blob: 217cedb24df69aa6cbb3016da88ac51917edd989 [file] [log] [blame]
//===-- ConvertUTFWrapper.cpp - Wrap ConvertUTF.h with clang data types -----===
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ConvertUTF.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SwapByteOrder.h"
#include <string>
#include <vector>
namespace llvm {
bool ConvertUTF8toWide(unsigned WideCharWidth, llvm::StringRef Source,
char *&ResultPtr, const UTF8 *&ErrorPtr) {
assert(WideCharWidth == 1 || WideCharWidth == 2 || WideCharWidth == 4);
ConversionResult result = conversionOK;
// Copy the character span over.
if (WideCharWidth == 1) {
const UTF8 *Pos = reinterpret_cast<const UTF8*>(Source.begin());
if (!isLegalUTF8String(&Pos, reinterpret_cast<const UTF8*>(Source.end()))) {
result = sourceIllegal;
ErrorPtr = Pos;
} else {
memcpy(ResultPtr, Source.data(), Source.size());
ResultPtr += Source.size();
}
} else if (WideCharWidth == 2) {
const UTF8 *sourceStart = (const UTF8*)Source.data();
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
UTF16 *targetStart = reinterpret_cast<UTF16*>(ResultPtr);
ConversionFlags flags = strictConversion;
result = ConvertUTF8toUTF16(
&sourceStart, sourceStart + Source.size(),
&targetStart, targetStart + Source.size(), flags);
if (result == conversionOK)
ResultPtr = reinterpret_cast<char*>(targetStart);
else
ErrorPtr = sourceStart;
} else if (WideCharWidth == 4) {
const UTF8 *sourceStart = (const UTF8*)Source.data();
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
UTF32 *targetStart = reinterpret_cast<UTF32*>(ResultPtr);
ConversionFlags flags = strictConversion;
result = ConvertUTF8toUTF32(
&sourceStart, sourceStart + Source.size(),
&targetStart, targetStart + Source.size(), flags);
if (result == conversionOK)
ResultPtr = reinterpret_cast<char*>(targetStart);
else
ErrorPtr = sourceStart;
}
assert((result != targetExhausted)
&& "ConvertUTF8toUTFXX exhausted target buffer");
return result == conversionOK;
}
bool ConvertCodePointToUTF8(unsigned Source, char *&ResultPtr) {
const UTF32 *SourceStart = &Source;
const UTF32 *SourceEnd = SourceStart + 1;
UTF8 *TargetStart = reinterpret_cast<UTF8 *>(ResultPtr);
UTF8 *TargetEnd = TargetStart + 4;
ConversionResult CR = ConvertUTF32toUTF8(&SourceStart, SourceEnd,
&TargetStart, TargetEnd,
strictConversion);
if (CR != conversionOK)
return false;
ResultPtr = reinterpret_cast<char*>(TargetStart);
return true;
}
bool hasUTF16ByteOrderMark(ArrayRef<char> S) {
return (S.size() >= 2 &&
((S[0] == '\xff' && S[1] == '\xfe') ||
(S[0] == '\xfe' && S[1] == '\xff')));
}
bool convertUTF16ToUTF8String(ArrayRef<char> SrcBytes, std::string &Out) {
assert(Out.empty());
// Error out on an uneven byte count.
if (SrcBytes.size() % 2)
return false;
// Avoid OOB by returning early on empty input.
if (SrcBytes.empty())
return true;
const UTF16 *Src = reinterpret_cast<const UTF16 *>(SrcBytes.begin());
const UTF16 *SrcEnd = reinterpret_cast<const UTF16 *>(SrcBytes.end());
// Byteswap if necessary.
std::vector<UTF16> ByteSwapped;
if (Src[0] == UNI_UTF16_BYTE_ORDER_MARK_SWAPPED) {
ByteSwapped.insert(ByteSwapped.end(), Src, SrcEnd);
for (unsigned I = 0, E = ByteSwapped.size(); I != E; ++I)
ByteSwapped[I] = llvm::sys::SwapByteOrder_16(ByteSwapped[I]);
Src = &ByteSwapped[0];
SrcEnd = &ByteSwapped[ByteSwapped.size() - 1] + 1;
}
// Skip the BOM for conversion.
if (Src[0] == UNI_UTF16_BYTE_ORDER_MARK_NATIVE)
Src++;
// Just allocate enough space up front. We'll shrink it later. Allocate
// enough that we can fit a null terminator without reallocating.
Out.resize(SrcBytes.size() * UNI_MAX_UTF8_BYTES_PER_CODE_POINT + 1);
UTF8 *Dst = reinterpret_cast<UTF8 *>(&Out[0]);
UTF8 *DstEnd = Dst + Out.size();
ConversionResult CR =
ConvertUTF16toUTF8(&Src, SrcEnd, &Dst, DstEnd, strictConversion);
assert(CR != targetExhausted);
if (CR != conversionOK) {
Out.clear();
return false;
}
Out.resize(reinterpret_cast<char *>(Dst) - &Out[0]);
Out.push_back(0);
Out.pop_back();
return true;
}
bool convertUTF16ToUTF8String(ArrayRef<UTF16> Src, std::string &Out)
{
return convertUTF16ToUTF8String(
llvm::ArrayRef<char>(reinterpret_cast<const char *>(Src.data()),
Src.size() * sizeof(UTF16)), Out);
}
bool convertUTF8ToUTF16String(StringRef SrcUTF8,
SmallVectorImpl<UTF16> &DstUTF16) {
assert(DstUTF16.empty());
// Avoid OOB by returning early on empty input.
if (SrcUTF8.empty()) {
DstUTF16.push_back(0);
DstUTF16.pop_back();
return true;
}
const UTF8 *Src = reinterpret_cast<const UTF8 *>(SrcUTF8.begin());
const UTF8 *SrcEnd = reinterpret_cast<const UTF8 *>(SrcUTF8.end());
// Allocate the same number of UTF-16 code units as UTF-8 code units. Encoding
// as UTF-16 should always require the same amount or less code units than the
// UTF-8 encoding. Allocate one extra byte for the null terminator though,
// so that someone calling DstUTF16.data() gets a null terminated string.
// We resize down later so we don't have to worry that this over allocates.
DstUTF16.resize(SrcUTF8.size()+1);
UTF16 *Dst = &DstUTF16[0];
UTF16 *DstEnd = Dst + DstUTF16.size();
ConversionResult CR =
ConvertUTF8toUTF16(&Src, SrcEnd, &Dst, DstEnd, strictConversion);
assert(CR != targetExhausted);
if (CR != conversionOK) {
DstUTF16.clear();
return false;
}
DstUTF16.resize(Dst - &DstUTF16[0]);
DstUTF16.push_back(0);
DstUTF16.pop_back();
return true;
}
static_assert(sizeof(wchar_t) == 1 || sizeof(wchar_t) == 2 ||
sizeof(wchar_t) == 4,
"Expected wchar_t to be 1, 2, or 4 bytes");
template <typename TResult>
static inline bool ConvertUTF8toWideInternal(llvm::StringRef Source,
TResult &Result) {
// Even in the case of UTF-16, the number of bytes in a UTF-8 string is
// at least as large as the number of elements in the resulting wide
// string, because surrogate pairs take at least 4 bytes in UTF-8.
Result.resize(Source.size() + 1);
char *ResultPtr = reinterpret_cast<char *>(&Result[0]);
const UTF8 *ErrorPtr;
if (!ConvertUTF8toWide(sizeof(wchar_t), Source, ResultPtr, ErrorPtr)) {
Result.clear();
return false;
}
Result.resize(reinterpret_cast<wchar_t *>(ResultPtr) - &Result[0]);
return true;
}
bool ConvertUTF8toWide(llvm::StringRef Source, std::wstring &Result) {
return ConvertUTF8toWideInternal(Source, Result);
}
bool ConvertUTF8toWide(const char *Source, std::wstring &Result) {
if (!Source) {
Result.clear();
return true;
}
return ConvertUTF8toWide(llvm::StringRef(Source), Result);
}
bool convertWideToUTF8(const std::wstring &Source, std::string &Result) {
if (sizeof(wchar_t) == 1) {
const UTF8 *Start = reinterpret_cast<const UTF8 *>(Source.data());
const UTF8 *End =
reinterpret_cast<const UTF8 *>(Source.data() + Source.size());
if (!isLegalUTF8String(&Start, End))
return false;
Result.resize(Source.size());
memcpy(&Result[0], Source.data(), Source.size());
return true;
} else if (sizeof(wchar_t) == 2) {
return convertUTF16ToUTF8String(
llvm::ArrayRef<UTF16>(reinterpret_cast<const UTF16 *>(Source.data()),
Source.size()),
Result);
} else if (sizeof(wchar_t) == 4) {
const UTF32 *Start = reinterpret_cast<const UTF32 *>(Source.data());
const UTF32 *End =
reinterpret_cast<const UTF32 *>(Source.data() + Source.size());
Result.resize(UNI_MAX_UTF8_BYTES_PER_CODE_POINT * Source.size());
UTF8 *ResultPtr = reinterpret_cast<UTF8 *>(&Result[0]);
UTF8 *ResultEnd = reinterpret_cast<UTF8 *>(&Result[0] + Result.size());
if (ConvertUTF32toUTF8(&Start, End, &ResultPtr, ResultEnd,
strictConversion) == conversionOK) {
Result.resize(reinterpret_cast<char *>(ResultPtr) - &Result[0]);
return true;
} else {
Result.clear();
return false;
}
} else {
llvm_unreachable(
"Control should never reach this point; see static_assert further up");
}
}
} // end namespace llvm