| //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------===// | 
 | // | 
 | // This file implements the MemorySSAUpdater class. | 
 | // | 
 | //===----------------------------------------------------------------===// | 
 | #include "llvm/Analysis/MemorySSAUpdater.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/Analysis/MemorySSA.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/IR/Metadata.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/FormattedStream.h" | 
 | #include <algorithm> | 
 |  | 
 | #define DEBUG_TYPE "memoryssa" | 
 | using namespace llvm; | 
 |  | 
 | // This is the marker algorithm from "Simple and Efficient Construction of | 
 | // Static Single Assignment Form" | 
 | // The simple, non-marker algorithm places phi nodes at any join | 
 | // Here, we place markers, and only place phi nodes if they end up necessary. | 
 | // They are only necessary if they break a cycle (IE we recursively visit | 
 | // ourselves again), or we discover, while getting the value of the operands, | 
 | // that there are two or more definitions needing to be merged. | 
 | // This still will leave non-minimal form in the case of irreducible control | 
 | // flow, where phi nodes may be in cycles with themselves, but unnecessary. | 
 | MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( | 
 |     BasicBlock *BB, | 
 |     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { | 
 |   // First, do a cache lookup. Without this cache, certain CFG structures | 
 |   // (like a series of if statements) take exponential time to visit. | 
 |   auto Cached = CachedPreviousDef.find(BB); | 
 |   if (Cached != CachedPreviousDef.end()) { | 
 |     return Cached->second; | 
 |   } | 
 |  | 
 |   if (BasicBlock *Pred = BB->getSinglePredecessor()) { | 
 |     // Single predecessor case, just recurse, we can only have one definition. | 
 |     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); | 
 |     CachedPreviousDef.insert({BB, Result}); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   if (VisitedBlocks.count(BB)) { | 
 |     // We hit our node again, meaning we had a cycle, we must insert a phi | 
 |     // node to break it so we have an operand. The only case this will | 
 |     // insert useless phis is if we have irreducible control flow. | 
 |     MemoryAccess *Result = MSSA->createMemoryPhi(BB); | 
 |     CachedPreviousDef.insert({BB, Result}); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   if (VisitedBlocks.insert(BB).second) { | 
 |     // Mark us visited so we can detect a cycle | 
 |     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; | 
 |  | 
 |     // Recurse to get the values in our predecessors for placement of a | 
 |     // potential phi node. This will insert phi nodes if we cycle in order to | 
 |     // break the cycle and have an operand. | 
 |     for (auto *Pred : predecessors(BB)) | 
 |       PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); | 
 |  | 
 |     // Now try to simplify the ops to avoid placing a phi. | 
 |     // This may return null if we never created a phi yet, that's okay | 
 |     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); | 
 |  | 
 |     // See if we can avoid the phi by simplifying it. | 
 |     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); | 
 |     // If we couldn't simplify, we may have to create a phi | 
 |     if (Result == Phi) { | 
 |       if (!Phi) | 
 |         Phi = MSSA->createMemoryPhi(BB); | 
 |  | 
 |       // See if the existing phi operands match what we need. | 
 |       // Unlike normal SSA, we only allow one phi node per block, so we can't just | 
 |       // create a new one. | 
 |       if (Phi->getNumOperands() != 0) { | 
 |         // FIXME: Figure out whether this is dead code and if so remove it. | 
 |         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { | 
 |           // These will have been filled in by the recursive read we did above. | 
 |           std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); | 
 |           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); | 
 |         } | 
 |       } else { | 
 |         unsigned i = 0; | 
 |         for (auto *Pred : predecessors(BB)) | 
 |           Phi->addIncoming(&*PhiOps[i++], Pred); | 
 |         InsertedPHIs.push_back(Phi); | 
 |       } | 
 |       Result = Phi; | 
 |     } | 
 |  | 
 |     // Set ourselves up for the next variable by resetting visited state. | 
 |     VisitedBlocks.erase(BB); | 
 |     CachedPreviousDef.insert({BB, Result}); | 
 |     return Result; | 
 |   } | 
 |   llvm_unreachable("Should have hit one of the three cases above"); | 
 | } | 
 |  | 
 | // This starts at the memory access, and goes backwards in the block to find the | 
 | // previous definition. If a definition is not found the block of the access, | 
 | // it continues globally, creating phi nodes to ensure we have a single | 
 | // definition. | 
 | MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { | 
 |   if (auto *LocalResult = getPreviousDefInBlock(MA)) | 
 |     return LocalResult; | 
 |   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; | 
 |   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); | 
 | } | 
 |  | 
 | // This starts at the memory access, and goes backwards in the block to the find | 
 | // the previous definition. If the definition is not found in the block of the | 
 | // access, it returns nullptr. | 
 | MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { | 
 |   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); | 
 |  | 
 |   // It's possible there are no defs, or we got handed the first def to start. | 
 |   if (Defs) { | 
 |     // If this is a def, we can just use the def iterators. | 
 |     if (!isa<MemoryUse>(MA)) { | 
 |       auto Iter = MA->getReverseDefsIterator(); | 
 |       ++Iter; | 
 |       if (Iter != Defs->rend()) | 
 |         return &*Iter; | 
 |     } else { | 
 |       // Otherwise, have to walk the all access iterator. | 
 |       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); | 
 |       for (auto &U : make_range(++MA->getReverseIterator(), End)) | 
 |         if (!isa<MemoryUse>(U)) | 
 |           return cast<MemoryAccess>(&U); | 
 |       // Note that if MA comes before Defs->begin(), we won't hit a def. | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // This starts at the end of block | 
 | MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( | 
 |     BasicBlock *BB, | 
 |     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { | 
 |   auto *Defs = MSSA->getWritableBlockDefs(BB); | 
 |  | 
 |   if (Defs) | 
 |     return &*Defs->rbegin(); | 
 |  | 
 |   return getPreviousDefRecursive(BB, CachedPreviousDef); | 
 | } | 
 | // Recurse over a set of phi uses to eliminate the trivial ones | 
 | MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { | 
 |   if (!Phi) | 
 |     return nullptr; | 
 |   TrackingVH<MemoryAccess> Res(Phi); | 
 |   SmallVector<TrackingVH<Value>, 8> Uses; | 
 |   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); | 
 |   for (auto &U : Uses) { | 
 |     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { | 
 |       auto OperRange = UsePhi->operands(); | 
 |       tryRemoveTrivialPhi(UsePhi, OperRange); | 
 |     } | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | // Eliminate trivial phis | 
 | // Phis are trivial if they are defined either by themselves, or all the same | 
 | // argument. | 
 | // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) | 
 | // We recursively try to remove them. | 
 | template <class RangeType> | 
 | MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, | 
 |                                                     RangeType &Operands) { | 
 |   // Bail out on non-opt Phis. | 
 |   if (NonOptPhis.count(Phi)) | 
 |     return Phi; | 
 |  | 
 |   // Detect equal or self arguments | 
 |   MemoryAccess *Same = nullptr; | 
 |   for (auto &Op : Operands) { | 
 |     // If the same or self, good so far | 
 |     if (Op == Phi || Op == Same) | 
 |       continue; | 
 |     // not the same, return the phi since it's not eliminatable by us | 
 |     if (Same) | 
 |       return Phi; | 
 |     Same = cast<MemoryAccess>(&*Op); | 
 |   } | 
 |   // Never found a non-self reference, the phi is undef | 
 |   if (Same == nullptr) | 
 |     return MSSA->getLiveOnEntryDef(); | 
 |   if (Phi) { | 
 |     Phi->replaceAllUsesWith(Same); | 
 |     removeMemoryAccess(Phi); | 
 |   } | 
 |  | 
 |   // We should only end up recursing in case we replaced something, in which | 
 |   // case, we may have made other Phis trivial. | 
 |   return recursePhi(Same); | 
 | } | 
 |  | 
 | void MemorySSAUpdater::insertUse(MemoryUse *MU) { | 
 |   InsertedPHIs.clear(); | 
 |   MU->setDefiningAccess(getPreviousDef(MU)); | 
 |   // Unlike for defs, there is no extra work to do.  Because uses do not create | 
 |   // new may-defs, there are only two cases: | 
 |   // | 
 |   // 1. There was a def already below us, and therefore, we should not have | 
 |   // created a phi node because it was already needed for the def. | 
 |   // | 
 |   // 2. There is no def below us, and therefore, there is no extra renaming work | 
 |   // to do. | 
 | } | 
 |  | 
 | // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. | 
 | static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, | 
 |                                       MemoryAccess *NewDef) { | 
 |   // Replace any operand with us an incoming block with the new defining | 
 |   // access. | 
 |   int i = MP->getBasicBlockIndex(BB); | 
 |   assert(i != -1 && "Should have found the basic block in the phi"); | 
 |   // We can't just compare i against getNumOperands since one is signed and the | 
 |   // other not. So use it to index into the block iterator. | 
 |   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); | 
 |        ++BBIter) { | 
 |     if (*BBIter != BB) | 
 |       break; | 
 |     MP->setIncomingValue(i, NewDef); | 
 |     ++i; | 
 |   } | 
 | } | 
 |  | 
 | // A brief description of the algorithm: | 
 | // First, we compute what should define the new def, using the SSA | 
 | // construction algorithm. | 
 | // Then, we update the defs below us (and any new phi nodes) in the graph to | 
 | // point to the correct new defs, to ensure we only have one variable, and no | 
 | // disconnected stores. | 
 | void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { | 
 |   InsertedPHIs.clear(); | 
 |  | 
 |   // See if we had a local def, and if not, go hunting. | 
 |   MemoryAccess *DefBefore = getPreviousDef(MD); | 
 |   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); | 
 |  | 
 |   // There is a def before us, which means we can replace any store/phi uses | 
 |   // of that thing with us, since we are in the way of whatever was there | 
 |   // before. | 
 |   // We now define that def's memorydefs and memoryphis | 
 |   if (DefBeforeSameBlock) { | 
 |     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); | 
 |          UI != UE;) { | 
 |       Use &U = *UI++; | 
 |       // Leave the uses alone | 
 |       if (isa<MemoryUse>(U.getUser())) | 
 |         continue; | 
 |       U.set(MD); | 
 |     } | 
 |   } | 
 |  | 
 |   // and that def is now our defining access. | 
 |   // We change them in this order otherwise we will appear in the use list | 
 |   // above and reset ourselves. | 
 |   MD->setDefiningAccess(DefBefore); | 
 |  | 
 |   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); | 
 |   if (!DefBeforeSameBlock) { | 
 |     // If there was a local def before us, we must have the same effect it | 
 |     // did. Because every may-def is the same, any phis/etc we would create, it | 
 |     // would also have created.  If there was no local def before us, we | 
 |     // performed a global update, and have to search all successors and make | 
 |     // sure we update the first def in each of them (following all paths until | 
 |     // we hit the first def along each path). This may also insert phi nodes. | 
 |     // TODO: There are other cases we can skip this work, such as when we have a | 
 |     // single successor, and only used a straight line of single pred blocks | 
 |     // backwards to find the def.  To make that work, we'd have to track whether | 
 |     // getDefRecursive only ever used the single predecessor case.  These types | 
 |     // of paths also only exist in between CFG simplifications. | 
 |     FixupList.push_back(MD); | 
 |   } | 
 |  | 
 |   while (!FixupList.empty()) { | 
 |     unsigned StartingPHISize = InsertedPHIs.size(); | 
 |     fixupDefs(FixupList); | 
 |     FixupList.clear(); | 
 |     // Put any new phis on the fixup list, and process them | 
 |     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); | 
 |   } | 
 |   // Now that all fixups are done, rename all uses if we are asked. | 
 |   if (RenameUses) { | 
 |     SmallPtrSet<BasicBlock *, 16> Visited; | 
 |     BasicBlock *StartBlock = MD->getBlock(); | 
 |     // We are guaranteed there is a def in the block, because we just got it | 
 |     // handed to us in this function. | 
 |     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); | 
 |     // Convert to incoming value if it's a memorydef. A phi *is* already an | 
 |     // incoming value. | 
 |     if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) | 
 |       FirstDef = MD->getDefiningAccess(); | 
 |  | 
 |     MSSA->renamePass(MD->getBlock(), FirstDef, Visited); | 
 |     // We just inserted a phi into this block, so the incoming value will become | 
 |     // the phi anyway, so it does not matter what we pass. | 
 |     for (auto &MP : InsertedPHIs) { | 
 |       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); | 
 |       if (Phi) | 
 |         MSSA->renamePass(Phi->getBlock(), nullptr, Visited); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { | 
 |   SmallPtrSet<const BasicBlock *, 8> Seen; | 
 |   SmallVector<const BasicBlock *, 16> Worklist; | 
 |   for (auto &Var : Vars) { | 
 |     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); | 
 |     if (!NewDef) | 
 |       continue; | 
 |     // First, see if there is a local def after the operand. | 
 |     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); | 
 |     auto DefIter = NewDef->getDefsIterator(); | 
 |  | 
 |     // The temporary Phi is being fixed, unmark it for not to optimize. | 
 |     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) | 
 |       NonOptPhis.erase(Phi); | 
 |  | 
 |     // If there is a local def after us, we only have to rename that. | 
 |     if (++DefIter != Defs->end()) { | 
 |       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Otherwise, we need to search down through the CFG. | 
 |     // For each of our successors, handle it directly if their is a phi, or | 
 |     // place on the fixup worklist. | 
 |     for (const auto *S : successors(NewDef->getBlock())) { | 
 |       if (auto *MP = MSSA->getMemoryAccess(S)) | 
 |         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); | 
 |       else | 
 |         Worklist.push_back(S); | 
 |     } | 
 |  | 
 |     while (!Worklist.empty()) { | 
 |       const BasicBlock *FixupBlock = Worklist.back(); | 
 |       Worklist.pop_back(); | 
 |  | 
 |       // Get the first def in the block that isn't a phi node. | 
 |       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { | 
 |         auto *FirstDef = &*Defs->begin(); | 
 |         // The loop above and below should have taken care of phi nodes | 
 |         assert(!isa<MemoryPhi>(FirstDef) && | 
 |                "Should have already handled phi nodes!"); | 
 |         // We are now this def's defining access, make sure we actually dominate | 
 |         // it | 
 |         assert(MSSA->dominates(NewDef, FirstDef) && | 
 |                "Should have dominated the new access"); | 
 |  | 
 |         // This may insert new phi nodes, because we are not guaranteed the | 
 |         // block we are processing has a single pred, and depending where the | 
 |         // store was inserted, it may require phi nodes below it. | 
 |         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); | 
 |         return; | 
 |       } | 
 |       // We didn't find a def, so we must continue. | 
 |       for (const auto *S : successors(FixupBlock)) { | 
 |         // If there is a phi node, handle it. | 
 |         // Otherwise, put the block on the worklist | 
 |         if (auto *MP = MSSA->getMemoryAccess(S)) | 
 |           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); | 
 |         else { | 
 |           // If we cycle, we should have ended up at a phi node that we already | 
 |           // processed.  FIXME: Double check this | 
 |           if (!Seen.insert(S).second) | 
 |             continue; | 
 |           Worklist.push_back(S); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Move What before Where in the MemorySSA IR. | 
 | template <class WhereType> | 
 | void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, | 
 |                               WhereType Where) { | 
 |   // Mark MemoryPhi users of What not to be optimized. | 
 |   for (auto *U : What->users()) | 
 |     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) | 
 |       NonOptPhis.insert(PhiUser); | 
 |  | 
 |   // Replace all our users with our defining access. | 
 |   What->replaceAllUsesWith(What->getDefiningAccess()); | 
 |  | 
 |   // Let MemorySSA take care of moving it around in the lists. | 
 |   MSSA->moveTo(What, BB, Where); | 
 |  | 
 |   // Now reinsert it into the IR and do whatever fixups needed. | 
 |   if (auto *MD = dyn_cast<MemoryDef>(What)) | 
 |     insertDef(MD); | 
 |   else | 
 |     insertUse(cast<MemoryUse>(What)); | 
 |  | 
 |   // Clear dangling pointers. We added all MemoryPhi users, but not all | 
 |   // of them are removed by fixupDefs(). | 
 |   NonOptPhis.clear(); | 
 | } | 
 |  | 
 | // Move What before Where in the MemorySSA IR. | 
 | void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { | 
 |   moveTo(What, Where->getBlock(), Where->getIterator()); | 
 | } | 
 |  | 
 | // Move What after Where in the MemorySSA IR. | 
 | void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { | 
 |   moveTo(What, Where->getBlock(), ++Where->getIterator()); | 
 | } | 
 |  | 
 | void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, | 
 |                                    MemorySSA::InsertionPlace Where) { | 
 |   return moveTo(What, BB, Where); | 
 | } | 
 |  | 
 | // All accesses in To used to be in From. Move to end and update access lists. | 
 | void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, | 
 |                                        Instruction *Start) { | 
 |  | 
 |   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); | 
 |   if (!Accs) | 
 |     return; | 
 |  | 
 |   MemoryAccess *FirstInNew = nullptr; | 
 |   for (Instruction &I : make_range(Start->getIterator(), To->end())) | 
 |     if ((FirstInNew = MSSA->getMemoryAccess(&I))) | 
 |       break; | 
 |   if (!FirstInNew) | 
 |     return; | 
 |  | 
 |   auto *MUD = cast<MemoryUseOrDef>(FirstInNew); | 
 |   do { | 
 |     auto NextIt = ++MUD->getIterator(); | 
 |     MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) | 
 |                                   ? nullptr | 
 |                                   : cast<MemoryUseOrDef>(&*NextIt); | 
 |     MSSA->moveTo(MUD, To, MemorySSA::End); | 
 |     // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to | 
 |     // retrieve it again. | 
 |     Accs = MSSA->getWritableBlockAccesses(From); | 
 |     MUD = NextMUD; | 
 |   } while (MUD); | 
 | } | 
 |  | 
 | void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, | 
 |                                                 BasicBlock *To, | 
 |                                                 Instruction *Start) { | 
 |   assert(MSSA->getBlockAccesses(To) == nullptr && | 
 |          "To block is expected to be free of MemoryAccesses."); | 
 |   moveAllAccesses(From, To, Start); | 
 |   for (BasicBlock *Succ : successors(To)) | 
 |     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) | 
 |       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); | 
 | } | 
 |  | 
 | void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, | 
 |                                                Instruction *Start) { | 
 |   assert(From->getSinglePredecessor() == To && | 
 |          "From block is expected to have a single predecessor (To)."); | 
 |   moveAllAccesses(From, To, Start); | 
 |   for (BasicBlock *Succ : successors(From)) | 
 |     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) | 
 |       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); | 
 | } | 
 |  | 
 | /// If all arguments of a MemoryPHI are defined by the same incoming | 
 | /// argument, return that argument. | 
 | static MemoryAccess *onlySingleValue(MemoryPhi *MP) { | 
 |   MemoryAccess *MA = nullptr; | 
 |  | 
 |   for (auto &Arg : MP->operands()) { | 
 |     if (!MA) | 
 |       MA = cast<MemoryAccess>(Arg); | 
 |     else if (MA != Arg) | 
 |       return nullptr; | 
 |   } | 
 |   return MA; | 
 | } | 
 |  | 
 | void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( | 
 |     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds) { | 
 |   assert(!MSSA->getWritableBlockAccesses(New) && | 
 |          "Access list should be null for a new block."); | 
 |   MemoryPhi *Phi = MSSA->getMemoryAccess(Old); | 
 |   if (!Phi) | 
 |     return; | 
 |   if (pred_size(Old) == 1) { | 
 |     assert(pred_size(New) == Preds.size() && | 
 |            "Should have moved all predecessors."); | 
 |     MSSA->moveTo(Phi, New, MemorySSA::Beginning); | 
 |   } else { | 
 |     assert(!Preds.empty() && "Must be moving at least one predecessor to the " | 
 |                              "new immediate predecessor."); | 
 |     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); | 
 |     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); | 
 |     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { | 
 |       if (PredsSet.count(B)) { | 
 |         NewPhi->addIncoming(MA, B); | 
 |         return true; | 
 |       } | 
 |       return false; | 
 |     }); | 
 |     Phi->addIncoming(NewPhi, New); | 
 |     if (onlySingleValue(NewPhi)) | 
 |       removeMemoryAccess(NewPhi); | 
 |   } | 
 | } | 
 |  | 
 | void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { | 
 |   assert(!MSSA->isLiveOnEntryDef(MA) && | 
 |          "Trying to remove the live on entry def"); | 
 |   // We can only delete phi nodes if they have no uses, or we can replace all | 
 |   // uses with a single definition. | 
 |   MemoryAccess *NewDefTarget = nullptr; | 
 |   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { | 
 |     // Note that it is sufficient to know that all edges of the phi node have | 
 |     // the same argument.  If they do, by the definition of dominance frontiers | 
 |     // (which we used to place this phi), that argument must dominate this phi, | 
 |     // and thus, must dominate the phi's uses, and so we will not hit the assert | 
 |     // below. | 
 |     NewDefTarget = onlySingleValue(MP); | 
 |     assert((NewDefTarget || MP->use_empty()) && | 
 |            "We can't delete this memory phi"); | 
 |   } else { | 
 |     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); | 
 |   } | 
 |  | 
 |   // Re-point the uses at our defining access | 
 |   if (!isa<MemoryUse>(MA) && !MA->use_empty()) { | 
 |     // Reset optimized on users of this store, and reset the uses. | 
 |     // A few notes: | 
 |     // 1. This is a slightly modified version of RAUW to avoid walking the | 
 |     // uses twice here. | 
 |     // 2. If we wanted to be complete, we would have to reset the optimized | 
 |     // flags on users of phi nodes if doing the below makes a phi node have all | 
 |     // the same arguments. Instead, we prefer users to removeMemoryAccess those | 
 |     // phi nodes, because doing it here would be N^3. | 
 |     if (MA->hasValueHandle()) | 
 |       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); | 
 |     // Note: We assume MemorySSA is not used in metadata since it's not really | 
 |     // part of the IR. | 
 |  | 
 |     while (!MA->use_empty()) { | 
 |       Use &U = *MA->use_begin(); | 
 |       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) | 
 |         MUD->resetOptimized(); | 
 |       U.set(NewDefTarget); | 
 |     } | 
 |   } | 
 |  | 
 |   // The call below to erase will destroy MA, so we can't change the order we | 
 |   // are doing things here | 
 |   MSSA->removeFromLookups(MA); | 
 |   MSSA->removeFromLists(MA); | 
 | } | 
 |  | 
 | void MemorySSAUpdater::removeBlocks( | 
 |     const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) { | 
 |   // First delete all uses of BB in MemoryPhis. | 
 |   for (BasicBlock *BB : DeadBlocks) { | 
 |     TerminatorInst *TI = BB->getTerminator(); | 
 |     assert(TI && "Basic block expected to have a terminator instruction"); | 
 |     for (BasicBlock *Succ : TI->successors()) | 
 |       if (!DeadBlocks.count(Succ)) | 
 |         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { | 
 |           MP->unorderedDeleteIncomingBlock(BB); | 
 |           if (MP->getNumIncomingValues() == 1) | 
 |             removeMemoryAccess(MP); | 
 |         } | 
 |     // Drop all references of all accesses in BB | 
 |     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) | 
 |       for (MemoryAccess &MA : *Acc) | 
 |         MA.dropAllReferences(); | 
 |   } | 
 |  | 
 |   // Next, delete all memory accesses in each block | 
 |   for (BasicBlock *BB : DeadBlocks) { | 
 |     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); | 
 |     if (!Acc) | 
 |       continue; | 
 |     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { | 
 |       MemoryAccess *MA = &*AB; | 
 |       ++AB; | 
 |       MSSA->removeFromLookups(MA); | 
 |       MSSA->removeFromLists(MA); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( | 
 |     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, | 
 |     MemorySSA::InsertionPlace Point) { | 
 |   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); | 
 |   MSSA->insertIntoListsForBlock(NewAccess, BB, Point); | 
 |   return NewAccess; | 
 | } | 
 |  | 
 | MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( | 
 |     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { | 
 |   assert(I->getParent() == InsertPt->getBlock() && | 
 |          "New and old access must be in the same block"); | 
 |   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); | 
 |   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), | 
 |                               InsertPt->getIterator()); | 
 |   return NewAccess; | 
 | } | 
 |  | 
 | MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( | 
 |     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { | 
 |   assert(I->getParent() == InsertPt->getBlock() && | 
 |          "New and old access must be in the same block"); | 
 |   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); | 
 |   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), | 
 |                               ++InsertPt->getIterator()); | 
 |   return NewAccess; | 
 | } |