPause and generating target helper |
| /// calls. |
| class BoolFlagSaver { |
| BoolFlagSaver() = delete; |
| BoolFlagSaver(const BoolFlagSaver &) = delete; |
| BoolFlagSaver &operator=(const BoolFlagSaver &) = delete; |
| |
| public: |
| BoolFlagSaver(bool &F, bool NewValue) : OldValue(F), Flag(F) { F = NewValue; } |
| ~BoolFlagSaver() { Flag = OldValue; } |
| |
| private: |
| const bool OldValue; |
| bool &Flag; |
| }; |
| |
| } // end of namespace Utils |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICEUTILS_H |